PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (474066)

Clipboard (0)
None

Related Articles

1.  Austro-Asiatic Tribes of Northeast India Provide Hitherto Missing Genetic Link between South and Southeast Asia 
PLoS ONE  2007;2(11):e1141.
Northeast India, the only region which currently forms a land bridge between the Indian subcontinent and Southeast Asia, has been proposed as an important corridor for the initial peopling of East Asia. Given that the Austro-Asiatic linguistic family is considered to be the oldest and spoken by certain tribes in India, Northeast India and entire Southeast Asia, we expect that populations of this family from Northeast India should provide the signatures of genetic link between Indian and Southeast Asian populations. In order to test this hypothesis, we analyzed mtDNA and Y-Chromosome SNP and STR data of the eight groups of the Austro-Asiatic Khasi from Northeast India and the neighboring Garo and compared with that of other relevant Asian populations. The results suggest that the Austro-Asiatic Khasi tribes of Northeast India represent a genetic continuity between the populations of South and Southeast Asia, thereby advocating that northeast India could have been a major corridor for the movement of populations from India to East/Southeast Asia.
doi:10.1371/journal.pone.0001141
PMCID: PMC2065843  PMID: 17989774
2.  Phylogeography of mtDNA haplogroup R7 in the Indian peninsula 
Background
Human genetic diversity observed in Indian subcontinent is second only to that of Africa. This implies an early settlement and demographic growth soon after the first 'Out-of-Africa' dispersal of anatomically modern humans in Late Pleistocene. In contrast to this perspective, linguistic diversity in India has been thought to derive from more recent population movements and episodes of contact. With the exception of Dravidian, which origin and relatedness to other language phyla is obscure, all the language families in India can be linked to language families spoken in different regions of Eurasia. Mitochondrial DNA and Y chromosome evidence has supported largely local evolution of the genetic lineages of the majority of Dravidian and Indo-European speaking populations, but there is no consensus yet on the question of whether the Munda (Austro-Asiatic) speaking populations originated in India or derive from a relatively recent migration from further East.
Results
Here, we report the analysis of 35 novel complete mtDNA sequences from India which refine the structure of Indian-specific varieties of haplogroup R. Detailed analysis of haplogroup R7, coupled with a survey of ~12,000 mtDNAs from caste and tribal groups over the entire Indian subcontinent, reveals that one of its more recently derived branches (R7a1), is particularly frequent among Munda-speaking tribal groups. This branch is nested within diverse R7 lineages found among Dravidian and Indo-European speakers of India. We have inferred from this that a subset of Munda-speaking groups have acquired R7 relatively recently. Furthermore, we find that the distribution of R7a1 within the Munda-speakers is largely restricted to one of the sub-branches (Kherwari) of northern Munda languages. This evidence does not support the hypothesis that the Austro-Asiatic speakers are the primary source of the R7 variation. Statistical analyses suggest a significant correlation between genetic variation and geography, rather than between genes and languages.
Conclusion
Our high-resolution phylogeographic study, involving diverse linguistic groups in India, suggests that the high frequency of mtDNA haplogroup R7 among Munda speaking populations of India can be explained best by gene flow from linguistically different populations of Indian subcontinent. The conclusion is based on the observation that among Indo-Europeans, and particularly in Dravidians, the haplogroup is, despite its lower frequency, phylogenetically more divergent, while among the Munda speakers only one sub-clade of R7, i.e. R7a1, can be observed. It is noteworthy that though R7 is autochthonous to India, and arises from the root of hg R, its distribution and phylogeography in India is not uniform. This suggests the more ancient establishment of an autochthonous matrilineal genetic structure, and that isolation in the Pleistocene, lineage loss through drift, and endogamy of prehistoric and historic groups have greatly inhibited genetic homogenization and geographical uniformity.
doi:10.1186/1471-2148-8-227
PMCID: PMC2529308  PMID: 18680585
3.  Evolutionary History of Helicobacter pylori Sequences Reflect Past Human Migrations in Southeast Asia 
PLoS ONE  2011;6(7):e22058.
The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia.
doi:10.1371/journal.pone.0022058
PMCID: PMC3139604  PMID: 21818291
4.  Reconstructing Austronesian population history in Island Southeast Asia 
Nature Communications  2014;5:4689.
Austronesian languages are spread across half the globe, from Easter Island to Madagascar. Evidence from linguistics and archaeology indicates that the ‘Austronesian expansion,’ which began 4,000–5,000 years ago, likely had roots in Taiwan, but the ancestry of present-day Austronesian-speaking populations remains controversial. Here, we analyse genome-wide data from 56 populations using new methods for tracing ancestral gene flow, focusing primarily on Island Southeast Asia. We show that all sampled Austronesian groups harbour ancestry that is more closely related to aboriginal Taiwanese than to any present-day mainland population. Surprisingly, western Island Southeast Asian populations have also inherited ancestry from a source nested within the variation of present-day populations speaking Austro-Asiatic languages, which have historically been nearly exclusive to the mainland. Thus, either there was once a substantial Austro-Asiatic presence in Island Southeast Asia, or Austronesian speakers migrated to and through the mainland, admixing there before continuing to western Indonesia.
Populations speaking Austronesian languages are numerous and widespread, but their history remains controversial. Here, the authors analyse genetic data from Southeast Asia and show that all populations harbour ancestry most closely related to aboriginal Taiwanese, while some also contain a component closest to Austro-Asiatic speakers.
doi:10.1038/ncomms5689
PMCID: PMC4143916  PMID: 25137359
5.  Genetic evidence supports linguistic affinity of Mlabri - a hunter-gatherer group in Thailand 
BMC Genetics  2010;11:18.
Background
The Mlabri are a group of nomadic hunter-gatherers inhabiting the rural highlands of Thailand. Little is known about the origins of the Mlabri and linguistic evidence suggests that the present-day Mlabri language most likely arose from Tin, a Khmuic language in the Austro-Asiatic language family. This study aims to examine whether the genetic affinity of the Mlabri is consistent with this linguistic relationship, and to further explore the origins of this enigmatic population.
