Search tips
Search criteria

Results 1-25 (1423298)

Clipboard (0)

Related Articles

1.  Replication of Deoxyribonucleic Acid in Escherichia coli C Mutants Temperature Sensitive in the Initiation of Chromosome Replication 
Journal of Bacteriology  1974;119(3):811-820.
An Escherichia coli HF4704S mutant temperature sensitive in deoxyribonucleic acid (DNA) synthesis and different from any previously characterized mutant was isolated. The mutated gene in this strain was designated dnaH. The mutant could grow normally at 27 C but not at 43 C, and DNA synthesis continued for an hour at a decreasing rate and then ceased. After temperature shift-up, the increased amount of DNA was 40 to 50%. When the culture was incubated at 43 C for 70 min and then transferred to 27 C, DNA synthesis resumed after about 50 min, initiating synchronously at a fixed region on the bacterial chromosome. The initiation step in DNA replication sensitive to 30 μg of chloramphenicol per ml occurs synchronously before the resumption of DNA replication after the temperature shift-down, being completed about 30 min before the start of DNA replication. When the cells incubated at 27 C in the presence of 30 μg of chloramphenicol per ml after the temperature shift-down to 27 C were transferred to 43 C with simultaneous removal of the antibiotic, no resumption of DNA replication was observed. When the culture was returned to 43 C after being released from high-temperature inhibition at 30 min before the start of DNA replication, no recovery replication was observed; whereas at 20 min, the recovery of replication was observed. These results indicated that HF4704S was temperature sensitive in the initiation of DNA replication. Analysis of HF4704S, by an interrupted conjugation experiment, indicated that gene dnaH was located at about 64 min on the E. coli C linkage map. In E. coli S1814 (a K-12 derivative), which was a dnaHts transductant from HF4704S (C strain) with phage P1, the mutated gene (dnaH) was demonstrated to be closely linked to the thyA marker by conjugation and P1 transduction experiments and to be distinct from genes dnaA through dnaG.
PMCID: PMC245685  PMID: 4605049
Journal of Bacteriology  1964;88(6):1580-1584.
Treick, R. W. (Indiana University, Bloomington), and W. A. Konetzka. Physiological state of Escherichia coli and the inhibition of deoxyribonucleic acid synthesis by phenethyl alcohol. J. Bacteriol. 88:1580–1584. 1964.—The effects of concentration of phenethyl alcohol (PEA) and the physiological state of the cells on inhibition of macromolecular synthesis in Escherichia coli were investigated. Deoxyribonucleic acid (DNA) synthesis by cells of E. coli from the maximum stationary phase is completely inhibited by 0.32% (v/v) PEA immediately upon addition of the inhibitor, although there is a net increase in the synthesis of ribonucleic acid (RNA) and protein. However, DNA synthesis in cells from the exponential phase is inhibited only after an increase which corresponds to 1.4 to 1.6 times the amount of DNA present at the time of PEA addition. In a randomly dividing culture, this increment of DNA synthesis presumably represents completion of the DNA replication cycle initiated at the time of PEA addition. By programming the addition and removal of PEA, DNA synthesis can be made to proceed in stepwise increments corresponding to doublings of the DNA. The data indicate that the DNA being replicated at the time of PEA addition completes the replication cycle and, although there is net synthesis of RNA and protein, no initiation of a second cycle of DNA replication occurs until the removal of the inhibitor.
PMCID: PMC277455  PMID: 14240940
3.  Positive and Negative Control of R-Factor Replication in Proteus mirabilis 
Journal of Bacteriology  1972;109(1):336-349.
Replication of the 50 and 58 moles per cent guanine plus cytosine (%GC) components of R factor 222 in Proteus mirabilis during growth in the presence and absence of chloramphenicol and after shifting exponential- and stationary-phase cells to conditions which inhibit host protein or deoxyribonucleic acid (DNA) synthesis was examined. Chloramphenicol reduced the growth rate but increased the amount of both R-factor components; the 58% GC component showed a larger proportionate increase. This was inferred to indicate reduced synthesis of an inhibitor that acts on both R-factor components and an initiator for replication of the 50% GC component. Replicative patterns observed after shifting exponential- and stationary-phase cells grown with or without chloramphenicol to minimal medium or chloramphenicol for one generation, or puromycin for 3 hr, corroborated this interpretation. After shifts of exponential cells from either medium, replication of the 50% GC components paralleled host replication, thus indicating a requirement for protein synthesis; replication of the 58% GC component increased due to reduced inhibitor synthesis. R-factor DNA remained constant after shifting stationary cells from drug-free medium, thus indicating that the cells contained effective concentrations of the regulatory inhibitor, whereas increased replication of the 58% GC component occurred after identical shifts of chloramphenicol-grown cells of the same chronological age. Similar responses were observed after shifts to 5 C or to medium containing streptomycin or tetracycline. Absence of replication of the 50% GC component after shifting to medium containing nalidixic acid or phenethanol and its hereditary persistence during growth indicated that the 50% GC replicon was attached to the membrane. Thus, in P. mirabilis the three replicons of R factor 222 are regulated as follows: The composite and transfer portion (RTF) replicons represented by the 50% GC component require protein synthesis and membrane attachment and are negatively regulated by an inhibitor; the 58% GC or resistance-determinants replicon exists cytoplasmically and is subject only to negative control.
PMCID: PMC247284  PMID: 4550672
4.  Thymineless Death in Escherichia coli: Deoxyribonucleic Acid Replication and the Immune State 
Journal of Bacteriology  1970;102(1):106-117.
