PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1076448)

Clipboard (0)
None

Related Articles

1.  Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10 
Annals of the Rheumatic Diseases  2002;61(11):975-980.
Background: Matrix metalloproteinases (MMPs) have a pivotal role in the destruction of cartilage in rheumatoid arthritis (RA), which is mediated by the fibroblast-like synoviocytes (FLS).
Objective: To examine the in vitro invasiveness of synoviocytes obtained from inflamed joints of patients with arthritis in relation to the expression of MMP 1–14, 17, 19, cathepsin-K, the tissue inhibitors of matrix metalloproteinases TIMP-1 and TIMP-2 by FLS.
Methods: FLS were derived from 56 patients (30 with RA, 17 with osteoarthritis (OA), and nine with avascular necrosis (AVN)). Invasive growth of FLS through an artificial matrix (Matrigel) was measured in a transwell system. The number of cells that migrated through the matrix were counted. Proliferation rate was determined by counting the FLS after seven days of culturing. Expression of MMPs, cathepsin-K and TIMPs was investigated with reverse transcriptase-polymerase chain reaction and related to the expression of a household gene, ß-actin.
Results: FLS from RA showed greater invasive growth than FLS from OA and AVN. The median number of cells that grew through the matrix membrane was 4788 for RA, significantly higher than the number for OA, 1875 (p<0.001) and for AVN, 1530 (p=0.014). The median rate of proliferation of RA FLS was 0.27 per day compared with OA 0.22 per day (p= 0.012) and AVN 0.25 per day, but there was no correlation between the rate of proliferation and invasive growth in vitro. FLS from RA and OA that expressed MMP-1, MMP-3, or MMP-10 were significantly more invasive (median number of invasive cells: 3835, 4248, 4990, respectively) than cells that did not express these MMPs (1605, p=0.03; 1970, p=0.004; 2360, p=0.012, respectively). There was also a significant relationship between the expression of MMP-1 and MMP-9 and the diagnosis RA (both p=0.013). The expression levels of mRNA for MMP-1 and MMP-2 correlated with the protein levels produced by the synoviocytes as measured by an enzyme linked immunosorbent assay (ELISA).
Conclusion: FLS of RA invade more aggressively in a Matrigel matrix than OA and AVN FLS; this is not because of a higher rate of proliferation of RA FLS. The significant correlation between the expression of MMP-1, MMP-3, and MMP-10 and invasive growth in a Matrigel transwell system suggests that these MMPs play a part in the invasive growth of FLS obtained from patients with RA.
doi:10.1136/ard.61.11.975
PMCID: PMC1753950  PMID: 12379519
2.  The Ras guanine nucleotide exchange factor RasGRF1 promotes matrix metalloproteinase-3 production in rheumatoid arthritis synovial tissue 
Arthritis Research & Therapy  2009;11(4):R121.
Introduction
Fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients share many similarities with transformed cancer cells, including spontaneous production of matrix metalloproteinases (MMPs). Altered or chronic activation of proto-oncogenic Ras family GTPases is thought to contribute to inflammation and joint destruction in RA, and abrogation of Ras family signaling is therapeutic in animal models of RA. Recently, expression and post-translational modification of Ras guanine nucleotide releasing factor 1 (RasGRF1) was found to contribute to spontaneous MMP production in melanoma cancer cells. Here, we examine the potential relationship between RasGRF1 expression and MMP production in RA, reactive arthritis, and inflammatory osteoarthritis synovial tissue and FLS.
Methods
Expression of RasGRF1, MMP-1, MMP-3, and IL-6 was detected in synovial tissue by immunohistochemistry and stained sections were evaluated by digital image analysis. Expression of RasGRF1 in FLS and synovial tissue was also assessed by immunoblotting. Double staining was performed to detect proteins in specific cell populations, and cells producing MMP-1 and MMP-3. RasGRF1 expression was manipulated in RA FLS by cDNA transfection and gene silencing, and effects on MMP-1, TIMP-1, MMP-3, IL-6, and IL-8 production measured by ELISA.