Results
We conducted a genome-wide analysis of genetic variation using more than fifty thousand single nucleotide polymorphisms (SNPs) typed in thirteen population samples from Thailand, including the Mlabri, Htin and neighboring populations of the Northern Highlands, speaking Austro-Asiatic, Tai-Kadai and Hmong-Mien languages. The Mlabri population showed higher LD and lower haplotype diversity when compared with its neighboring populations. Both model-free and Bayesian model-based clustering analyses indicated a close genetic relationship between the Mlabri and the Htin, a group speaking a Tin language.
Conclusion
Our results strongly suggested that the Mlabri share more recent common ancestry with the Htin. We thus provided, to our knowledge, the first genetic evidence that supports the linguistic affinity of Mlabri, and this association between linguistic and genetic classifications could reflect the same past population processes.
doi:10.1186/1471-2156-11-18
PMCID: PMC2858090  PMID: 20302622
6.  An Updated Phylogeny of the Human Y-Chromosome Lineage O2a-M95 with Novel SNPs 
PLoS ONE  2014;9(6):e101020.
Though the Y-chromosome O2a-M95 lineage is one of the major haplogroups present in eastern Asian populations, especially among Austro-Asiatic speaking populations from Southwestern China and mainland Southeast Asia, to date its phylogeny lacks structure due to only one downstream SNP marker (M88) assigned to the lineage. A recent array-capture-based Y chromosome sequencing of Asian samples has yielded a variety of novel SNPs purportedly belonging to the O2a-M95 lineage, but their phylogenetic positions have yet to be determined. In this study, we sampled 646 unrelated males from 22 Austro-Asiatic speaking populations from Cambodia, Thailand and Southwestern China, and genotyped 12 SNP makers among the sampled populations, including 10 of the newly reported markers. Among the 646 males, 343 belonged to the O2a-M95 lineage, confirming the supposed dominance of this Y chromosome lineage in Austro-Asiatic speaking populations. We further characterized the phylogeny of O2a-M95 by defining 5 sub-branches: O2a1*-M95, O2a1a-F789, O2a1b*-F1252, O2a1b1*-M88 and O2a1b1a -F761. This updated phylogeny not only improves the resolution of this lineage, but also allows for greater tracing of the prehistory of human populations in eastern Asia and the Pacific, which may yield novel insights into the patterns of language diversification and population movement in these regions.
doi:10.1371/journal.pone.0101020
PMCID: PMC4074153  PMID: 24972021
7.  The earliest settlers' antiquity and evolutionary history of Indian populations: evidence from M2 mtDNA lineage 
Background
The "out of Africa" model postulating single "southern route" dispersal posits arrival of "Anatomically Modern Human" to Indian subcontinent around 66–70 thousand years before present (kyBP). However the contributions and legacy of these earliest settlers in contemporary Indian populations, owing to the complex past population dynamics and later migrations has been an issue of controversy. The high frequency of mitochondrial lineage "M2" consistent with its greater age and distribution suggests that it may represent the phylogenetic signature of earliest settlers. Accordingly, we attempted to re-evaluate the impact and contribution of earliest settlers in shaping the genetic diversity and structure of contemporary Indian populations; using our newly sequenced 72 and 4 published complete mitochondrial genomes of this lineage.
Results
The M2 lineage, harbouring two deep rooting subclades M2a and M2b encompasses approximately one tenth of the mtDNA pool of studied tribes. The phylogeographic spread and diversity indices of M2 and its subclades among the tribes of different geographic regions and linguistic phyla were investigated in detail. Further the reconstructed demographic history of M2 lineage as a surrogate of earliest settlers' component revealed that the demographic events with pronounced regional variations had played pivotal role in shaping the complex net of populations phylogenetic relationship in Indian subcontinent.
Conclusion
Our results suggest that tribes of southern and eastern region along with Dravidian and Austro-Asiatic speakers of central India are the modern representatives of earliest settlers of subcontinent. The Last Glacial Maximum aridity and post LGM population growth mechanised some sort of homogeneity and redistribution of earliest settlers' component in India. The demic diffusion of agriculture and associated technologies around 3 kyBP, which might have marginalized hunter-gatherer, is coincidental with the decline of earliest settlers' population during this period.
doi:10.1186/1471-2148-8-230
PMCID: PMC2528015  PMID: 18691441
8.  Deep Rooting In-Situ Expansion of mtDNA Haplogroup R8 in South Asia 
PLoS ONE  2009;4(8):e6545.
Background
The phylogeny of the indigenous Indian-specific mitochondrial DNA (mtDNA) haplogroups have been determined and refined in previous reports. Similar to mtDNA superhaplogroups M and N, a profusion of reports are also available for superhaplogroup R. However, there is a dearth of information on South Asian subhaplogroups in particular, including R8. Therefore, we ought to access the genealogy and pre-historic expansion of haplogroup R8 which is considered one of the autochthonous lineages of South Asia.
Methodology/Principal Findings
Upon screening the mtDNA of 5,836 individuals belonging to 104 distinct ethnic populations of the Indian subcontinent, we found 54 individuals with the HVS-I motif that defines the R8 haplogroup. Complete mtDNA sequencing of these 54 individuals revealed two deep-rooted subclades: R8a and R8b. Furthermore, these subclades split into several fine subclades. An isofrequency contour map detected the highest frequency of R8 in the state of Orissa. Spearman's rank correlation analysis suggests significant correlation of R8 occurrence with geography.
Conclusions/Significance
The coalescent age of newly-characterized subclades of R8, R8a (15.4±7.2 Kya) and R8b (25.7±10.2 Kya) indicates that the initial maternal colonization of this haplogroup occurred during the middle and upper Paleolithic period, roughly around 40 to 45 Kya. These results signify that the southern part of Orissa currently inhabited by Munda speakers is likely the origin of these autochthonous maternal deep-rooted haplogroups. Our high-resolution study on the genesis of R8 haplogroup provides ample evidence of its deep-rooted ancestry among the Orissa (Austro-Asiatic) tribes.
doi:10.1371/journal.pone.0006545
PMCID: PMC2718812  PMID: 19662095
9.  Migration of Chadic speaking pastoralists within Africa based on population structure of Chad Basin and phylogeography of mitochondrial L3f haplogroup 
Background
Chad Basin, lying within the bidirectional corridor of African Sahel, is one of the most populated places in Sub-Saharan Africa today. The origin of its settlement appears connected with Holocene climatic ameliorations (aquatic resources) that started ~10,000 years before present (YBP). Although both Nilo-Saharan and Niger-Congo language families are encountered here, the most diversified group is the Chadic branch belonging to the Afro-Asiatic language phylum. In this article, we investigate the proposed ancient migration of Chadic pastoralists from Eastern Africa based on linguistic data and test for genetic traces of this migration in extant Chadic speaking populations.
