Search tips
Search criteria

Results 1-25 (492618)

Clipboard (0)

Related Articles

1.  Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline 
Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients’ compliance. The present study describes the formulation of a sustained release microparticulate drug delivery system containing triptoreline acetate, using poly (D,L lactide-co-glycolide) (PLGA). Biodegradable microspheres were prepared using 50 : 50 PLGA by a water in-oil-in-water (w/o/w) double emulsion-solvent evaporation procedure and characterized for drug content and drug release rate using the a HPLC method, particle size distribution using the laser diffraction method, and surface morphology using scanning electron microscopy and drug release rate. Effect of critical process parameters and formulation variables; i.e. volume of inner water phase, addition of NaCl to the outer aqueous phase (W2), addition of different types and amounts of emulsifying agents on microsphere characteristics; were investigated. Microspheres prepared were spherical with a smooth surface, but addition of poloxamer to the first emulsion produced microspheres with large pores. Size of microparticles was dependent on the type, as well as the amount of co-encapsulated surfactants. Increasing the inner water phase volume resulted in larger particles with a lower encapsulation efficiency. Low concentrations of Span 20 decreased triptoreline release rate, whereas the addition of poloxamer or high concentrations of Span 20 increased the drug release rateit. In conclusion, by selecting an appropriate level of the investigated parameters, spherical microparticles with encapsulation efficiencies higher than 90% and a prolonged triptoreline release over 45 days were obtained.
PMCID: PMC3870060  PMID: 24381601
Microsphere; Triptoreline; Double emulsion; Controlled-release; PLGA
2.  Long-term release of clodronate from biodegradable microspheres 
AAPS PharmSciTech  2001;2(3):6-14.
This paper describes the formulation of a biodegradable microparticulate drug delivery system containing clodronate, a bisphosphonate intended for the treatment of bone diseases. Microspheres were prepared with several poly(D,L-lactide-co-glycolide) (PLGA) copolymers of various molecular weights and molar compositions and 1 poly(D,L-lactide) (PDLLA) homopolymer by a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation procedure. Critical process parameters and formulation variables (ie, addition of stabilizing agents) were evaluated for their effect on drug encapsulation efficiency and clodronate release rate from microparticles Well-formed clodronate-loaded microspheres were obtained for all polymers by selecting suitable process parameters (inner water/oil volume ratio 1∶16, temperature-raising rate in the solvent evaporation step 1°C/min, 2% wt/vol NaCl in the external aqueous phase). Good yields were obtained in all batches of clodronate microspheres (above 60%); drug encapsulation efficiencies ranged between 49% and 75% depending on the polymer used. Clodronate release from all copolymer microspheres was completed in about 48 hours, while those from PDLLA microspheres required about 20 days. The change of microsphere composition by adding a surfactant such as Span 20 or a viscosing agent such as carboxymethylcellulose extended the long-term release up to 3 months. Clodronate was successfully entrapped in PLGA and PDLLA microspheres, and drug release could be modulated from 48 hours up to 3 months by suitable selection of polymer, composition, additives, and manufacturing conditions.
PMCID: PMC2750575  PMID: 14727869
PLGA microspheres; solvent evaporation method; long-term release; Clodronate
3.  Active self-healing encapsulation of vaccine antigens in PLGA microspheres 
Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer, and d) provide improved in vitro controlled release of antigenic TT.
PMCID: PMC3888863  PMID: 23103983
PLGA; self-healing; active loading; encapsulation; vaccine delivery; controlled release
4.  Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague 
Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide)/polyethylene glycol (PEG) (PLGA/PEG) microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 μm) exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (38.1%), and presented a controlled in vitro release profile with a low initial burst (18.5%), then continued to release Y. pestis F1 antigen over 70 days. The distribution (%) of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 μg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 μg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50) of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 μg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH)3, and in comparison with F1 antigen in Al(OH)3 vaccine in two doses, was evaluated after given by subcutaneous immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with one dose of F1 antigen-loaded PLGA/PEG microspheres, and two doses of F1 antigen in Al(OH)3 vaccine (100%). In vivo vaccination studies also demonstrated that F1 vaccines microspheres had a protective ability; its steady-state IgG immune protection in mice plasma dramatic increased from 2 weeks (18,764±3,124) to 7 weeks (126,468±19,176) after vaccination. These findings strongly suggest that F1-antigen loaded microspheres vaccine offer a new therapeutic strategy in optimizing the vaccine incorporation and delivery properties of these potential vaccine targeting carriers.
