PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (344563)

Clipboard (0)
None

Related Articles

1.  AcrAB-TolC Directs Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium DT104 
Antimicrobial Agents and Chemotherapy  2004;48(10):3729-3735.
Multidrug-resistant Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) strains harbor a genomic island, called Salmonella genomic island 1 (SGI1), which contains an antibiotic resistance gene cluster conferring resistance to ampicillin, chloramphenicol, florfenicol, streptomycin, sulfonamides, and tetracyclines. They may be additionally resistant to quinolones. Among the antibiotic resistance genes there are two, i.e., floR and tet(G), which code for efflux pumps of the major facilitator superfamily with 12 transmembrane segments that confer resistance to chloramphenicol-florfenicol and the tetracyclines, respectively. In the present study we determined, by constructing acrB and tolC mutants, the role of the AcrAB-TolC multidrug efflux system in the multidrug resistance of several DT104 strains displaying additional quinolone resistance or not displaying quinolone resistance. This study shows that the quinolone resistance and the decreased fluoroquinolone susceptibilities of the strains are highly dependent on the AcrAB-TolC efflux system and that single mutations in the quinolone resistance-determining region of gyrA are of little relevance in mediating this resistance. Overproduction of the AcrAB efflux pump, as determined by Western blotting with an anti-AcrA polyclonal antibody, appeared to be the major mechanism of resistance to quinolones. Moreover, chloramphenicol-florfenicol and tetracycline resistance also appeared to be highly dependent on the presence of AcrAB-TolC, since the introduction of mutations in the respective acrB and tolC genes resulted in a susceptible or intermediate resistance phenotype, according to clinical MIC breakpoints, despite the presence of the FloR and Tet(G) efflux pumps. Resistance to other antibiotics, ampicillin, streptomycin, and sulfonamides, was not affected in the acrB and tolC mutants of DT104 strains harboring SGI1. Therefore, AcrAB-TolC appears to direct efflux-mediated resistance to quinolones, chloramphenicol-florfenicol, and tetracyclines in multidrug-resistant S. enterica serovar Typhimurium DT104 strains.
doi:10.1128/AAC.48.10.3729-3735.2004
PMCID: PMC521921  PMID: 15388427
2.  Overexpression of the Multidrug Efflux Operon acrEF by Insertional Activation with IS1 or IS10 Elements in Salmonella enterica Serovar Typhimurium DT204 acrB Mutants Selected with Fluoroquinolones 
High-level fluoroquinolone (FQ) resistance in Salmonella enterica serovar Typhimurium phage type DT204 has been previously shown to be essentially due to both multiple target gene mutations and active efflux by the AcrAB-TolC efflux system. In this study we show that in intermediatly resistant acrB-inactivated serovar Typhimurium DT204 mutants, high-level resistance to FQs can be restored on in vitro selection with FQs. In each FQ- resistant mutant selected from serovar Typhimurium DT204 acrB mutant strains, an insertion sequence (IS1 or IS10) was found integrated upstream of the acrEF operon, coding for AcrEF, an efflux pump highly homologous to AcrAB. In one of the strains, transposition of IS1 caused partial deletion of acrS, the putative local repressor gene of the acrEF operon. Sequence analysis showed that both IS1 and IS10 elements contain putative promoter sequences that might alter the expression of adjacent acrEF genes. Indeed, reverse transcription-PCR experiments showed an 8- to 10-fold increase in expression of acrF in these insertional mutants, relative to their respective parental strain, which correlated well with the resistance levels observed to FQs and other unrelated drugs. It is noteworthy that AcrEF did not contribute to the intrinsic drug resistance of serovar Typhimurium, since acrF deletion in wild-type strains did not result in any increase in drug susceptibility. Moreover, deletion of acrS did not cause any acrF overexpression or any decrease in drug susceptibility, suggesting that acrEF overexpression is mediated solely by the IS1 and IS10 promoter sequences and not by inactivity of AcrS. Southern blot experiments showed that the number of chromosomal IS1 and IS10 elements in the serovar Typhimurium DT204 genome was about 5 and 15 respectively. None were detected in epidemic serovar Typhimurium DT104 strains or in the serovar Typhimurium reference strain LT2. Carrying IS1 and/or IS10 elements in their chromosome may thus be a selective advantage for serovar Typhimurium DT204 strains as opposed to DT104 strains for which no high-level FQ resistance nor insertional mutations were found. Taken together, the results of the present study indicate that the IS1- or IS10- activated AcrEF efflux pump may relay AcrAB in serovar Typhimurium, and underline the importance of transposable elements in the acquisition of FQ and multidrug resistance.
doi:10.1128/AAC.49.1.289-301.2005
PMCID: PMC538886  PMID: 15616308
3.  The Role of RamA on the Development of Ciprofloxacin Resistance in Salmonella enterica Serovar Typhimurium 
PLoS ONE  2011;6(8):e23471.