Results
We performed whole mitochondrial genome sequencing of 16 L3f haplotypes, focused on clade L3f3 that occurs almost exclusively in Chadic speaking people living in the Chad Basin. These data supported the reconstruction of a L3f phylogenetic tree and calculation of times to the most recent common ancestor for all internal clades. A date ~8,000 YBP was estimated for the L3f3 sub-haplogroup, which is in good agreement with the supposed migration of Chadic speaking pastoralists and their linguistic differentiation from other Afro-Asiatic groups of East Africa. As a whole, the Afro-Asiatic language family presents low population structure, as 92.4% of mtDNA variation is found within populations and only 3.4% of variation can be attributed to diversity among language branches. The Chadic speaking populations form a relatively homogenous cluster, exhibiting lower diversification than the other Afro-Asiatic branches (Berber, Semitic and Cushitic).
Conclusion
The results of our study support an East African origin of mitochondrial L3f3 clade that is present almost exclusively within Chadic speaking people living in Chad Basin. Whole genome sequence-based dates show that the ancestral haplogroup L3f must have emerged soon after the Out-of-Africa migration (around 57,100 ± 9,400 YBP), but the "Chadic" L3f3 clade has much less internal variation, suggesting an expansion during the Holocene period about 8,000 ± 2,500 YBP. This time period in the Chad Basin is known to have been particularly favourable for the expansion of pastoralists coming from northeastern Africa, as suggested by archaeological, linguistic and climatic data.
doi:10.1186/1471-2148-9-63
PMCID: PMC2680838  PMID: 19309521
10.  Human Migration through Bottlenecks from Southeast Asia into East Asia during Last Glacial Maximum Revealed by Y Chromosomes 
PLoS ONE  2011;6(8):e24282.
Molecular anthropological studies of the populations in and around East Asia have resulted in the discovery that most of the Y-chromosome lineages of East Asians came from Southeast Asia. However, very few Southeast Asian populations had been investigated, and therefore, little was known about the purported migrations from Southeast Asia into East Asia and their roles in shaping the genetic structure of East Asian populations. Here, we present the Y-chromosome data from 1,652 individuals belonging to 47 Mon-Khmer (MK) and Hmong-Mien (HM) speaking populations that are distributed primarily across Southeast Asia and extend into East Asia. Haplogroup O3a3b-M7, which appears mainly in MK and HM, indicates a strong tie between the two groups. The short tandem repeat network of O3a3b-M7 displayed a hierarchical expansion structure (annual ring shape), with MK haplotypes being located at the original point, and the HM and the Tibeto-Burman haplotypes distributed further away from core of the network. Moreover, the East Asian dominant haplogroup O3a3c1-M117 shows a network structure similar to that of O3a3b-M7. These patterns indicate an early unidirectional diffusion from Southeast Asia into East Asia, which might have resulted from the genetic drift of East Asian ancestors carrying these two haplogroups through many small bottle-necks formed by the complicated landscape between Southeast Asia and East Asia. The ages of O3a3b-M7 and O3a3c1-M117 were estimated to be approximately 19 thousand years, followed by the emergence of the ancestors of HM lineages out of MK and the unidirectional northward migrations into East Asia.
doi:10.1371/journal.pone.0024282
PMCID: PMC3164178  PMID: 21904623
11.  Ethnic Related Selection for an ADH Class I Variant within East Asia 
PLoS ONE  2008;3(4):e1881.
Background
The alcohol dehydrogenases (ADH) are widely studied enzymes and the evolution of the mammalian gene cluster encoding these enzymes is also well studied. Previous studies have shown that the ADH1B*47His allele at one of the seven genes in humans is associated with a decrease in the risk of alcoholism and the core molecular region with this allele has been selected for in some East Asian populations. As the frequency of ADH1B*47His is highest in East Asia, and very low in most of the rest of the world, we have undertaken more detailed investigation in this geographic region.
Methodology/Principal Findings
Here we report new data on 30 SNPs in the ADH7 and Class I ADH region in samples of 24 populations from China and Laos. These populations cover a wide geographic region and diverse ethnicities. Combined with our previously published East Asian data for these SNPs in 8 populations, we have typed populations from all of the 6 major linguistic phyla (Altaic including Korean-Japanese and inland Altaic, Sino-Tibetan, Hmong-Mien, Austro-Asiatic, Daic, and Austronesian). The ADH1B genotyping data are strongly related to ethnicity. Only some eastern ethnic phyla or subphyla (Korean-Japanese, Han Chinese, Hmong-Mien, Daic, and Austronesian) have a high frequency of ADH1B*47His. ADH1B haplotype data clustered the populations into linguistic subphyla, and divided the subphyla into eastern and western parts. In the Hmong-Mien and Altaic populations, the extended haplotype homozygosity (EHH) and relative EHH (REHH) tests for the ADH1B core were consistent with selection for the haplotype with derived SNP alleles. In the other ethnic phyla, the core showed only a weak signal of selection at best.
Conclusions/Significance
The selection distribution is more significantly correlated with the frequency of the derived ADH1B regulatory region polymorphism than the derived amino-acid altering allele ADH1B*47His. Thus, the real focus of selection may be the regulatory region. The obvious ethnicity-related distributions of ADH1B diversities suggest the existence of some culture-related selective forces that have acted on the ADH1B region.
doi:10.1371/journal.pone.0001881
PMCID: PMC2268739  PMID: 18382665
12.  Phylogenetic analysis, based on EPIYA repeats in the cagA gene of Indian Helicobacter pylori, and the implications of sequence variation in tyrosine phosphorylation motifs on determining the clinical outcome 
Genetics and Molecular Biology  2011;34(2):280-285.