Results
Expression of RasGRF1 was significantly enhanced in RA synovial tissue, and detected in FLS and synovial macrophages in situ. In cultured FLS and synovial biopsies, RasGRF1 was detected by immunoblotting as a truncated fragment lacking its negative regulatory domain. Production of MMP-1 and MMP-3 in RA but not non-RA synovial tissue positively correlated with expression of RasGRF1 and co-localized in cells expressing RasGRF1. RasGRF1 overexpression in FLS induced production of MMP-3, and RasGRF1 silencing inhibited spontaneous MMP-3 production.
Conclusions
Enhanced expression and post-translational modification of RasGRF1 contributes to MMP-3 production in RA synovial tissue and the semi-transformed phenotype of RA FLS.
doi:10.1186/ar2785
PMCID: PMC2745805  PMID: 19678938
3.  The Arthritis Severity Locus Cia5d Is a Novel Genetic Regulator of the Invasive Properties of Synovial Fibroblasts 
Arthritis and rheumatism  2008;58(8):2296-2306.
Objective
The synovial fibroblast, or fibroblast-like synoviocyte (FLS), has a central role in pannus invasion and destruction of cartilage and bone in rheumatoid arthritis (RA). However, regulation of the FLS remains incompletely understood. The aim of this study was to determine whether the invasive properties of FLS are genetically regulated by arthritis severity loci.
Methods
DA rats (arthritis susceptible) and rat strains congenic for arthritis-protective intervals were studied. Primary FLS cell lines were generated from each strain and used in a well-established FLS invasion model through a collagen-rich barrier. Cells or culture supernatants were analyzed for gene expression, activity of different matrix metalloproteinases (MMPs), cytoskeleton integrity, and cell proliferation.
Results
The median number of FLS from DA.F344(Cia5d) rats that invaded through the collagen-rich barrier was reduced 86.5% compared with the median number of invading FLS from DA rats. Histologic examination showed that DA.F344(Cia5d) rats preserved a normal joint without pannus, hyperplasia, or erosions. FLS from DA.F344(Cia5d) rats produced significantly lower levels of active MMP-2 compared with FLS from DA rats, but the levels of proMMP-2 and MMP-2 messenger RNA in DA.F344(Cia5d) rats were similar to those in DA rats. Treatment of FLS from DA rats with an MMP-2 inhibitor reduced cell invasion to a level similar to that in DA.F344(Cia5d) rats, demonstrating that MMP-2 activity accounted for the difference between FLS from these 2 strains. Analysis of MMP-2–activating pathways revealed increased levels of soluble membrane type 1 (MT1)–MMP in DA rats compared with DA.F344(Cia5d) rats.
Conclusion
These data represent the first evidence for a genetic component in the regulation of FLS invasion. A gene located within the Cia5d interval accounts for this effect and operates via the regulation of soluble MT1-MMP production and MMP-2 activation. These observations suggest novel potential pathways for prognostication and therapy.
doi:10.1002/art.23610
PMCID: PMC2714698  PMID: 18668563
4.  Analysis of the cell infiltrate and expression of matrix metalloproteinases and granzyme B in paired synovial biopsy specimens from the cartilage-pannus junction in patients with RA 
Annals of the Rheumatic Diseases  2001;60(6):561-565.
OBJECTIVES—Examination of synovial tissue (ST) obtained at surgery because of end stage destructive rheumatoid arthritis (RA) showed that macrophages and fibroblasts are the major cell types at the cartilage-pannus junction (CPJ). This study aimed at defining the cell infiltrate and mediators of joint destruction in ST selected at arthroscopy from the CPJ in patients with RA who did not require joint surgery.