Active efflux pump is a primary fluoroquinolone resistant mechanism of clinical isolates of Salmonella enterica serovar Typhimurium. RamA is an essential element in producing multidrug resistant (MDR) S.enterica serovar Typhimurium. The aim of the present study was to elucidate the roles of RamA on the development of ciprofloxacin, the first choice for the treatment of salmonellosis, resistance in S. enterica serovar Typhimurium. Spontaneous mutants were selected via several passages of S. enterica serovar Typhimurium CVCC541 susceptible strain (ST) on M-H agar with increasing concentrations of ciprofloxacin (CIP). Accumulation of ciprofloxacin was tested by the modified fluorometric method. The expression levels of MDR efflux pumps were determined by real time RT-PCR. In ST and its spontaneous mutants, the ramA gene was inactivated by insertion of the kan gene and compensated on a recombinant plasmid pGEXΦ(gst-ramA). The mutant prevention concentration (MPC) and mutant frequencies of ciprofloxacin against ST and a spontaneous mutant in the presence, absence and overexpression of RamA were tested. Four spontaneous mutants (SI1-SI4) were obtained. The SI1 (CIP MICs, 0.1 mg/L) without any target site mutation in its quinolone resistant determining regions (QRDRs) and SI3 (CIP MICs, 16 mg/L) harboring the Ser83→Phe mutation in its QRDR of GyrA strains exhibited reduced susceptibility and resistance to multidrugs, respectively. In SI1, RamA was the main factor that controlled the susceptibility to ciprofloxacin by activating MdtK as well as increasing the expression level of acrAB. In SI3, RamA played predominant role in ciprofloxacin resistance via increasing the expression level of acrAB. Likewise, the deficiency of RamA decreased the MPCs and mutant frequencies of ST and SI2 to ciprofloxacin. In conclusion, the expression of RamA promoted the development of ciprofloxacin resistant mutants of S. enterica serovar Typhimurium. The inhibition of RamA could decrease the appearance of the ciprofloxacin resistant mutants.
doi:10.1371/journal.pone.0023471
PMCID: PMC3155569  PMID: 21858134
4.  Evidence for Active Efflux as the Primary Mechanism of Resistance to Ciprofloxacin in Salmonella enterica Serovar Typhimurium 
The occurrence of active efflux and cell wall modifications were studied in Salmonella enterica serovar Typhimurium mutants that were selected with enrofloxacin and whose phenotypes of resistance to fluoroquinolones could not be explained only by mutations in the genes coding for gyrase or topoisomerase IV. Mutant BN18/21 exhibited a decreased susceptibility to ciprofloxacin (MIC = 0.125 μg/ml) but did not have a mutation in the gyrA gene. Mutants BN18/41 and BN18/71 had the same substitution, Gly81Cys in GyrA, but exhibited different levels of resistance to ciprofloxacin (MICs = 2 and 8 μg/ml, respectively). None of the mutants had mutations in the parC gene. Evidence for active efflux was provided by a classical fluorimetric method, which revealed a three- to fourfold decrease in ciprofloxacin accumulation in the three mutants compared to that in the parent strain, which was annuled by addition of the efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone. In mutant BN18/71, a second fluorimetric method also showed a 50% reduction in the level of accumulation of ethidium bromide, a known efflux pump substrate. Immunoblotting and enzyme-linked immunosorbent assay experiments with an anti-AcrA antibody revealed that the resistance phenotype was strongly correlated with the expression level of the AcrAB efflux pump and suggested that decreased susceptibility to ciprofloxacin due to active efflux probably related to overproduction of this pump could occur before that due to gyrA mutations. Alterations were also found in the outer membrane protein and lipopolysaccharide profiles of the mutants, and these alterations were possibly responsible for the decrease in the permeability of the outer membrane that was observed in the mutants and that could act synergistically with active efflux to decrease the level of ciprofloxacin accumulation.
PMCID: PMC89848  PMID: 10770755
5.  Fluoroquinolone resistance mechanisms in an Escherichia coli isolate, HUE1, without quinolone resistance-determining region mutations 
Fluoroquinolone resistance can cause major clinical problems. Here, we investigated fluoroquinolone resistance mechanisms in a clinical Escherichia coli isolate, HUE1, which had no mutations quinolone resistance-determining regions (QRDRs) of DNA gyrase and topoisomerase IV. HUE1 demonstrated MICs that exceeded the breakpoints for ciprofloxacin, levofloxacin, and norfloxacin. HUE1 harbored oqxAB and qnrS1 on distinct plasmids. In addition, it exhibited lower intracellular ciprofloxacin concentrations and higher mRNA expression levels of efflux pumps and their global activators than did reference strains. The genes encoding AcrR (local AcrAB repressor) and MarR (MarA repressor) were disrupted by insertion of the transposon IS3-IS629 and a frameshift mutation, respectively. A series of mutants derived from HUE1 were obtained by plasmid curing and gene knockout using homologous recombination. Compared to the MICs of the parent strain HUE1, the fluoroquinolone MICs of these mutants indicated that qnrS1, oqxAB, acrAB, acrF, acrD, mdtK, mdfA, and tolC contributed to the reduced susceptibility to fluoroquinolone in HUE1. Therefore, fluoroquinolone resistance in HUE1 is caused by concomitant acquisition of QnrS1 and OqxAB and overexpression of AcrAB–TolC and other chromosome-encoded efflux pumps. Thus, we have demonstrated that QRDR mutations are not absolutely necessary for acquiring fluoroquinolone resistance in E. coli.
doi:10.3389/fmicb.2013.00125
PMCID: PMC3662882  PMID: 23745120
AcrAB; efflux pump; Escherichia coli; fluoroquinolone resistance; oqxAB; qnrS
6.  Ciprofloxacin-Resistant Salmonella enterica Serovar Typhimurium Strains Are Difficult To Select in the Absence of AcrB and TolC 
It has been proposed that lack of a functional efflux system(s) will lead to a lower frequency of selection of resistance to fluoroquinolones and other antibiotics. We constructed five strains of Salmonella enterica serovar Typhimurium SL1344 that lacked efflux gene components of resistance nodulation cell division pumps (acrB, acrD, acrF, acrBacrF, and tolC) plus three strains that lack genes that effect efflux gene expression (marA, soxS, and ramA) and a hypermutable strain (mutS::aph). Strains were exposed to ciprofloxacin at 2× the MIC in agar, in the presence and absence of Phe-Arg-β-naphthylamide, an efflux pump inhibitor. Mutants were selected from all strains except those lacking acrB, tolC, or acrBacrF. For strains from which mutants were selected, there were no significant differences between the frequencies of resistance. Except for mutants of the ramA::aph strain, two phenotypes arose: resistance to quinolones only and multiple antibiotic resistance (MAR). ramA::aph mutants were resistant to quinolones only, suggesting a role for ramA in MAR in S. enterica serovar Typhimurium. Phe-Arg-β-naphthylamide (20 μg/ml) had no effect on the frequencies of resistance or ciprofloxacin MICs. In conclusion, functional AcrB and TolC in S. enterica serovar Typhimurium are important for the selection of ciprofloxacin-resistant mutants.