The population of India harbors one of the world’s most highly diverse gene pools, owing to the influx of successive waves of immigrants over regular periods in time. Several phylogenetic studies involving mitochondrial DNA and Y chromosomal variation have demonstrated Europeans to have been the first settlers in India. Nevertheless, certain controversy exists, due to the support given to the thesis that colonization was by the Austro-Asiatic group, prior to the Europeans. Thus, the aim was to investigate pre-historic colonization of India by anatomically modern humans, using conserved stretches of five amino acid (EPIYA) sequences in the cagA gene of Helicobacter pylori. Simultaneously, the existence of a pathogenic relationship of tyrosine phosphorylation motifs (TPMs), in 32 H. pylori strains isolated from subjects with several forms of gastric diseases, was also explored. High resolution sequence analysis of the above described genes was performed. The nucleotide sequences obtained were translated into amino acids using MEGA (version 4.0) software for EPIYA. An MJ-Network was constructed for obtaining TPM haplotypes by using NETWORK (version 4.5) software. The findings of the study suggest that Indian H. pylori strains share a common ancestry with Europeans. No specific association of haplotypes with the outcome of disease was revealed through additional network analysis of TPMs.
doi:10.1590/S1415-47572011005000003
PMCID: PMC3115323  PMID: 21734830
Helicobacter pylori; EPIYA motifs; tyrosine phosphorylation motifs; haplotypes; anatomically modern humans
13.  The Effect of Rural-to-Urban Migration on Obesity and Diabetes in India: A Cross-Sectional Study 
PLoS Medicine  2010;7(4):e1000268.
Shah Ebrahim and colleagues examine the distribution of obesity, diabetes, and other cardiovascular risk factors among urban migrant factory workers in India, together with their rural siblings. The investigators identify patterns of change of cardiovascular risk factors associated with urban migration.
Background
Migration from rural areas of India contributes to urbanisation and may increase the risk of obesity and diabetes. We tested the hypotheses that rural-to-urban migrants have a higher prevalence of obesity and diabetes than rural nonmigrants, that migrants would have an intermediate prevalence of obesity and diabetes compared with life-long urban and rural dwellers, and that longer time since migration would be associated with a higher prevalence of obesity and of diabetes.
Methods and Findings
The place of origin of people working in factories in north, central, and south India was identified. Migrants of rural origin, their rural dwelling sibs, and those of urban origin together with their urban dwelling sibs were assessed by interview, examination, and fasting blood samples. Obesity, diabetes, and other cardiovascular risk factors were compared. A total of 6,510 participants (42% women) were recruited. Among urban, migrant, and rural men the age- and factory-adjusted percentages classified as obese (body mass index [BMI] >25 kg/m2) were 41.9% (95% confidence interval [CI] 39.1–44.7), 37.8% (95% CI 35.0–40.6), and 19.0% (95% CI 17.0–21.0), respectively, and as diabetic were 13.5% (95% CI 11.6–15.4), 14.3% (95% CI 12.2–16.4), and 6.2% (95% CI 5.0–7.4), respectively. Findings for women showed similar patterns. Rural men had lower blood pressure, lipids, and fasting blood glucose than urban and migrant men, whereas no differences were seen in women. Among migrant men, but not women, there was weak evidence for a lower prevalence of both diabetes and obesity among more recent (≤10 y) migrants.
Conclusions
Migration into urban areas is associated with increases in obesity, which drive other risk factor changes. Migrants have adopted modes of life that put them at similar risk to the urban population. Gender differences in some risk factors by place of origin are unexpected and require further exploration.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
India, like the rest of the world, is experiencing an epidemic of diabetes, a chronic disease characterized by dangerous levels of sugar in the blood that cause cardiovascular and kidney disease, which lower life expectancy. The prevalence of diabetes (the proportion of the population with diabetes) has been increasing steadily in India over recent decades, particularly in urban areas. In 1984, only 5% of adults living in the towns and cities of India had diabetes, but by 2004, 15% of adults in urban areas were affected by diabetes. In rural areas of India, diabetes is less common than in urban areas but even here, the prevalence of diabetes is now 6%. Obesity—too much body fat—is a major risk factor for diabetes and, in parallel with the greater increase in diabetes in urban India compared to rural India, there has been a greater increase in obesity in urban areas than in rural areas.
Why Was This Study Done?
Experts think that the increasing prevalence of obesity and diabetes in India (and in other developing countries) is caused in part by increased consumption of saturated fats and sugars and by reduced physical activity, and that these changes are related to urbanization—urban expansion into the countryside and migration from rural to urban areas. If living in an urban setting is a major determinant of obesity and diabetes risk, then people migrating into urban areas should acquire the high risk of the urban population for these two conditions. In this cross-sectional study (a study in which participants are studied at a single time point), the researchers investigate whether rural to urban migrants in India have a higher prevalence of obesity and diabetes than rural nonmigrants. They also ask whether migrants have a prevalence of obesity and diabetes intermediate between that of life-long urban and rural dwellers and whether a longer time since migration is associated with a higher prevalence of obesity and diabetes.
What Did the Researchers Do and Find?
The researchers recruited rural-urban migrants working in four Indian factories in north, central, and south regions and their spouses (if they were living in the same town) into their study. Each migrant worker and spouse asked one nonmigrant brother or sister (sibling) still living in their place of origin to join the study. The researchers also enrolled nonmigrant factory workers and their urban siblings into the study. All the participants (more than 6,500 in total) answered questions about their diet and physical activity and had their fasting blood sugar and their body mass index (BMI; weight in kg divided by height in meters squared) measured; participants with a fasting blood sugar of more than 7.0 nmol/l or a BMI of more than 25 kg/m2 were classified as diabetic or obese, respectively. 41.9% and 37.8% of the urban and migrant men, respectively, but only 19.0% of the rural men were obese. Similarly, 13.5% and 14.3% of the urban and migrant men, respectively, but only 6.2% of the rural men had diabetes. Patterns of obesity and diabetes among the women participants were similar. Finally, although the prevalence of diabetes and obesity was lower in the most recent male migrants than in those who had moved more than 10 years previously, this difference was small and not seen in women migrants.