METHODS—Paired synovial biopsy specimens were obtained at arthroscopy from ST adjacent to the CPJ and the suprapatellar pouch from the knee joints of 17 patients with RA. Immunohistological analysis was performed using monoclonal antibodies to detect T cells, B cells, plasma cells, macrophages, fibroblast-like synoviocytes, mast cells, and granzyme B+ cytotoxic cells as well as the expression of metalloproteinase (MMP)-1, MMP-3, and MMP-13. The sections were evaluated by computer assisted image analysis and semiquantitative analysis.
RESULTS—The cell infiltrate comprised mainly T cells, macrophages, and plasma cells. The ST was also infiltrated by the other cell types, but at lower numbers. Expression of MMPs was abundant, especially MMP-3. The features of ST at the CPJ were generally similar to those at the suprapatellar pouch.
CONCLUSIONS—The synovium at the CPJ in patients with RA who did not require joint surgery exhibits, in general, the same type of cell infiltrate and expression of MMPs and granzymes as ST from the suprapatellar pouch. The pathological changes that have been described at the CPJ in patients with RA with end stage, destructive disease may well reflect the transition to a process in which macrophages, fibroblast-like synoviocytes, and other cell types become increasingly important.


doi:10.1136/ard.60.6.561
PMCID: PMC1753677  PMID: 11350843
5.  Analysis of the cell infiltrate and expression of proinflammatory cytokines and matrix metalloproteinases in arthroscopic synovial biopsies: comparison with synovial samples from patients with end stage, destructive rheumatoid arthritis 
Annals of the Rheumatic Diseases  2003;62(7):635-638.
Background: Synovial tissue (ST) from end stage destructive rheumatoid arthritis (RA) and arthroscopic biopsies obtained during active inflammation might exhibit different characteristics.
Objective: To define the cell infiltrate and the expression of proinflammatory cytokines, angiogenic factors, and matrix metalloproteinases (MMPs) in ST selected at arthroscopy compared with that from end stage RA.
Methods: Synovial biopsy specimens were obtained from the actively inflamed knee joints of 13 patients with chronic RA by arthroscopy and compared with ST from 10 patients with end stage, destructive RA. Immunohistological analysis was performed to detect T cells, plasma cells, macrophages, fibroblast-like synoviocytes (FLS), and the expression of interleukin (IL)1ß, IL6, tumour necrosis factor α (TNFα), MMP-1, MMP-3, MMP-13, TIMP-1, and VEGF.
Results: The expression of CD68+ macrophages was significantly higher in ST selected at arthroscopy than in samples obtained at surgery, both in the intimal lining layer and in the synovial sublining. The expression of CD3+ T cells also tended to be higher in arthroscopic samples. The expression of TNFα, IL6, MMP-1, MMP-3, MMP-13, TIMP-1, and VEGF was on average higher in ST obtained at arthroscopy. In contrast, the expression of IL1ß was on average higher in surgical samples.
Conclusion: Active arthritis activity is associated with increased cell infiltration, expression of proinflammatory cytokines, MMPs, and angiogenic growth factors in synovial biopsy samples selected at arthroscopy. Increased expression of IL1ß in the synovium of patients with destructive RA requiring joint replacement may well reflect the important role of IL1ß in cartilage and bone destruction.
doi:10.1136/ard.62.7.635
PMCID: PMC1754593  PMID: 12810425
6.  Expression of CD147 on monocytes/macrophages in rheumatoid arthritis: its potential role in monocyte accumulation and matrix metalloproteinase production 
Arthritis Research & Therapy  2005;7(5):R1023-R1033.