PMCID: PMC3926461  PMID: 24550673
PLGA; immunological; protective responses
5.  Improved corneal bioavailability of ofloxacin: biodegradable microsphere-loaded ion-activated in situ gel delivery system 
The aim of the study was to improve corneal penetration and bioavailability of ofloxacin (OFX) eye preparations. OFX was incorporated in poly (lactide-co-glycolide) as biodegradable microspheres using oil in oil emulsion solvent evaporation technique. The prepared OFX microspheres were then incorporated in Gelrite® in situ gel preparation. In addition, OFX Gelrite-based in situ gel formulations were prepared. OFX formulations were characterized for gelling capacity, viscosity, and rheological properties. Release studies for OFX microspheres, OFX in situ gel, and OFX-loaded microspheres in situ gel formulations were carried out to investigate release characteristics of the drug. The prepared OFX formulations were then investigated in vivo compared with commercially available OFX eyedrops. Results showed that the optimum Gelrite concentration was at 0.4%–0.7% w/v; the prepared formulations were viscous liquid transformed into a pourable gel immediately after the addition of simulated tear fluid with a gelling factor of 27–35. Incorporation of OFX-loaded microspheres in Gelrite solution (0.4% w/v) significantly altered the release profiles of OFX-loaded microspheres in situ gel formula compared with the corresponding OFX gels and OFX microspheres. In vivo results in rabbits showed that OFX-loaded microspheres in situ gel formula improved the relative bioavailability by 11.7-fold compared with the commercially available OFX eyedrops. In addition, the longer duration of action of OFX-loaded microspheres in situ gel formula preparations is thought to avoid frequent instillations, which improves patient tolerability and compliance.
PMCID: PMC4362657  PMID: 25792803
corneal delivery; fluoroquinolones; gellan gum; Gelrite; simulated tear fluid
6.  Stromal-Derived Factor-1 Alpha-Loaded PLGA Microspheres for Stem Cell Recruitment 
Pharmaceutical research  2011;28(10):2477-2489.
Stromal-derived factor-1 alpha (SDF-1α) is a chemo-attractant that has been investigated for treating various diseases, with the goal of recruiting endogenous stem cells to the site of injury. Biodegradable PLGA microspheres were investigated as a means to deliver SDF-1α in a sustained-release manner.
We encapsulated SDF-1α into biodegradable poly (lactide-co-glycolide) (PLGA) microspheres using a double-emulsion solvent extraction/evaporation technique. We varied several formulation parameters, characterized the in vitro release profile of SDF-1α and the size and morphology of microspheres, and determined the bioactivity of the released SDF-1α of stimulating migration of mesenchymal stem cells (MSCs).
We found that microspheres fabricated using end-capped PLGA, BSA as an excipient, and low solvent volumes yielded a high encapsulation efficiency (>64%) and released SDF-1α over a >50-day timeframe. The released SDF-1α was bioactive and caused significant migration of MSCs throughout the duration of release from the microspheres.
We have identified several variables that led to successful encapsulation of SDF-1α into PLGA microspheres. We envision that SDF-lα-loaded microspheres may serve as injectable sources of sustained-release chemokine for promoting the recruitment of endogenous stem cells to the site of injury.
PMCID: PMC4353616  PMID: 21614634
chemokine; controlled release; microsphere
7.  Poly(D,L-Lactide-Co-Glycolide) microspheres containing 5-fluorouracil: Optimization of process parameters 
AAPS PharmSciTech  2003;4(2):14-21.
The objective of this research was to optimize the processing parameters for poly(D,L-lactide-coglycolide) (PLGA) microspheres of 5-fluorouracil (5-FU) and to mathematically relate the process parameters and properties of microspheres. Microspheres were prepared by a water-in-oil-in-water emulsion solvent evaporation technique. A 32 factorial design was employed to study the effect of the volume of the internal phase of the primary emulsion and the volume of the external phase of the secondary emulsion on yield, particle size, and encapsulation efficiency of microspheres. An increase in the volume of the internal phase of the primary emulsion resulted in a decrease in yield and encapsulation efficiency and an increase in particle size of microspheres. When the volume of the external phase of the secondary emulsion was increased, a decrease in yield, particle size, and encapsulation efficiency was observed. Microspheres with good batch-to-batch reproducibility could be produced. Scanning electron microscopic study indicated that microspheres existed as aggregates.
PMCID: PMC2750589  PMID: 12916895
5-fluorouracil; microspheres; PLGA microspheres; optimization
8.  Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing 
AAPS PharmSciTech  2001;2(3):73-80.
The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not elicit swelling. Microspheres were produced via a water-in-oil-in-water double-emulsion system and were loaded with rhBMP-2 by soaking them in a buffered solution of the protein at a concentration of 5.4 mg protein per gram of PLGA. Following recovery of the loaded microspheres by lyophilization matrices for implantation were prepared by lyophilizing a suspension of the microspheres in 2% CMC in flat-bottom tissue culture plates. Similar matrices were made with 2% CMC and with 2% CMC containing blank microspheres. A full-thickness calvarial defect model in New Zealand white rabbits was used to assess bone growth. Implants fit the defect well allowing for direct application. Six weeks postsurgery, defects were collected and processed for undecalcified histology. In vitro, 60% of the loaded rhBMP-2 released from devices or microspheres in 5 to 7 days. With the unembedded microspheres releasing faster than those embedded in CMC In vivo. the rhBMP-2 microspheres greatly enhanced bone healing, whereas nonloaded PLGA microspheres in the CMC implants had little effect. The results showed that a lyophilized device of rhBMP-2 PLGA microspheres in CMC was an effective implantable protein-delivery system for the use in bone repair.