Thymineless death (TLD) and nalidixic acid (NA) inactivation were studied in multiple auxotrophic strains of Escherichia coli B and B/r. As expected, it was found that both E. coli B and B/r exhibited an “immune state,” i.e., a fraction of the population survived inactivation to both TLD and NA. With glucose as a carbon source in minimal medium, 0.1 to 0.3% of strain B and 0.2 to 0.5% of strain B/r survived inactivation; with acetate as the carbon source, the surviving fractions were increased to 1 to 2% and 5 to 7%, respectively. These immune fractions could be increased in magnitude by preincubation in minimal media containing thymine. Systematic analysis of the particular supplements necessary for the immune state indicated that the absence of the required amino acids was essential for the maximal expression of immunity. However, immunity was not abolished in acetate medium even in the presence of the required supplements. Further studies on the replication of deoxyribonucleic acid (DNA) during preincubation indicated that the degree of immunity did not necessarily correlate with the completion of a round of DNA replication. This finding was supported by examining the immune state in synchronous populations. In both glucose and acetate medium, there was no significant change in the degree of immunity to inactivation within the cell cycles of E. coli B and B/r. We concluded that some other event, possibly inhibition of protein synthesis, was necessary in determining the degree of the immune state. DNA replication was investigated after TLD and NA inactivation, and, as expected, it was found that both events led to premature initiation of replication. The only differences observed in the effects of these two processes on DNA synthesis were the following. (i) NA-induced replication was less sensitive to chloramphenicol than was TLD. (ii) TLD-induced replication was unaffected by pretreatment of the cells with mitomycin C, but this pretreatment prevented the replication of DNA after NA treatment. It was suggested that the mechanism of action of NA could involve a monofunctional attack on the DNA.
PMCID: PMC284975  PMID: 4908667
5.  Coupling Between Chromosome Completion and Cell Division in Escherichia coli 
Journal of Bacteriology  1973;115(3):786-795.
The relationship between termination of chromosome replication and cell division was investigated in Escherichia coli B/r. Synchronous cultures of E. coli B/r growing in glucose minimal medium or subjected to a nutritional shift-up were exposed to chloramphenicol, rifampin, mitomycin C, or nalidixic acid, and the ability of cells to divide in the presence of the inhibitors was measured. It was found that cell division became resistant to inhibitors of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) synthesis at approximately the same stage in the division cycle in all situations investigated. When the synchronous glucose-grown cultures were temporarily exposed to chloramphenicol early in the division cycle and then exposed to mitomycin C or nalidixic acid immediately after removal of chloramphenicol, the cells did not divide. In contrast, when DNA synthesis was inhibited by thymine starvation immediately after temporary exposure to chloramphenicol, cells divided. The results suggest that DNA chain elongation is completed in some cells in the absence of protein synthesis, but that additional steps involving specific RNA or protein synthesis, or both, may be required for processing the chromosomal structures to the form which is necessary for division. This processing, which normally occurs concurrent with DNA synthesis and is prevented by inhibitors of DNA synthesis, may trigger division. Alternatively, in the absence of protein synthesis, all aspects of chromosome formation may be completed, but final transcriptional events which are essential for division cannot take place until the complete synthesis of a critical amount of specific proteins.
PMCID: PMC246322  PMID: 4580567
6.  Reinitiation of deoxyribonucleic acid synthesis by deoxyribonucleic acid initiation mutants of Escherichia coli: role of ribonucleic acid synthesis, protein synthesis, and cell division. 
Journal of Bacteriology  1975;121(1):219-226.
The dnaA and dnaC genes are thought to code for two proteins required for the initiation of chromosomal deoxyribonucleic acid replication in Escherichia coli. When a strain carrying a mutation in either of these genes is shifted from a permissive to a restrictive temperature, chromosome replication ceases after a period of residual synthesis. When the strains are reincubated at the permissive temperature, replication again resumes after a short lag. This reinitiation does not require either protein synthesis (as measured by resistance to chloramphenicol) or ribonucleic acid synthesis (as measured by resistance to rifampin). Thus, if there is a requirement for the synthesis of a specific ribonucleic acid to initiate deoxyribonucleic acid replication, this ribonucleic acid can be synthesized prior to the time of initiation and is relatively stable. Furthermore, the synthesis of this hypothetical ribonucleic acid does not require either the dnaA of dnaC gene products. The buildup at the restrictive temperature of the potential to reinitiate deoxyribonucleic acid synthesis at the permissive temperature shows rather complex kinetics the buildup roughly parallels the rate of mass increase of the culture for at least the first mass doubling at the restrictive temperature. At later times there appears to be a gradual loss of initiation potential despite a continued increase in mass. Under optimal conditions the increase in initiation potential can equal, but not exceed, the increase in cell division at the restrictive temperature. These results are most easily interpreted according to models that postulate a relationship between the initiation of deoxyribonucleic acid synthesis and the processes leading to cell division.
PMCID: PMC285634  PMID: 1090569
7.  Mechanism of Action of Nalidixic Acid on Escherichia coli III. Conditions Required for Lethality 
Journal of Bacteriology  1966;91(2):768-773.
Deitz, William H. (Sterling-Winthrop Research Institute, Rensselaer, N.Y.), Thomas M. Cook, and William A. Goss. Mechanism of action of nalidixic acid on Escherichia coli. III. Conditions required for lethality. J. Bacteriol. 91:768–773. 1966.—Nalidixic acid selectively inhibited deoxyribonucleic acid (DNA) synthesis in cultures of Escherichia coli 15TAU. Protein and ribonucleic acid synthesis were shown to be a prerequisite for the bactericidal action of the drug. This action can be prevented by means of inhibitors at bacteriostatic concentrations. Both chloramphenicol, which inhibits protein synthesis, and dinitrophenol, which uncouples oxidative phosphorylation, effectively prevented the bactericidal action of nalidixic acid on E. coli. The lethal action of nalidixic acid also was controlled by transfer of treated cells to drug-free medium. DNA synthesis resumed immediately upon removal of the drug and was halted immediately by retreatment. These studies indicate that nalidixic acid acts directly on the replication of DNA rather than on the “initiator” of DNA synthesis. The entry of nalidixic acid into cells of E. coli was not dependent upon protein synthesis. Even in the presence of an inhibiting concentration of chloramphenicol, nalidixic acid prevented DNA synthesis by E. coli 15TAU.
PMCID: PMC314927  PMID: 5327367
8.  Effect of Growth Conditions on the Formation of the Relaxation Complex of Supercoiled ColE1 Deoxyribonucleic Acid and Protein in Escherichia coli 
Journal of Bacteriology  1972;110(3):1135-1146.