doi:10.1128/AAC.50.1.38-42.2006
PMCID: PMC1346778  PMID: 16377664
7.  ramR Mutations Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium▿  
In the sequenced genome of Salmonella enterica serovar Typhimurium strain LT2, an open reading frame (STM0580) coding for a putative regulatory protein of the TetR family is found upstream of the ramA gene. Overexpression of ramA results in increased expression of the AcrAB efflux pump and, consequently, multidrug resistance (MDR) in several bacterial species. The inactivation of the putative regulatory protein gene upstream of ramA in a susceptible serovar Typhimurium strain resulted in an MDR phenotype with fourfold increases in the MICs of unrelated antibiotics, such as quinolones/fluoroquinolones, phenicols, and tetracycline. The inactivation of this gene also resulted in a fourfold increase in the expression of ramA and a fourfold increase in the expression of the AcrAB efflux pump. These results indicated that the gene encodes a local repressor of ramA and was thus named ramR. In contrast, the inactivation of marR, marA, soxR, and soxS did not affect the susceptibilities of the strain. In quinolone- or fluoroquinolone-resistant strains of serovar Typhimurium overexpressing AcrAB, several point mutations which resulted in amino acid changes or an in-frame shift were identified in ramR; in addition, mutations interrupting ramR with an IS1 element were identified in high-level fluoroquinolone-resistant serovar Typhimurium DT204 strains. One serovar Typhimurium DT104 isolate had a 2-nucleotide deletion in the putative RamR binding site found upstream of ramA. These mutations were confirmed to play a role in the MDR phenotype by complementing the isolates with an intact ramR gene or by inactivating their respective ramA gene. No mutations in the mar or sox region were found in the strains studied. In conclusion, mutations in ramR appear to play a major role in the upregulation of RamA and AcrAB and, consequently, in the efflux-mediated MDR phenotype of serovar Typhimurium.
doi:10.1128/AAC.00084-08
PMCID: PMC2443889  PMID: 18443112
8.  Repression of Invasion Genes and Decreased Invasion in a High-Level Fluoroquinolone-Resistant Salmonella Typhimurium Mutant 
PLoS ONE  2009;4(11):e8029.
Background
Nalidixic acid resistance among Salmonella Typhimurium clinical isolates has steadily increased, whereas the level of ciprofloxacin resistance remains low. The main objective of this study was to characterize the fluoroquinolone resistance mechanisms acquired in a S. Typhimurium mutant selected with ciprofloxacin from a susceptible isolate and to investigate its invasion ability.
Methodology/Principal Findings
Three different amino acid substitutions were detected in the quinolone target proteins of the resistant mutant (MIC of ciprofloxacin, 64 µg/ml): D87G and G81C in GyrA, and a novel mutation, E470K, in ParE. A protein analysis revealed an increased expression of AcrAB/TolC and decreased expression of OmpC. Sequencing of the marRAB, soxRS, ramR and acrR operons did not show any mutation and neither did their expression levels in a microarray analysis. A decreased percentage of invasion ability was detected when compared with the susceptible clinical isolate in a gentamicin protection assay. The microarray results revealed a decreased expression of genes which play a role during the invasion process, such as hilA, invF and the flhDC operon. Of note was the impaired growth detected in the resistant strain. A strain with a reverted phenotype (mainly concerning the resistance phenotype) was obtained from the resistant mutant.
Conclusions/Significance
In conclusion, a possible link between fluoroquinolone resistance and decreased cell invasion ability may exist explaining the low prevalence of fluoroquinolone-resistant S. Typhimurium clinical isolates. The impaired growth may appear as a consequence of fluoroquinolone resistance acquisition and down-regulate the expression of the invasion genes.
doi:10.1371/journal.pone.0008029
PMCID: PMC2777507  PMID: 19946377
9.  Mechanisms Accounting for Fluoroquinolone Resistance in Escherichia coli Clinical Isolates▿  
Fluoroquinolone MICs are increased through the acquisition of chromosomal mutations in the genes encoding gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE), increased levels of the multidrug efflux pump AcrAB, and the plasmid-borne genes aac(6′)-Ib-cr and the qnr variants in Escherichia coli. In the accompanying report, we found that ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant E. coli clinical isolates were very high and widely varied (L. Becnel Boyd, M. J. Maynard, S. K. Morgan-Linnell, L. B. Horton, R. Sucgang, R. J. Hamill, J. Rojo Jimenez, J. Versalovic, D. Steffen, and L. Zechiedrich, Antimicrob. Agents Chemother. 53:229-234, 2009). Here, we sequenced gyrA, gyrB, parC, and parE; screened for aac(6′)-Ib-cr and qnrA; and quantified AcrA levels in E. coli isolates for which patient sex, age, location, and site of infection were known. We found that (i) all fluoroquinolone-resistant isolates had gyrA mutations; (ii) ∼85% of gyrA mutants also had parC mutations; (iii) the ciprofloxacin and norfloxacin MICs for isolates harboring aac(6′)-Ib-cr (∼23%) were significantly higher, but the gatifloxacin and levofloxacin MICs were not; (iv) no isolate had qnrA; and (v) ∼33% of the fluoroquinolone-resistant isolates had increased AcrA levels. Increased AcrA correlated with nonsusceptibility to the fluoroquinolones but did not correlate with nonsusceptibility to any other antimicrobial agents reported from hospital antibiograms. Known mechanisms accounted for the fluoroquinolone MICs of 50 to 70% of the isolates; the remaining included isolates for which the MICs were up to 1,500-fold higher than expected. Thus, additional, unknown fluoroquinolone resistance mechanisms must be present in some clinical isolates.