What Do These Findings Mean?
These findings show that rural-urban migration in India is associated with rapid increases in obesity and in diabetes. They also show that the migrants have adopted modes of life (for example, reduced physical activity) that put them at a similar risk for obesity and diabetes as the urban population. The findings do not show, however, that migrants have an intermediate prevalence of obesity and diabetes compared to urban and rural dwellers and provide only weak support for the idea that a longer time since migration is associated with a higher risk of obesity and diabetes. Although the study's cross-sectional design means that the researchers could not investigate how risk factors for diabetes evolve over time, these findings suggest that urbanization is helping to drive the diabetes epidemic in India. Thus, targeting migrants and their families for health promotion activities and for treatment of risk factors for obesity and diabetes might help to slow the progress of the epidemic.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000268.
The International Diabetes Federation provides information about all aspects of diabetes, including information on diabetes in Southeast Asia (in English, French, and Spanish)
DiabetesIndia.com provides information on the Indian Task Forces on diabetes care in India
Diabetes Foundation (India) has an international collaborative research focus and provides information about health promotion for diabetes; it has also produced consensus guidelines on dietary change for prevention of diabetes in India
The US National Diabetes Information Clearinghouse provides detailed information about diabetes for patients, health care professionals, and the general public (in English and Spanish)
MedlinePlus provides links to further resources and advice about diabetes (in English and Spanish)
doi:10.1371/journal.pmed.1000268
PMCID: PMC2860494  PMID: 20436961
14.  Genetic Structure of Tibeto-Burman Populations of Bangladesh: Evaluating the Gene Flow along the Sides of Bay-of-Bengal 
PLoS ONE  2013;8(10):e75064.
Human settlement and migrations along sides of Bay-of-Bengal have played a vital role in shaping the genetic landscape of Bangladesh, Eastern India and Southeast Asia. Bangladesh and Northeast India form the vital land bridge between the South and Southeast Asia. To reconstruct the population history of this region and to see whether this diverse region geographically acted as a corridor or barrier for human interaction between South Asia and Southeast Asia, we, for the first time analyzed high resolution uniparental (mtDNA and Y chromosome) and biparental autosomal genetic markers among aboriginal Bangladesh tribes currently speaking Tibeto-Burman language. All the three studied populations; Chakma, Marma and Tripura from Bangladesh showed strikingly high homogeneity among themselves and strong affinities to Northeast Indian Tibeto-Burman groups. However, they show substantially higher molecular diversity than Northeast Indian populations. Unlike Austroasiatic (Munda) speakers of India, we observed equal role of both males and females in shaping the Tibeto-Burman expansion in Southern Asia. Moreover, it is noteworthy that in admixture proportion, TB populations of Bangladesh carry substantially higher mainland Indian ancestry component than Northeast Indian Tibeto-Burmans. Largely similar expansion ages of two major paternal haplogroups (O2a and O3a3c), suggested that they arose before the differentiation of any language group and approximately at the same time. Contrary to the scenario proposed for colonization of Northeast India as male founder effect that occurred within the past 4,000 years, we suggest a significantly deep colonization of this region. Overall, our extensive analysis revealed that the population history of South Asian Tibeto-Burman speakers is more complex than it was suggested before.
doi:10.1371/journal.pone.0075064
PMCID: PMC3794028  PMID: 24130682
15.  Paternal genetic affinity between western Austronesians and Daic populations 
Background
Austronesian is a linguistic family spread in most areas of the Southeast Asia, the Pacific Ocean, and the Indian Ocean. Based on their linguistic similarity, this linguistic family included Malayo-Polynesians and Taiwan aborigines. The linguistic similarity also led to the controversial hypothesis that Taiwan is the homeland of all the Malayo-Polynesians, a hypothesis that has been debated by ethnologists, linguists, archaeologists, and geneticists. It is well accepted that the Eastern Austronesians (Micronesians and Polynesians) derived from the Western Austronesians (Island Southeast Asians and Taiwanese), and that the Daic populations on the mainland are supposed to be the headstream of all the Austronesian populations.
Results
In this report, we studied 20 SNPs and 7 STRs in the non-recombining region of the 1,509 Y chromosomes from 30 China Daic populations, 23 Indonesian and Vietnam Malayo-Polynesian populations, and 11 Taiwan aboriginal populations. These three groups show many resemblances in paternal lineages. Admixture analyses demonstrated that the Daic populations are hardly influenced by Han Chinese genetically, and that they make up the largest proportion of Indonesians. Most of the population samples contain a high frequency of haplogroup O1a-M119, which is nearly absent in other ethnic families. The STR network of haplogroup O1a* illustrated that Indonesian lineages did not derive from Taiwan aborigines as linguistic studies suggest, but from Daic populations.
Conclusion
We show that, in contrast to the Taiwan homeland hypothesis, the Island Southeast Asians do not have a Taiwan origin based on their paternal lineages. Furthermore, we show that both Taiwan aborigines and Indonesians likely derived from the Daic populations based on their paternal lineages. These two populations seem to have evolved independently of each other. Our results indicate that a super-phylum, which includes Taiwan aborigines, Daic, and Malayo-Polynesians, is genetically educible.