Colicinogenic factor E1 (ColE1) is present in Escherichia coli strain JC411 (ColE1) cells to the extent of about 24 copies per cell. This number does not appear to vary in situations which give rise to twofold differences in the amount of chromosomal deoxyribonucleic acid (DNA) present per cell. If cells are grown in the absence of glucose, approximately 80% of the ColE1 molecules can be isolated as strand-specific DNA-protein relaxation complexes. When glucose is present in the medium, only about 30% of the plasmid molecules can be isolated as relaxation complexes. Medium shift experiments in which glucose was removed from the medium indicate that within 15 min after the shift the majority (>60%) of the plasmid can be isolated as relaxation complex. This rapid shift to the complexed state is accompanied by a two- to threefold increase in the rate of plasmid replication. The burst of replication and the shift to the complexed state are both inhibited by the presence of chloramphenicol. Inhibition of protein synthesis in log cultures by the addition of chloramphenicol or amino acid starvation allows ColE1 DNA to continue replicating long after chromosomal replication has ceased. Under these conditions, noncomplexed plasmid DNA accumulates while the amount of DNA that can be isolated in the complexed state remains constant at the level that existed prior to treatment. In the presence of chloramphenicol, there appears to be a random dissociation and association of ColE1 DNA and “relaxation protein” during or between rounds of replication.
PMCID: PMC247537  PMID: 4555406
9.  More Precise Mapping of the Replication Origin in Escherichia coli K-12 
Journal of Bacteriology  1974;120(1):1-5.
The origin of replication in Escherichia coli K-12 was mapped by determining the rate of marker replication during a synchronous round of replication. Four isogenic strains were made lysogenic for λind− and for phage Mu-1, with Mu-1 integrated into a different chromosomal location in each strain. Cultures were starved for amino acids to allow completion of chromosome replication cycles and then starved for thymine in the presence of amino acids, and a synchronous cycle of replication was initiated by the addition of thymine. Samples were exposed to radioactive thymidine at intervals, deoxyribonucleic acid was extracted, and the rate of marker replication was determined by deoxyribonucleic acid-deoxyribonucleic acid hybridization to filters containing Mu-1, λ, and E. coli deoxyribonucleic acid. The results confirm that the origin of replication is near ilv. The travel times of the replication forks, calculated from the data obtained for cultures with doubling times of approximately 40 and 61 min, are 40 and 52 min, respectively.
PMCID: PMC245722  PMID: 4607435
10.  Replication of plasmids in gram-negative bacteria. 
Microbiological Reviews  1989;53(4):491-516.
Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical data about the initial priming reaction of DNA synthesis exist. Detailed models have been developed for the initiation and regulation of ColE1 replication. For other plasmids, such as pSC101, some hypotheses for priming mechanisms and replication initiation are presented. These hypotheses are based on experimental evidence and speculative comparisons with other systems, e.g., the chromosomal origin of E. coli. In most cases, knowledge concerning plasmid replication is limited to regulation mechanisms. These mechanisms coordinate plasmid replication to the host cell cycle, and they also seem to determine the host range of a plasmid. Most plasmids studied exhibit a narrow host range, limited to E. coli and related bacteria. In contrast, some others, such as the IncP plasmid RK2 and the IncQ plasmid RSF1010, are able to replicate in nearly all gram-negative bacteria. This broad host range may depend on the correct expression of the essential rep genes, which may be mediated by a complex regulatory mechanism (RK2) or by the use of different promoters (RSF1010). Alternatively or additionally, owing to the structure of their origin and/or to different forms of their replication initiation proteins, broad-host-range plasmids may adapt better to the host enzymes that participate in initiation. Furthermore, a broad host range can result when replication initiation is independent of host proteins, as is found in the priming reaction of RSF1010.
PMCID: PMC372750  PMID: 2687680
11.  Mode of initiation of constitutive stable DNA replication in RNase H-defective mutants of Escherichia coli K-12. 
Journal of Bacteriology  1987;169(6):2650-2658.
The alternative pathway of DNA replication in rnh mutants of Escherichia coli can be continuously initiated in the presence of chloramphenicol, giving rise to constitutive stable DNA replication (cSDR). We conducted a physiological analysis of cSDR in rnh-224 mutants in the presence or absence of the normal DNA replication system. The following results were obtained. cSDR allowed the cells to grow in the absence of the normal replication system at a 30 to 40% reduced growth rate and with an approximately twofold-decreased DNA content. cSDR initiation was random with respect to time in the cell cycle as well as choice of origins. cSDR initiation continued to increase exponentially for more than one doubling time when protein synthesis was inhibited by chloramphenicol. cSDR initiation was inhibited during amino acid starvation in stringent (relA+) but not in relaxed (relA1) strains, indicating its sensitivity to ppGpp. cSDR initiation was rifampin sensitive, demonstrating that RNA polymerase was involved. cSDR functioned in dnaA+ rnh-224 strains parallel to the normal oriC+ dnaA+-dependent chromosome replication system.
PMCID: PMC212147  PMID: 3034862
12.  Discontinuity in DNA replication during expression of accumulated initiation potential in dnaA mutants of Escherichia coli. 
Journal of Bacteriology  1986;165(2):631-637.
Potential for initiation of chromosome replication present in temperature-sensitive, initiation-defective dnaA5 mutants of Escherichia coli B/r incubated at nonpermissive temperature was expressed by shifting to a more permissive temperature (25 degrees C). Upon expression of initiation potential, the rate of [3H]thymidine incorporation varied in a bimodal fashion, i.e., there was an initial burst of incorporation, which lasted 10 to 20 min, then a sudden decrease in incorporation, and finally a second rapid increase in incorporation. Analyses of this incorporation pattern indicated that a round of replication initiated upon expression of initiation potential, but DNA polymerization stopped after replication of 5 to 10% of the chromosome. This round of replication appeared to resume about 30 min later coincident with initiation of a second round of replication. The second initiation was unusually sensitive to low concentrations of novobiocin (ca. 1 microgram/ml) when this inhibitor was added in the presence of chloramphenicol. In the absence of chloramphenicol, novobiocin at this concentration had no detectable effect on DNA replication. It is suggested that cis-acting inhibition, attributable to an attempted second initiation immediately after the first, caused the first round to stall until both it and the second round could resume simultaneously. This DNA replication inhibition, probably caused by overinitiation, could be a consequence of restraints on replication in the vicinity of oriC, possibly topological in nature, which limit the minimum interinitiation interval in E. coli.