PMCID: PMC2750583  PMID: 14727877
bone morphogenetic protein-2; PLGA microspheres; controlled delivery; protein delivery; in vitro; in vivo; bone repair
9.  Eudragit S100 entrapped insulin microspheres for oral delivery 
AAPS PharmSciTech  2005;6(1):E100-E107.
The purpose of this research was to investigate whether Eudragit S100 microspheres have the potential to serve as an oral carrier for peptide drugs like insulin. Microspheres were prepared using water-in oil-in water emulsion solvent evaporation technique with polysorbate 20 as a dispersing agent in the internal aqueous phase and polyvinyl alcohol (PVA)/polyvinyl pyrrolidone as a stabilizer in the external aqueous phase. The use of smaller internal aqueous-phase volume (50 μL) and external aqueous-phase volume (25 mL) containing PVA in the manufacturing process resulted in maximum encapsulation efficiency (81.8%±0.9%). PVA-stabilized microspheres having maximum drug encapsulation released 2.5% insulin at pH 1.0 in 2 hours. In phosphate buffer (pH 7.4), microspheres showed an initial burst release of 22% in 1 hour with an additional 28% release in the next 5 hours. The smaller the volumes of internal and external aqueous phase, the lower the initial burst release. The release of drug from microspheres followed Higuchi kinetics. Scanning electron microscopy of PVA-stabilized microspheres demonstrated spherical particles with smooth surface, and laser diffractometry revealed a mena particle size of 32.51±20 μm. Oral administration of PVA stabilized microspheres in normal albino rabbits (equivalent to 6.6 IU insulin/kg of animal weight) demonstrated a 24% reduction in blood glucose level, with maximum plasma glucose reduction of 76±3.0% in 2 hours and effect continuing up to 6 hours. The area under the percentage glucose reduction-time curve was 93.75%. Thus, our results indicate that Eudragit S100 microspheres on oral administration can protect insulin from proteolytic degradation in the gastrointestinal tract and produce hypoglycemic effect.
PMCID: PMC2750417  PMID: 16353953
insulin; oral; Eudragit S100; microspheres; hypoglycaemic
10.  Growth of hydroxyapatite coatings on biodegradable polymer microspheres 
ACS applied materials & interfaces  2009;1(7):1504-1511.
Mineral-coated microspheres were prepared via a bioinspired, heterogeneous nucleation process at physiological temperature. Poly(D,L-lactide-co-glycolide) (PLG) microspheres were fabricated via a water-in-oil-in-water emulsion method and were mineral-coated via incubation in a modified simulated body fluid (mSBF). X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy with associated energy dispersive X-ray spectroscopy confirmed the presence of a continuous mineral coating on the microspheres. The mineral grown on the PLG microsphere surface has characteristics analogous to bone mineral (termed ‘bone-like’ mineral), with a carbonate-containing hydroxyapatite phase and a porous structure of plate-like crystals at the nanometer scale. Assembly of mineral-coated microspheres into aggregates was observed when microsphere concentrations above 0.50 mg/mL were incubated in mSBF for 7 days, and the size of aggregates was dependent on the microsphere concentration in solution. In vitro mineral dissolution studies performed in tris-buffered saline confirmed that the mineral formed was resorbable. A surfactant additive (Tween 20™) was incorporated into mSBF to gain insight into the mineral growth process, and Tween 20™ not only prevented aggregation, but also significantly inhibited mineral formation and influenced the characteristics of the mineral formed on the surface of PLG microspheres. Taken together, these findings indicate that mineral-coated PLG microspheres or mineral-coated microsphere aggregates can be synthesized in a controllable manner using a bioinspired process. These materials may be useful in a range of applications, including controlled drug delivery and biomolecule purification.
PMCID: PMC2806690  PMID: 20161578
mineralization; PLG microsphere; bioinspired; drug delivery; HAP chromatography
11.  Identification of chemically modified peptide from poly(D,L-lactide-co-glycolide) microspheres under in vitro release conditions 
AAPS PharmSciTech  2003;4(4):392-405.