doi:10.1186/1471-2148-8-146
PMCID: PMC2408594  PMID: 18482451
16.  Multiple Origins of Plasmodium falciparum Dihydropteroate Synthetase Mutant Alleles Associated with Sulfadoxine Resistance in India▿† 
With the spread of chloroquine (CQ)-resistant malaria in India, sulfadoxine-pyrimethamine (SP) alone or in combination with artesunate is used as an alternative antimalarial drug. Due to continuous drug pressure, the Plasmodium falciparum parasite is exhibiting resistance to antifolates because of mutations in candidate genes dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps). Our earlier study on flanking microsatellite markers of dhfr mutant alleles from India had shown a single origin of the pyrimethamine resistance and some minor haplotypes which shared haplotypes with Southeast Asian (Thailand) strains. In the present study, we have analyzed 193 of these Indian P. falciparum isolates for 15 microsatellite loci around dhps to investigate the genetic lineages of the mutant dhps alleles in different parts of the country. Eighty-one of these samples had mutant dhps alleles, of which 62 were from Andaman and Nicobar Islands and the remaining 19 were from mainland India. Of 112 isolates with a wild-type dhps allele, 109 were from mainland India and only 3 were from Andaman and Nicobar Islands. Consistent with the model of selection, the mean expected heterozygosity (He) around mutant dhps alleles (He = 0.55; n = 81) associated with sulfadoxine resistance was lower (P ≤ 0.05) than the mean He around the wild-type dhps allele (He = 0.80; n = 112). There was more genetic diversity in flanking microsatellites of dhps than dhfr among these isolates, which confirms the assertion that dhps mutations are at a very early stage of fixation in the parasite population. Microsatellite haplotypes around various mutant dhps alleles suggest that the resistant dhps alleles have multiple independent origins in India, especially in Andaman and Nicobar Islands. Determining the genetic lineages of the resistant dhps alleles on Andaman and Nicobar Islands and mainland India is significant, given the role of Asia in the intercontinental spread of chloroquine- and pyrimethamine-resistant parasites in the past.
doi:10.1128/AAC.01151-10
PMCID: PMC3101454  PMID: 21422213
17.  Unexpected relationships of substructured populations in Chinese Locusta migratoria 
Background
Highly migratory species are usually expected to have minimal population substructure because strong gene flow has the effect of homogenizing genetic variation over geographical populations, counteracting random drift, selection and mutation. The migratory locust Locusta migratoria belongs to a monotypic genus, and is an infamous pest insect with exceptional migratory ability – with dispersal documented over a thousand kilometers. Its distributional area is greater than that of any other locust or grasshopper, occurring in practically all the temperate and tropical regions of the eastern hemisphere. Consequently, minimal population substructuring is expected. However, in marked contrast to its high dispersal ability, three geographical subspecies have been distinguished in China, with more than nine being biologically and morphologically identified in the world. Such subspecies status has been under considerable debate.
Results
By multilocus microsatellite genotyping analysis, we provide ample genetic evidence for strong population substructure in this highly migratory insect that conforms to geography. More importantly, our genetic data identified an unexpected cryptic subdivision and demonstrated a strong affiliation of the East China locusts to those in Northwest/Northern China. The migratory locusts in China formed three distinct groups, viz. (1) the Tibetan group, comprising locusts from Tibet and nearby West China high mountain regions; this is congruent with the previously recognized Tibetan subspecies, L. m. tibetensis; (2) the South China group, containing locusts from the Hainan islands; this corresponds to the Southeast Asia oriental tropical subspecies L. m. manilensis; (3) the North China group, including locusts from the Northwest and Northern China (the Asiatic subspecies L. m. migratoria), Central China and Eastern China regions. Therefore, the traditional concept on Locusta subspecies status established from Uvarov in 1930s needs to be revised. The three groups of locusts probably have separate evolutionary histories that were most likely linked to Quaternary glaciations events, and derived from different ancestral refugial populations following postglacial expansions.
Conclusion
The migratory locust populations in China have differentiated into three genetically distinct groups despite high dispersal capability. While this clarified long-standing suspicions on the subspecific diversification of this species in China, it also revealed that the locusts in the vast area of East China are not the oriental subspecies but the Asiatic subspecies, an unexpected substructuring pattern. The distribution pattern of the three locust groups in China may be primarily defined by adaptive differentiation coupled to Quaternary glaciations events. Our results are of general significance both for locust research and for phylogeographical study of flora and fauna in China, illustrating the potential importance of phylogeographical history in shaping the divergence and distribution patterns of widespread species with strong dispersal ability.
doi:10.1186/1471-2148-9-144
PMCID: PMC2718889  PMID: 19558707
18.  Cross Neutralization of Afro-Asian Cobra and Asian Krait Venoms by a Thai Polyvalent Snake Antivenom (Neuro Polyvalent Snake Antivenom) 
Background
Snake envenomation is a serious public health threat in the rural areas of Asian and African countries. To date, the only proven treatment for snake envenomation is antivenom therapy. Cross-neutralization of heterologous venoms by antivenom raised against venoms of closely related species has been reported. The present study examined the cross neutralizing potential of a newly developed polyvalent antivenom, termed Neuro Polyvalent Snake Antivenom (NPAV). NPAV was produced by immunization against 4 Thai elapid venoms.
Principal Findings
In vitro neutralization study using mice showed that NPAV was able to neutralize effectively the lethality of venoms of most common Asiatic cobras (Naja spp.), Ophiophagus hannah and kraits (Bungarus spp.) from Southeast Asia, but only moderately to weakly effective against venoms of Naja from India subcontinent and Africa. Studies with several venoms showed that the in vivo neutralization potency of the NPAV was comparable to the in vitro neutralization potency. NPAV could also fully protect against N. sputatrix venom-induced cardio-respiratory depressant and neuromuscular blocking effects in anesthetized rats, demonstrating that the NPAV could neutralize most of the major lethal toxins in the Naja venom.
Conclusions/Significance
The newly developed polyvalent antivenom NPAV may find potential application in the treatment of elapid bites in Southeast Asia, especially Malaysia, a neighboring nation of Thailand. Nevertheless, the applicability of NPAV in the treatment of cobra and krait envenomations in Southeast Asian victims needs to be confirmed by clinical trials. The cross-neutralization results may contribute to the design of broad-spectrum polyvalent antivenom.
Author Summary
Snake envenomation is a serious public health threat in the rural areas of Asia and Africa. To date, the only proven treatment for snake envenomation is antivenom therapy. Owing to the difficulties in the diagnosis of the biting species, there is a need to develop polyvalent antivenoms that could cross-neutralize venoms of medically important venomous snakes in the various regions. Recently, Thai Red Cross Society from Thailand has developed a new polyvalent antivenom for treatment of cobra and krait venoms. The polyvalent antivenom, termed “Neuro Polyvalent Snake Antivenom (NPAV),” is raised against venoms of two Thai cobras and two Thai kraits. Our results indicated that the polyvalent antivenom can effectively neutralize venoms from many Southeast Asian cobras, kraits and king cobra but is less effective against Indian cobra venoms. Studies using anesthetized rats showed that NPAV can effectively protect against cobra venom-induced cardio-respiratory depressant and neuromuscular blocking effects, confirming that the antivenom can effectively neutralize the major lethal toxins of common cobra venoms. This new antivenom may find potential application in the treatment of elapid bites in Southeast Asia, especially Malaysia, a neighboring nation of Thailand.
doi:10.1371/journal.pntd.0001672
PMCID: PMC3367981  PMID: 22679522
19.  Human JCV Infections as a Bio-Anthropological Marker of the Formation of Brazilian Amazonian Populations 
PLoS ONE  2012;7(10):e46523.