Monocytes/macrophages play an important role in rheumatoid arthritis (RA) pathogenesis. They can activate fibroblasts through many molecules, including IL-1 and tumor necrosis factor-alpha, but there have been very few reports on the role of CD147 in RA. In our study, the results of flow cytometry reveal that the mean fluorescence intensity (MFI) of CD147 expression on CD14+ monocytes of peripheral blood from RA patients was higher than that in normal control and ankylosing spondylitis (AS) patients. The MFI of CD147 expression on the CD14+ monocytes in RA synovial fluid was higher than that in RA peripheral blood. Immunohistochemical staining shows that CD147 expression in RA synovium correlated with matrix metalloproteinase (MMP)-1 expression. A double immunofluorescent assay shows that CD147 was expressed on CD68+ cells in RA synovium. The potential role of CD147 in cyclophilin A (CyPA)-mediated cell migration was studied using a chemotaxis assay in vitro and it was found that the addition of anti-CD147 antibody or a CD147 antagonistic peptide significantly decreased the chemotactic index of the mononuclear cells. The role of CD147 in MMP production and cell invasion in vitro were studied through the co-culture of human CD14+ monocytes or monocytic line THP-1 cells and human fibroblasts, as well as by gel zymography and an invasion assay. Significantly elevated release and activation of MMP-9 and/or MMP-2 were seen in the co-culture of human monocytes/THP-1 cells and fibroblasts compared with cultures of the cells alone. An increased number of cells invading through the filters in the invasion assays was also observed in the co-cultured cells. The addition of CD147 antagonistic peptide had some inhibitory effect, not only on MMP production but also on cell invasion in the co-culture. Our study demonstrates that the increased expression of CD147 on monocytes/macrophages in RA may be responsible for elevated MMP secretion, cell invasion and CyPA-mediated cell migration into the joints, all of which may contribute to the cartilage and bone destruction of RA. These findings, together with a better understanding of CD147, CyPA and RA, will help in the development of innovative therapeutic interventions for RA.
doi:10.1186/ar1778
PMCID: PMC1257431  PMID: 16207318
7.  Liver X Receptor Regulates Rheumatoid Arthritis Fibroblast-like Synoviocyte Invasiveness, Matrix Metalloproteinase 2 Activation, Interleukin-6 and CXCL10 
Molecular Medicine  2012;18(1):1009-1017.
Fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA), yet little is known about its regulation. In this study we aimed to determine the role of the nuclear receptor liver X receptor (LXR) in FLS invasion. FLS were isolated from synovial tissues obtained from RA patients and from DA rats with pristane-induced arthritis. Invasion was tested on Matrigel-coated chambers in the presence of the LXR agonist T0901317, or control vehicle. FLS were cultured in the presence or absence of T0901317, and supernatants were used to quantify matrix metalloproteinase 1 (MMP-1), MMP-2, MMP-3, interleukin-6 (IL-6), tumor necrosis factor-α and C-X-C motif chemokine ligand 10 (CXCL10). Nuclear factor-κB (NF-κB) (p65) and Akt activation, actin cytoskeleton, cell morphology and lamellipodia formation were also determined. The LXR agonist T0901317 significantly reduced DA FLS invasion by 99% (P ≤ 0.001), and RA FLS invasion by 96% (P ≤ 0.001), compared with control. T0901317-induced suppression of invasion was associated with reduced production of activated MMP-2, IL-6 and CXCL10 by RA FLS, and with reduction of actin filament reorganization and reduced polarized formation of lamellipodia. T0901317 also prevented both IL-1β–induced and IL-6–induced FLS invasion. NF-κB (p65) and Akt activation were not significantly affected by T0901317. This is the first description of a role for LXR in the regulation of FLS invasion and in processes and pathways implicated both in invasion as well as in inflammatory responses. These findings provide a new rationale for considering LXR agonists as therapeutic agents aimed at reducing both inflammation and FLS-mediated invasion and destruction in RA.