doi:10.1128/AAC.00665-08
PMCID: PMC2612180  PMID: 18838592
10.  The Global Consequence of Disruption of the AcrAB-TolC Efflux Pump in Salmonella enterica Includes Reduced Expression of SPI-1 and Other Attributes Required To Infect the Host▿ †  
Journal of Bacteriology  2009;191(13):4276-4285.
The mechanisms by which RND pumps contribute to pathogenicity are currently not understood. Using the AcrAB-TolC system as a paradigm multidrug-resistant efflux pump and Salmonella enterica serovar Typhimurium as a model pathogen, we have demonstrated that AcrA, AcrB, and TolC are each required for efficient adhesion to and invasion of epithelial cells and macrophages by Salmonella in vitro. In addition, AcrB and TolC are necessary for Salmonella to colonize poultry. Mutants lacking acrA, acrB, or tolC showed differential expression of major operons and proteins involved in pathogenesis. These included chemotaxis and motility genes, including cheWY and flgLMK and 14 Salmonella pathogenicity island (SPI)-1-encoded type III secretion system genes, including sopE, and associated effector proteins. Reverse transcription-PCR confirmed these data for identical mutants in two other S. Typhimurium backgrounds. Western blotting showed reduced production of SipA, SipB, and SipC. The absence of AcrB or TolC also caused widespread repression of chemotaxis and motility genes in these mutants, and for acrB::aph, this was associated with decreased motility. For mutants lacking a functional acrA or acrB gene, the nap and nir operons were repressed, and both mutants grew poorly in anaerobic conditions. All phenotypes were restored to that of the wild type by trans-complementation with the wild-type allele of the respective inactivated gene. These data explain how mutants lacking a component of AcrAB-TolC are attenuated and that this phenotype is a result of decreased expression of numerous genes encoding proteins involved in pathogenicity. The link between antibiotic resistance and pathogenicity establishes the AcrAB-TolC system as fundamental to the biology of Salmonella.
doi:10.1128/JB.00363-09
PMCID: PMC2698494  PMID: 19411325
11.  RamA Confers Multidrug Resistance in Salmonella enterica via Increased Expression of acrB, Which Is Inhibited by Chlorpromazine ▿  
Antimicrobial Agents and Chemotherapy  2008;52(10):3604-3611.
Salmonella enterica serovar Typhimurium SL1344, in which efflux pump genes (acrB, acrD, acrF, tolC) or regulatory genes thereof (marA, soxS, ramA) were inactivated, was grown in the presence of 240 antimicrobial and nonantimicrobial agents in the Biolog Phenotype MicroArray. Mutants lacking tolC, acrB, and ramA grew significantly worse than other mutants in the presence of 48 agents (some of which have not previously been identified as substrates of AcrAB-TolC) and particularly poorly in the presence of phenothiazines, which are human antipsychotics. MIC testing revealed that the phenothiazine chlorpromazine had antimicrobial activity and synergized with common antibiotics against different Salmonella serovars and SL1344. Chlorpromazine increased the intracellular accumulation of ethidium bromide, which was ablated in mutants lacking acrB, suggesting an interaction with AcrB. High-level but not low-level overexpression of ramA increased the expression of acrB; conferred resistance to chloramphenicol, tetracycline, nalidixic acid, and triclosan and organic solvent tolerance; and increased the amount of ethidium bromide accumulated. Chlorpromazine induced the modest overproduction of ramA but repressed acrB. These data suggest that phenothiazines are not efflux pump inhibitors but influence gene expression, including that of acrB, which confers the synergy with antimicrobials observed.
doi:10.1128/AAC.00661-08
PMCID: PMC2565896  PMID: 18694955
12.  Biological Cost of Single and Multiple Norfloxacin Resistance Mutations in Escherichia coli Implicated in Urinary Tract Infections 
Resistance to fluoroquinolones in urinary tract infection (UTIs) caused by Escherichia coli is associated with multiple mutations, typically those that alter DNA gyrase and DNA topoisomerase IV and those that regulate AcrAB-TolC-mediated efflux. We asked whether a fitness cost is associated with the accumulation of these multiple mutations. Mutants of the susceptible E. coli UTI isolate Nu14 were selected through three to five successive steps with norfloxacin. Each selection was performed with the MIC of the selected strain. After each selection the MIC was measured; and the regions of gyrA, gyrB, parC, and parE, previously associated with resistance mutations, and all of marOR and acrR were sequenced. The first selection step yielded mutations in gyrA, gyrB, and marOR. Subsequent selection steps yielded mutations in gyrA, parE, and marOR but not in gyrB, parC, or acrR. Resistance-associated mutations were identified in almost all isolates after selection steps 1 and 2 but in less than 50% of isolates after subsequent selection steps. Selected strains were competed in vitro, in urine, and in a mouse UTI infection model against the starting strain, Nu14. First-step mutations were not associated with significant fitness costs. However, the accumulation of three or more resistance-associated mutations was usually associated with a large reduction in biological fitness, both in vitro and in vivo. Interestingly, in some lineages a partial restoration of fitness was associated with the accumulation of additional mutations in late selection steps. We suggest that the relative biological costs of multiple mutations may influence the evolution of E. coli strains that develop resistance to fluoroquinolones.
doi:10.1128/AAC.49.6.2343-2351.2005
PMCID: PMC1140522  PMID: 15917531
13.  Mechanisms of Fluoroquinolone Resistance in Escherichia coli Isolates from Food-Producing Animals▿  
Applied and Environmental Microbiology  2011;77(20):7113-7120.