The purpose of this research was to study the chemical reactivity of a somatostatin analogue octreotide acetate, formulated in microspheres with polymers of varying molecular weight and co-monomer ratio under in vitro testing conditions. Poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) (PLA) microspheres were prepared by a solvent extraction/evaporation method. The microspheres were characterized for drug load, impurity content, and particle size. Further, the microspheres were subjected to in vitro release testing in acetate buffer (pH 4.0) and phosphate buffered saline (PBS) (pH 7.2). In acetate buffer, 3 microsphere batches composed of low molecular weight PLGA 50∶50, PLGA 85∶15, and PLA polymers (≤10 kDa) showed 100% release with minimal impurity formation (<10%). The high molecular weight PLGA 50∶50 microspheres (28 kDa) displayed only 70% cumulative release in acetate buffer with significant impurity formation (∼24%). In PBS (pH 7.4), on the other hand, only 50% release was observed with the same low molecular weight batches (PLGA 50∶50, PLGA 85∶15, and PLA) with higher percentages of hydrophobic impurity formation (ie, 40%, 26%, and 10%, respectively). In addition, in PBS, the high molecular weight PLGA 50∶50 microspheres showed only 20% drug release with ∼60% mean impurity content. The chemically modified peptide impurities inside microspheres were structurally confirmed through Fourier transform-mass spectrometry (FT-MS) and liquid chromatography/mass spectrometry (LC-MS/MS) analyses after extraction procedures. The adduct compounds were identified as covalently modified conjugates of octreotide with lactic and glycolic acid monomers within polymeric microspheres. The data suggest that due to steric hindrance factors, polymers with greater lactide content were less amenable to the formation of adduct impurities compared with PLGA 50∶50 copolymers.
PMCID: PMC2750643  PMID: 15198545
somatostatin analogues; octreotide acetate; peptide acylation; peptide stability; poly(D,L-lactide-co-glycolide) (PLGA) microspheres
12.  Magnetic poly(lactide-co-glycolide) (PLGA) and cellulose particles for MRI-based cell tracking 
Biodegradable, superparamagnetic micro- and nanoparticles of poly(lactide-co-glycolide) (PLGA) and cellulose were designed, fabricated and characterized for magnetic cell labeling. Monodisperse nanocrystals of magnetite were incorporated into micro- and nanoparticles of PLGA and cellulose with high efficiency using an oil-in-water single emulsion technique. Superparamagnetic cores had high magnetization (72.1 emu/g). The resulting polymeric particles had smooth surface morphology and high magnetite content (43.3 wt% for PLGA and 69.6 wt% for cellulose). While PLGA and cellulose nanoparticles displayed highest r2* values per millimole of iron (399 s-1mM-1 for cellulose and 505 s-1mM-1 for PLGA), micron-sized PLGA particles had a much higher r2* per particle than either. After incubation for a month in citrate buffer (pH 5.5), magnetic PLGA particles lost close to 50% of their initial r2* molar relaxivity, while magnetic cellulose particles remained intact, preserving over 85% of their initial r2* molar relaxivity. Lastly, mesenchymal stem cells and human breast adenocarcinoma cells were magnetically labeled using these particles with no detectable cytotoxicity. These particles are ideally suited for non-invasive cell tracking in vivo via MRI and due to their vastly different degradation properties, offer unique potential for dedicated use for either short (PLGA-based particles) or long term (cellulose-based particles) experiments.
PMCID: PMC3097259  PMID: 21404328
13.  Formulation and in vitro transfection efficiency of poly (D, L-lactideco-glycolide) microspheres containing plasmid DNA for gene delivery 
AAPS PharmSciTech  2000;1(4):17-25.
The stability, in vitro release, and in vitro cell transfection efficiency of plasmid DNA (pDNA) poly (D,L.-lactide-co-glycolide) (PLGA) microsphere formulations were investigated. PLGA microspheres containing free and polylysine (PLL)-complexed pDNA were prepared by a water-oil-water solvent extraction/evaporation technique. Encapsulation enhanced the retention of the supereoiled structure of pDNA as determined by gel electrophoresis. PLL complexation of pDNA prior to encapsulation increased both the stability of the supercoiled form and the encapsulation efficiency. Free pDNA was completely degraded after exposure to DNase while encapsulation protected the pDNA from enzymatic degradation. Rapid initial in vitro release of pDNA was obtained from microspheres containing free pDNA. while the release from microspheres containing PLL-complexed pDNA was sustained for more than 42 days. Bioactivity of encapsulated pDNA determined by in vitro cell transfection using Chinese hamster ovary cells (CHO) showed that the bioactivity of encapsulated pDNA was retained in both formulations but to a greater extent with PLL-complexed pDNA microspheres. These results demonstrated that PLGA microspheres could be used to formulate a controlledrelease delivery system for pDNA that can protect the pDNA from DNase degradation without loss of functional activity.
