PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (847208)

Clipboard (0)
None

Related Articles

1.  Growth Potential of Halophilic Bacteria Isolated from Solar Salt Environments: Carbon Sources and Salt Requirements 
Eighteen strains of extremely halophilic bacteria and three strains of moderately halophilic bacteria were isolated from four different solar salt environments. Growth tests on carbohydrates, low-molecular-weight carboxylic acids, and complex medium demonstrated that the moderate halophiles and strains of the extreme halophiles Haloarcula and Halococcus grew on most of the substrates tested. Among the Halobacterium isolates were several metabolic groups: strains that grew on a broad range of substrates and strains that were essentially confined to either amino acid (peptone) or carbohydrate oxidation. One strain (WS-4) only grew well on pyruvate and acetate. Most strains of extreme halophiles grew by anaerobic fermentation and possibly by nitrate reduction. Tests of growth potential in natural saltern brines demonstrated that none of the halobacteria grew well in brines which harbor the densest populations of these bacteria in solar salterns. All grew best in brines which were unsaturated with NaCl. The high concentrations of Na+ and Mg2+ found in saltern crystallizer brines limited bacterial growth, but the concentrations of K+ found in these brines had little effect. MgSO4 was relatively more inhibitory to the extreme halophiles than was MgCl2, but the reverse was true for the moderate halophiles.
PMCID: PMC241517  PMID: 16346609
2.  Lysis of Halobacteria in Bacto-Peptone by Bile Acids 
All tested strains of halophilic archaebacteria of the genera Halobacterium, Haloarcula, Haloferax, and Natronobacterium lysed in 1% Bacto-Peptone (Difco) containing 25% NaCl, whereas no lysis was observed with other strains belonging to archaebacteria of the genera Halococcus, Natronococcus, and Sulfolobus, methanogenic bacteria, and moderately halophilic eubacteria. Substances in Bacto-Peptone which caused lysis of halobacteria were purified and identified as taurocholic acid and glycocholic acid. High-performance liquid chromatography analyses of peptones revealed that Bacto-Peptone contained nine different bile acids, with a total content of 9.53 mg/g, whereas much lower amounts were found in Peptone Bacteriological Technical (Difco) and Oxoid Peptone. Different kinds of peptones can be used to distinguish halophilic eubacteria and archaebacteria in mixed cultures from hypersaline environments.
PMCID: PMC202585  PMID: 16347619
3.  Comparative analysis of ribonuclease P RNA structure in Archaea. 
Nucleic Acids Research  1996;24(7):1252-1259.
Although the structure of the catalytic RNA component of ribonuclease P has been well characterized in Bacteria, it has been little studied in other organisms, such as the Archaea. We have determined the sequences encoding RNase P RNA in eight euryarchaeal species: Halococcus morrhuae, Natronobacterium gregoryi, Halobacterium cutirubrum, Halobacteriurn trapanicum, Methanobacterium thermoautotrophicum strains deltaH and Marburg, Methanothermus fervidus and Thermococcus celer strain AL-1. On the basis of these and previously available sequences from Sulfolobus acidocaldarius, Haloferax volcanii and Methanosarcina barkeri the secondary structure of RNase P RNA in Archaea has been analyzed by phylogenetic comparative analysis. The archaeal RNAs are similar in both primary and secondary structure to bacterial RNase P RNAs, but unlike their bacterial counterparts these archaeal RNase P RNAs are not by themselves catalytically proficient in vitro.
PMCID: PMC145784  PMID: 8614627
4.  A First Record of Obligate Halophilic Aspergilli from the Dead Sea 
Indian Journal of Microbiology  2011;52(1):22-27.
