PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (998202)

Clipboard (0)
None

Related Articles

1.  Online medical books: their availability and an assessment of how health sciences libraries provide access on their public Websites 
Objective: The objective of this study was to determine the number and topical range of available online medical books and to assess how health sciences libraries were providing access to these resources on their public Websites.
Method: The collection-based evaluative technique of list checking was used to assess the number and topical range of online medical books of the six largest publishers. Publisher inventory lists were downloaded over a two-day period (May 16–17, 2004). Titles were counted and compared with the 2003 Brandon/Hill list. A sample of health sciences libraries was subsequently derived by consulting the 2004 “Top Medical Schools-Research” in U.S. News & World Report. Bibliographic and bibliothecal access methods were evaluated based on an inspection of the publicly available Websites of the sample libraries.
Results: Of 318 currently published online medical books, 151 (47%) were Brandon/Hill titles covering 42 of 59 Brandon/Hill topics (71%). These 151 titles represented 22% (N = 672) of the Brandon/Hill list, which further broke down as 52 minimal core, 41 initial purchase, and 58 other recommended Brandon/Hill titles. These numbers represented 50%, 28%, and 12%, respectively, of all Brandon/Hill titles corresponding to those categories. In terms of bibliographic access, 20 of 21 of sampled libraries created catalog records for their online medical books, 1 of which also provided analytical access at the chapter level, and none provided access at the chapter section level. Of the 21 libraries, 19 had library Website search engines that provided title-level access and 4 provided access at the chapter level and none that at the chapter section level. For bibliothecal access, 19 of 21 libraries provided title-level access to medical books, 8 of which provided classified and alphabetic arrangements, 1 provided a classified arrangement only, and 10 provided an alphabetic arrangement only. No library provided a bibliothecal arrangement for medical book chapters or chapter sections.
Conclusions: This study shows that the number and topical range of online medical books is reaching a point where collection-level consideration is warranted to facilitate efficient use and to prevent the problem of split files. However, the results also show that few efforts are underway on the publicly available Websites of the surveyed health sciences libraries to provide the analytical access necessary to meet the structural needs of clinical information seekers.
PMCID: PMC1324775  PMID: 16404473
2.  A study on literature obsolescence and core journals’ cost-benefit in citations of the ‘Scientific Medical Journal of Ahwaz’ 
Introduction:
One of the methods of identifying core and popular resources is by citation evaluation. Using citation evaluation, the librarians of the Acquisition Department can use quantitative methods to indentify core and popular resources among numerous information resources and make serious savings in the library's budget, by acquiring these core resources and eliminating useless ones. The aim of this study is assessing literature obsolescence and core journals’ cost-benefit in citations of the ‘Scientific Medical Journal of Ahwaz’.
Materials and Methods:
This study is a descriptive and cross-sectional survey that uses citation analysis. Sampling is objective sampling from all documents from years 1364 (1985) to 1385 (2006), and the population comprises of 6342 citations of the articles published in ‘Scientific Medical Journal of Ahwaz’. Data collection is done through referring to the original documents and the data is analyzed using the Excel software, and for descriptive and analytical statistics the cost-benefit formula and Bradford law formula are used.
Results:
Findings showed that the average citation for each document in the ‘Scientific Medical Journal of Ahwaz’ was 15.81. The average citation to international sources was 14.37, and the average citation to national sources was 1.44. The literature obsolescence of Farsi documents in this study was 15 years, while it was equal to 20 years for English documents. The highly cited Farsi journals were (sorted based on citation in descending order): ‘Scientific Medical Journal of Ahwaz’, ‘Daroudarman’, ‘Nabz,’ and ‘Journal of Medical School, Shahid Beheshti University of Medical Sciences’. The highly cited English journals were (sorted based on citation in descending order): ‘Pediatrics’, ‘The New England Journal of Medicine’, ‘Gastroenterology’ and ‘Medicine’. All of these four journals are part of the ISI database and have good impact factors in the Journal Citation Reports (JCR). Also their cost-benefit was reasonable based on the frequency of their use.
Conclusion:
The authors of the investigated journal were more inclined to use international references. The resources used by the authors of this journal are relatively obsolete and the authors ought to use more up-to-date resources. The subscription for high citation English and Farsi journals is still available in this university. Also the authors of this journal have used accredited ISI journals as their resource, which is a sign of the credibility for the ‘Scientific Medical Journal of Ahwaz’.
doi:10.4103/2277-9531.139672
PMCID: PMC4165098  PMID: 25250359
Bradford Law; citation analysis; core journals; cost-benefit; literature obsolescence; Scientific Medical Journal of Ahwaz
3.  Evaluating Drug Prices, Availability, Affordability, and Price Components: Implications for Access to Drugs in Malaysia 
PLoS Medicine  2007;4(3):e82.
Background
Malaysia's stable health care system is facing challenges with increasing medicine costs. To investigate these issues a survey was carried out to evaluate medicine prices, availability, affordability, and the structure of price components.
Methods and Findings
The methodology developed by the World Health Organization (WHO) and Health Action International (HAI) was used. Price and availability data for 48 medicines was collected from 20 public sector facilities, 32 private sector retail pharmacies and 20 dispensing doctors in four geographical regions of West Malaysia. Medicine prices were compared with international reference prices (IRPs) to obtain a median price ratio. The daily wage of the lowest paid unskilled government worker was used to gauge the affordability of medicines. Price component data were collected throughout the supply chain, and markups, taxes, and other distribution costs were identified. In private pharmacies, innovator brand (IB) prices were 16 times higher than the IRPs, while generics were 6.6 times higher. In dispensing doctor clinics, the figures were 15 times higher for innovator brands and 7.5 for generics. Dispensing doctors applied high markups of 50%–76% for IBs, and up to 316% for generics. Retail pharmacy markups were also high—25%–38% and 100%–140% for IBs and generics, respectively. In the public sector, where medicines are free, availability was low even for medicines on the National Essential Drugs List. For a month's treatment for peptic ulcer disease and hypertension people have to pay about a week's wages in the private sector.
Conclusions
The free market by definition does not control medicine prices, necessitating price monitoring and control mechanisms. Markups for generic products are greater than for IBs. Reducing the base price without controlling markups may increase profits for retailers and dispensing doctors without reducing the price paid by end users. To increase access and affordability, promotion of generic medicines and improved availability of medicines in the public sector are required.
Drug price and availability data were collected from West Malaysian public sector facilities, private sector retail pharmacies, and dispensing doctors. Mark-ups were higher on generic drugs than on innovator brands.
Editors' Summary
Background.
The World Health Organization has said that one-third of the people of the world cannot access the medicines they need. An important reason for this problem is that prices are often too high for people or government-funded health systems to afford. In developing countries, most people who need medicines have to pay for them out of their own pockets. Where the cost of drugs is covered by health systems, spending on medicines is a major part of the total healthcare budget. Governments use a variety of approaches to try to control the cost of drugs and make sure that essential medicines are affordable and not overpriced. According to the theory of “free market economics,” the costs of goods and services are determined by interactions between buyers and sellers and not by government intervention. However, free market economics does not work well at containing the costs of medicines, particularly new medicines, because new medicines are protected by patent law, which legally prevents others from making, using, or selling the medicine for a particular period of time. Therefore, without government intervention, there is nothing to help to push down prices.
Why Was This Study Done?
Malaysia is a middle-income country with a relatively effective public health system, but it is facing a rapid rise in drug costs. In Malaysia, medicine prices are determined by free-market economics, without any control by government. Government hospitals are expected to provide drugs free, but a substantial proportion of medicines are paid for by patients who buy them directly from private pharmacies or prescribing doctors. There is evidence that Malaysian patients have difficulties accessing the drugs they need and that cost is an important factor. Therefore, the researchers who wrote this paper wanted to examine the cost of different medicines in Malaysia, and their availability and affordability from different sources.
What Did the Researchers Do and Find?
In this research project, 48 drugs were studied, of which 28 were part of a “core list” identified by the World Health Organization as “essential drugs” on the basis of the global burden of disease. The remaining 20 reflected health care needs in Malaysia itself. The costs of each medicine were collected from government hospitals, private pharmacies, and dispensing doctors in four different regions of Malaysia. Data were collected for the “innovator brand” (made by the original patent holder) and for “generic” brands (an equivalent drug to the innovator brand, produced by a different company once the innovator brand no longer has an exclusive patent). The medicine prices were compared against international reference prices (IRP), which are the average prices offered by not-for-profit drug companies to developing countries. Finally, the researchers also compared the cost of the drugs with daily wages, in order to work out their “affordability.”
The researchers found that, irrespective of the source of medicines, prices were on average very much higher than the international reference price, ranging from 2.4 times the IRP for innovator brands accessed through public hospitals, to 16 times the IRP for innovator brands accessed through private pharmacies. The availability of medicines was also very poor, with only 25% of generic medicines available on average through the public sector. The affordability of many of the medicines studied was again very poor. For example, one month's supply of ranitidine (a drug for stomach ulcers) was equivalent to around three days' wages for a low-paid government worker, and one month's supply of fluoxetine (an antidepressant) would cost around 26 days' wages.
What Do These Findings Mean?
These results show that essential drugs are very expensive in Malaysia and are not universally available. Many people would not be able to pay for essential medicines. The cost of medicines in Malaysia seems to be much higher than in areas of India and Sri Lanka, although the researchers did not attempt to collect data in order to carry out an international comparison. It is possible that the high cost and low availability in Malaysia are the result of a lack of government regulation. Overall, the findings suggest that the government should set up mechanisms to prevent drug manufacturers from increasing prices too much and thus ensure greater access to essential medicines.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040082.