PMCID: PMC2750452  PMID: 14727893
PLGA; Microspheres; Plasmid DNA; Controlled Release
14.  Preparation and In Vitro Characterization of Mucoadhesive Hydroxypropyl Guar Microspheres Containing Amlodipine Besylate for Nasal Administration 
Amlodipine besylate microspheres for intranasal administration were prepared with an aim to avoid first-pass metabolism, to achieve controlled blood level profiles and to improve therapeutic efficacy. Hydroxypropyl Guar, a biodegradable polymer, was used in the preparation of microspheres by employing water in oil emulsification solvent evaporation technique. The formulation variables were drug concentration, emulsifier concentration, temperature, agitation speed and polymer concentration. All the formulations were evaluated for particle size, particle shape and surface morphology by scanning electron microscopy, percentage yield, drug entrapment efficiency, in vitro mucoadhesion test, degree of swelling and in vitro drug diffusion through sheep nasal mucosa. The microspheres obtained were free flowing, spherical and the particles ranged in size from 13.4±2.38 μm to 43.4±1.92 μm very much suitable for nasal delivery. Increasing polymer concentration resulted in increased drug entrapment efficiency and increased particle size. Amlodipine besylate was entrapped into the microspheres with an efficiency of 67.2±1.18 % to 81.8±0.64 %. The prepared microspheres showed good mucoadhesion properties, swellability and sustained the release of the drug over a period of 8 h. The data obtained were analysed by fitment into various kinetic models; it was observed that the drug release was matrix diffusion controlled and the release mechanism was found to be non-Fickian. Stability studies were carried out on selected formulations at 5±3°, 25±2°/60±5% RH and 40±2°/75±5% RH for 90 days. The drug content was observed to be within permissible limits and there were no significant deviations in the in vitro mucoadhesion and in vitro drug diffusion characteristics.
PMCID: PMC3480744  PMID: 23112393
Amlodipine besylate; degree of swelling; drug entrapment efficiency; in vitro mucoadhesion studies; mucoadhesive microspheres; nasal drug delivery; water in oil emulsification solvent evaporation technique
15.  Improved Bioavailability of a Water-Insoluble Drug by Inhalation of Drug-Containing Maltosyl-β-Cyclodextrin Microspheres Using a Four-Fluid Nozzle Spray Drier 
AAPS PharmSciTech  2012;13(4):1130-1137.
We previously developed a unique four-fluid nozzle spray drier that can produce water-soluble microspheres containing water-insoluble drug nanoparticles in one step without any common solvent between the water-insoluble drug and water-soluble carrier. In the present study, we focused on maltosyl-β-cyclodextrin (malt-β-CD) as a new water-soluble carrier and it was investigated whether drug/malt-β-CD microspheres could improve the bioavailability compared with our previously reported drug/mannitol (MAN) microspheres. The physicochemical properties of bare drug microparticles (ONO-2921, a model water-insoluble drug), drug/MAN microspheres, and drug/malt-β-CD microspheres were evaluated. In vitro aerosol performance, in vitro dissolution rate, and the blood concentration profiles after intratracheal administration were compared between these formulations. The mean diameter of both drug/MAN and drug/malt-β-CD microspheres was approximately 3–5 μm and both exhibited high aerosol performance (>20% in stages 2–7), but drug/malt-β-CD microspheres had superior release properties. Drug/malt-β-CD microspheres dissolved in an aqueous phase within 2 min, while drug/MAN microspheres failed to dissolve in 30 min. Inhalation of drug/malt-β-CD microspheres enhanced the area under the curve of the blood concentration curve by 15.9-fold than that of bare drug microparticles and by 6.1-fold than that of drug/MAN microspheres. Absolute bioavailability (pulmonary/intravenous route) of drug/malt-β-CD microspheres was also much higher (42%) than that of drug/MAN microspheres (6.9%). These results indicate that drug/malt-β-CD microspheres prepared by our four-fluid nozzle spray drier can improve drug solubility and pulmonary delivery.
Electronic supplementary material
The online version of this article (doi:10.1208/s12249-012-9826-z) contains supplementary material, which is available to authorized users.
PMCID: PMC3513433  PMID: 22945234
4-fluid nozzle spray drier; inhalation therapy; maltosyl-β-cyclodextrin; microparticles; water-insoluble drug
16.  Preparation of biodegradable microspheres and matrix devices containing naltrexone 
AAPS PharmSciTech  2003;4(3):45-54.
In this study, the use of biodegradable polymers for microencapsulation of naltrexone using solvent evaporation technique is investigated. The use of naltrexone microspheres for the preparation of matrix devices is also studied. For this purpose, poly(L-lactide) (PLA) microspheres containing naltrexone prepared by solvent evaporation technique were compressed at temperatures above the Tg of the polymer. The effect of different process parameters, such as drug/polymer ratio and stirring rate during preparation of microspheres, on the morphology, size distribution, and in vitro drug release of microspheres was studied. As expected, stirring rate influenced particle size distribution of microspheres and hence drug release profiles. By increasing the stirring speed from 400 to 1200 rpm, the mean diameter of microspheres decreased from 251 μm to 104 μm. The drug release rate from smaller microspheres was faster than from larger microspheres. However, drug release from microspheres with low drug content (20% wt/wt) was not affected by the particle size of microspheres. Increasing the drug content of microspheres from 20% to 50% wt/wt led to significantly faster drug release from microspheres. It was also shown that drug release from matrix devices prepared by compression of naltrexone microspheres is much slower than that of microspheres. No burst release was observed with matrix devices. Applying higher compression force, when compressing microspheres to produce tablets, resulted in lower drug release from matrix devices. The results suggest that by regulating different variables, desired release profiles of naltrexone can be achieved using a PLA microparticulate system or matrix devices.