The isolation of obligate halophilic aspergilli from the Dead Sea and the range of salt tolerance of halophilic fungi isolated, are reported here for the first time. The mycobiota of the Dead Sea isolated in this study, was dominated by Aspergillus and Penicillium species; Cladosporium were found in lesser numbers. All three genera were obtained from the water sample; however, Aspergillus was the only genus obtained from the sediment. There was significant difference in growth of each isolate at different salt concentrations and intraspecies analysis revealed dissimilarity in response of strains to different salt concentrations in the growth medium The isolates were euryhaline, with halotolerance up to 20–25% solar salt, Aspergillus and Penicillium species showing a higher level of halotolerance, as compared to that of Cladosporium. Halophilic fungi were found in greater numbers in the sediment sample as compared to that in the water sample. Penicillium and Cladosporium species were exclusively facultative halophiles, while some species of Aspergillus were facultative halophiles. All the obligate halophiles isolated, belonged to the genus Aspergillus and were identified as A. penicillioides and A unguis, the latter being a first record of the species from the Dead Sea.
doi:10.1007/s12088-011-0225-z
PMCID: PMC3298590  PMID: 23449273
Dead Sea; Obligate halophile; Aspergillus; Penicillium; Cladosporium
5.  Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia) under Aerobic Conditions 
Bacterial and archaeal aerobic communities were recovered from sediments from the shallow El-Djerid salt lake in Tunisia, and their salinity gradient distribution was established. Six samples for physicochemical and microbiological analyses were obtained from 6 saline sites in the lake for physico-chemical and microbiological analyses. All samples studied were considered hypersaline with NaCl concentration ranging from 150 to 260 g/L. A specific halophilic microbial community was recovered from each site, and characterization of isolated microorganisms was performed via both phenotypic and phylogenetic approaches. Only one extreme halophilic organism, domain Archaea, was isolated from site 4 only, whereas organisms in the domain Bacteria were recovered from the five remaining sampling sites that contained up to 250 g/L NaCl. Members of the domain Bacteria belonged to genera Salicola, Pontibacillus, Halomonas, Marinococcus, and Halobacillus, whereas the only member of domain Archaea isolated belonged to the genus Halorubrum. The results of this study are discussed in terms of the ecological significance of these microorganisms in the breakdown of organic matter in Lake El-Djerid and their potential for industry applications.
doi:10.1155/2009/731786
PMCID: PMC2804050  PMID: 20066169
6.  A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution 
Saline Systems  2007;3:2.
Background
Most of the haloarchaeal strains have been isolated from hypersaline environments such as solar evaporation ponds, salt lakes, or salt deposits, and they, with some exceptions, lyse or lose viability in very low-salt concentrations. There are no salty environments suitable for the growth of haloarchaea in Japan. Although Natrialba asiatica and Haloarcula japonica were isolated many years ago, the question, "Are haloarchaea really thriving in natural environments of Japan?" has remained unanswered.
Results
Ten strains were isolated from a traditional Japanese-style salt field at Nie, Noto Peninsula, Japan by plating out the soil samples directly on agar plates containing 30% (w/v) salts and 0.5% yeast extract. They were most closely related to strains of three genera, Haladaptatus, Halococcus, and Halogeometricum. Survival rates in 3% and 0.5% SW (Salt Water, solutions containing salts in approximately the same proportions as found in seawater) solutions at 37°C differed considerably depending on the strains. Two strains belonging to Halogeometricum as well as the type strain Hgm. borinquense died and lysed immediately after suspension. Five strains that belonged to Halococcus and a strain that may be a member of Halogeometricum survived for 1–2 days in 0.5% SW solution. Two strains most closely related to Haladaptatus possessed extraordinary strong tolerance to low salt conditions. About 20 to 34% of the cells remained viable in 0.5% SW after 9 days incubation.
Conclusion
In this study we have demonstrated that haloarchaea are really thriving in the soil of Japanese-style salt field. The haloarchaeal cells, particularly the fragile strains are suggested to survive in the micropores of smaller size silt fraction, one of the components of soil. The inside of the silt particles is filled with concentrated salt solution and kept intact even upon suspension in rainwater. Possible origins of the haloarchaea isolated in this study are discussed.
doi:10.1186/1746-1448-3-2
PMCID: PMC1828056  PMID: 17346353
7.  Synchronous Effects of Temperature, Hydrostatic Pressure, and Salinity on Growth, Phospholipid Profiles, and Protein Patterns of Four Halomonas Species Isolated from Deep-Sea Hydrothermal- Vent and Sea Surface Environments 
Applied and Environmental Microbiology  2004;70(10):6220-6229.
Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30°C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30°C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30°C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30°C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.
doi:10.1128/AEM.70.10.6220-6229.2004
PMCID: PMC522137  PMID: 15466569
8.  Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species 
Polyhydroxyalkanoates (PHAs) are accumulated in many prokaryotes. Several members of the Halobacteriaceae produce poly-3-hydroxybutyrate (PHB), but it is not known if this is a general property of the family. We evaluated identification methods for PHAs with 20 haloarchaeal species, three of them isolates from Permian salt. Staining with Sudan Black B, Nile Blue A, or Nile Red was applied to screen for the presence of PHAs. Transmission electron microscopy and 1H-nuclear magnetic resonance spectroscopy were used for visualization of PHB granules and chemical confirmation of PHAs in cell extracts, respectively. We report for the first time the production of PHAs by Halococcus sp. (Halococcus morrhuae DSM 1307T, Halococcus saccharolyticus DSM 5350T, Halococcus salifodinae DSM 8989T, Halococcus dombrowskii DSM 14522T, Halococcus hamelinensis JCM 12892T, Halococcus qingdaonensis JCM 13587T), Halorubrum sp. (Hrr. coriense DSM 10284T, Halorubrum chaoviator DSM 19316T, Hrr. chaoviator strains NaxosII and AUS-1), haloalkaliphiles (Natronobacterium gregoryi NCMB 2189T, Natronococcus occultus DSM 3396T) and Halobacterium noricense DSM 9758T. No PHB was detected in Halobacterium salinarum NRC-1 ATCC 700922, Hbt. salinarum R1 and Haloferax volcanii DSM 3757T. Most species synthesized PHAs when growing in synthetic as well as in complex medium. The polyesters were generally composed of PHB and poly-ß-hydroxybutyrate-co-3-hydroxyvalerate (PHBV). Available genomic data suggest the absence of PHA synthesis in some haloarchaea and in all other Euryarchaeota and Crenarchaeota. Homologies between haloarchaeal and bacterial PHA synthesizing enzymes had indicated to some authors probable horizontal gene transfer, which, considering the data obtained in this study, may have occurred already before Permian times.
Electronic supplementary material
The online version of this article (doi:10.1007/s00253-010-2611-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s00253-010-2611-6
PMCID: PMC2895300  PMID: 20437233
Polyhydroxybutyrate; Haloarchaea; Halococcus; Halobacterium; Haloalkaliphile
9.  Fungal life in the extremely hypersaline water of the Dead Sea: first records. 
The first report, to our knowledge, on the occurrence of filamentous fungi in the hypersaline (340 g salt l-1) Dead Sea is presented. Three species of filamentous fungi from surface water samples of the Dead Sea were isolated: Gymnascella marismortui (Ascomycota), which is described as a new species, Ulocladium chlamydosporum and Penicillium westlingii (Deuteromycota). G. marismortui and U. chlamydosporum grew on media containing up to 50% Dead Sea water. G. marismortui was found to be an obligate halophile growing optimally in the presence of 0.5-2 M NaCl or 10 30% (by volume) of Dead Sea water. Isolated cultures did not grow on agar media without salt, but grew on agar prepared with up to 50% Dead Sea water. This suggests that they may be adapted to life in the extremely stressful hypersaline Dead Sea.