Read a related PLoS Medicine Perspective article by Suzanne Hill
Information is available from the World Health Organization on Improving Access to Medicines
Information on medicine prices is available from Health Action International
Wikipedia has an entry on Patent (a type of intellectual property that is normally used to prevent other companies from selling a newly invented medicine). (Wikipedia is an internet encyclopedia anyone can edit.)
The Drugs for Neglected Diseases Initiative is an international collaboration between public organizations that aims to develop drugs for people suffering from neglected diseases
doi:10.1371/journal.pmed.0040082
PMCID: PMC1831730  PMID: 17388660
4.  Brandon/Hill selected list of print books and journals for the small medical library* 
After thirty-six years of biennial updates, the authors take great pride in being able to publish the nineteenth version (2001) of the “Brandon/Hill Selected List of Print Books and Journals for the Small Medical Library.” This list of 630 books and 143 journals is intended as a selection guide for health sciences libraries or similar facilities. It can also function as a core collection for a library consortium. Books and journals are categorized by subject; the book list is followed by an author/editor index, and the subject list of journals, by an alphabetical title listing. Due to continuing requests from librarians, a “minimal core list” consisting of 81 titles has been pulled out from the 217 asterisked (*) initial-purchase books and marked with daggers (†*) before the asterisks. To purchase the entire collection of 630 books and to pay for 143 2001 journal subscriptions would require $124,000. The cost of only the asterisked items, books and journals, totals $55,000. The “minimal core list” book collection costs approximately $14,300.
PMCID: PMC31721  PMID: 11337945
5.  Brandon/Hill selected list of books and journals for the small medical library. 
The interrelationship of print and electronic media in the hospital library and its relevance to the "Brandon/Hill Selected List" in 1999 are addressed in the updated list (eighteenth version) of 627 books and 145 journals. This list is intended as a selection guide for the small or medium-size library in a hospital or similar facility. More realistically, it can function as a core collection for a library consortium. Books and journals are categorized by subject; the book list is followed by an author/editor index, and the subject list of journals by an alphabetical title listing. Due to continuing requests from librarians, a "minimal core" book collection consisting of 82 titles has been pulled out from the 214 asterisked (*) initial-purchase books and marked with daggers ([symbol: see text]). To purchase the entire collection of books and to pay for 1999 journal subscriptions would require $114,900. The cost of only the asterisked items, books and journals, totals $49,100. The "minimal core" book collection costs $13,200.
PMCID: PMC226554  PMID: 10219475
6.  The process and costs of publishing medical journals in Sri Lanka: an economic evaluation 
BMJ Open  2011;1(1):e000057.
Objectives
Medical journals have contributed to the advancement of medicine by helping to disseminate scientific knowledge and providing a forum for medical communities to debate issues in depth. To the authors' knowledge, there are no studies examining the process of medical journal publication in developing Asian countries. The authors analysed the process and costs of publishing medical journals in Sri Lanka, a developing country in South Asia.
Methods
Data were collected by interviewing the editors and perusing the records at the editorial offices of the respective medical journals. Articles published in 2009 (or 2008 for journals not published in 2009) were analysed by perusing the respective journals.
Results
A total of 44 medical journals were published in Sri Lanka's history, of which only 28 journals remained in publication after 2007. A majority (54%) of the journals published after 2007 were published once per year. Seventeen journals in publication after 2007 were published in paper version only, and 11 journals were also available online. The mean cost of printing one issue was Sri Lankan Rupees (LKR) 97 720 (US$888) (range LKR 28 000–270 000). The cost of distribution ranged from LKR 2000 to 140 000 (US$18–1273). The mean cost of publishing one article was LKR 6646 (US$60). A total of 456 articles were published in 2009 (/2008). The total number of pages published was 1723.
Conclusion
The infrastructure for medical journal publishing in Sri Lanka has many good qualities such as free access, minimum charges for authors and potential for online availability. The journals are solely academic (non-profit), but the costs remain high.
Article summary
Article focus
To analyse the process and costs of publishing medical journals in a developing country.
To identify a list of medical journals published in the country.
To analyse the number and types of articles published in recent Sri Lankan medical journals.
Key messages
Sri Lankan medical journals are freely accessible with minimum charges for authors.
Sri Lankan medical journals are solely academic (non-commercial) and non-profit in nature.
The publication costs remain high.
Strengths and limitations of this study
There is a lack of a comprehensive list of medical journals in the country.
The limited number of publications from the fields of allied health sciences (nursing, pharmacy and physiotherapy) were not included.
doi:10.1136/bmjopen-2011-000057
PMCID: PMC3191407  PMID: 22021741
7.  Selected list of books and journals for the small medical library. 
The introduction to this revised list (seventeenth version) of 610 books and 141 journals addresses the origin, three decades ago, of the "Selected List of Books and Journals for the Small Medical Library," and the accomplishments of the late Alfred N. Brandon in helping health sciences librarians, and especially hospital librarians, to envision what collection development and a library collection are all about. This list is intended as a selection guide for the small or medium-size library in a hospital or similar facility. More realistically, it can function as a core collection for a library consortium. Books and journals are categorized by subject; the book list is followed by an author/editor index, and the subject list of journals by an alphabetical title listing. Due to continuing requests from librarians, a "minimal core" book collection consisting of 78 titles has been pulled out from the 200 asterisked (*) initial-purchase books and marked with daggers ([symbol: see text]). To purchase the entire collection of books and to pay for 1997 journal subscriptions would require $101,700. The cost of only the asterisked items, books and journals, totals $43,100. The "minimal core" book collection costs $12,600.
PMCID: PMC226239  PMID: 9160148
8.  Bibliometric analysis of the American Journal of Veterinary Research to produce a list of core veterinary medicine journals 
Objective: Bibliometric techniques were used to analyze the citation patterns of researchers publishing in the American Journal of Veterinary Research (AJVR).
Methods: The more than 25,000 bibliographic references appearing in the AJVR from 2001 to 2003 were examined for material type, date of publication, and frequency of journals cited. Journal titles were ranked in decreasing order of productivity to create a core list of journals most frequently used by veterinary medical researchers.
Results: The majority of items cited were journals (88.8%), followed by books (9.8%) and gray literature (2.1%). Current sources of information were favored; 65% of the journals and 77% of the books were published in 1990 or later. Dividing the cited articles into 3 even zones revealed that 24 journals produced 7,361 cited articles in the first zone. One hundred thirty-nine journals were responsible for 7,414 cited articles in zone 2, and 1,409 journals produced 7,422 cited articles in zone 3.
Conclusions: A core collection of veterinary medicine journals would include 49 veterinary medicine journals from zones 1 and 2. Libraries supporting a veterinary curriculum or veterinary research should also include veterinary medical journals from Zone 3, as well as provide access to journals in non-veterinary subjects such as biochemistry, virology, orthopedics, and surgery and a selection of general science and medical journals.
PMCID: PMC1629416  PMID: 17082835
9.  Timing and Completeness of Trial Results Posted at ClinicalTrials.gov and Published in Journals 
PLoS Medicine  2013;10(12):e1001566.
Agnes Dechartres and colleagues searched ClinicalTrials.gov for completed drug RCTs with results reported and then searched for corresponding studies in PubMed to evaluate timeliness and completeness of reporting.
Please see later in the article for the Editors' Summary
Background
The US Food and Drug Administration Amendments Act requires results from clinical trials of Food and Drug Administration–approved drugs to be posted at ClinicalTrials.gov within 1 y after trial completion. We compared the timing and completeness of results of drug trials posted at ClinicalTrials.gov and published in journals.
Methods and Findings
We searched ClinicalTrials.gov on March 27, 2012, for randomized controlled trials of drugs with posted results. For a random sample of these trials, we searched PubMed for corresponding publications. Data were extracted independently from ClinicalTrials.gov and from the published articles for trials with results both posted and published. We assessed the time to first public posting or publishing of results and compared the completeness of results posted at ClinicalTrials.gov versus published in journal articles. Completeness was defined as the reporting of all key elements, according to three experts, for the flow of participants, efficacy results, adverse events, and serious adverse events (e.g., for adverse events, reporting of the number of adverse events per arm, without restriction to statistically significant differences between arms for all randomized patients or for those who received at least one treatment dose).
From the 600 trials with results posted at ClinicalTrials.gov, we randomly sampled 50% (n = 297) had no corresponding published article. For trials with both posted and published results (n = 202), the median time between primary completion date and first results publicly posted was 19 mo (first quartile = 14, third quartile = 30 mo), and the median time between primary completion date and journal publication was 21 mo (first quartile = 14, third quartile = 28 mo). Reporting was significantly more complete at ClinicalTrials.gov than in the published article for the flow of participants (64% versus 48% of trials, p<0.001), efficacy results (79% versus 69%, p = 0.02), adverse events (73% versus 45%, p<0.001), and serious adverse events (99% versus 63%, p<0.001).
The main study limitation was that we considered only the publication describing the results for the primary outcomes.