PMCID: PMC2750627  PMID: 14621966
microspheres; matrix devices; naltrexone; poly(L-lactide); solvent evaporation
17.  Inhalable Large Porous Microspheres of Low Molecular Weight Heparin: In Vitro and In Vivo Evaluation 
This study tests the feasibility of large porous particles as long-acting carriers for pulmonary delivery of low molecular weight heparin (LMWH). Microspheres were prepared with a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), by a double-emulsion–solvent-evaporation technique. The drug entrapment efficiencies of the microspheres were increased by modifying them with three different additives—polyethyleneimine (PEI), Span 60 and stearylamine. The resulting microspheres were evaluated for morphology, size, zeta potential, density, in vitro drug-release properties, cytotoxicity, and for pulmonary absorption in vivo. Scanning electron microscopic examination suggests that the porosity of the particles increased with the increase in aqueous volume fraction. The amount of aqueous volume fraction and the type of core-modifying agent added to the aqueous interior had varying degrees of effect on the size, density and aerodynamic diameter of the particles. When PEI was incorporated in the internal aqueous phase, the entrapment efficiency was increased from 16.22±1.32% to 54.82±2.79%. The amount of drug released in the initial burst phase and the release-rate constant for the core-modified microspheres were greater than those for the plain microspheres. After pulmonary administration, the half-life of the drug from the PEI- and stearylamine-modified microspheres was increased by 5- to 6-fold compared to the drug entrapped in plain microspheres. The viability of Calu-3 cells was not adversely affected when incubated with the microspheres. Overall, the data presented here suggest that the newly developed porous microspheres of LMWH have the potential to be used in a form deliverable by dry-powder inhaler as an alternative to multiple parenteral administrations of LMWH.
PMCID: PMC2556066  PMID: 18471921
Large porous particles; microspheres; Low molecular weight heparin; pulmonary delivery
18.  Accelerated Polymer Biodegradation of Risperidone Poly(d, l-Lactide-Co-Glycolide) Microspheres 
AAPS PharmSciTech  2012;13(4):1465-1472.
The influence of a tertiary amine, namely risperidone (pKa = 7.9) on the degradation of poly(d, l lactide-co-glycolide) (PLGA) microspheres was elucidated. Risperidone and blank microspheres were fabricated at two lactide/glycolide ratios, 65:35 and 85:15. The microspheres were characterized for drug loading by high-performance liquid chromatography, particle size by laser diffractometry, and surface morphology by scanning electron microscopy. Polymer degradation studies were carried out with drug-loaded microspheres and blank microspheres in presence of free risperidone in 0.02 M PBS containing 0.02% Tween®80 at 37°C. Molecular weight was monitored by gel permeation chromatography. Risperidone and blank microspheres had similar size distribution and were spherical with a relatively nonporous smooth surface. The presence of risperidone within the microspheres enhanced the hydrolytic degradation in both polymeric matrices with faster degradation occurring in 65:35 PLGA. The molecular weight decreased according to pseudo-first-order kinetics for all the formulations. During the degradation study, the surface morphology of drug-loaded microspheres was affected by the presence of risperidone and resulted in shriveled microspheres in which there appeared to be an intrabatch variation with the larger microspheres being less shriveled than the smaller ones. When blank microspheres were incubated in free risperidone solutions, a concentration-dependent effect on the development of surface porosity could be observed. Risperidone accelerates the hydrolytic degradation of PLGA, presumably within the microenvironment of the drug-loaded particles, and this phenomenon must be taken into consideration in designing PLGA dosage forms of tertiary amine drugs.
PMCID: PMC3513476  PMID: 23090111
mass loss; microencapsulation; PLGA microspheres; polymer degradation; risperidone; tertiary amine drug
19.  Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting 
AAPS PharmSciTech  2007;8(1):E87-E93.
An objective of the present investigation was to prepare and evaluate Eudragit-coated pectin microspheres for colon targeting of 5-fluorouracil (FU). Pectin microspheres were prepared by emulsion dehydration method using different ratios of FU and pectin (1:3 to 1:6), stirring speeds (500–2000 rpm) and emulsifier concentrations (0.75%–1.5% wt/vol). The yield of preparation and the encapsulation efficiencies were high for all pectin microspheres. Microspheres prepared by using drug:polymer ratio 1:4, stirring speed 1000 rpm, and 1.25% wt/vol concentration of emulsifying agent were selected as an optimized formulation. Eudragit-coating of pectin microspheres was performed by oil-in-oil solvent evaporation method using coat: core ratio (5:1). Pectin microspheres and Eudragit-coated pectin microspheres were evaluated for surface morphology, particle size and size distribution, swellability, percentage drug entrapment, and in vitro drug release in simulated gastrointestinal fluids (SGF). The in vitro drug release study of optimized formulation was also performed in simulated colonic fluid in the presence of 2% rat cecal content. Organ distribution study in albino rats was performed to establish the targeting potential of optimized formulation in the colon. The release profile of FU from Eudragit-coated pectin microspheres was pH dependent. In acidic medium, the release rate was much slower; however, the drug was released quickly at pH 7.4. It is concluded from the present investigation that Eudragit-coated pectin microspheres are promising controlled release carriers for colon-targeted delivery of FU.