PMCID: PMC1689213  PMID: 9721690
10.  Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample 
A Gram-negative, extremely halophilic, coccoid archaeal strain, CM5T, was isolated from a crude sea-salt sample collected near Qingdao, China. The organism grew optimally at 35–40 °C and pH 6.0 in the presence of 20 % (w/v) NaCl. Its colonies were red in colour and it could use glucose as a sole carbon source for growth. The 16S rRNA gene sequence of CM5T was most closely related to those of Halococcus species. Its pattern of antibiotic susceptibility was similar to those of other described Halococcus species. Biochemical tests revealed no sign of H2S production or gelatin liquefaction. The main polar lipids of strain CM5T were phosphatidylglycerol, phosphatidylglycerol methylphosphate and sulfated diglycosyl diether. No phosphatidylglycerol sulfate was present. The DNA G+C content of strain CM5T was 61.2 mol% and it gave DNA–DNA reassociation values of 33.7, 57.1 and 29.6 %, respectively, with Halococcus salifodinae DSM 8989T, Halococcus dombrowskii DSM 14522T and Halococcus morrhuae ATCC 17082T. Based on its morphological and chemotaxonomic properties and phylogenetic analysis of 16S rRNA gene sequence data, we propose that CM5T should be classified within a novel species, Halococcus qingdaonensis sp. nov., with strain CM5T (=CGMCC 1.4243T=JCM 13587T) as the type strain.
doi:10.1099/ijs.0.64673-0
PMCID: PMC3182530  PMID: 17329792
11.  Complete genome sequence of Halorhodospira halophila SL1 
Standards in Genomic Sciences  2013;8(2):206-214.
Halorhodospira halophila is among the most halophilic organisms known. It is an obligately photosynthetic and anaerobic purple sulfur bacterium that exhibits autotrophic growth up to saturated NaCl concentrations. The type strain H. halophila SL1 was isolated from a hypersaline lake in Oregon. Here we report the determination of its entire genome in a single contig. This is the first genome of a phototrophic extreme halophile. The genome consists of 2,678,452 bp, encoding 2,493 predicted genes as determined by automated genome annotation. Of the 2,407 predicted proteins, 1,905 were assigned to a putative function. Future detailed analysis of this genome promises to yield insights into the halophilic adaptations of this organism, its ability for photoautotrophic growth under extreme conditions, and its characteristic sulfur metabolism.
doi:10.4056/sigs.3677284
PMCID: PMC3746430  PMID: 23991253
halophile; saturated salt; sulfur metabolism; purple sulfur bacterium; phototrophic
12.  The Genome Sequence of Methanohalophilus mahii SLPT Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments 
Archaea  2010;2010:690737.
Methanohalophilus mahii is the type species of the genus Methanohalophilus, which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLPT was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.
doi:10.1155/2010/690737
PMCID: PMC3017947  PMID: 21234345
13.  Low-pass sequencing for microbial comparative genomics 
BMC Genomics  2004;5:3.
Background
We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1) the metabolically versatile Haloarcula marismortui; (2) the non-pigmented Natrialba asiatica; (3) the psychrophile Halorubrum lacusprofundi and (4) the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe.
Results
As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI) for their predicted proteins. Multiple insertion sequence (IS) elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP) and transcription factor IIB (TFB) homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi.
Conclusion
Despite the diverse habitats of these species, all five halophiles share (1) high GC content and (2) low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the IS-element rich genome of H. sp. NRC-1. Identification of multiple TBP and TFB homologs in these four halophiles are consistent with the hypothesis that different types of complex transcriptional regulation may occur through multiple TBP-TFB combinations in response to rapidly changing environmental conditions. Low-pass shotgun sequence analyses of genomes permit extensive and diverse analyses, and should be generally useful for comparative microbial genomics.
doi:10.1186/1471-2164-5-3
PMCID: PMC331400  PMID: 14718067
14.  A New Lineage of Halophilic, Wall-Less, Contractile Bacteria from a Brine-Filled Deep of the Red Sea▿  
Journal of Bacteriology  2008;190(10):3580-3587.