PMCID: PMC214466  PMID: 3511039
13.  Influence of Protein and Ribonucleic Acid Synthesis on the Replication of the Bacteriocinogenic Factor Clo DF13 in Escherichia coli Cells and Minicells 
Journal of Bacteriology  1974;118(1):165-174.
The influence of ribonucleic acid (RNA) and protein synthesis on the replication of the cloacinogenic factor Clo DF13 was studied in Escherichia coli cells and minicells. In chromosomeless minicells harboring the Clo DF13 factor, Clo DF13 deoxyribonucleic acid (DNA) synthesis is slightly stimulated after inhibition of protein synthesis by chloramphenicol or puromycin and continues for more than 8 h. When minicells were treated with rifampin, a specific inhibitor of DNA-dependent RNA polymerase, Clo DF13 RNA and DNA synthesis appeared to stop abruptly. In cells, the Clo DF13 factor continues to replicate during treatment with chloramphenicol long after chromosomal DNA synthesis ceases. When rifampin was included during chloramphenicol treatment of cells, synthesis of Clo DF13 plasmid DNA was blocked completely. Isolated, supercoiled Clo DF13 DNA, synthesized in cells or minicells in the presence of chloramphenicol, appeared to be sensitive to ribonuclease and alkali treatment. These treatments convert a relatively large portion of the covalently closed Clo DF13 DNA to the open circular form, whereas supercoiled Clo DF13 DNA, isolated from non-chloramphenicol-treated cells or minicells, is not significantly affected by these treatments. These results indicate that RNA synthesis and specifically Clo DF13 RNA synthesis are involved in Clo DF13 DNA replication and that the covalently closed Clo DF13 DNA, synthesized in the presence of chloramphenicol, contains one or more RNA sequences. De novo synthesis of chromosomal and Clo DF13-specific proteins is not required for the replication of the Clo DF13 factor. Supercoiled Clo DF13 DNA, isolated from a polA107 (Clo DF13) strain which lacks the 5′ → 3′ exonucleolytic activity of DNA polymerase I, is insensitive to ribonuclease or alkali treatment, indicating that in this mutant the RNA sequences are still removed from the RNA-DNA hybrid.
PMCID: PMC246653  PMID: 4595194
14.  Effect of Inhibitors of Ribonucleic Acid and Protein Synthesis on the Cyclic Adenosine Monophosphate Stimulation of Plasmid ColE1 Replication 
Journal of Bacteriology  1974;119(2):450-460.
Addition of cyclic adenosine 3′-5′-monophosphate (c-AMP) to growing Escherichia coli cells, colicinogenic for the plasmid ColE1, results in a fourfold stimulation in the rate of synthesis of the plasmid deoxyribonucleic acid (DNA). The stimulation is transient (30 min) and is succeeded by a brief period (30 min) of cessation of plasmid DNA replication. The stimulation of ColE1 DNA replication also occurs in chloramphenicol-treated cells. Rifampin inhibits ColE1 DNA replication in the presence or absence of c-AMP. Employing thymine starvation conditions to stop ColE1 DNA synthesis, it was found that c-AMP, added during the period of thymine starvation, effected a stimulation in the amount of subsequent replication which took place when replicating conditions were restored. The stimulatory effect of c-AMP under these conditions was not prevented by chloramphenicol but was completely eliminated when rifampin was present. Under these conditions, when rifampin was added after the effect of c-AMP was allowed to occur, subsequent replication of the plasmid could take place, but only one round of replication occurred. A model to account for the c-AMP effects is presented.
PMCID: PMC245627  PMID: 4368626
15.  Inhibition of deoxyribonucleic acid gyrase: effects on nucleic acid synthesis and cell division in Escherichia coli K-12. 
Journal of Bacteriology  1980;142(1):153-161.
Mutants of Escherichia coli resistant to the antibiotic clorobiocin are also coumermycin resistant, and the mutation to resistance in at least one mutant was mapped near gyrB. We conclude, therefore, that clorobiocin inhibits deoxyribonucleic acid gyrase, and the drug was used to probe the role of this enzyme in vivo. Deozyribonucleic acid synthesis was preferentially inhibited but not completely blocked by the antibiotic. Transcription and cell division were also markedly affected. However, unlike other inhibitors of deoxyribonucleic acid synthesis, clorobiocin failed to induce the synthesis of protein X, the recA gene product. In mutants resistant to clorobiocin the replication velocity was unaffected, but initiation of deoxyribonucleic acid synthesis appeared to be delayed. We conclude that deoxyribonucleic acid gyrase, and hence the supercoiled structure of the chromosome, is important for transcription, normal initiation of deoxyribonucleic acid replication, and cell division. The possible role of deoxyribonucleic acid gyrase in the elongation of replication forks is also discussed.
PMCID: PMC293920  PMID: 6154685
16.  Requirement for Protein Synthesis in rec-Dependent Repair of Deoxyribonucleic Acid in Escherichia coli after Ultraviolet or X Irradiation 
Journal of Bacteriology  1972;111(2):575-585.