doi:10.2119/molmed.2012.00173
PMCID: PMC3459482  PMID: 22634718
8.  Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes 
Fibroblast activation protein (FAP), as described so far, is a type II cell surface serine protease expressed by fibroblastic cells in areas of active tissue remodelling such as tumour stroma or healing wounds. We investigated the expression of FAP by fibroblast-like synoviocytes (FLSs) and compared the synovial expression pattern in rheumatoid arthritis (RA) and osteoarthritis (OA) patients. Synovial tissue from diseased joints of 20 patients, 10 patients with refractory RA and 10 patients with end-stage OA, was collected during routine surgery. As a result, FLSs from intensively inflamed synovial tissues of refractory RA expressed FAP at high density. Moreover, FAP expression was co-localised with matrix metalloproteinases (MMP-1 and MMP-13) and CD44 splice variants v3 and v7/8 known to play a major role in the concert of extracellular matrix degradation. The pattern of signals appeared to constitute a characteristic feature of FLSs involved in rheumatoid arthritic joint-destructive processes. These FAP-expressing FLSs with a phenotype of smooth muscle actin-positive myofibroblasts were located in the lining layer of the synovium and differ distinctly from Thy-1-expressing and non-proliferating fibroblasts of the articular matrix. The intensity of FAP-specific staining in synovial tissue from patients with RA was found to be different when compared with end-stage OA. Because expression of FAP by RA FLSs has not been described before, the findings of this study highlight a novel element in cartilage and bone destruction of arthritic joints. Moreover, the specific expression pattern qualifies FAP as a therapeutic target for inhibiting the destructive potential of fibroblast-like synovial cells.
doi:10.1186/ar2080
PMCID: PMC1794515  PMID: 17105646
9.  Effect of taurine chloramine on the production of matrix metalloproteinases (MMPs) in adiponectin- or IL-1β-stimulated fibroblast-like synoviocytes 
Journal of Biomedical Science  2010;17(Suppl 1):S27.
Background
Adiponectin greatly stimulated the expression of matrix metalloproteinases (MMPs) in fibroblast-like synoviocytes (FLSs) as did IL-1β. We wondered whether taurine chloramine (TauCl) inhibits the production of MMPs stimulated by adiponectin in the same pattern as by IL-1β stimulation in vitro
Methods
Synovial cells from rheumatoid arthritis (RA) patients were treated with adiponectin or interleukin (IL)-1β for 24 hr in the presence or absence of TauCl. The culture supernatant was collected and the levels of MMPs were measured by enzyme-linked immunosorbent assay (ELISA). The IκB signaling pathways stimulated by adiponectin were studied and the levels of NF-κB in the nuclei of the cells were analyzed by ELISA.
Results
TauCl (600 µM) inhibited MMP-13, but not MMP-1, expression in IL-1β-stimulated RA FLSs. However, TauCl at the same concentration significantly inhibited the production of both adiponectin-stimulated MMP-1 and MMP-13 expression. TauCl inhibited the degradation of IκB-α stimulated by adiponectin, but not by IL-1β. Similarly, the level of NF-κB in the nucleus was increased by adiponectin stimulation and was inhibited by 600 µM TauCl. However, the levels of NF-κB increased by IL-1β stimulation were not inhibited by 600 µM TauCl.
Conclusions
TauCl more effectively inhibited MMPs expression induced by adiponectin than that by IL-1β in RA FLS, suggesting that TauCl plays an important role in down-regulating the expression of MMPs in arthritic joints.
doi:10.1186/1423-0127-17-S1-S27
PMCID: PMC2994402  PMID: 20804602
10.  Cadherin-11 Promotes Invasive Behavior of Fibroblast-like Synoviocytes 
Arthritis and rheumatism  2009;60(5):1305-1310.
Objective
To define the expression pattern of cadherin-11 in destructive pannus tissue of patients with rheumatoid arthritis and to determine if cadherin-11 expression in fibroblast-like synoviocytes controls their invasive capacity.
Methods
Cadherin-11 expression in rheumatoid synovial tissue was evaluated using immunohistochemistry. To examine the role of cadherin-11 in regulating the invasive behavior of fibroblast-like synoviocytes, we generated L-cell clones expressing wild-type cadherin-11, mutant cadherin-11, and empty vector transfected controls. The invasive capacity of L-cell transfectants and cultured fibroblast-like synoviocytes treated with a blocking cadherin-11-Fc protein or control immunoglobulin was determined in Matrigel invasion assays.