A novel strictly anaerobic bacterium designated strain SSD-17BT was isolated from the hypersaline brine-sediment interface of the Shaban Deep, Red Sea. Cells were pleomorphic but usually consisted of a central coccoid body with one or two “tentacle-like” protrusions. These protrusions actively alternated between a straight, relaxed form and a contracted, corkscrew-like one. A peptidoglycan layer was not detected by electron microscopy. The organism forms “fried-egg”-like colonies on MM-X medium. The organism is strictly anaerobic and halophilic and has an optimum temperature for growth of about 30 to 37°C and an optimum pH of about 7. Nitrate and nitrite are reduced; lactate is a fermentation product. The fatty acid profile is dominated by straight saturated and unsaturated chain compounds. Menaquinone 4 is the major respiratory quinone. Phylogenetic analysis demonstrated strain SSD-17BT represents a novel and distinct lineage within the radiation of the domain Bacteria. The branching position of strain SSD-17BT was equidistant to the taxa considered to be representative lineages of the phyla Firmicutes and Tenericutes (with its sole class Mollicutes). The phenotypic and phylogenetic data clearly show the distinctiveness of this unusual bacterium, and we therefore propose that strain SSD-17BT (= DSM 18853 = JCM 14575) represents a new genus and a new species, for which we recommend the name Haloplasma contractile gen. nov., sp. nov. We are also of the opinion that the organism represents a new order-level taxon, for which we propose the name Haloplasmatales.
doi:10.1128/JB.01860-07
PMCID: PMC2394993  PMID: 18326567
15.  Characterization of plasmids in halobacteria. 
Journal of Bacteriology  1981;145(1):369-374.
Extrachromosomal, covalently closed circular deoxyribonucleic acid has been isolated from different species of halobacteria. Three strains of Halobacterium halobium and one of Halobacterium cutirubrum, all of which synthesize purple membrane (Pum+) and bacterioruberin (Rub+), contain plasmids of different size which share extensive sequence homologies. One strain of Halobacterium salinarium, another one of Halobacterium capanicum, and two new Halobacterium isolates from Tunisia, which are also Pum+ Rub+, do not harbor covalently closed circular deoxyribonucleic acid but contain sequences, presumably integrated into the chromosome, which are similar if not identical to those of pHH1, i.e., the plasmid originally isolated from H. halobium. Three other halophilic strains, Halobacterium trapanicum, Halobacterium volcanii, and a new isolate from Israel, do not carry pHH1-like sequences. These strains are, by morphological and physiological criteria, different from the others examined and harbor plasmids unrelated to pHH1.
Images
PMCID: PMC217281  PMID: 7462146
16.  Genome Analysis of the Anaerobic Thermohalophilic Bacterium Halothermothrix orenii 
PLoS ONE  2009;4(1):e4192.
Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.
doi:10.1371/journal.pone.0004192
PMCID: PMC2626281  PMID: 19145256
17.  Anaerobic bacteria from hypersaline environments. 
Microbiological Reviews  1994;58(1):27-38.
Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the Mediterranean French coast in the Rhone Delta, is also described.
PMCID: PMC372951  PMID: 8177169
18.  Biology of Moderately Halophilic Aerobic Bacteria 
The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms of adjustment of the intracellular environments and the properties of the cytoplasmic membrane enable rapid adaptation to changes in the salt concentration of the environment. Approaches to the study of genetic processes have recently been developed for several moderate halophiles, opening the way toward an understanding of haloadaptation at the molecular level. The new information obtained is also expected to contribute to the development of novel biotechnological uses for these organisms.
PMCID: PMC98923  PMID: 9618450
19.  Microbial life at high salt concentrations: phylogenetic and metabolic diversity 
Saline Systems  2008;4:2.