Eleven multidrug-resistant Escherichia coli isolates (comprising 6 porcine and 5 bovine field isolates) displaying fluoroquinolone (FQ) resistance were selected from a collection obtained from the University Veterinary Hospital (Dublin, Ireland). MICs of nalidixic acid and ciprofloxacin were determined by Etest. All showed MICs of nalidixic acid of >256 μg/ml and MICs of ciprofloxacin ranging from 4 to >32 μg/ml. DNA sequencing was used to identify mutations within the quinolone resistance-determining regions of target genes, and quantitative real-time PCR (qRT-PCR) was used to evaluate the expression of the major porin, OmpF, and component genes of the AcrAB-TolC efflux pump and its associated regulatory loci. Decreased MIC values to nalidixic acid and/or ciprofloxacin were observed in the presence of the efflux pump inhibitor phenylalanine-arginine-β-naphthylamide (PAβN) in some but not all isolates. Several mutations were identified in genes coding for quinolone target enzymes (3 to 5 mutations per strain). All isolates harbored GyrA amino acid substitutions at positions 83 and 87. Novel GyrA (Asp87 → Ala), ParC (Ser80 → Trp), and ParE (Glu460 → Val) substitutions were observed. The efflux activity of these isolates was evaluated using a semiautomated ethidium bromide (EB) uptake assay. Compared to wild-type E. coli K-12 AG100, isolates accumulated less EB, and in the presence of PAβN the accumulation of EB increased. Upregulation of the acrB gene, encoding the pump component of the AcrAB-TolC efflux pump, was observed in 5 of 11 isolates, while 10 isolates showed decreased expression of OmpF. This study identified multiple mechanisms that likely contribute to resistance to quinolone-based drugs in the field isolates studied.
doi:10.1128/AEM.00600-11
PMCID: PMC3194846  PMID: 21856834
14.  Identification of Transport Proteins Involved in Free Fatty Acid Efflux in Escherichia coli 
Journal of Bacteriology  2013;195(1):135-144.
Escherichia coli has been used as a platform host for studying the production of free fatty acids (FFA) and other energy-dense compounds useful in biofuel applications. Most of the FFA produced by E. coli are found extracellularly. This finding suggests that a mechanism for transport across the cell envelope exists, yet knowledge of proteins that may be responsible for export remains incomplete. Production of FFA has been shown to cause cell lysis, induce stress responses, and impair basic physiological processes. These phenotypes could potentially be diminished if efflux rates were increased. Here, a total of 15 genes and operons were deleted and screened for their impact on cell viability and titer in FFA-producing E. coli. Deletions of acrAB and rob and, to a lower degree of statistical confidence, emrAB, mdtEF, and mdtABCD reduced multiple measures of viability, while deletion of tolC nearly abolished FFA production. An acrAB emrAB deletion strain exhibited greatly reduced FFA titers approaching the tolC deletion phenotype. Expression of efflux pumps on multicopy plasmids did not improve endogenous FFA production in an acrAB+ strain, but plasmid-based expression of acrAB, mdtEF, and an mdtEF-tolC artificial operon improved the MIC of exogenously added decanoate for an acrAB mutant strain. The findings suggest that AcrAB-TolC is responsible for most of the FFA efflux in E. coli, with residual activity provided by other resistance-nodulation-cell division superfamily-type efflux pumps, including EmrAB-TolC and MdtEF-TolC. While the expression of these proteins on multicopy plasmids did not improve production over the basal level, their identification enables future engineering efforts.
doi:10.1128/JB.01477-12
PMCID: PMC3536169  PMID: 23104810
15.  Contribution of AcrAB efflux pump to ciprofloxacin resistance in Klebsiella pneumoniae isolated from burn patients 
Resistance to fluoroquinolones has been recently increased among bacterial strains isolated from outpatients. Multidrug-resistant K. pneumoniae is one of the major organisms isolated from burn patients and the AcrAB efflux pump is the principal pump contributing to the intrinsic resistance in K. pneumoniae against multiple antimicrobial agents including ciprofloxacin and other fluoroquinolones.
Fifty-two K. pneumoniae isolated from burn patients in Shahid Motahari hospital and confirmed by conventional biochemical tests. Antimicrobial susceptibility testing was done according to CLSI 2011 guidelines, to determine the antimicrobial resistance pattern of isolates. AcrA gene was detected among ciprofloxacin-resistant isolates by PCR assay. MICs to ciprofloxacin were measured with and without carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Forty out of the 52 K. pneumoniae isolated from burn patients in Shahid Motahari hospital were resistant to ciprofloxacin according to breakpoint of CLSI guideline. PCR assay for acrA gene demonstrated that all ciprofloxacin-resistant isolates harbored acrA gene coding the membrane fusion protein AcrA and is a part of AcrAB efflux system. Among these isolates, 19 strains (47.5%) showed 2 to 32 fold reduction in MICs after using CCCP as an efflux pump inhibitor. The other 21 strains (52.5%) showed no disparity in MICs before and after using CCCP. In conclusion, the AcrAB efflux system is one of the principal mechanisms contribute in ciprofloxacin resistance among K. pneumoniae isolates but there are some other mechanisms interfere with ciprofloxacin resistance such as mutation in target proteins of DNA gyrase of topoisomerase IV enzymes.