Results
Immunohistochemistry revealed that cadherin-11 is abundantly expressed in cells at the cartilage-pannus junction in rheumatoid synovitis. Invasion assays demonstrate a twofold increased invasive capacity of cadherin-11 transfected L-cells compared to L-cells transfected with E-cadherin or control vector. The invasive behavior of the L-cells stably transfected with a cadherin-11 construct that lacked the juxta-membrane cytoplasmic domain (cadherin-11 ΔJMD) was diminished to the level of vector control L-cells. Further, treatment with the cadherin-11-Fc fusion protein diminished the invasive capacity of fibroblast-like synoviocytes.
Conclusion
These in vitro studies implicate a role for cadherin-11 in promoting cell invasion and contribute insight into the invasive nature of fibroblast-like synoviocytes in chronic synovitis and rheumatoid arthritis.
doi:10.1002/art.24453
PMCID: PMC3764540  PMID: 19404963
Cadherin-11; Fibroblast-like Synoviocytes; Cell Invasion
11.  The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis 
Introduction
Activated fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) share many characteristics with tumour cells and are key mediators of synovial tissue transformation and joint destruction. The glycoprotein podoplanin is upregulated in the invasive front of several human cancers and has been associated with epithelial-mesenchymal transition, increased cell migration and tissue invasion. The aim of this study was to investigate whether podoplanin is expressed in areas of synovial transformation in RA and especially in promigratory RA-FLS.
Methods
Podoplanin expression in human synovial tissue from 18 RA patients and nine osteoarthritis (OA) patients was assessed by immunohistochemistry and confirmed by Western blot analysis. The expression was related to markers of synoviocytes and myofibroblasts detected by using confocal immunofluoresence microscopy. Expression of podoplanin, with or without the addition of proinflammatory cytokines and growth factors, in primary human FLS was evaluated by using flow cytometry.
Results
Podoplanin was highly expressed in cadherin-11-positive cells throughout the synovial lining layer in RA. The expression was most pronounced in areas with lining layer hyperplasia and high matrix metalloproteinase 9 expression, where it coincided with upregulation of α-smooth muscle actin (α-sma). The synovium in OA was predominantly podoplanin-negative. Podoplanin was expressed in 50% of cultured primary FLSs, and the expression was increased by interleukin 1β, tumour necrosis factor α and transforming growth factor β receptor 1.
Conclusions
Here we show that podoplanin is highly expressed in FLSs of the invading synovial tissue in RA. The concomitant upregulation of α-sma and podoplanin in a subpopulation of FLSs indicates a myofibroblast phenotype. Proinflammatory mediators increased the podoplanin expression in cultured RA-FLS. We conclude that podoplanin might be involved in the synovial tissue transformation and increased migratory potential of activated FLSs in RA.
doi:10.1186/ar3274
PMCID: PMC3132020  PMID: 21385358
12.  Detailed analysis of the cell infiltrate and the expression of mediators of synovial inflammation and joint destruction in the synovium of patients with psoriatic arthritis: implications for treatment 
Annals of the Rheumatic Diseases  2006;65(12):1551-1557.
Background
The synovial tissue is a primary target of many inflammatory arthropathies, including psoriatic arthritis (PsA). Identification of proinflammatory molecules in the synovium may help to identify potentially therapeutic targets.
Objective
To investigate extensively the features of cell infiltration and expression of mediators of inflammation and joint destruction in the synovium of patients with PsA compared with patients with rheumatoid arthritis matched for disease duration and use of drugs.
Methods
Multiple synovial tissue biopsy specimens were obtained by arthroscopy from an inflamed joint in 19 patients with PsA (eight oligoarthritis, 11 polyarthritis) and 24 patients with rheumatoid arthritis. Biopsy specimens were analysed by immunohistochemistry to detect T cells, plasma cells, fibroblast‐like synoviocytes, macrophages, proinflammatory cytokines, matrix metalloproteinases and tissue inhibitor metalloproteinase‐1, adhesion molecules and vascular markers. Stained sections were evaluated by digital image analysis.