Halophiles are found in all three domains of life. Within the Bacteria we know halophiles within the phyla Cyanobacteria, Proteobacteria, Firmicutes, Actinobacteria, Spirochaetes, and Bacteroidetes. Within the Archaea the most salt-requiring microorganisms are found in the class Halobacteria. Halobacterium and most of its relatives require over 100–150 g/l salt for growth and structural stability. Also within the order Methanococci we encounter halophilic species. Halophiles and non-halophilic relatives are often found together in the phylogenetic tree, and many genera, families and orders have representatives with greatly different salt requirement and tolerance. A few phylogenetically coherent groups consist of halophiles only: the order Halobacteriales, family Halobacteriaceae (Euryarchaeota) and the anaerobic fermentative bacteria of the order Halanaerobiales (Firmicutes). The family Halomonadaceae (Gammaproteobacteria) almost exclusively contains halophiles. Halophilic microorganisms use two strategies to balance their cytoplasm osmotically with their medium. The first involves accumulation of molar concentrations of KCl. This strategy requires adaptation of the intracellular enzymatic machinery, as proteins should maintain their proper conformation and activity at near-saturating salt concentrations. The proteome of such organisms is highly acidic, and most proteins denature when suspended in low salt. Such microorganisms generally cannot survive in low salt media. The second strategy is to exclude salt from the cytoplasm and to synthesize and/or accumulate organic 'compatible' solutes that do not interfere with enzymatic activity. Few adaptations of the cells' proteome are needed, and organisms using the 'organic-solutes-in strategy' often adapt to a surprisingly broad salt concentration range. Most halophilic Bacteria, but also the halophilic methanogenic Archaea use such organic solutes. A variety of such solutes are known, including glycine betaine, ectoine and other amino acid derivatives, sugars and sugar alcohols. The 'high-salt-in strategy' is not limited to the Halobacteriaceae. The Halanaerobiales (Firmicutes) also accumulate salt rather than organic solutes. A third, phylogenetically unrelated organism accumulates KCl: the red extremely halophilic Salinibacter (Bacteroidetes), recently isolated from saltern crystallizer brines. Analysis of its genome showed many points of resemblance with the Halobacteriaceae, probably resulting from extensive horizontal gene transfer. The case of Salinibacter shows that more unusual types of halophiles may be waiting to be discovered.
doi:10.1186/1746-1448-4-2
PMCID: PMC2329653  PMID: 18412960
20.  Microbial Diversity in Water and Sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China 
We employed culture-dependent and -independent techniques to study microbial diversity in Lake Chaka, a unique hypersaline lake (32.5% salinity) in northwest China. It is situated at 3,214 m above sea level in a dry climate. The average water depth is 2 to 3 cm. Halophilic isolates were obtained from the lake water, and halotolerant isolates were obtained from the shallow sediment. The isolates exhibited resistance to UV and gamma radiation. Microbial abundance in the sediments ranged from 108 cells/g at the water-sediment interface to 107 cells/g at a sediment depth of 42 cm. A major change in the bacterial community composition was observed across the interface. In the lake water, clone sequences affiliated with the Bacteroidetes were the most abundant, whereas in the sediments, sequences related to low G+C gram-positive bacteria were predominant. A similar change was also present in the archaeal community. While all archaeal clone sequences in the lake water belonged to the Halobacteriales, the majority of the sequences in the sediments were related to those previously obtained from methanogenic soils and sediments. The observed changes in the microbial community structure across the water-sediment interface were correlated with a decrease in salinity from the lake water (32.5%) to the sediments (approximately 4%). Across the interface, the redox state also changed from oxic to anoxic and may also have contributed to the observed shift in the microbial community.
doi:10.1128/AEM.02869-05
PMCID: PMC1489620  PMID: 16751487
21.  Archaeosomes varying in lipid composition differ in receptor-mediated endocytosis and differentially adjuvant immune responses to entrapped antigen 
Archaea  2003;1(3):151-164.
Archaeosomes prepared from total polar lipids extracted from six archaeal species with divergent lipid compositions had the capacity to deliver antigen for presentation via both MHC class I and class II pathways. Lipid extracts from Halobacterium halobium and from Halococcus morrhuae strains 14039 and 16008 contained archaetidylglycerol methylphosphate and sulfated glycolipids rich in mannose residues, and lacked archaetidylserine, whereas the opposite was found in Methanobrevibacter smithii, Methanosarcina mazei and Methanococcus jannaschii. Annexin V labeling revealed a surface orientation of phosphoserine head groups in M. smithii, M. mazei and M. jannaschii archaeosomes. Uptake of rhodamine-labeled M. smithii or M. jannaschii archaeosomes by murine peritoneal macrophages was inhibited by unlabeled liposomes containing phosphatidylserine, by the sulfhydryl inhibitor N-ethylmaleimide, and by ATP depletion using azide plus fluoride, but not by H. halobium archaeosomes. In contrast, N-ethylmaleimide failed to inhibit uptake of the four other rhodamine-labeled archaeosome types, and azide plus fluoride did not inhibit uptake of H. halobium or H. morrhuae archaeosomes. These results suggest endocytosis ofarchaeosomes rich in surface-exposed phosphoserine head groups via a phosphatidylserine receptor, and energy-independent surface adsorption of certain other archaeosome composition classes. Lipid composition affected not only the endocytic mechanism, but also served to differentially modulate the activation of dendritic cells. The induction of IL-12 secretion from dendritic cells exposed to H. morrhuae 14039 archaeosomes was striking compared with cells exposed to archaeosomes from 16008. Thus, archaeosome types uniquely modulate antigen delivery and dendritic cell activation.