Conclusions
Our results highlight the need to search ClinicalTrials.gov for both unpublished and published trials. Trial results, especially serious adverse events, are more completely reported at ClinicalTrials.gov than in the published article.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
When patients consult a doctor, they expect to be recommended what their doctor believes is the most effective treatment with the fewest adverse effects. To determine which treatment to recommend, clinicians rely on sources that include research studies. Among studies, the best evidence is generally agreed to come from systematic reviews and randomized controlled clinical trials (RCTs), studies that test the efficacy and safety of medical interventions by comparing clinical outcomes in groups of patients randomly chosen to receive different interventions. Decision-making based on the best available evidence is called evidence-based medicine. However, evidence-based medicine can only guide clinicians if trial results are published in a timely and complete manner. Unfortunately, underreporting of trials is common. For example, an RCT in which a new drug performs better than existing drugs is more likely to be published than one in which the new drug performs badly or has unwanted adverse effects (publication bias). There can also be a delay in publishing the results of negative trials (time-lag bias) or a failure to publish complete results for all the prespecified outcomes of a trial (reporting bias). All three types of bias threaten informed medical decision-making and the health of patients.
Why Was This Study Done?
One initiative that aims to prevent these biases was included in the 2007 US Food and Drug Administration Amendments Act (FDAAA). The Food and Drug Administration (FDA) is responsible for approving drugs and devices that are marketed in the US. The FDAAA requires that results from clinical trials of FDA-approved drugs and devices conducted in the United States be made publicly available at ClinicalTrials.gov within one year of trial completion. ClinicalTrials.gov—a web-based registry that includes US and international clinical trials—was established in 2000 in response to the 1997 FDA Modernization Act, which required mandatory registration of trial titles and designs and of the conditions and interventions under study. The FDAAA expanded these mandatory requirements by requiring researchers studying FDA-approved drugs and devices to report additional information such as the baseline characteristics of the participants in each arm of the trial and the results of primary and secondary outcome measures (the effects of the intervention on predefined clinical measurements) and their statistical significance (an indication of whether differences in outcomes might have happened by chance). Researchers of other trials registered in ClinicalTrials.gov are welcome to post trial results as well. Here, the researchers compare the timing and completeness (i.e., whether all relevant information was fully reported) of results of drug trials posted at ClinicalTrials.gov with those published in medical journals.
What Did the Researchers Do and Find?
The researchers searched ClinicalTrials.gov for reports of completed phase III and IV (late-stage) RCTs of drugs with posted results. For a random sample of 600 eligible trials, they searched PubMed (a database of biomedical publications) for corresponding publications. Only 50% of trials with results posted at ClinicalTrials.gov had a matching published article. For 202 trials with both posted and published results, the researchers compared the timing and completeness of the results posted at ClinicalTrials.gov and of results reported in the corresponding journal publication. The median time between the study completion date and the first results being publicly posted at ClinicalTrials.gov was 19 months, whereas the time between completion and publication in a journal was 21 months. The flow of participants through trials was completely reported in 64% of the ClinicalTrials.gov postings but in only 48% of the corresponding publications. Results for the primary outcome measure were completely reported in 79% and 69% of the ClinicalTrials.gov postings and corresponding publications, respectively. Finally, adverse events were completely reported in 73% of the ClinicalTrials.gov postings but in only 45% of the corresponding publications, and serious adverse events were reported in 99% and 63% of the ClinicalTrials.gov postings and corresponding publications, respectively.
What Do These Findings Mean?
These findings suggest that the reporting of trial results is significantly more complete at ClinicalTrials.gov than in published journal articles reporting the main trial results. Certain aspects of this study may affect the accuracy of this conclusion. For example, the researchers compared the results posted at ClinicalTrials.gov only with the results in the publication that described the primary outcome of each trial, even though some trials had multiple publications. Importantly, these findings suggest that, to enable patients and physicians to make informed treatment decisions, experts undertaking assessments of drugs should consider seeking efficacy and safety data posted at ClinicalTrials.gov, both for trials whose results are not published yet and for trials whose results are published. Moreover, they suggest that the use of templates to guide standardized reporting of trial results in journals and broader mandatory posting of results may help to improve the reporting and transparency of clinical trials and, consequently, the evidence available to inform treatment of patients.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001566.
Wikipedia has pages on evidence-based medicine and on publication bias (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The US Food and Drug Administration provides information about drug approval in the US for consumers and health-care professionals, plus detailed information on the 2007 Food and Drug Administration Amendments Act
ClinicalTrials.gov provides information about the US National Institutes of Health clinical trial registry, including background information about clinical trials, and a fact sheet detailing the requirements of the 2007 Food and Drug Administration Amendments Act
PLOS Medicine recently launched a Reporting Guidelines Collection, an open access collection of reporting guidelines, commentary, and related research on guidelines from across PLOS journals that aims to help advance the efficiency, effectiveness, and equitability of the dissemination of biomedical information; a 2008 PLOS Medicine editorial discusses the 2007 Food and Drug Administration Amendments Act
doi:10.1371/journal.pmed.1001566
PMCID: PMC3849189  PMID: 24311990
10.  A medical book collection for physician assistants 
Selecting resources for physician assistants is challenging and can be overwhelming. Although several core lists exist for nursing, allied health, and medical libraries, judging the scope and level of these resources in relation to the information needs of the physician assistant is difficult. Medical texts can be highly specialized and very expensive, in essence, “overkill” for the needs of the physician assistant. This bibliography is meant to serve as a guide to appropriate medical texts for physician assistants. Titles were selected from the Brandon/Hill list, Doody's Electronic Journal, and various other reference resources. Resources were evaluated based on the subject and scope, audience, authorship, cost, and currency. The collection includes 195 titles from 33 specialty areas. Standard texts in each area are also included.
PMCID: PMC34561  PMID: 11465687
11.  Information from Pharmaceutical Companies and the Quality, Quantity, and Cost of Physicians' Prescribing: A Systematic Review 
PLoS Medicine  2010;7(10):e1000352.
Geoff Spurling and colleagues report findings of a systematic review looking at the relationship between exposure to promotional material from pharmaceutical companies and the quality, quantity, and cost of prescribing. They fail to find evidence of improvements in prescribing after exposure, and find some evidence of an association with higher prescribing frequency, higher costs, or lower prescribing quality.
Background
Pharmaceutical companies spent $57.5 billion on pharmaceutical promotion in the United States in 2004. The industry claims that promotion provides scientific and educational information to physicians. While some evidence indicates that promotion may adversely influence prescribing, physicians hold a wide range of views about pharmaceutical promotion. The objective of this review is to examine the relationship between exposure to information from pharmaceutical companies and the quality, quantity, and cost of physicians' prescribing.
Methods and Findings
We searched for studies of physicians with prescribing rights who were exposed to information from pharmaceutical companies (promotional or otherwise). Exposures included pharmaceutical sales representative visits, journal advertisements, attendance at pharmaceutical sponsored meetings, mailed information, prescribing software, and participation in sponsored clinical trials. The outcomes measured were quality, quantity, and cost of physicians' prescribing. We searched Medline (1966 to February 2008), International Pharmaceutical Abstracts (1970 to February 2008), Embase (1997 to February 2008), Current Contents (2001 to 2008), and Central (The Cochrane Library Issue 3, 2007) using the search terms developed with an expert librarian. Additionally, we reviewed reference lists and contacted experts and pharmaceutical companies for information. Randomized and observational studies evaluating information from pharmaceutical companies and measures of physicians' prescribing were independently appraised for methodological quality by two authors. Studies were excluded where insufficient study information precluded appraisal. The full text of 255 articles was retrieved from electronic databases (7,185 studies) and other sources (138 studies). Articles were then excluded because they did not fulfil inclusion criteria (179) or quality appraisal criteria (18), leaving 58 included studies with 87 distinct analyses. Data were extracted independently by two authors and a narrative synthesis performed following the MOOSE guidelines. Of the set of studies examining prescribing quality outcomes, five found associations between exposure to pharmaceutical company information and lower quality prescribing, four did not detect an association, and one found associations with lower and higher quality prescribing. 38 included studies found associations between exposure and higher frequency of prescribing and 13 did not detect an association. Five included studies found evidence for association with higher costs, four found no association, and one found an association with lower costs. The narrative synthesis finding of variable results was supported by a meta-analysis of studies of prescribing frequency that found significant heterogeneity. The observational nature of most included studies is the main limitation of this review.
Conclusions
With rare exceptions, studies of exposure to information provided directly by pharmaceutical companies have found associations with higher prescribing frequency, higher costs, or lower prescribing quality or have not found significant associations. We did not find evidence of net improvements in prescribing, but the available literature does not exclude the possibility that prescribing may sometimes be improved. Still, we recommend that practitioners follow the precautionary principle and thus avoid exposure to information from pharmaceutical companies.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
A prescription drug is a medication that can be supplied only with a written instruction (“prescription”) from a physician or other licensed healthcare professional. In 2009, 3.9 billion drug prescriptions were dispensed in the US alone and US pharmaceutical companies made US$300 billion in sales revenue. Every year, a large proportion of this revenue is spent on drug promotion. In 2004, for example, a quarter of US drug revenue was spent on pharmaceutical promotion. The pharmaceutical industry claims that drug promotion—visits from pharmaceutical sales representatives, advertisements in journals and prescribing software, sponsorship of meetings, mailed information—helps to inform and educate healthcare professionals about the risks and benefits of their products and thereby ensures that patients receive the best possible care. Physicians, however, hold a wide range of views about pharmaceutical promotion. Some see it as a useful and convenient source of information. Others deny that they are influenced by pharmaceutical company promotion but claim that it influences other physicians. Meanwhile, several professional organizations have called for tighter control of promotional activities because of fears that pharmaceutical promotion might encourage physicians to prescribe inappropriate or needlessly expensive drugs.