Deprivation of amino acids required for growth or treatment with chloramphenicol or puromycin after irradiation reduced the survival of Rec+ cells of Escherichia coli K-12 which had been exposed to either ultraviolet (UV) or X radiation. In contrast, these treatments caused little or no reduction in the survival of irradiated recA or recB mutants. The effect of chloramphenicol on the survival of X-irradiated cells was correlated with an inhibition of repair of single-strand breaks in irradiated deoxyribonucleic acid (DNA), previously shown to be controlled by recA and recB. In UV-irradiated cells no effect of chloramphenicol was detected on the repair of single-strand discontinuities in DNA replicated from UV-damaged templates, a process controlled by recA but not by recB. From this we concluded that inhibiting protein synthesis in UV or X-irradiated cells may interfere with some biochemical step in repair dependent upon the recB gene. When irradiated Rec+ cells were cultured for a sufficient period of time in minimal growth medium before chloramphenicol treatment their survival was no longer decreased by the drug. After X irradiation this occurred in less than one generation time of the unirradiated control cells. After UV irradiation it occurred more slowly and was only complete after several generation times of the unirradiated controls. These observations indicated that replication of the entire irradiated genome was probably not required for rec-dependent repair of X-irradiated cells, although it might be required for rec-dependent repair of UV-irradiated cells.
PMCID: PMC251320  PMID: 4559738
17.  Chemical combinations elucidate pathway interactions and regulation relevant to Hepatitis C replication 
SREBP-2, oxidosqualene cyclase (OSC) or lanosterol demethylase were identified as novel sterol pathway-associated targets that, when probed with chemical agents, can inhibit hepatitis C virus (HCV) replication.Using a combination chemical genetics approach, combinations of chemicals targeting sterol pathway enzymes downstream of and including OSC or protein geranylgeranyl transferase I (PGGT) produce robust and selective synergistic inhibition of HCV replication. Inhibition of enzymes upstream of OSC elicit proviral responses that are dominant to the effects of inhibiting all downstream targets.Inhibition of the sterol pathway without inhibition of regulatory feedback mechanisms ultimately results in an increase in HCV replication because of a compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) expression. Increases in HMGCR expression without inhibition of HMGCR enzymatic activity ultimately stimulate HCV replication through increasing the cellular pool of geranylgeranyl pyrophosphate (GGPP).Chemical inhibitors that ultimately prevent SREBP-2 activation, inhibit PGGT or encourage the production of polar sterols have great potential as HCV therapeutics if associated toxicities can be reduced.
Chemical inhibition of enzymes in either the cholesterol or the fatty acid biosynthetic pathways has been shown to impact viral replication, both positively and negatively (Su et al, 2002; Ye et al, 2003; Kapadia and Chisari, 2005; Sagan et al, 2006; Amemiya et al, 2008). FBL2 has been identified as a 50 kDa geranylgeranylated host protein that is necessary for localization of the hepatitis C virus (HCV) replication complex to the membranous web through its close association with the HCV protein NS5A and is critical for HCV replication (Wang et al, 2005). Inhibition of the protein geranylgeranyl transferase I (PGGT), an enzyme that transfers geranylgeranyl pyrophosphate (GGPP) to cellular proteins such as FBL2 for the purpose of membrane anchoring, negatively impacts HCV replication (Ye et al, 2003). Conversely, chemical agents that increase intracellular GGPP concentrations promote viral replication (Kapadia and Chisari, 2005). Statin compounds that inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in the sterol pathway (Goldstein and Brown, 1990), have been suggested to inhibit HCV replication through ultimately reducing the cellular pool of GGPP (Ye et al, 2003; Kapadia and Chisari, 2005; Ikeda et al, 2006). However, inhibition of the sterol pathway with statin drugs has not yielded consistent results in patients. The use of statins for the treatment of HCV is likely to be complicated by the reported compensatory increase in HMGCR expression in vitro and in vivo (Stone et al, 1989; Cohen et al, 1993) in response to treatment. Enzymes in the sterol pathway are regulated on a transcriptional level by sterol regulatory element-binding proteins (SREBPs), specifically SREBP-2 (Hua et al, 1993; Brown and Goldstein, 1997). When cholesterol stores in cells are depleted, SREBP-2 activates transcription of genes in the sterol pathway such as HMGCR, HMG-CoA synthase, farnesyl pyrophosphate (FPP) synthase, squalene synthase (SQLS) and the LDL receptor (Smith et al, 1988, 1990; Sakai et al, 1996; Brown and Goldstein, 1999; Horton et al, 2002). The requirement of additional downstream sterol pathway metabolites for HCV replication has not been completely elucidated.
To further understand the impact of the sterol pathway and its regulation on HCV replication, we conducted a high-throughput combination chemical genetic screen using 16 chemical probes that are known to modulate the activity of target enzymes relating to the sterol biosynthesis pathway (Figure 1). Using this approach, we identified several novel antiviral targets including SREBP-2 as well as targets downstream of HMGCR in the sterol pathway such as oxidosqualene cyclase (OSC) and lanosterol demethylase. Many of our chemical probes, specifically SR-12813, farnesol and squalestatin, strongly promoted replicon replication. The actions of both farnesol and squalestatin ultimately result in an increase in the cellular pool of GGPP, which is known to increase HCV replication (Ye et al, 2003; Kapadia and Chisari, 2005; Wang et al, 2005).
Chemical combinations targeting enzymes upstream of squalene epoxidase (SQLE) at the top of the sterol pathway (Figure 4A) elicited Bateson-type epistatic responses (Boone et al, 2007), where the upstream agent's response predominates over the effects of inhibiting all downstream targets. This was especially notable for combinations including simvastatin and either U18666A or squalestatin, and for squalestatin in combination with Ro48-8071. Treatment with squalestatin prevents the SQLS substrate, farnesyl pyrophosphate (FPP) from being further metabolized by the sterol pathway. As FPP concentrations increase, the metabolite can be shunted away from the sterol pathway toward farnesylation and GGPP synthetic pathways, resulting in an increase in host protein geranylgeranylation, including FBL2, and consequently replicon replication. This increase in replicon replication explains the source of the observed epistasis over Ro48-8071 treatment.
Combinations between probes targeting enzymes downstream of and including OSC produced robust synergies with each other or with a PGGT inhibitor. Figure 4B highlights examples of antiviral synergy resulting from treatment of cells with an OSC inhibitor in combination with an inhibitor of either an enzyme upstream or downstream of OSC. A combination of terconazole and U18666A is synergistic without similar combination effects in the host proliferation screen. Likewise, clomiphene was also synergistic when added to replicon cells in combination with U18666A. One of the greatest synergies observed downstream in the sterol pathway is a combination of amorolfine and AY 9944, suggesting that there is value in developing combinations of drugs that target enzymes in the sterol pathway, which are downstream of HMGCR.