PMCID: PMC2685569  PMID: 15803661
antibody; archaea; cytotoxic T lymphocyte; liposomes; phagocytosis; phosphatidylserine
22.  Solar salt lake as natural environmental source for extraction halophilic pigments 
Iranian Journal of Microbiology  2010;2(2):103-109.
Background and Objectives
Halophilic bacteria produce a variety of pigments, which function as immune modulators and have prophylactic action against cancers. In this study, colorful halophilic bacteria were isolated from solar salt lake and their pigments was extracted in optimal environmental conditions and compared with the pigments of Halorubrum sodomense ATCC 33755.
Materials and Methods
Water samples from the solar salt lake in Imam Khomeini port in southwest of Iran were used as a source for isolation of pigment-producing bacteria. Halorubrum sodomense ATCC 33755 was used as control for pigment production. The conditions for optimum growth and pigment production were established for the isolated bacteria. Pigment were analyzed by spectrophotometer, TLC and NMR assay. The 16S rRNA genes were sequenced and results were used to differentiate haloarchaea from halophilic bacterial strains.
Results
Among the isolated strains, YS and OS strains and Halorubrum sodomense were recognized as moderate and extremely halophile with maximum growth in the presence of 15% and 30% NaCl concentrations, respectively. Experiments conducted to find out the optimum conditions for growth and pigment production temperature at 25°C, pH = 7.2 and shaking conditions at 120 rpm for three strains. Without shaking, little growth with no pigment production was observed. Total pigment produced by red, yellow and orange strains was measured at 240, 880 and 560 mg per dry cell weight respectively. Amplification yielded bands of to isolated strains only observed with bacteria primers. This result suggesting the YS and OS strains were not haloarchaea.
Conclusion
The isolated halophilic bacteria produced much higher amounts of pigments than Halorubrum sodomense. Photo intermediates including metarhodopsin II (meta II, λmax=380 nm) were determined as major pigment in Halorubrum sodomense.
PMCID: PMC3279771  PMID: 22347558
Halorubrum sodomense; haloarchaea; salt lake; metarhodopsin II; pigment
23.  Microbial Diversity of the Brine-Seawater Interface of the Kebrit Deep, Red Sea, Studied via 16S rRNA Gene Sequences and Cultivation Methods 
The brine-seawater interface of the Kebrit Deep, northern Red Sea, was investigated for the presence of microorganisms using phylogenetic analysis combined with cultivation methods. Under strictly anaerobic culture conditions, novel halophiles were isolated. The new rod-shaped isolates belong to the halophilic genus Halanaerobium and are the first representatives of the genus obtained from deep-sea, anaerobic brine pools. Within the genus Halanaerobium, they represent new species which grow chemoorganotrophically at NaCl concentrations ranging from 5 to 34%. The cellular fatty acid compositions are consistent with those of other Halanaerobium representatives, showing unusually large amounts of Δ7 and Δ11 16:1 fatty acids. Phylogenetic analysis of the brine-seawater interface sample revealed the presence of various bacterial 16S rRNA gene sequences dominated by cultivated members of the bacterial domain, with the majority affiliated with the genus Halanaerobium. The new Halanaerobium 16S rRNA clone sequences showed the highest similarity (99.9%) to the sequence of isolate KT-8-13 from the Kebrit Deep brine. In this initial survey, our polyphasic approach demonstrates that novel halophiles thrive in the anaerobic, deep-sea brine pool of the Kebrit Deep, Red Sea. They may contribute significantly to the anaerobic degradation of organic matter enriched at the brine-seawater interface.
doi:10.1128/AEM.67.7.3077-3085.2001
PMCID: PMC92984  PMID: 11425725
24.  DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea 
Saline Systems  2008;4:10.