Why Was This Study Done?
But is there any evidence that pharmaceutical promotion adversely influences prescribing? Reviews of the research literature undertaken in 2000 and 2005 provide some evidence that drug promotion influences prescribing behavior. However, these reviews only partly assessed the relationship between information from pharmaceutical companies and prescribing costs and quality and are now out of date. In this study, therefore, the researchers undertake a systematic review (a study that uses predefined criteria to identify all the research on a given topic) to reexamine the relationship between exposure to information from pharmaceutical companies and the quality, quantity, and cost of physicians' prescribing.
What Did the Researchers Do and Find?
The researchers searched the literature for studies of licensed physicians who were exposed to promotional and other information from pharmaceutical companies. They identified 58 studies that included a measure of exposure to any type of information directly provided by pharmaceutical companies and a measure of physicians' prescribing behavior. They then undertook a “narrative synthesis,” a descriptive analysis of the data in these studies. Ten of the studies, they report, examined the relationship between exposure to pharmaceutical company information and prescribing quality (as judged, for example, by physician drug choices in response to clinical vignettes). All but one of these studies suggested that exposure to drug company information was associated with lower prescribing quality or no association was detected. In the 51 studies that examined the relationship between exposure to drug company information and prescribing frequency, exposure to information was associated with more frequent prescribing or no association was detected. Thus, for example, 17 out of 29 studies of the effect of pharmaceutical sales representatives' visits found an association between visits and increased prescribing; none found an association with less frequent prescribing. Finally, eight studies examined the relationship between exposure to pharmaceutical company information and prescribing costs. With one exception, these studies indicated that exposure to information was associated with a higher cost of prescribing or no association was detected. So, for example, one study found that physicians with low prescribing costs were more likely to have rarely or never read promotional mail or journal advertisements from pharmaceutical companies than physicians with high prescribing costs.
What Do These Findings Mean?
With rare exceptions, these findings suggest that exposure to pharmaceutical company information is associated with either no effect on physicians' prescribing behavior or with adverse affects (reduced quality, increased frequency, or increased costs). Because most of the studies included in the review were observational studies—the physicians in the studies were not randomly selected to receive or not receive drug company information—it is not possible to conclude that exposure to information actually causes any changes in physician behavior. Furthermore, although these findings provide no evidence for any net improvement in prescribing after exposure to pharmaceutical company information, the researchers note that it would be wrong to conclude that improvements do not sometimes happen. The findings support the case for reforms to reduce negative influence to prescribing from pharmaceutical promotion.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000352.
Wikipedia has pages on prescription drugs and on pharmaceutical marketing (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The UK General Medical Council provides guidelines on good practice in prescribing medicines
The US Food and Drug Administration provides information on prescription drugs and on its Bad Ad Program
Healthy Skepticism is an international nonprofit membership association that aims to improve health by reducing harm from misleading health information
The Drug Promotion Database was developed by the World Health Organization Department of Essential Drugs & Medicines Policy and Health Action International Europe to address unethical and inappropriate drug promotion
doi:10.1371/journal.pmed.1000352
PMCID: PMC2957394  PMID: 20976098
12.  How much effort is needed to keep up with the literature relevant for primary care? 
Objectives: Medicine must keep current with the research literature, and keeping current requires continuously updating the clinical knowledgebase (i.e., references that provide answers to clinical questions). The authors estimated the volume of medical literature potentially relevant to primary care published in a month and the time required for physicians trained in medical epidemiology to evaluate it for updating a clinical knowledgebase.
Methods: We included journals listed in five primary care journal review services (ACP Journal Club, DynaMed, Evidence-Based Practice, Journal Watch, and QuickScan Reviews). Finding little overlap, we added the 2001 “Brandon/Hill Selected List of Print Books and Journals for the Small Medical Library.” We counted articles (including letters, editorials, and other commentaries) published in March 2002, using bibliographic software where possible and hand counting when necessary. For journals not published in March 2002, we reviewed the nearest issue. Five primary care physicians independently evaluated fifty randomly selected articles and timed the process.
Results: The combined list contained 341 currently active journals with 8,265 articles. Adjusting for publication frequency, we estimate 7,287 articles are published monthly in this set of journals. Physicians trained in epidemiology would take an estimated 627.5 hours per month to evaluate these articles.
Conclusions: To provide practicing clinicians with the best current evidence, more comprehensive and systematic literature surveillance efforts are needed.
PMCID: PMC521514  PMID: 15494758
13.  Physician Awareness of Drug Cost: A Systematic Review 
PLoS Medicine  2007;4(9):e283.
Background
Pharmaceutical costs are the fastest-growing health-care expense in most developed countries. Higher drug costs have been shown to negatively impact patient outcomes. Studies suggest that doctors have a poor understanding of pharmaceutical costs, but the data are variable and there is no consistent pattern in awareness. We designed this systematic review to investigate doctors' knowledge of the relative and absolute costs of medications and to determine the factors that influence awareness.
Methods and Findings
Our search strategy included The Cochrane Library, EconoLit, EMBASE, and MEDLINE as well as reference lists and contact with authors who had published two or more articles on the topic or who had published within 10 y of the commencement of our review. Studies were included if: either doctors, trainees (interns or residents), or medical students were surveyed; there were more than ten survey respondents; cost of pharmaceuticals was estimated; results were expressed quantitatively; there was a clear description of how authors defined “accurate estimates”; and there was a description of how the true cost was determined. Two authors reviewed each article for eligibility and extracted data independently. Cost accuracy outcomes were summarized, but data were not combined in meta-analysis because of extensive heterogeneity. Qualitative data related to physicians and drug costs were also extracted. The final analysis included 24 articles. Cost accuracy was low; 31% of estimates were within 20% or 25% of the true cost, and fewer than 50% were accurate by any definition of cost accuracy. Methodological weaknesses were common, and studies of low methodological quality showed better cost awareness. The most important factor influencing the pattern and accuracy of estimation was the true cost of therapy. High-cost drugs were estimated more accurately than inexpensive ones (74% versus 31%, Chi-square p < 0.001). Doctors consistently overestimated the cost of inexpensive products and underestimated the cost of expensive ones (binomial test, 89/101, p < 0.001). When asked, doctors indicated that they want cost information and feel it would improve their prescribing but that it is not accessible.
Conclusions
Doctors' ignorance of costs, combined with their tendency to underestimate the price of expensive drugs and overestimate the price of inexpensive ones, demonstrate a lack of appreciation of the large difference in cost between inexpensive and expensive drugs. This discrepancy in turn could have profound implications for overall drug expenditures. Much more focus is required in the education of physicians about costs and the access to cost information. Future research should focus on the accessibility and reliability of medical cost information and whether the provision of this information is used by doctors and makes a difference to physician prescribing. Additionally, future work should strive for higher methodological standards to avoid the biases we found in the current literature, including attention to the method of assessing accuracy that allows larger absolute estimation ranges for expensive drugs.
From a review of data from 24 studies, Michael Allan and colleagues conclude that doctors often underestimate the price of expensive drugs and overestimate the price of those that are inexpensive.
Editors' Summary
Background.
Many medicines are extremely expensive, and the cost of buying them is a major (and increasing) proportion of the total cost of health care. Governments and health-care organizations try to find ways of keeping down costs without reducing the effectiveness of the health care they provide, but their efforts to control what is spent on medicines have not been very successful. There are often two or more equally effective drugs available for treating the same condition, and it would obviously help keep costs down if, when a doctor prescribes a medicine, he or she chose the cheapest of the effective drugs available. This choice could result in savings for whoever is paying for the drugs, be it the government, the patient, or a medical insurance organization.
Why Was This Study Done?
Doctors who prescribe drugs cannot be expected to know the exact cost of each drug on the market, but it would he helpful if they had some impression of the cost of a treatment and how the various alternatives compare in price. However, systems deciding how drugs are priced are often very complex. (This is particularly the case in the US.) The researchers wanted to find out how aware doctors are regarding drug costs and the difference between the alternatives. They also wanted to know what factors affected their awareness.
What Did the Researchers Do and Find?
They decided to do a systematic review of all the research already conducted that addressed this issue so that the evidence from all of them could be considered together. In order to do such a review they had to specify precise requirements for the type of study that they would include and then comprehensively search the medical literature for such studies. They found 24 studies that met their requirements. From these studies, they concluded that doctors were usually not accurate when asked to estimate the cost of drugs; doctors came up with estimates that were within 25% of the true cost less than one-third of the time. In particular doctors tended to underestimate the cost of expensive drugs and overestimate the cost of the cheaper alternatives. A further analysis of the studies showed that many doctors said they would appreciate more accurate information on costs to help them choose which drugs to prescribe but that such information was not readily available.
What Do These Findings Mean?
The researchers concluded that their systematic review demonstrates a lack of appreciation by prescribing doctors of the large difference in cost between inexpensive and expensive drugs, and that this finding has serious implications for overall spending on drugs. They call for more education and information to be provided to doctors on the cost of medicines together with better processes to help doctors in making such decisions.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040283.
A brief guide to systematic reviews has been published by the BMJ (British Medical Journal)
The Web site of the Cochrane Collaboration is a more detailed source of information on systematic reviews; in particular there is a newcomers' guide and information for health-care consumers
The Kaiser Family Foundation, a nonprofit, private operating foundation focusing on the major health care issues in the US, has a section on prescription drugs and their costs
doi:10.1371/journal.pmed.0040283
PMCID: PMC1989748  PMID: 17896856
14.  Conflicts of Interest at Medical Journals: The Influence of Industry-Supported Randomised Trials on Journal Impact Factors and Revenue – Cohort Study 
PLoS Medicine  2010;7(10):e1000354.