doi:10.3205/dgkh000215
PMCID: PMC3850228  PMID: 24327941
ciprofloxacin resistance; efflux system; Klebsiella pneumoniae
16.  Constitutive SoxS Expression in a Fluoroquinolone-Resistant Strain with a Truncated SoxR Protein and Identification of a New Member of the marA-soxS-rob Regulon, mdtG▿  
Elevated levels of fluoroquinolone resistance are frequently found among Escherichia coli clinical isolates. This study investigated the antibiotic resistance mechanisms of strain NorE5, derived in vitro by exposing an E. coli clinical isolate, PS5, to two selection steps with increasing concentrations of norfloxacin. In addition to the amino acid substitution in GyrA (S83L) present in PS5, NorE5 has an amino acid change in ParC (S80R). Furthermore, we now find by Western blotting that NorE5 has a multidrug resistance phenotype resulting from the overexpression of the antibiotic resistance efflux pump AcrAB-TolC. Microarray and gene fusion analyses revealed significantly increased expression in NorE5 of soxS, a transcriptional activator of acrAB and tolC. The high soxS activity is attributable to a frameshift mutation that truncates SoxR, rendering it a constitutive transcriptional activator of soxS. Furthermore, microarray and reverse transcription-PCR analyses showed that mdtG (yceE), encoding a putative efflux pump, is overexpressed in the resistant strain. SoxS, MarA, and Rob activated an mdtG::lacZ fusion, and SoxS was shown to bind to the mdtG promoter, showing that mdtG is a member of the marA-soxS-rob regulon. The mdtG marbox sequence is in the backward or class I orientation within the promoter, and its disruption resulted in a loss of inducibility by MarA, SoxS, and Rob. Thus, chromosomal mutations in parC and soxR are responsible for the increased antibiotic resistance of NorE5.
doi:10.1128/AAC.00944-09
PMCID: PMC2825980  PMID: 20008776
17.  AcrAB Multidrug Efflux Pump Regulation in Salmonella enterica serovar Typhimurium by RamA in Response to Environmental Signals* 
The Journal of Biological Chemistry  2008;283(35):24245-24253.
Salmonella enterica serovar Typhimurium has at least nine multidrug efflux pumps. Among these pumps, AcrAB is effective in generating drug resistance and has wide substrate specificity. Here we report that indole, bile, and an Escherichia coli conditioned medium induced the AcrAB pump in Salmonella through a specific regulator, RamA. The RamA-binding sites were located in the upstream regions of acrAB and tolC. RamA was required for indole induction of acrAB. Other regulators of acrAB such as MarA, SoxS, Rob, SdiA, and AcrR did not contribute to acrAB induction by indole in Salmonella. Indole activated ramA transcription, and overproduction of RamA caused increased acrAB expression. In contrast, induction of ramA was not required for induction of acrAB by bile. Cholic acid binds to RamA, and we suggest that bile acts by altering pre-existing RamA. This points to two different AcrAB regulatory modes through RamA. Our results suggest that RamA controls the Salmonella AcrAB-TolC multidrug efflux system through dual regulatory modes in response to environmental signals.
doi:10.1074/jbc.M804544200
PMCID: PMC2527123  PMID: 18577510
18.  Genetic Characterization of Highly Fluoroquinolone-Resistant Clinical Escherichia coli Strains from China: Role of acrR Mutations 
The genetic basis for fluoroquinolone resistance was examined in 30 high-level fluoroquinolone-resistant Escherichia coli clinical isolates from Beijing, China. Each strain also demonstrated resistance to a variety of other antibiotics. PCR sequence analysis of the quinolone resistance-determining region of the topoisomerase genes (gyrA/B, parC) revealed three to five mutations known to be associated with fluoroquinolone resistance. Western blot analysis failed to demonstrate overexpression of MarA, and Northern blot analysis did not detect overexpression of soxS RNA in any of the clinical strains. The AcrA protein of the AcrAB multidrug efflux pump was overexpressed in 19 of 30 strains of E. coli tested, and all 19 strains were tolerant to organic solvents. PCR amplification of the complete acrR (regulator/repressor) gene of eight isolates revealed amino acid changes in four isolates, a 9-bp deletion in another, and a 22-bp duplication in a sixth strain. Complementation with a plasmid-borne wild-type acrR gene reduced the level of AcrA in the mutants and partially restored antibiotic susceptibility 1.5- to 6-fold. This study shows that mutations in acrR are an additional genetic basis for fluoroquinolone resistance.