PMCID: PMC2750447  PMID: 17408212
5-Fluorouracil; pectin; microspheres; Eudragit coating; colon targeting
20.  Biodegradable microspheres as carriers for native superoxide dismutase and catalase delivery 
AAPS PharmSciTech  2004;5(4):1-9.
The purpose of this research was to encapsulate superoxide dismutase (SOD) and catalase (CAT) in biodegradable microspheres (MS) to obtain suitable sustained protein delivery. A modified water/oil/water double emulsion method was used for poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) PLA MS preparation co-encapsulating mannitol, trehalose, and PEG400 for protein stabilization. Size, morphology, porosity, mass loss, mass balance, in vitro release and in vitro activity were assessed by using BCA protein assay, scanning electron microscopy, BET surface area, and particle-sizing techniques. In vitro activity retention within MS was evaluated by nicotinammide adenine dinucleotide oxidation and H2O2 consumption assays. SOD encapsulation efficiency resulted in 30% to 34% for PLAMS and up to 51% for PLGA MS, whereas CAT encapsulation was 34% and 45% for PLGA and PLAMS, respectively. All MS were spherical with a smooth surface and low porosity. Particle mean diameters ranged from 10 to 17 μm. CAT release was prolonged, but the results were incomplete for both PLA and PLGA MS, whereas SOD was completely released from PLGA MS in a sustained manner after 2 months. CAT results were less stable and showed a stronger interaction than SOD with the polymers. Mass loss and mass balance correlated well with the release profiles. SOD and CAT in vitro activity was preserved in all the preparations, and SOD was better stabilized in PLGA MS. PLGA MS can be useful for SOD delivery in its native form and is promising as a new depot system.
PMCID: PMC2750476  PMID: 15760048
superoxide dismutase; catalase; microspheres; protein delivery; in vitro activity
21.  The Pharmacokinetics and Pharmacodynamics of Lidocaine-Loaded Biodegradable Poly(lactic-co-glycolic acid) Microspheres 
The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(d,l-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34 ± 0.3 μm. The poly disperse index was 0.21 ± 0.03, and the zeta potential was +0.34 ± 0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5% ± 4.3% and 11.2% ± 1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02–2.06-fold that of lidocaine injection (p < 0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency.
PMCID: PMC4227173  PMID: 25268618
lidocaine; PLGA; microspheres; pharmacokinetics; pharmacodynamics
22.  Release of a Wound-Healing Agent from PLGA Microspheres in a Thermosensitive Gel 
BioMed Research International  2013;2013:387863.
The purpose of this research was to develop a topical microsphere delivery system in a thermosensitive 20% poloxamer 407 gel (Pluronic F127) to control release of KSL-W, a cationic antimicrobial decapeptide, for a period of 4–7 days for potential application in combat related injuries. KSL-W loaded microsphere formulations were prepared by a solvent extraction-evaporation method (water-oil-water), with poly (D,L-lactic-co-glycolic acid) (PLGA) (50 : 50, low-weight, and hydrophilic end) as the polymeric system. After optimization of the process, three formulations (A, B, and C) were prepared with different organic to water ratio of the primary emulsion while maintaining other components and manufacturing parameters constant. Formulations were characterized for surface morphology, porous nature, drug loading, in vitro drug release, and antimicrobial activity. Microspheres containing 20% peptide with porous surfaces and internal structure were prepared in satisfactory yields and in sizes varying from 25 to 50 μm. Gels of 20% Pluronic F127, which were liquid at or below 24.6°C and formed transparent films at body temperature, were used as carriers for the microspheres. Rheological studies showed a gelation temperature of 24.6°C for the 20% Pluronic F127 gel alone. Gelation temperature and viscosity of formulations A, B, and C as a function of temperature were very close to those of the carrier. A Franz diffusion cell system was used to study the release of peptide from the microspheres suspended in both, phosphate-buffered saline (PBS) and a 20% Pluronic F127 gel. In vitro release of greater than 50% peptide was found in all formulations in both PBS and the gel, and in one formulation there was a release of 75% in both PBS and the gel. Fractions collected from the release process were also tested for bactericidal activity against Staphylococcus epidermidis using the broth microdilution method and found to provide effective antimicrobial activity to warrant consideration and testing in animal wound models for treating combat-related injuries.