Interactions with the protein prenylation pathway also showed strong mechanistic patterns (Figure 4C). GGTI-286 is a peptidomimetic compound resembling the CAAX domain of a protein to be geranylgeranylated and is a competitive inhibitor of protein geranylgeranylation. Simvastatin impedes the antiviral effect of GGTI-286 at low concentrations but that antagonism is balanced by comparable synergy at higher concentrations. At the low simvastatin concentrations, a compensatory increase in HMGCR expression leads to increased cellular levels of GGPP, which are likely to result in an increase in PGGT enzymatic turnover and decreased GGTI-286 efficacy. The antiviral synergy observed at the higher inhibitor concentrations is likely nonspecific as synergy was also observed in a host viability assay. Further downstream, however, a competitive interaction was observed between GGTI-286 and squalestatin, where the opposing effect of one compound obscures the other compound's effect. This competitive relationship between GGTI and SQLE explains the epistatic response observed between those two agents. For inhibitors of targets downstream of OSC, such as amorolfine, there are strong antiviral synergies with GGTI-286. Notably, combinations with OSC inhibitors and GGTI-286 were selective, in that comparable synergy was not found in a host viability assay. This selectivity suggests that jointly targeting OSC and PGGT is a promising avenue for future HCV therapy development.
This study provides a comprehensive and unique perspective into the impact of sterol pathway regulation on HCV replication and provides compelling insight into the use of chemical combinations to maximize antiviral effects while minimizing proviral consequences. Our results suggest that HCV therapeutics developed against sterol pathway targets must consider the impact on underlying sterol pathway regulation. We found combinations of inhibitors of the lower part of the sterol pathway that are effective and synergistic with each other when tested in combination. Furthermore, the combination effects observed with simvastatin suggest that, though statins inhibit HMGCR activity, the resulting regulatory consequences of such inhibition ultimately lead to undesirable epistatic effects. Inhibitors that prevent SREBP-2 activation, inhibit PGGT or encourage the production of polar sterols have great potential as HCV therapeutics if associated toxicities can be reduced.
The search for effective Hepatitis C antiviral therapies has recently focused on host sterol metabolism and protein prenylation pathways that indirectly affect viral replication. However, inhibition of the sterol pathway with statin drugs has not yielded consistent results in patients. Here, we present a combination chemical genetic study to explore how the sterol and protein prenylation pathways work together to affect hepatitis C viral replication in a replicon assay. In addition to finding novel targets affecting viral replication, our data suggest that the viral replication is strongly affected by sterol pathway regulation. There is a marked transition from antagonistic to synergistic antiviral effects as the combination targets shift downstream along the sterol pathway. We also show how pathway regulation frustrates potential hepatitis C therapies based on the sterol pathway, and reveal novel synergies that selectively inhibit hepatitis C replication over host toxicity. In particular, combinations targeting the downstream sterol pathway enzymes produced robust and selective synergistic inhibition of hepatitis C replication. Our findings show how combination chemical genetics can reveal critical pathway connections relevant to viral replication, and can identify potential treatments with an increased therapeutic window.
PMCID: PMC2913396  PMID: 20531405
chemical genetics; combinations and synergy; hepatitis C; replicon; sterol biosynthesis
18.  Bacteriophage T4 Inhibits Colicin E2-Induced Degradation of Escherichia coli Deoxyribonucleic Acid I. Protein Synthesis-Dependent Inhibition1 
Journal of Virology  1971;8(3):303-310.
The deoxyribonucleic acid (DNA) of Escherichia coli B is converted by colicin E2 to products soluble in cold trichloroacetic acid; we show that this DNA degradation (hereafter termed solubilization) is subject to inhibition by infection with bacteriophage T4. At least two modes of inhibition may be differentiated on the basis of their sensitivity to chloramphenicol. The following observations on the inhibition of E2 by phage T4 in the absence of chloramphenicol are described: (i) Simultaneous addition to E. coli B of E2 and a phage mutated in genes 42, 46, and 47 results in a virtually complete block of the DNA solubilization normally induced by E2; the mutation in gene 42 prevents phage DNA synthesis, and the mutations in genes 46 and 47 block a late stage of phage-induced solubilization of host DNA. (ii) This triple mutant inhibits equally well when added at any time during the E2-induced solubilization. (iii) Simultaneous addition to E. coli B of E2 and a phage mutated only in gene 42 results in extensive DNA solubilization, but the amount of residual acid-insoluble DNA (20 to 25%) is more characteristic of phage infection than of E2 addition (5% or less). (iv) denA mutants of phage T4 are blocked in an early stage (endonuclease II) of degradation of host DNA; when E2 and a phage mutated in both genes 42 and denA are added to E. coli B, extensive solubilization of DNA occurs with a pattern identical to that observed upon simultaneous addition of E2 and the gene 42 mutant. (v) However, delaying E2 addition for 10 min after infection by this double mutant allows the phage to develop considerable inhibition of E2. (vi) Adsorption of E2 to E. coli B is not impaired by infection with phage mutated in genes 42, 46, and 47. In the presence of chloramphenicol, the inhibition of E2 by the triple-mutant (genes 42, 46, and 47) still occurs, but to a lesser extent.
PMCID: PMC356243  PMID: 4940930
19.  Temporal sequence of events during the initiation process in Escherichia coli deoxyribonucleic acid replication: roles of the dnaA and dnaC gene products and ribonucleic acid polymerase. 
Journal of Bacteriology  1977;129(3):1466-1475.