Andreas Lundh and colleagues investigated the effect of publication of large industry-supported trials on citations and journal income, through reprint sales, in six general medical journals
Background
Transparency in reporting of conflict of interest is an increasingly important aspect of publication in medical journals. Publication of large industry-supported trials may generate many citations and journal income through reprint sales and thereby be a source of conflicts of interest for journals. We investigated industry-supported trials' influence on journal impact factors and revenue.
Methods and Findings
We sampled six major medical journals (Annals of Internal Medicine, Archives of Internal Medicine, BMJ, JAMA, The Lancet, and New England Journal of Medicine [NEJM]). For each journal, we identified randomised trials published in 1996–1997 and 2005–2006 using PubMed, and categorized the type of financial support. Using Web of Science, we investigated citations of industry-supported trials and the influence on journal impact factors over a ten-year period. We contacted journal editors and retrieved tax information on income from industry sources. The proportion of trials with sole industry support varied between journals, from 7% in BMJ to 32% in NEJM in 2005–2006. Industry-supported trials were more frequently cited than trials with other types of support, and omitting them from the impact factor calculation decreased journal impact factors. The decrease varied considerably between journals, with 1% for BMJ to 15% for NEJM in 2007. For the two journals disclosing data, income from the sales of reprints contributed to 3% and 41% of the total income for BMJ and The Lancet in 2005–2006.
Conclusions
Publication of industry-supported trials was associated with an increase in journal impact factors. Sales of reprints may provide a substantial income. We suggest that journals disclose financial information in the same way that they require them from their authors, so that readers can assess the potential effect of different types of papers on journals' revenue and impact.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Medical journals publish many different types of papers that inform doctors about the latest research advances and the latest treatments for their patients. They publish articles that describe laboratory-based research into the causes of diseases and the identification of potential new drugs. They publish the results of early clinical trials in which a few patients are given a potential new drug to check its safety. Finally and most importantly, they publish the results of randomized controlled trials (RCTs). RCTs are studies in which large numbers of patients are randomly allocated to different treatments without the patient or the clinician knowing the allocation and the efficacy of the various treatments compared. RCTs are best way of determining whether a new drug is effective and have to be completed before a drug can be marketed. Because RCTs are very expensive, they are often supported by drug companies. That is, drug companies provide grants or drugs for the trial or assist with data analysis and/or article preparation.
Why Was This Study Done?
Whenever a medical journal publishes an article, the article's authors have to declare any conflicts of interest such as financial gain from the paper's publication. Conflict of interest statements help readers assess papers—an author who owns the patent for a drug, for example, might put an unduly positive spin on his/her results. The experts who review papers for journals before publication provide similar conflict of interest statements. But what about the journal editors who ultimately decide which papers get published? The International Committee of Medical Journal Editors (ICMJE), which produces medical publishing guidelines, states that: “Editors who make final decisions about manuscripts must have no personal, professional, or financial involvement in any of the issues that they might judge.” However, the publication of industry-supported RCTs might create “indirect” conflicts of interest for journals by boosting the journal's impact factor (a measure of a journal's importance based on how often its articles are cited) and its income through the sale of reprints to drug companies. In this study, the researchers investigate whether the publication of industry-supported RCTs influences the impact factors and finances of six major medical journals.
What Did the Researchers Do and Find?
The researchers determined which RCTs published in the New England Journal of Medicine (NEJM), the British Medical Journal (BMJ), The Lancet, and three other major medical journals in 1996–1997 and 2005–2006 were supported wholly, partly, or not at all by industry. They then used the online academic citation index Web of Science to calculate an approximate impact factor for each journal for 1998 and 2007 and calculated the effect of the published RCTs on the impact factor. The proportion of RCTs with sole industry support varied between journals. Thus, 32% of the RCTs published in the NEJM during both two-year periods had industry support whereas only 7% of the RCTs published in the BMJ in 2005–2006 had industry support. Industry-supported trials were more frequently cited than RCTs with other types of support and omitting industry-supported RCTs from impact factor calculations decreased all the approximate journal impact factors. For example, omitting all RCTs with industry or mixed support decreased the 2007 BMJ and NEJM impact factors by 1% and 15%, respectively. Finally, the researchers asked each journal's editor about their journal's income from industry sources. For the BMJ and The Lancet, the only journals that provided this information, income from reprint sales was 3% and 41%, respectively, of total income in 2005–2006.
What Do These Findings Mean?
These findings show that the publication of industry-supported RCTs was associated with an increase in the approximate impact factors of these six major medical journals. Because these journals publish numerous RCTs, this result may not be generalizable to other journals. These findings also indicate that income from reprint sales can be a substantial proportion of a journal's total income. Importantly, these findings do not imply that the decisions of editors are affected by the possibility that the publication of an industry-supported trial might improve their journal's impact factor or income. Nevertheless, the researchers suggest, journals should live up to the same principles related to conflicts of interest as those that they require from their authors and should routinely disclose information on the source and amount of income that they receive.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000354.
This study is further discussed in a PLoS Medicine Perspective by Harvey Marcovitch
The International Committee of Medical Journal Editors provides information about the publication of medical research, including conflicts of interest
The World Association of Medical Editors also provides information on conflicts of interest in medical journals
Information about impact factors is provided by Thomson Reuters, a provider of intelligent information for businesses and professionals; Thomson Reuters also runs Web of Science
doi:10.1371/journal.pmed.1000354
PMCID: PMC2964336  PMID: 21048986
15.  Developing a virtual community for health sciences library book selection: Doody's Core Titles 
Purpose: The purpose of this article is to describe Doody's Core Titles in the Health Sciences as a new selection guide and a virtual community based on an effective use of online systems and to describe its potential impact on library collection development.
Setting/Participants/Resources: The setting is the availability of health sciences selection guides. Participants include Doody Enterprise staff, Doody's Library Board of Advisors, content specialists, and library selectors. Resources include the online system used to create Doody's Core Titles along with references to complementary databases.
Brief Description: Doody's Core Titles is described and discussed in relation to the literature of selection guides, especially in comparison to the Brandon/Hill selected lists that were published from 1965 to 2003. Doody's Core Titles seeks to fill the vacuum created when the Brandon/Hill lists ceased publication. Doody's Core Titles is a unique selection guide based on its method of creating an online community of experts to identify and score a core list of titles in 119 health sciences specialties and disciplines.
Results/Outcome: The result is a new selection guide, now available annually, that will aid health sciences librarians in identifying core titles for local collections.
Evaluation Method: Doody's Core Titles organizes the evaluation of core titles that are identified and recommended by content specialists associated with Doody's Book Review Service and library selectors. A scoring mechanism is used to create the selection of core titles, similar to the star rating system employed in other Doody Enterprise products and services.
PMCID: PMC1324773  PMID: 16404471
16.  Epidemiology and Reporting Characteristics of Systematic Reviews 
PLoS Medicine  2007;4(3):e78.
Background
Systematic reviews (SRs) have become increasingly popular to a wide range of stakeholders. We set out to capture a representative cross-sectional sample of published SRs and examine them in terms of a broad range of epidemiological, descriptive, and reporting characteristics, including emerging aspects not previously examined.
Methods and Findings
We searched Medline for SRs indexed during November 2004 and written in English. Citations were screened and those meeting our inclusion criteria were retained. Data were collected using a 51-item data collection form designed to assess the epidemiological and reporting details and the bias-related aspects of the reviews. The data were analyzed descriptively. In total 300 SRs were identified, suggesting a current annual publication rate of about 2,500, involving more than 33,700 separate studies including one-third of a million participants. The majority (272 [90.7%]) of SRs were reported in specialty journals. Most reviews (213 [71.0%]) were categorized as therapeutic, and included a median of 16 studies involving 1,112 participants. Funding sources were not reported in more than one-third (122 [40.7%]) of the reviews. Reviews typically searched a median of three electronic databases and two other sources, although only about two-thirds (208 [69.3%]) of them reported the years searched. Most (197/295 [66.8%]) reviews reported information about quality assessment, while few (68/294 [23.1%]) reported assessing for publication bias. A little over half (161/300 [53.7%]) of the SRs reported combining their results statistically, of which most (147/161 [91.3%]) assessed for consistency across studies. Few (53 [17.7%]) SRs reported being updates of previously completed reviews. No review had a registration number. Only half (150 [50.0%]) of the reviews used the term “systematic review” or “meta-analysis” in the title or abstract. There were large differences between Cochrane reviews and non-Cochrane reviews in the quality of reporting several characteristics.
Conclusions
SRs are now produced in large numbers, and our data suggest that the quality of their reporting is inconsistent. This situation might be improved if more widely agreed upon evidence-based reporting guidelines were endorsed and adhered to by authors and journals. These results substantiate the view that readers should not accept SRs uncritically.
Data were collected on the epidemiological, descriptive, and reporting characteristics of recent systematic reviews. A descriptive analysis found inconsistencies in the quality of reporting.
Editors' Summary
Background.