PMCID: PMC3808721  PMID: 24224161
23.  Controlled-release and preserved bioactivity of proteins from (self-assembled) core-shell double-walled microspheres 
In order to address preserved protein bioactivities and protein sustained-release problems, a method for preparing double-walled microspheres with a core (protein-loaded nanoparticles with a polymer-suspended granule system-formed core) and a second shell (a polymer-formed shell) for controlled drug release and preserved protein bioactivities has been developed using (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W)) phases. The method, based on our previous microsphere preparation method (solid-in-oil phase-in-hydrophilic oil-in-water (S/O/Oh/W), employs different concentric poly(D,L-lactide-co-glycolide), poly(D,L-lactide), and protein-loaded nanoparticles to produce a suspended liquid which then self-assembles to form shell-core microspheres in the hydrophilic oil phase, which are then solidified in the water phase. Variations in the preparation parameters allowed complete encapsulation by the shell phase, including the efficient formation of a poly(D,L-lactide) shell encapsulating a protein-loaded nanoparticle-based poly(D,L-lactide-co-glycolide) core. This method produces core-shell double-walled microspheres that show controlled protein release and preserved protein bioactivities for 60 days. Based upon these results, we concluded that the core-shell double-walled microspheres might be applied for tissue engineering and therapy for chronic diseases, etc.
PMCID: PMC3265996  PMID: 22287838
protein delivery; protein stability; core-shell microspheres; dextran nanoparticles
24.  Preparation and characterization of poly(D,L-lactide-co-glycolide) microspheres for controlled release of human growth hormone 
AAPS PharmSciTech  2003;4(2):147-156.
The purpose of this research was to assess the physicochemical properties of a controlled release formulation of recombinant human growth hormone (rHGH) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) composite microspheres. rHGH was loaded in poly(acryloyl hydroxyethyl) starch (acHES) microparticles, and then the protein-containing microparticles were encapsulated in the PLGA matrix by a solvent extraction/evaporation method. rHGH-loaded PLGA microspheres were also prepared using mannitol without the starch hydrogel microparticle microspheres for comparison. The detection of secondary structure changes in protein was investigated by using a Fourier Transfer Infrared (FTIR) technique. The composite microspheres were spherical in shape (44.6±2.47 μm), and the PLGA-mannitol microspheres were 39.7±2.50 μm. Drug-loading efficiency varied from 93.2% to 104%. The composite microspheres showed higher overall drug release than the PLGA/mannitol microspheres. FTIR analyses indicated good stability and structural integrity of HGH localized in the microspheres. The PLGA-acHES composite microsphere system could be useful for the controlled delivery of protein drugs.
PMCID: PMC2750591  PMID: 12916910
Microspheres; human growth hormone; protein delivery; composite microspheres
25.  A biodegradable polymeric system for peptide–protein delivery assembled with porous microspheres and nanoparticles, using an adsorption/infiltration process 
A biodegradable polymeric system is proposed for formulating peptides and proteins. The systems were assembled through the adsorption of biodegradable polymeric nanoparticles onto porous, biodegradable microspheres by an adsorption/infiltration process with the use of an immersion method. The peptide drug is not involved in the manufacturing of the nanoparticles or in obtaining the microspheres; thus, contact with the organic solvent, interfaces, and shear forces required for the process are prevented during drug loading. Leuprolide acetate was used as the model peptide, and poly(d,l-lactide-co-glycolide) (PLGA) was used as the biodegradable polymer. Leuprolide was adsorbed onto different amounts of PLGA nanoparticles (25 mg/mL, 50 mg/mL, 75 mg/mL, and 100 mg/mL) in a first stage; then, these were infiltrated into porous PLGA microspheres (100 mg) by dipping the structures into a microsphere suspension. In this way, the leuprolide was adsorbed onto both surfaces (ie, nanoparticles and microspheres). Scanning electron microscopy studies revealed the formation of a nanoparticle film on the porous microsphere surface that becomes more continuous as the amount of infiltrated nanoparticles increases. The adsorption efficiency and release rate are dependent on the amount of adsorbed nanoparticles. As expected, a greater adsorption efficiency (~95%) and a slower release rate were seen (~20% of released leuprolide in 12 hours) when a larger amount of nanoparticles was adsorbed (100 mg/mL of nanoparticles). Leuprolide acetate begins to be released immediately when there are no infiltrated nanoparticles, and 90% of the peptide is released in the first 12 hours. In contrast, the systems assembled in this study released less than 44% of the loaded drug during the same period of time. The observed release profiles denoted a Fickian diffusion that fit Higuchi’s model (t1/2). The manufacturing process presented here may be useful as a potential alternative for formulating injectable depots for sensitive hydrophilic drugs such as peptides and proteins, among others.
PMCID: PMC3684224  PMID: 23788833
adsorption; biodegradable polymers; controlled release; nanoparticles; porous microspheres; peptide delivery

Results 1-25 (492618)