Background
Extracellular dissolved DNA has been demonstrated to be present in many terrestrial and aquatic environments, actively secreted, or released by decaying cells. Free DNA has the genetic potential to be acquired by living competent cells by horizontal gene transfer mediated by natural transformation. The aim of this work is to study the persistence of extracellular DNA and its biological transforming activity in extreme environments like the deep hypersaline anoxic lakes of the Mediterranean Sea. The brine lakes are separated from the upper seawater by a steep chemocline inhabited by stratified prokaryotic networks, where cells sinking through the depth profile encounter increasing salinity values and osmotic stress.
Results
Seven strains belonging to different taxonomic groups isolated from the seawater-brine interface of four hypersaline lakes were grown at medium salinity and then incubated in the brines. The osmotic stress induced the death of all the inoculated cells in variable time periods, between 2 hours and 144 days, depending on the type of brine rather than the taxonomic group of the strains, i.e. Bacillaceae or gamma-proteobacteria. The Discovery lake confirmed to be the most aggressive environment toward living cells. In all the brines and in deep seawater dissolved plasmid DNA was substantially preserved for a period of 32 days in axenic conditions. L'Atalante and Bannock brines induced a decrease of the supercoiled form up to 70 and 40% respectively; in the other brines only minor changes in plasmid conformation were observed. Plasmid DNA after incubation in the brines maintained the capacity to transform naturally competent cells of Acinetobacter baylii strain BD413.
Conclusion
Free dissolved DNA is likely to be released by the lysis of cells induced by osmotic stress in the deep hypersaline anoxic lakes. Naked DNA was demonstrated to be preserved and biologically active in these extreme environments, and hence could constitute a genetic reservoir of traits acquirable by horizontal gene transfer.
doi:10.1186/1746-1448-4-10
PMCID: PMC2531117  PMID: 18681968
25.  Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus dombrowskii and Other Extremely Halophilic Archaebacteria 
Astrobiology  2009;9(1):104-112.
The isolation of viable extremely halophilic archaea from 250-million-year-old rock salt suggests the possibility of their long-term survival under desiccation. Since halite has been found on Mars and in meteorites, haloarchaeal survival of martian surface conditions is being explored. Halococcus dombrowskii H4 DSM 14522T was exposed to UV doses over a wavelength range of 200–400 nm to simulate martian UV flux. Cells embedded in a thin layer of laboratory-grown halite were found to accumulate preferentially within fluid inclusions. Survival was assessed by staining with the LIVE/DEAD kit dyes, determining colony-forming units, and using growth tests. Halite-embedded cells showed no loss of viability after exposure to about 21 kJ/m2, and they resumed growth in liquid medium with lag phases of 12 days or more after exposure up to 148 kJ/m2. The estimated D37 (dose of 37 % survival) for Hcc. dombrowskii was ≥ 400 kJ/m2. However, exposure of cells to UV flux while in liquid culture reduced D37 by 2 orders of magnitude (to about 1 kJ/m2); similar results were obtained with Halobacterium salinarum NRC-1 and Haloarcula japonica. The absorption of incoming light of shorter wavelength by color centers resulting from defects in the halite crystal structure likely contributed to these results. Under natural conditions, haloarchaeal cells become embedded in salt upon evaporation; therefore, dispersal of potential microscopic life within small crystals, perhaps in dust, on the surface of Mars could resist damage by UV radiation.
doi:10.1089/ast.2007.0234
PMCID: PMC3182532  PMID: 19215203
Halococcus dombrowskii; Simulated martian UV radiation; LIVE/DEAD staining; Halite fluid inclusions; UV transmittance and reflectance; Desiccation

Results 1-25 (847208)