In health care it is important to assess all the evidence available about what causes a disease or the best way to prevent, diagnose, or treat it. Decisions should not be made simply on the basis of—for example—the latest or biggest research study, but after a full consideration of the findings from all the research of good quality that has so far been conducted on the issue in question. This approach is known as “evidence-based medicine” (EBM). A report that is based on a search for studies addressing a clearly defined question, a quality assessment of the studies found, and a synthesis of the research findings, is known as a systematic review (SR). Conducting an SR is itself regarded as a research project and the methods involved can be quite complex. In particular, as with other forms of research, it is important to do everything possible to reduce bias. The leading role in developing the SR concept and the methods that should be used has been played by an international network called the Cochrane Collaboration (see “Additional Information” below), which was launched in 1992. However, SRs are now becoming commonplace. Many articles published in journals and elsewhere are described as being systematic reviews.
Why Was This Study Done?
Since systematic reviews are claimed to be the best source of evidence, it is important that they should be well conducted and that bias should not have influenced the conclusions drawn in the review. Just because the authors of a paper that discusses evidence on a particular topic claim that they have done their review “systematically,” it does not guarantee that their methods have been sound and that their report is of good quality. However, if they have reported details of their methods, then it can help users of the review decide whether they are looking at a review with conclusions they can rely on. The authors of this PLoS Medicine article wanted to find out how many SRs are now being published, where they are being published, and what questions they are addressing. They also wanted to see how well the methods of SRs are being reported.
What Did the Researchers Do and Find?
They picked one month and looked for all the SRs added to the main list of medical literature in that month. They found 300, on a range of topics and in a variety of medical journals. They estimate that about 20% of reviews appearing each year are published by the Cochrane Collaboration. They found many cases in which important aspects of the methods used were not reported. For example, about a third of the SRs did not report how (if at all) the quality of the studies found in the search had been assessed. An important assessment, which analyzes for “publication bias,” was reported as having been done in only about a quarter of the cases. Most of the reporting failures were in the “non-Cochrane” reviews.
What Do These Findings Mean?
The authors concluded that the standards of reporting of SRs vary widely and that readers should, therefore, not accept the conclusions of SRs uncritically. To improve this situation, they urge that guidelines be drawn up regarding how SRs are reported. The writers of SRs and also the journals that publish them should follow these guidelines.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040078.
An editorial discussing this research article and its relevance to medical publishing appears in the same issue of PLoS Medicine
A good source of information on the evidence-based approach to medicine is the James Lind Library
The Web site of the Cochrane Collaboration is a good source of information on systematic reviews. In particular there is a newcomers' guide and information for health care “consumers”. From this Web site, it is also possible to see summaries of the SRs published by the Cochrane Collaboration (readers in some countries can also view the complete SRs free of charge)
Information on the practice of evidence-based medicine is available from the US Agency for Healthcare Research and Quality and the Canadian Agency for Drugs and Technologies in Health
doi:10.1371/journal.pmed.0040078
PMCID: PMC1831728  PMID: 17388659
17.  Selected list of books and journals for the small medical library. 
The complementary informational access roles of the traditional hospital library book and journal collection and the high-tech Internet are viewed from a 1995 perspective. Predecessors of this list have been intended as selection guides for a small or medium-size library in a hospital or comparable medical facility. As the prices of books and journals continue on an upward spiral, the secondary purpose as a core collection for a consortium of small hospital libraries or a network sharing library resources is fast becoming its primary use. Books (610) and journals (141) are categorized by subject; the book list is followed by an author/editor index and the subject list of journals by an alphabetical title listing. Due to requests from librarians, a "minimal core" book collection consisting of 82 titles has been pulled out from the 200 asterisked initial-purchase books. To purchase the entire collection of books and to pay for 1995 subscriptions would require $93,300. The cost of only the asterisked items totals $39,000. The "minimal core" book collection costs $12,700.
PMCID: PMC226023  PMID: 7599581
18.  Long-Term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this health technology assessment was to determine the effectiveness, cost-effectiveness, and safety of long-term oxygen therapy (LTOT) for chronic obstructive pulmonary disease (COPD).
Clinical Need: Condition and Target Population
Oxygen therapy is used in patients with COPD with hypoxemia, or very low blood oxygen levels, because they may have difficulty obtaining sufficient oxygen from inspired air.
Technology
Long-term oxygen therapy is extended use of oxygen. Oxygen therapy is delivered as a gas from an oxygen source. Different oxygen sources are: 1) oxygen concentrators, electrical units delivering oxygen converted from room air; 2) liquid oxygen systems, which deliver gaseous oxygen stored as liquid in a tank; and 3) oxygen cylinders, which contain compressed gaseous oxygen. All are available in portable versions. Oxygen is breathed in through a nasal cannula or through a mask covering the mouth and nose. The treating clinician determines the flow rate, duration of use, method of administration, and oxygen source according to individual patient needs. Two landmark randomized controlled trials (RCTs) of patients with COPD established the role of LTOT in COPD. Questions regarding the use of LTOT, however, still remain.
Research Question
What is the effectiveness, cost-effectiveness, and safety of LTOT compared with no LTOT in patients with COPD, who are stratified by severity of hypoxemia?
Research Methods
Literature Search
Search Strategy
A literature search was performed on September 8, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, the Cochrane Library, and INAHTA for studies published from January 1, 2007 to September 8, 2010.
A single clinical epidemiologist reviewed the abstracts, obtained full-text articles for studies meeting the eligibility criteria, and examined reference lists for additional relevant studies not identified through the literature search. A second clinical epidemiologist and then a group of epidemiologists reviewed articles with an unknown eligibility until consensus was established.
Inclusion Criteria
patients with mild, moderate, or severe hypoxemia;
English-language articles published between January 1, 2007 and September 8, 2010;
journal articles reporting on effectiveness, cost-effectiveness, or safety for the comparison of interest;
clearly described study design and methods;
health technology assessments, systematic reviews, RCTs, or prospective cohort observational studies;
any type of observational study for the evaluation of safety.
Exclusion Criteria
no hypoxemia
non-English papers
animal or in vitro studies
case reports, case series, or case-case studies
studies comparing different oxygen therapy regimens
studies on nocturnal oxygen therapy
studies on short-burst, palliative, or ambulatory oxygen (supplemental oxygen during exercise or activities of daily living)
Outcomes of Interest
mortality/survival
hospitalizations
readmissions
forced expiratory volume in 1 second (FEV1)
forced vital capacity (FVC)
FEV1/FVC
pulmonary hypertension
arterial partial pressure of oxygen (PaO2)
arterial partial pressure of carbon dioxide (PaCO2)
end-exercise dyspnea score
endurance time
health-related quality of life
Note: Outcomes of interest were formulated according to existing studies, with arterial pressure of oxygen and carbon dioxide as surrogate outcomes.
Summary of Findings
Conclusions
Based on low quality of evidence, LTOT (~ 15 hours/day) decreases all-cause mortality in patients with COPD who have severe hypoxemia (PaO2 ~ 50 mm Hg) and heart failure.
The effect for all-cause mortality had borderline statistical significance when the control group was no LTOT: one study.
Based on low quality of evidence, there is no beneficial effect of LTOT on all-cause mortality at 3 and 7 years in patients with COPD who have mild-to-moderate hypoxemia (PaO2 ~ 59-65 mm Hg)1
Based on very low quality of evidence, there is some suggestion that LTOT may have a beneficial effect over time on FEV1 and PaCO2 in patients with COPD who have severe hypoxemia and heart failure: improved methods are needed.
Based on very low quality of evidence, there is no beneficial effect of LTOT on lung function or exercise factors in patients with COPD who have mild-to-moderate hypoxemia, whether survivors or nonsurvivors are assessed.
Based on low to very low quality of evidence, LTOT does not prevent readmissions in patients with COPD who have severe hypoxemia. Limited data suggest LTOT increases the risk of hospitalizations.
Limited work has been performed evaluating the safety of LTOT by severity of hypoxemia.
Based on low to very low quality of evidence, LTOT may have a beneficial effect over time on health-related quality of life in patients with COPD who have severe hypoxemia. Limited work using disease-specific instruments has been performed.
Ethical constraints of not providing LTOT to eligible patients with COPD prohibit future studies from examining LTOT outcomes in an ideal way.
PMCID: PMC3384376  PMID: 23074435
19.  Mapping the literature of diagnostic medical sonography. 
Diagnostic medical sonography has been evolving as a recognized allied health occupation since the early 1970s, but no bibliometric studies of the literature of the field have been published. This study, part of the Medical Library Association Nursing and Allied Health Resources Section's Project for Mapping the Literature of Allied Health, attempted to identify the core journals in diagnostic medical sonography and determine how well these journals are indexed by MEDLINE, EMBASE/Excerpta Medica, and the Cumulative Index to Nursing and Allied Health Literature (CINAHL). Citation analysis was done using the three journals listed for the field by the Brandon/Hill list. Characteristics of two of these three journals affected the results to the extent that more data should be gathered to reach conclusions about the literature of diagnostic medical sonography as a whole. Results of the analysis do suggest that the literature of echocardiography, which is a special area of diagnostic medical sonography, is indexed much more completely by MEDLINE and EMBASE/Excerpta Medica than by CINAHL. Suggestions are made for librarians making collection development decisions in this area of allied health.
PMCID: PMC226587  PMID: 10427429
20.  Update on inflation of journal prices: medical journals, U.S. journals, and Brandon/Hill list journals. 
This paper examines the increases in prices for the last twenty years for the journals listed in the 1987 Brandon/Hill list and for the last twelve years for those on a list of medical and general periodicals published annually in Library Journal. This information is compared to the general U.S. inflation rate as measured by the Consumer Price Index. Despite the decline in the general rate of inflation, the buying power of libraries has continued to dwindle. Librarians need to use this information when justifying increased budget requests. They also need to interact more effectively with publishers to resolve this problem. The buying power of the dollar (as compared to the 1975 dollar) spent on the Brandon/Hill list journals is now 59% of that of a dollar spent in the general economy. This compares to 64% in 1983, when this research was last updated.