Three thermosensitive deoxyribonucleic acid (DNA) initiation mutants of Escherichia coli exposed to the restrictive temperature for one to two generations were examined for the ability to reinitiate DNA replication after returning to the permissive temperature in the presence of rifampin, chloramphenicol, or nalidixic acid. Reinitiation in the dnaA mutant was inhibited by rifampin but not by chloramphenicol, whereas renitiation was not inhibited by rifampin but not by chloramphenicol, whereas reinitiation was not inhibited in two dnaC mutants by either rifampin or chloramphenicol. To observe the rifampin inhibition, the antibiotic must be added at least 10 min before return to the permissive temperature. The rifampin inhibition of reinitiation was not observed when a rifampin-resistant ribonucleic acid ((RNA) polymerase gene was introduced into the dnaA mutant, demonstrating that RNA polymerase synthesizes one or more RNA species required for the initation of DNA replication (origin-RNA). Reinitiation at 30 degrees C was not inhibited by streptolydigin in a stretolydigin-sensitive dnaA muntant. Incubation in the presence of nalidixic acid prevented subsequent reinitiation in the dnaC28 mutant but did not inhibit reinitiation in the dnaA5 muntant. These results demonstrate that the dnaA gene product acts before or during the synthesis of an origin-RNA, RNA polymerase synthesizes this origin RNA, and the dnaC gene product is involved in a step after this RNA synthesis event. Furthermore, these results suggest that the dnaC gene product is involved in the first deoxyribounucleotide polymerization event wheareas the dnaA gene product acts prior to this event. A model is presented describing the temporal sequence of events that occur during initiation of a round of DNA replication, based on results in this and the accompanying paper.
PMCID: PMC235124  PMID: 321429
20.  Bacteriophage T4 Inhibits Colicin E2-Induced Degradation of Escherichia coli Deoxyribonucleic Acid II. Inhibition by T4 Ghosts and by T4 in the Absence of Protein Synthesis 
Journal of Virology  1973;11(3):386-398.
The deoxyribonucleic acid (DNA) of Escherichia coli B is converted by colicin E2 to products soluble in cold trichloroacetic acid; we showed previously that this DNA degradation (hereafter termed solubilization) is subject to inhibition by infection with phage T4 and that at least two modes of inhibition can be differentiated on the basis of their sensitivity to chloramphenicol (CM). This report deals exclusively with the inhibition of E2 produced by T4, or T4 ghosts, in the absence of protein synthesis. The following observations are described. (i) The stage of T4 infection that inhibits E2 occurs after reversible adsorption of the phage to the bacterial surface, but probably prior to injection of T4 DNA into the cell's interior. (ii) The extent of inhibition increases as the T4 multiplicity is increased; however, the fraction of bacterial DNA that eventually is solubilized is virtually independent of the phage multiplicity. (iii) Phage ghosts (DNA-less phage particles) possess an approximately 15-fold greater inhibitory capacity toward E2 than do intact phage; however, because highly purified T4 (completely freed of ghost contamination) still inhibit E2, we discount the possibility that preparations of “intact phage” inhibit exclusively by virtue of contaminating ghosts. (iv) T4 infection does not liberate an extracellular inactivator of E2. In fact, infection with sufficiently high multiplicities of T4 produces a supernatant factor that protects E2 from nonspecific inactivation at 37 C. This protective factor does not interfere with the colicin's ability to induce DNA solubilization. (v) Inhibition of E2 occurs even when phage are added well after initiation of DNA solubilization by E2, suggesting that a late stage of E2 action is the target of inhibition by T4 infection. (vi) Increasing the CM concentration from 50 μg/ml to 200 μg/ml appears to reduce the inhibition appreciably; however, this can be attributed to an enhancement by CM of the rate of E2-induced DNA solubilization. (vii) The same degree of inhibition of E2 by T4 seen in CM is observed when CM is replaced by puromycin or rifampin. (viii) Others have shown that raising the multiplicity of E2 increases the rate of DNA solubilization. We find that the fractional inhibition (i), [i = (1 − yi/yo), where yi and yo represent the inhibited and uninhibited rates of solubilization of DNA, respectively], produced by a given T4 multiplicity is independent of the multiplicity of E2 and hence is independent of the rate of DNA solubilization induced by E2.
PMCID: PMC355114  PMID: 4570926
21.  Growth rate-dependent control of chromosome replication initiation in Escherichia coli. 
Journal of Bacteriology  1981;145(3):1232-1238.
The initiation mass, defined as cell mass per origin of deoxyribonucleic acid replication (optical density units at 460 nm of culture/origins per milliliter of culture), reflects the intracellular concentration or activity of a hypothetical factor that controls initiation of chromosome replication in bacteria. In Escherichia coli B/r, the initiation mass was found to increase about twofold with increasing growth rate between 0.6 and 1.6 doublings per h; at higher growth rates it remained essentially constant (measured up to 2.4 doublings per h). A low-thymine-requiring (thyA deoB) derivative of E. coli B/r, strain TJK16, was found to have a 60 to 80% greater initiation mass than B/r which was independent of the replication velocity and not related to the thyA and deoB mutations. It is suggested that TJK16 had acquired, during its isolation, a mutation in a gene affecting the initiation of deoxyribonucleic acid replication. The initiation age was not altered by this mutation, but other parameters, including deoxyribonucleic acid concentration and cell size, were changed in comparison with the B/r parent, as expected from theoretical considerations.
PMCID: PMC217123  PMID: 7009573
22.  Cell Size and the Initiation of DNA Replication in Bacteria 
PLoS Genetics  2012;8(3):e1002549.
In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∼30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA.
Author Summary
DNA replication must be coordinated with growth and division to ensure the viability of cells and organisms. In bacteria, it is believed that cell growth–dependent accumulation of the initiator of DNA replication, DnaA, to critical levels determines the timing of initiation. This view is based primarily on data from the model bacterium E. coli, which initiates replication only upon achieving a particular size. However, recent data from another model organism, B. subtilis, where DnaA is also rate limiting for initiation, suggests that changes in cell size may not impact the timing of DNA replication. This finding prompted us to revisit the relationship between cell size and DNA replication in E. coli. While previous studies examined perturbations in DNA replication on cell size, we instead determined the consequences of cell size defects on DNA replication. This converse approach led to the conclusion that, irrespective of size, DnaA needs to accumulate to a critical amount to trigger initiation in E. coli, as is generally believed to be the case. In contrast, small B. subtilis cells could initiate replication with amounts of DnaA ∼30% less than wild type. Thus, while DnaA is rate limiting for initiation in both organisms, the mechanisms controlling its activity may vary in different bacteria.