JC polyomavirus (JCV) is a member of the Polyomaviridae family. It presents a tropism to kidney cells, and the infection occurs in a variety of human population groups of different ethnic background. The present study investigated the prevalence of JCV infection among human populations from the Brazilian Amazon region, and describes the molecular and phylogenetic features of the virus. Urine samples from two urban groups of Belém (healthy subjects), one Brazilian Afro-descendant “quilombo” from the Rio Trombetas region, and native Indians from the Wai-Wai, Urubu-Kaapor, Tembé, Assurini, Arara do Laranjal, Aukre, Parakanã, Surui and Munduruku villages were investigated for the presence of the virus by amplifying VP1 (230 bp) and IG (610 bp) regions using a polymerase chain reaction. Nucleotide sequences (440 nucleotides, nt) from 48 samples were submitted to phylogenetic analysis. The results confirmed the occurrence of types A (subtype EU), B (subtypes Af-2, African and MY, Asiatic) and C (subtype Af-1) among healthy subjects; type B, subtypes Af-2 and MY, among the Afro-Brazilians; and type B, subtype MY, within the Surui Indians. An unexpected result was the detection of another polyomavirus, the BKV, among Afro-descendants. The present study shows, for the first time, the occurrence of JC and BK polyomaviruses infecting humans from the Brazilian Amazon region. The results show a large genetic variability of strains circulating in the region, infecting a large group of individuals. The presence of European, Asiatic and African subtypes associated to the ethnic origin of the population samples investigated herein, highlights the idea that JCV is a fairly good marker for studying the early migration of human populations, reflecting their early and late history. Furthermore, the identification of the specific mutations associated to the virus subtypes, suggests that these mutations have occurred after the entrance of the virus in the Amazon region of Brazil.
doi:10.1371/journal.pone.0046523
PMCID: PMC3470572  PMID: 23071582
20.  A Mitochondrial Phylogeny and Biogeographical Scenario for Asiatic Water Shrews of the Genus Chimarrogale: Implications for Taxonomy and Low-Latitude Migration Routes 
PLoS ONE  2013;8(10):e77156.
The six species and three subspecies in the genus Chimarrogale (Soricomorpha: Soricidae) are commonly referred to as Asiatic water shrews. The Chimarrogale are the most widely distributed group of Nectogaline shrews, extending throughout the Oriental region and Japan. Because of the limited numbers of specimens available for study, the phylogenetic relationships and biogeographical history of this genus have not been comprehensively discussed. We used mitochondrial cytochrome b gene sequences to estimate phylogenetic relationships and divergence times among four Chimarrogale species, including all three subspecies of Chimarrogale himalayica. We also conducted a species delimitation analysis and tested two alternative migration scenarios in Asia through species distribution modeling and a reconstruction of the ancestral distribution. Here, we present the first proposed hypothesis regarding the Asiatic water shrew phylogeny and reveal ten putative species within the four recognized species. Distinct phylogenetic statuses of Chimarrogale phaeura, Chimarrogale platycephala, and Chimarrogale styani were confirmed. Chimarrogale himalayica was strongly supported as paraphyletic. We suggest that three subspecies of Chimarrogale himalayica should be reconsidered as distinct species. However, these suggestions must be considered with caution because only a single locus of a mtDNA gene was used. Four additional putative species, possibly distributed in central southwestern China and Taiwan, are currently undescribed; therefore, comprehensive morphological analyses are warranted to test their taxonomic statuses. The estimated molecular divergence times indicated that rapid speciation occurred during the early Pliocene, and current distribution patterns may have been affected by global cooling during the Pliocene/Pleistocene boundary. Reconstruction of the ancestral distribution and species distribution modeling for Asiatic water shrews revealed a low-latitude migration route over which ancestral Chimarrogale migrated from Europe via Central Asia to their current distribution. Our results demonstrated that Asiatic water shrews could have evolved throughout the low-latitude migration route from Europe to East and Southeast Asia.
doi:10.1371/journal.pone.0077156
PMCID: PMC3790732  PMID: 24124605
21.  Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans 
BMC Genetics  2004;5:26.
Background
Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia.
Results
Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades.
Conclusions
Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent.
doi:10.1186/1471-2156-5-26
PMCID: PMC516768  PMID: 15339343
22.  Population Genetic Structure in Indian Austroasiatic Speakers: The Role of Landscape Barriers and Sex-Specific Admixture 
Molecular biology and evolution  2010;28(2):1013-1024.
The geographic origin and time of dispersal of Austroasiatic (AA) speakers, presently settled in south and southeast Asia, remains disputed. Two rival hypotheses, both assuming a demic component to the language dispersal, have been proposed. The first of these places the origin of Austroasiatic speakers in southeast Asia with a later dispersal to south Asia during the Neolithic, whereas the second hypothesis advocates pre-Neolithic origins and dispersal of this language family from south Asia. To test the two alternative models, this study combines the analysis of uniparentally inherited markers with 610,000 common single nucleotide polymorphism loci from the nuclear genome. Indian AA speakers have high frequencies of Y chromosome haplogroup O2a; our results show that this haplogroup has significantly higher diversity and coalescent time (17–28 thousand years ago) in southeast Asia, strongly supporting the first of the two hypotheses. Nevertheless, the results of principal component and “structure-like” analyses on autosomal loci also show that the population history of AA speakers in India is more complex, being characterized by two ancestral components—one represented in the pattern of Y chromosomal and EDAR results and the other by mitochondrial DNA diversity and genomic structure. We propose that AA speakers in India today are derived from dispersal from southeast Asia, followed by extensive sex-specific admixture with local Indian populations.
doi:10.1093/molbev/msq288
PMCID: PMC3355372  PMID: 20978040
Austroasiatic; mtDNA; Y chromosome; autosomes; admixture
23.  A novel subgroup Q5 of human Y-chromosomal haplogroup Q in India 
Background
Y-chromosomal haplogroup (Y-HG) Q is suggested to originate in Asia and represent recent founder paternal Native American radiation into the Americas. This group is delineated into Q1, Q2 and Q3 subgroups defined by biallelic markers M120, M25/M143 and M3, respectively. Recently, a novel subgroup Q4 has been identified which is defined by bi-allelic marker M346, representing HG Q (0.41%, 3/728) in Indian population. With scanty details of HG Q in Asia, especially India, it was pertinent to explore the status of the Y-HG Q in Indian population to gather an insight to determine the extent of diversity within this region.