PMCID: PMC227304  PMID: 2720211
21.  Citation patterns of online and print journals in the digital ageEC 
Purpose:
The research assesses the impact of online journals on citation patterns by examining whether researchers were more likely to limit the resources they cited to those journals available online rather than those only in print.
Setting:
Publications from a large urban university with a medical college at an urban location and at a smaller regional location were examined. The number of online journals available to authors on either campus was the same. The number of print journals available on the large campus was much greater than the print journals available at the small campus.
Methodology:
Searches by author affiliation from 1996 to 2005 were performed in the Web of Science to find all articles written by affiliated members in the college of medicine at the selected institution. Cited references from randomly selected articles were recorded, and the cited journals were coded into five categories based on their availability at the study institution: print only, print and online, online only, not owned, and dropped. Results were analyzed using SPSS. The age of articles cited for selected years as well as for 2006 and 2007 was also examined.
Results:
The number of journals cited each year continued to increase. On the large urban campus, researchers were not more likely to cite journals available online or less likely to cite journals only in print. At the regional location, at which the number of print-only journals was minimal, use of print-only journals significantly decreased.
Conclusion/discussion:
The citation of print-only journals by researchers with access to a library with a large print and electronic collection appeared to continue, despite the availability of potential alternatives in the online collection. Journals available in electronic format were cited more frequently in publications from the campus whose library had a small print collection, and the citation of journals available in both print and electronic formats generally increased over the years studied.
doi:10.3163/1536-5050.96.4.012
PMCID: PMC2568853  PMID: 18974814
22.  Evidence for the Selective Reporting of Analyses and Discrepancies in Clinical Trials: A Systematic Review of Cohort Studies of Clinical Trials 
PLoS Medicine  2014;11(6):e1001666.
In a systematic review of cohort studies, Kerry Dwan and colleagues examine the evidence for selective reporting and discrepancies in analyses between journal publications and other documents for clinical trials.
Please see later in the article for the Editors' Summary
Background
Most publications about selective reporting in clinical trials have focussed on outcomes. However, selective reporting of analyses for a given outcome may also affect the validity of findings. If analyses are selected on the basis of the results, reporting bias may occur. The aims of this study were to review and summarise the evidence from empirical cohort studies that assessed discrepant or selective reporting of analyses in randomised controlled trials (RCTs).
Methods and Findings
A systematic review was conducted and included cohort studies that assessed any aspect of the reporting of analyses of RCTs by comparing different trial documents, e.g., protocol compared to trial report, or different sections within a trial publication. The Cochrane Methodology Register, Medline (Ovid), PsycInfo (Ovid), and PubMed were searched on 5 February 2014. Two authors independently selected studies, performed data extraction, and assessed the methodological quality of the eligible studies. Twenty-two studies (containing 3,140 RCTs) published between 2000 and 2013 were included. Twenty-two studies reported on discrepancies between information given in different sources. Discrepancies were found in statistical analyses (eight studies), composite outcomes (one study), the handling of missing data (three studies), unadjusted versus adjusted analyses (three studies), handling of continuous data (three studies), and subgroup analyses (12 studies). Discrepancy rates varied, ranging from 7% (3/42) to 88% (7/8) in statistical analyses, 46% (36/79) to 82% (23/28) in adjusted versus unadjusted analyses, and 61% (11/18) to 100% (25/25) in subgroup analyses. This review is limited in that none of the included studies investigated the evidence for bias resulting from selective reporting of analyses. It was not possible to combine studies to provide overall summary estimates, and so the results of studies are discussed narratively.
Conclusions
Discrepancies in analyses between publications and other study documentation were common, but reasons for these discrepancies were not discussed in the trial reports. To ensure transparency, protocols and statistical analysis plans need to be published, and investigators should adhere to these or explain discrepancies.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In the past, clinicians relied on their own experience when choosing the best treatment for their patients. Nowadays, they turn to evidence-based medicine—the systematic review and appraisal of trials, studies that investigate the benefits and harms of medical treatments in patients. However, evidence-based medicine can guide clinicians only if all the results from clinical trials are published in an unbiased and timely manner. Unfortunately, the results of trials in which a new drug performs better than existing drugs are more likely to be published than those in which the new drug performs badly or has unwanted side effects (publication bias). Moreover, trial outcomes that support the use of a new treatment are more likely to be published than those that do not support its use (outcome reporting bias). Recent initiatives—such as making registration of clinical trials in a trial registry (for example, ClinicalTrials.gov) a prerequisite for publication in medical journals—aim to prevent these biases, which pose a threat to informed medical decision-making.
Why Was This Study Done?
Selective reporting of analyses of outcomes may also affect the validity of clinical trial findings. Sometimes, for example, a trial publication will include a per protocol analysis (which considers only the outcomes of patients who received their assigned treatment) rather than a pre-planned intention-to-treat analysis (which considers the outcomes of all the patients regardless of whether they received their assigned treatment). If the decision to publish the per protocol analysis is based on the results of this analysis being more favorable than those of the intention-to-treat analysis (which more closely resembles “real” life), then “analysis reporting bias” has occurred. In this systematic review, the researchers investigate the selective reporting of analyses and discrepancies in randomized controlled trials (RCTs) by reviewing published studies that assessed selective reporting of analyses in groups (cohorts) of RCTs and discrepancies in analyses of RCTs between different sources (for example, between the protocol in a trial registry and the journal publication) or different sections of a source. A systematic review uses predefined criteria to identify all the research on a given topic.
What Did the Researchers Do and Find?
The researchers identified 22 cohort studies (containing 3,140 RCTs) that were eligible for inclusion in their systematic review. All of these studies reported on discrepancies between the information provided by the RCTs in different places, but none investigated the evidence for analysis reporting bias. Several of the cohort studies reported, for example, that there were discrepancies in the statistical analyses included in the different documents associated with the RCTs included in their analysis. Other types of discrepancies reported by the cohort studies included discrepancies in the reporting of composite outcomes (an outcome in which multiple end points are combined) and in the reporting of subgroup analyses (investigations of outcomes in subgroups of patients that should be predefined in the trial protocol to avoid bias). Discrepancy rates varied among the RCTs according to the types of analyses and cohort studies considered. Thus, whereas in one cohort study discrepancies were present in the statistical test used for the analysis of the primary outcome in only 7% of the included studies, they were present in the subgroup analyses of all the included studies.
What Do These Findings Mean?
These findings indicate that discrepancies in analyses between publications and other study documents such as protocols in trial registries are common. The reasons for these discrepancies in analyses were not discussed in trial reports but may be the result of reporting bias, errors, or legitimate departures from a pre-specified protocol. For example, a statistical analysis that is not specified in the trial protocol may sometimes appear in a publication because the journal requested its inclusion as a condition of publication. The researchers suggest that it may be impossible for systematic reviewers to distinguish between these possibilities simply by looking at the source documentation. Instead, they suggest, it may be necessary for reviewers to contact the trial authors. However, to make selective reporting of analyses more easily detectable, they suggest that protocols and analysis plans should be published and that investigators should be required to stick to these plans or explain any discrepancies when they publish their trial results. Together with other initiatives, this approach should help improve the quality of evidence-based medicine and, as a result, the treatment of patients.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001666.
Wikipedia has pages on evidence-based medicine, on systematic reviews, and on publication bias (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
ClinicalTrials.gov provides information about the US National Institutes of Health clinical trial registry, including background information about clinical trials
The Cochrane Collaboration is a global independent network of health practitioners, researchers, patient advocates, and others that aims to promote evidence-informed health decision-making by producing high-quality, relevant, accessible systematic reviews and other synthesized research evidence; the Cochrane Handbook for Systematic Reviews of Interventions describes the preparation of systematic reviews in detail
PLOS Medicine recently launched a Reporting Guidelines Collection, an open-access collection of reporting guidelines, commentary, and related research on guidelines from across PLOS journals that aims to help advance the efficiency, effectiveness, and equitability of the dissemination of biomedical information
doi:10.1371/journal.pmed.1001666
PMCID: PMC4068996  PMID: 24959719
23.  Online journals' impact on the citation patterns of medical faculty 
Purpose: The purpose was to determine the impact of online journals on the citation patterns of medical faculty. This study looked at whether researchers were more likely to limit the resources they consulted and cited to those journals available online rather than those only in print.
Setting: Faculty publications from the college of medicine at a large urban university were examined for this study. The faculty publications from a regional medical college of the same university were also examined in the study. The number of online journals available for faculty, staff, and students at this institution has increased from an initial core of 15 online journals in 1998 to over 11,000 online journals in 2004.
Methodology: Searches by author affiliation were performed in the Web of Science to find all articles written by faculty members in the college of medicine at the selected institution. Searches were conducted for the following years: 1993, 1996, 1999, and 2002. Cited references from each faculty-authored article were recorded, and the corresponding cited journals were coded into four categories based on their availability at the institution in this study: print only, print and online, online only, and not owned. Results were analyzed using SPSS.
Results: The number of journals cited per year continued to increase from 1993 to 2002. The results did not indicate that researchers were more likely to cite online journals or were less likely to cite journals only in print. At the regional location where the number of print-only journals was minimal, use of the print-only journals did decrease in 2002, although not significantly.