PMCID: PMC3291569  PMID: 22396664
23.  DNA Adenine Methylation Is Required to Replicate Both Vibrio cholerae Chromosomes Once per Cell Cycle 
PLoS Genetics  2010;6(5):e1000939.
DNA adenine methylation is widely used to control many DNA transactions, including replication. In Escherichia coli, methylation serves to silence newly synthesized (hemimethylated) sister origins. SeqA, a protein that binds to hemimethylated DNA, mediates the silencing, and this is necessary to restrict replication to once per cell cycle. The methylation, however, is not essential for replication initiation per se but appeared so when the origins (oriI and oriII) of the two Vibrio cholerae chromosomes were used to drive plasmid replication in E. coli. Here we show that, as in the case of E. coli, methylation is not essential for oriI when it drives chromosomal replication and is needed for once-per-cell-cycle replication in a SeqA-dependent fashion. We found that oriII also needs SeqA for once-per-cell-cycle replication and, additionally, full methylation for efficient initiator binding. The requirement for initiator binding might suffice to make methylation an essential function in V. cholerae. The structure of oriII suggests that it originated from a plasmid, but unlike plasmids, oriII makes use of methylation for once-per-cell-cycle replication, the norm for chromosomal but not plasmid replication.
Author Summary
Bacteria usually have one chromosome but can have extrachromosomal replicons, called plasmids. Although normally dispensable, plasmids can confer adaptive advantage to cells in stressful environments. Bacteria can also have multiple chromosomes, each carrying essential genes, as in eukaryotes. In all organisms, chromosomes duplicate once before the cells divide so that the daughter cells can receive equal genetic dowry, but this is not usually the case with bacterial plasmids. Vibrio cholerae, the causative agent for the disease cholera, has a typical bacterial chromosome like the chromosome of the well-studied bacterium Escherichia coli and has a second chromosome with many signatures indicating its origin from a plasmid. Here we show that, in spite of the distinct nature of the two chromosomes, they both duplicate once per cell cycle, and they both require DNA adenine methylation for this purpose. Our study suggests that once-per-cell-cycle replication is a necessary feature of a chromosome in multichromosome bacteria, and provides a paradigm of how methylation could endow extrachromosomal replicons with the capacity to duplicate like chromosomes.
PMCID: PMC2865523  PMID: 20463886
24.  Mechanism of Inhibition of Deoxyribonucleic Acid Synthesis in Escherichia coli by Hydroxyurea 
Journal of Bacteriology  1972;112(3):1321-1334.
The effects of hydroxyurea on Escherichia coli B/5 physiology (increases in cell mass, number of viable cells, and deoxyribonucleic acid [DNA], RNA, and protein concentrations) were studied in an attempt to find a concentration that completely inhibits DNA synthesis and increase in number of viable cells but has little or no effect on other metabolic processes. These conditions were the most closely approached at an hydroxyurea concentration of 0.026 to 0.033 m. A concentration of 0.026 or 0.033 m was used in subsequent experiments to study the site(s) of inhibition of DNA synthesis in E. coli B/5 by hydroxyurea. Hydroxyurea at a concentration of 10−2m was found to inhibit ribonucleoside diphosphate reductase activity completely in crude extracts of E. coli. The synthesis of deoxyribonucleotides was greatly reduced when E. coli cells were grown in the presence of 0.033 m hydroxyurea. Studies on the acid-soluble DNA precursor pools showed that hydroxyurea causes a decrease in the concentration of deoxyribonucleoside diphosphates and deoxyribonucleoside triphosphates and an increase in the total concentration of ribonucleotides. Sucrose density gradient sedimentation of DNA from cells treated with 0.026 m hydroxyurea for 30 min indicated that at this concentration hydroxyurea induces no detectable single- or double-strand breaks. In addition, both replicative and repair syntheses of DNA were found to occur normally in toluene-treated cells in the presence of relatively high concentrations of hydroxyurea. Pulse-chase studies showed that deoxyribonucleotides synthesized prior to the addition of hydroxyurea to cells are utilized normally for DNA synthesis in the presence of hydroxyurea. On the basis of these observations, we have concluded that the primary, if not the only, site of inhibition of DNA synthesis in E. coli B/5 by low concentrations of hydroxyurea is the inhibition of the enzyme ribonucleoside diphosphate reductase.
PMCID: PMC251567  PMID: 4565541
25.  Induction of Excessive Deoxyribonucleic Acid Synthesis in Escherichia coli by Nalidixic Acid 
Journal of Bacteriology  1967;94(5):1664-1671.
Prior treatment of Escherichia coli with nalidixic acid in nutritionally complete medium altered the subsequent pattern of deoxyribonucleic acid (DNA) synthesis normally observed in nutritionally deficient medium. Transfer of E. coli 15 TAU to an amino acid- and pyrimidine-deficient medium usually resulted in a 40 to 50% increase in DNA content. Previous treatment with nalidixic acid caused a 200 to 300% increase in DNA content under these conditions. The extent of this DNA synthesis depended on the duration of prior exposure to nalidixic acid. The maximal rate of synthesis was obtained after a 40- to 60-min exposure to nalidixic acid and was two to three times that of the control. The induction of this excessive DNA synthesis was prevented by chloramphenicol or phenethyl alcohol, but the synthesis of this DNA was only partially sensitive to these agents. With E. coli TAU-bar, the rate of DNA synthesis, after removal of nalidixic acid, was similar to that of E. coli 15 TAU, but the maximal amount of DNA synthesized was 180 to 185% of that initially present. Cesium chloride density gradient analysis demonstrated that DNA synthesis after removal of nalidixic acid occurs by a semiconservative mode of replication. The density distribution of this DNA was similar to that obtained after thymine starvation. These results suggest that nalidixic acid treatment may induce additional sites for DNA synthesis in E.coli.
PMCID: PMC276876  PMID: 4862201

Results 1-25 (1423298)