Results
We observed 15/630 (2.38%) Y-HG Q individuals in India with an ancestral state at M120, M25, M3 and M346 markers, indicating an absence of already known Q1, Q2, Q3 and Q4 sub-haplogroups. Interestingly, we further observed a novel 4 bp deletion/insertion polymorphism (ss4 bp, rs41352448) at 72,314 position of human arylsulfatase D pseudogene, defining a novel sub-lineage Q5 (in 5/15 individuals, i.e., 33.3 % of the observed Y-HG Q) with distributions independent of the social, cultural, linguistic and geographical affiliations in India.
Conclusion
The study adds another sublineage Q5 in the already existing arrangement of Y-HG Q in literature. It was quite interesting to observe an ancestral state Q* and a novel sub-branch Q5, not reported elsewhere, in Indian subcontinent, though in low frequency. A novel subgroup Q4 was identified recently which is also restricted to Indian subcontinent. The most plausible explanation for these observations could be an ancestral migration of individuals bearing ancestral lineage Q* to Indian subcontinent followed by an autochthonous differentiation to Q4 and Q5 sublineages later on. However, other explanations of, either the presence of both the sub haplogroups (Q4 and Q5) in ancestral migrants or recent migrations from central Asia, cannot be ruled out till the distribution and diversity of these subgroups is explored extensively in Central Asia and other regions.
doi:10.1186/1471-2148-7-232
PMCID: PMC2258157  PMID: 18021436
24.  Genetic affinities among the lower castes and tribal groups of India: inference from Y chromosome and mitochondrial DNA 
BMC Genetics  2006;7:42.
Background
India is a country with enormous social and cultural diversity due to its positioning on the crossroads of many historic and pre-historic human migrations. The hierarchical caste system in the Hindu society dominates the social structure of the Indian populations. The origin of the caste system in India is a matter of debate with many linguists and anthropologists suggesting that it began with the arrival of Indo-European speakers from Central Asia about 3500 years ago. Previous genetic studies based on Indian populations failed to achieve a consensus in this regard. We analysed the Y-chromosome and mitochondrial DNA of three tribal populations of southern India, compared the results with available data from the Indian subcontinent and tried to reconstruct the evolutionary history of Indian caste and tribal populations.
Results
No significant difference was observed in the mitochondrial DNA between Indian tribal and caste populations, except for the presence of a higher frequency of west Eurasian-specific haplogroups in the higher castes, mostly in the north western part of India. On the other hand, the study of the Indian Y lineages revealed distinct distribution patterns among caste and tribal populations. The paternal lineages of Indian lower castes showed significantly closer affinity to the tribal populations than to the upper castes. The frequencies of deep-rooted Y haplogroups such as M89, M52, and M95 were higher in the lower castes and tribes, compared to the upper castes.
Conclusion
The present study suggests that the vast majority (>98%) of the Indian maternal gene pool, consisting of Indio-European and Dravidian speakers, is genetically more or less uniform. Invasions after the late Pleistocene settlement might have been mostly male-mediated. However, Y-SNP data provides compelling genetic evidence for a tribal origin of the lower caste populations in the subcontinent. Lower caste groups might have originated with the hierarchical divisions that arose within the tribal groups with the spread of Neolithic agriculturalists, much earlier than the arrival of Aryan speakers. The Indo-Europeans established themselves as upper castes among this already developed caste-like class structure within the tribes.
doi:10.1186/1471-2156-7-42
PMCID: PMC1569435  PMID: 16893451
25.  Indian Ocean Crossroads: Human Genetic Origin and Population Structure in the Maldives 
The Maldives are an 850 km-long string of atolls located centrally in the northern Indian Ocean basin. Because of this geographic situation, the present-day Maldivian population has potential for uncovering genetic signatures of historic migration events in the region. We therefore studied autosomal DNA-, mitochondrial DNA-, and Y-chromosomal DNA markers in a representative sample of 141 unrelated Maldivians, with 119 from six major settlements. We found a total of 63 different mtDNA haplotypes that could be allocated to 29 mtDNA haplogroups, mostly within the M, R, and U clades. We found 66 different Y-STR haplotypes in 10 Y-chromosome haplogroups, predominantly H1, J2, L, R1a1a, and R2. Parental admixture analysis for mtDNA- and Y-haplogroup data indicates a strong genetic link between the Maldive Islands and mainland South Asia, and excludes significant gene flow from Southeast Asia. Paternal admixture from West Asia is detected, but cannot be distinguished from admixture from South Asia. Maternal admixture from West Asia is excluded. Within the Maldives, we find a subtle genetic substructure in all marker systems that is not directly related to geographic distance or linguistic dialect. We found reduced Y-STR diversity and reduced male-mediated gene flow between atolls, suggesting independent male founder effects for each atoll. Detected reduced female-mediated gene flow between atolls confirms a Maldives-specific history of matrilocality. In conclusion, our new genetic data agree with the commonly reported Maldivian ancestry in South Asia, but furthermore suggest multiple, independent immigration events and asymmetrical migration of females and males across the archipelago. Am J Phys Anthropol 151:58–67, 2013. © 2013 Wiley Periodicals, Inc.
doi:10.1002/ajpa.22256
PMCID: PMC3652038  PMID: 23526367
Y chromosome; mitochondrial DNA; migration; Indo-Aryan languages; South Asia

Results 1-25 (474066)