Conclusion/Discussion: It is possible that electronic access to information (i.e., online databases) has had a positive impact on the number of articles faculty will cite. Results of this study suggest, at this point, that faculty are still accessing the print-only collection, at least for research purposes, and are therefore not sacrificing quality for convenience.
PMCID: PMC1082939  PMID: 15858625
24.  The Cost-Effectiveness of Low-Cost Essential Antihypertensive Medicines for Hypertension Control in China: A Modelling Study 
PLoS Medicine  2015;12(8):e1001860.
Background
Hypertension is China’s leading cardiovascular disease risk factor. Improved hypertension control in China would result in result in enormous health gains in the world’s largest population. A computer simulation model projected the cost-effectiveness of hypertension treatment in Chinese adults, assuming a range of essential medicines list drug costs.
Methods and Findings
The Cardiovascular Disease Policy Model-China, a Markov-style computer simulation model, simulated hypertension screening, essential medicines program implementation, hypertension control program administration, drug treatment and monitoring costs, disease-related costs, and quality-adjusted life years (QALYs) gained by preventing cardiovascular disease or lost because of drug side effects in untreated hypertensive adults aged 35–84 y over 2015–2025. Cost-effectiveness was assessed in cardiovascular disease patients (secondary prevention) and for two blood pressure ranges in primary prevention (stage one, 140–159/90–99 mm Hg; stage two, ≥160/≥100 mm Hg). Treatment of isolated systolic hypertension and combined systolic and diastolic hypertension were modeled as a reduction in systolic blood pressure; treatment of isolated diastolic hypertension was modeled as a reduction in diastolic blood pressure. One-way and probabilistic sensitivity analyses explored ranges of antihypertensive drug effectiveness and costs, monitoring frequency, medication adherence, side effect severity, background hypertension prevalence, antihypertensive medication treatment, case fatality, incidence and prevalence, and cardiovascular disease treatment costs. Median antihypertensive costs from Shanghai and Yunnan province were entered into the model in order to estimate the effects of very low and high drug prices. Incremental cost-effectiveness ratios less than the per capita gross domestic product of China (11,900 international dollars [Int$] in 2015) were considered cost-effective. Treating hypertensive adults with prior cardiovascular disease for secondary prevention was projected to be cost saving in the main simulation and 100% of probabilistic simulation results. Treating all hypertension for primary and secondary prevention would prevent about 800,000 cardiovascular disease events annually (95% uncertainty interval, 0.6 to 1.0 million) and was borderline cost-effective incremental to treating only cardiovascular disease and stage two patients (2015 Int$13,000 per QALY gained [95% uncertainty interval, Int$10,000 to Int$18,000]). Of all one-way sensitivity analyses, assuming adherence to taking medications as low as 25%, high Shanghai drug costs, or low medication efficacy led to the most unfavorable results (treating all hypertension, about Int$47,000, Int$37,000, and Int$27,000 per QALY were gained, respectively). The strengths of this study were the use of a recent Chinese national health survey, vital statistics, health care costs, and cohort study outcomes data as model inputs and reliance on clinical-trial-based estimates of coronary heart disease and stroke risk reduction due to antihypertensive medication treatment. The limitations of the study were the use of several sources of data, limited clinical trial evidence for medication effectiveness and harms in the youngest and oldest age groups, lack of information about geographic and ethnic subgroups, lack of specific information about indirect costs borne by patients, and uncertainty about the future epidemiology of cardiovascular diseases in China.
Conclusions
Expanded hypertension treatment has the potential to prevent about 800,000 cardiovascular disease events annually and be borderline cost-effective in China, provided low-cost essential antihypertensive medicines programs can be implemented.
In a Markov-style simulation model, Andrew Moran and colleagues estimate the reduction in cardiovascular disease and cost-effectiveness of broad provision of antihypertensive medications in China.
Editors' Summary
Background
Worldwide, in 2008, more than one billion people had high blood pressure (hypertension), a condition that is responsible for about 10 million deaths annually from heart attacks, stroke, and other cardiovascular diseases (CVDs). Hypertension, which rarely has any symptoms, is diagnosed by measuring blood pressure (BP), the force that blood circulating in the body exerts on the inside of large blood vessels. BP is highest when the heart contracts to pump blood out (systolic BP) and lowest when the heart relaxes and refills (diastolic BP). Normal adult BP is defined as a systolic BP of less than 120 millimeters of mercury (mm Hg) and a diastolic BP of less than 80 mm Hg (a BP of <120/80 mm Hg). A BP of 140–159/90–99 mm Hg indicates mild (stage one) hypertension; a BP of ≥160/≥100 mg Hg indicates severe (stage two) hypertension. Many factors affect BP, but overweight people and individuals who eat fatty or salty food are at high risk of developing hypertension. Lifestyle changes and/or antihypertensive drugs can be used to control the condition.
Why Was This Study Done?
Hypertension is the leading cardiovascular risk factor in China, the world’s most populous country. About 325 million adults in China have hypertension, but less than half are aware of their condition, only 34% of Chinese adults with hypertension are treated with antihypertensive drugs, and only 28% of treated individuals achieve a BP of <140/90 mm Hg. Improved hypertension control would yield enormous health gains in China, but would these gains outweigh the costs of this intervention? The World Health Organization defines a “highly cost-effective” intervention as one for which the incremental cost effectiveness ratio (ICER; in this case, the ratio of the cost difference between the intervention and no intervention to the difference in outcomes) is less than a country’s gross domestic product (GDP) per capita (a country’s total economic output divided by its number of inhabitants) per quality-adjusted life year gained (a QALY is a measure of disease burden that considers both the quality and quantity of life lived). Here, the researchers use a computer simulation model to project the cost-effectiveness of hypertension treatment in Chinese adults using the low-cost antihypertensive drugs included on the national essential medicines list. In China, most patients pay for drugs out-of-pocket, but several antihypertensive medications with affordable prices are available in government-sponsored primary health facilities.
What Did the Researchers Do and Find?
The researchers used a computer model called the “Cardiovascular Disease Policy Model-China” to simulate the costs of hypertension screening, essential medicines program implementation, hypertension control program administration, drug treatment and monitoring, and the QALYs gained by preventing CVD in Chinese adults with untreated hypertension aged 35–84 y between 2015 and 2025. According to the model, treating hypertension for both primary prevention of CVD (reduction of hypertension in healthy individuals to prevent the development of CVD) and secondary prevention (reduction of hypertension in people who already have CVD to prevent further heart attacks or strokes) would prevent between 600,000 and a million CVD events annually. Treating only patients with CVD and patients with severe hypertension was borderline cost-effective. The ICER of this intervention was between Int$10,000 and Int$18,000 per QALY gained; China’s GDP per capita is Int$11,900.
What Do These Findings Mean?
These findings suggest that an expanded program of treatment for hypertension could prevent about 800,000 cardiovascular events every year in China. Such a program should be borderline cost-effective, provided low-cost essential antihypertensive drugs are used to control hypertension. As with all computer simulation studies, the numerous assumptions incorporated into the model limit the accuracy of these findings. For example, some model inputs were derived from studies of non-Chinese patients and may not accurately represent the Chinese population. Moreover, the model only considers the cost-effectiveness of using medications to control hypertension and does not consider the potential effects of lifestyle changes. Importantly, additional simulations indicate that the cost-effectiveness of the intervention would be greatly reduced if adherence to treatment were lowered or drug costs were increased. Thus, full implementation of the essential medicinesprogram and subsidized drug costs program will be needed to reap the full benefits of improved hypertension control in China.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001860.
The US National Heart Lung and Blood Institute has patient information about high BP (in English and Spanish) and a guide to lowering BP through diet
The American Heart Association provides information on hypertension and on CVDs (in several languages); it also provides personal stories about dealing with high BP
The UK National Health Service (NHS) Choices website provides detailed information for patients about hypertension (including a personal story) and about CVD
The World Health Organization provides information on CVD and controlling hypertension; "A Global Brief on Hypertension" was publi shed on World Health Day 2013; WHO-CHOICE provides information on choosing cost-effective interventions
MedlinePlus provides links to further information about high BP, heart disease, and stroke (in English and Spanish)
doi:10.1371/journal.pmed.1001860
PMCID: PMC4524696  PMID: 26241895
25.  Quality markers and use of electronic journals in an academic health sciences library* 
Objectives: Patterns of use of electronic versions of journals supplied by an academic health sciences library were examined to determine whether they differed from patterns of use among corresponding print titles and to relate the applicability of print collection development practices to an electronic environment.
Methods: Use data supplied by three major vendors of electronic journals were compared to reshelving data for corresponding print titles, impact factors, and presence on Brandon/Hill Lists.
Results: In collections where one-click access from a database record to the full text of articles was possible, electronic use correlated with print use across journal pairs. In both versions, Brandon/Hill titles were used more frequently than non-Brandon/Hill titles, use had modest correlations with journals' impact factors, and clinical use appeared to be higher than research use. Titles that had not been selected for the library's print collections, but which were bundled into publishers' packages, received little use compared to electronic titles also selected in print.
Conclusions: Collection development practices based on quality and user needs can be applied with confidence to the electronic environment. Facilitating direct connections between citation databases and the corresponding journal articles regardless of platform or publisher will support scholarship and quality health care.
PMCID: PMC442173  PMID: 15243637

Results 1-25 (998202)