doi:10.1128/AAC.45.5.1515-1521.2001
PMCID: PMC90498  PMID: 11302820
19.  Involvement of the AcrAB-TolC Efflux Pump in the Resistance, Fitness, and Virulence of Enterobacter cloacae 
Multidrug efflux pumps have emerged as important mechanisms of antimicrobial resistance in bacterial pathogens. In order to cause infection, pathogenic bacteria require mechanisms to avoid the effects of host-produced compounds, and express efflux pumps may accomplish this task. In this study, we evaluated the effect of the inactivation of AcrAB-TolC on antimicrobial resistance, fitness, and virulence in Enterobacter cloacae, an opportunistic pathogen usually involved in nosocomial infections. Two different clinical isolates of E. cloacae were used, EcDC64 (multidrug resistance overexpressing the AcrAB-TolC efflux pump) and Jc194 (basal AcrAB-TolC expression). The acrA and tolC genes were deleted in strains EcDC64 and Jc194 to produce, respectively, EcΔacrA and EcΔtolC and JcΔacrA and JcΔtolC knockout (KO) derivatives. Antibiotic susceptibility testing was performed with all isolates, and we discovered that these mechanisms are involved in the resistance of E. cloacae to several antibiotics. Competition experiments were also performed with wild-type and isogenic KO strains. The competition index (CI), defined as the mutant/wild-type ratio, revealed that the acrA and tolC genes both affect the fitness of E. cloacae, as fitness was clearly reduced in the acrA and tolC KO strains. The median CI values obtained in vitro and in vivo were, respectively, 0.42 and 0.3 for EcDC64/EcΔacrA, 0.24 and 0.38 for EcDC64/EcΔtolC, 0.15 and 0.11 for Jc194/JcΔacrA, and 0.38 and 0.39 for Jc194/JcΔtolC. Use of an intraperitoneal mouse model of systemic infection revealed reduced virulence in both E. cloacae clinical strains when either the acrA or tolC gene was inactivated. In conclusion, the structural components of the AcrAB-TolC efflux pump appear to play a role in antibiotic resistance as well as environmental adaptation and host virulence in clinical isolates of E. cloacae.
doi:10.1128/AAC.05509-11
PMCID: PMC3318359  PMID: 22290971
20.  Outer Membrane Protein STM3031 (Ail/OmpX-Like Protein) Plays a Key Role in the Ceftriaxone Resistance of Salmonella enterica Serovar Typhimurium▿  
Previously, the putative outer membrane protein STM3031 has been correlated with ceftriaxone resistance in Salmonella enterica serovar Typhimurium. In this study, this protein was almost undetectable in the ceftriaxone-susceptible strain 01-4, but its levels were increased in 01-4 isogenic strains for which MICs were higher. The stm3031 gene deletion mutant, R200(Δstm3031), was generated and showed >64-fold lower ceftriaxone resistance than R200, supporting a key role for STM3031 in ceftriaxone resistance. To investigate which outer membrane protein(s) was associated with resistance, the outer membrane protein profiles of 01-4, R200, and R200(Δstm3031) were compared proteomically. Nine proteins were identified as altered. The expression levels of AcrA, TolC, STM3031, STM1530, VacJ, and Psd in R200 were increased; those of OmpC, OmpD, and OmpW were decreased. The expression levels of OmpD, OmpW, STM1530, VacJ, and Psd, but not those of OmpC, AcrA, and TolC, in R200(Δstm3031) were returned to the levels in strain 01-4. Furthermore, the genes' mRNA levels correlated with their protein levels when the three strains were compared. The detection of higher AcrB levels, linked to higher acrB, acrD, and acrF mRNA levels, in strain R200 than in strains 01-4 and R200(Δstm3031) suggests that AcrB, AcrD, and AcrF participate in ceftriaxone resistance. Taken together with the location of STM3031 in the outer membrane, these results suggest that STM3031 plays a key role in ceftriaxone resistance, probably by reducing permeability via a decreased porin OmpD level and enhancing export via increased AcrD efflux pump activity.
doi:10.1128/AAC.00079-09
PMCID: PMC2715640  PMID: 19470505
21.  Enhanced Expression of the Multidrug Efflux Pumps AcrAB and AcrEF Associated with Insertion Element Transposition in Escherichia coli Mutants Selected with a Fluoroquinolone 
The development of fluoroquinolone resistance in Escherichia coli may be associated with mutations in regulatory gene loci such as marRAB that lead to increased multidrug efflux, presumably through activation of expression of the AcrAB multidrug efflux pump. We found that multidrug-resistant (MDR) phenotypes with enhanced efflux can also be selected by fluoroquinolones from marRAB- or acrAB-inactivated E. coli K-12 strains having a single mutation in the quinolone-resistance-determining region of gyrA. Mutant 3-AG100MKX, obtained from a mar knockout strain after two selection steps, showed enhanced expression of acrB in a reverse transcriptase PCR associated with insertion of IS186 into the AcrAB repressor gene acrR. In vitro selection experiments with acrAB knockout strains yielded MDR mutants after a single step. Enhanced efflux in these mutants was due to increased expression of acrEF and associated with insertion of IS2 into the upstream region of acrEF, presumably creating a hybrid promoter. These observations confirm the importance of efflux-associated nontarget gene mutations and indicate that transposition of genetic elements may have a role in the development of fluoroquinolone resistance in E. coli.
doi:10.1128/AAC.45.5.1467-1472.2001
PMCID: PMC90490  PMID: 11302812
22.  Effect of Transcriptional Activators SoxS, RobA, and RamA on Expression of Multidrug Efflux Pump AcrAB-TolC in Enterobacter cloacae 
Antimicrobial Agents and Chemotherapy  2012;56(12):6256-6266.
Control of membrane permeability is a key step in regulating the intracellular concentration of antibiotics. Efflux pumps confer innate resistance to a wide range of toxic compounds such as antibiotics, dyes, detergents, and disinfectants in members of the Enterobacteriaceae. The AcrAB-TolC efflux pump is involved in multidrug resistance in Enterobacter cloacae. However, the underlying mechanism that regulates the system in this microorganism remains unknown. In Escherichia coli, the transcription of acrAB is upregulated under global stress conditions by proteins such as MarA, SoxS, and Rob. In the present study, two clinical isolates of E. cloacae, EcDC64 (a multidrug-resistant strain overexpressing the AcrAB-TolC efflux pump) and Jc194 (a strain with a basal AcrAB-TolC expression level), were used to determine whether similar global stress responses operate in E. cloacae and also to establish the molecular mechanisms underlying this response. A decrease in susceptibility to erythromycin, tetracycline, telithromycin, ciprofloxacin, and chloramphenicol was observed in clinical isolate Jc194 and, to a lesser extent in EcDC64, in the presence of salicylate, decanoate, tetracycline, and paraquat. Increased expression of the acrAB promoter in the presence of the above-described conditions was observed by flow cytometry and reverse transcription-PCR, by using a reporter fusion protein (green fluorescent protein). The expression level of the AcrAB promoter decreased in E. cloacae EcDC64 derivates deficient in SoxS, RobA, and RamA. Accordingly, the expression level of the AcrAB promoter was higher in E. cloacae Jc194 strains overproducing SoxS, RobA, and RamA. Overall, the data showed that SoxS, RobA, and RamA regulators were associated with the upregulation of acrAB, thus conferring antimicrobial resistance as well as a stress response in E. cloacae. In summary, the regulatory proteins SoxS, RobA, and RamA were cloned and sequenced for the first time in this species. The involvement of these proteins in conferring antimicrobial resistance through upregulation of acrAB was demonstrated in E. cloacae.
doi:10.1128/AAC.01085-12
PMCID: PMC3497196  PMID: 23006750
23.  Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A 
Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e., in gyrA, gyrB, or parC) correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications.
doi:10.3389/fmicb.2014.00012
PMCID: PMC3902205  PMID: 24478769
Salmonella; ciprofloxacin; transcriptional regulatory genes; acrS; efflux pumps
24.  Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy 
Whole-cell assays were implemented to search for efflux pump inhibitors (EPIs) of the three multidrug resistance efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN) that contribute to fluoroquinolone resistance in clinical isolates of Pseudomonas aeruginosa. Secondary assays were developed to identify lead compounds with exquisite activities as inhibitors. A broad-spectrum EPI which is active against all three known Mex efflux pumps from P. aeruginosa and their close Escherichia coli efflux pump homolog (AcrAB-TolC) was discovered. When this compound, MC-207,110, was used, the intrinsic resistance of P. aeruginosa to fluoroquinolones was decreased significantly (eightfold for levofloxacin). Acquired resistance due to the overexpression of efflux pumps was also decreased (32- to 64-fold reduction in the MIC of levofloxacin). Similarly, 32- to 64-fold reductions in MICs in the presence of MC-207,110 were observed for strains with overexpressed efflux pumps and various target mutations that confer resistance to levofloxacin (e.g., gyrA and parC). We also compared the frequencies of emergence of levofloxacin-resistant variants in the wild-type strain at four times the MIC of levofloxacin (1 μg/ml) when it was used either alone or in combination with EPI. In the case of levofloxacin alone, the frequency was ∼10−7 CFU/ml. In contrast, with an EPI, the frequency was below the level of detection (<10−11). In summary, we have demonstrated that inhibition of efflux pumps (i) decreased the level of intrinsic resistance significantly, (ii) reversed acquired resistance, and (iii) resulted in a decreased frequency of emergence of P. aeruginosa strains that are highly resistant to fluoroquinolones.
doi:10.1128/AAC.45.1.105-116.2001
PMCID: PMC90247  PMID: 11120952
25.  Polyamine Effects on Antibiotic Susceptibility in Bacteria▿  
Biogenic polyamines (e.g., spermidine and spermine) are a group of essential polycationic compounds found in all living cells. The effects of spermine and spermidine on antibiotic susceptibility were examined with gram-negative Escherichia coli and Salmonella enterica serovar Typhimurium bacteria and clinical isolates of Pseudomonas aeruginosa and with gram-positive Staphylococcus aureus bacteria, including methicillin-resistant S. aureus (MRSA). Exogenous spermine exerted a dose-dependent inhibition effect on the growth of E. coli, S. enterica serovar Typhimurium, and S. aureus but not P. aeruginosa, as depicted by MIC and growth curve measurements. While the MICs of polymyxin and ciprofloxacin were in general increased by exogenous spermine and spermidine in P. aeruginosa, this adverse effect was not observed in enteric bacteria and S. aureus. It was found that spermine and spermidine can decrease the MICs of β-lactam antibiotics in all strains as well as other types of antibiotics in a strain-dependent manner. Significantly, the MICs of oxacillin for MRSA Mu50 and N315 were decreased more than 200-fold in the presence of spermine, and this effect of spermine was retained when assessed in the presence of divalent ions (magnesium or calcium; 3 mM) or sodium chloride (150 mM). The effect of spermine on the sensitization of P. aeruginosa and MRSA to antibiotics was further demonstrated by population analysis and time-killing assays. The results of checkerboard assays with E. coli and S. aureus indicated a strong synergistic effect of spermine in combination with β-lactams and chloramphenicol. The decreased MICs of β-lactams implied that the possible blockage of outer membrane porins by exogenous spermine or spermidine did not play a crucial role in most cases. In contrast, only the MIC of imipenem against P. aeruginosa was increased by exogenous spermine and spermidine, and this resistance effect was abolished in a mutant strain devoid of the outer membrane porin OprD. In E. coli, the MICs of carbenicillin, chloramphenicol, and tetracycline were decreased in two acrA mutants devoid of a major efflux pump, AcrAB. However, retention of the spermine effect on antibiotic susceptibility in two acrA mutants of E. coli suggested that the AcrAB efflux pump was not the target for a synergistic effect by spermine and antibiotics and ruled out the hypothesis of spermine serving as an efflux pump inhibitor in this organism. In summary, this interesting finding of the effect of spermine on antibiotic susceptibility provides the basis for a new potential approach against drug-resistant pathogens by use of existing β-lactam antibiotics.
doi:10.1128/AAC.01472-06
PMCID: PMC1891406  PMID: 17438056

Results 1-25 (344563)