Results
The synovial infiltrate of patients with PsA and rheumatoid arthritis was comparable with regard to numbers of fibroblast‐like synoviocytes and macrophages. T cell numbers were considerably lower in the synovium of patients with PsA. The number of plasma cells also tended to be lower in PsA. The expression of tumour necrosis factor alpha (TNFα), interleukin (IL) 1β, IL6 and IL18 was as high in PsA as in rheumatoid arthritis. The expression of matrix metalloproteinases, adhesion molecules and vascular markers was comparable for PsA and rheumatoid arthritis.
Conclusion
These data show increased proinflammatory cytokine expression in PsA synovium, comparable to results obtained for rheumatoid arthritis, and support the notion that, in addition to TNFα blockade, there may be a rationale for treatments directed at IL1β, IL6 and IL18.
doi:10.1136/ard.2005.050963
PMCID: PMC1798447  PMID: 16728461
13.  Platelet-derived growth factor and transforming growth factor beta synergistically potentiate inflammatory mediator synthesis by fibroblast-like synoviocytes 
Introduction
The objective of this study was to model the effects of transforming growth factor beta (TGF-β) and platelet-derived growth factor (PDGF), both present in rheumatoid arthritis (RA) synovia, on the behavior of fibroblast-like synoviocytes (FLS) in response to pro-inflammatory cytokine (interleukin (IL)1β, tumor necrosis factor-alpha (TNFα)) challenge.
Methods
Gene and protein expression by fibroblast-like synoviocytes in vitro was studied by quantitative Polymerase Chain Reaction (qPCR), ELISA and multiplex bead cytokine assays. Intracellular signaling pathway activation was determined by Western blot for phospho-kinases and the use of specific inhibitors.
Results
In combination, TGF-β and PDGF (2GF) synergistically augmented TNFα- or IL1β-induced matrix metalloproteinase 3 (MMP3), IL6, IL8, and macrophage inflammatory protein 1 alpha (MIP1α) secretion by FLS. Other FLS-derived mediators remained unaffected. Individually, neither growth factor significantly potentiated TNFα or IL1β-induced MMP3 secretion, and only slightly enhanced IL6. The effect of 2GF on TNFα-induced gene expression was transcriptionally mediated; blocked by imatinib mesylate; and occurred even if 2GF was added as much as four hours prior to TNFα. In addition, a 15-minute pulse of 2GF four hours prior to TNFα stimulation yielded a synergistic response. The extracellular-signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K) signaling pathways were induced for at least four hours by 2GF, as demonstrated by persistently upregulated levels of phospho-Akt and phospho-ERK. However, pharmacologic inhibitor studies demonstrated that the potentiating action of 2GF was dependent on PI3 kinase only, and not on ERK.
Conclusions
The combination of PDGF and TGF-β dramatically potentiates FLS response to cytokines in a receptor-mediated and PI3 kinase-dependent fashion. These data suggest that 2GF contribute to synovitis by directing synovial fibroblasts toward a more aggressive phenotype in response to TNFα. Therefore, inhibition of growth factor signaling may constitute a complementary therapeutic approach to cytokine-targeted treatments for RA.
doi:10.1186/ar2981
PMCID: PMC2888219  PMID: 20380722
14.  Cia5d regulates a new fibroblast-like synoviocyte invasion-associated gene expression signature 
Introduction
The in vitro invasive properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) have been shown to correlate with disease severity and radiographic damage. We recently determined that FLSs obtained from pristane-induced arthritis (PIA)-susceptible DA rats are also highly invasive in the same in vitro assay through Matrigel. The transfer of alleles derived from the arthritis-resistant F344 strain at the arthritis severity locus Cia5d (RNO10), as in DA.F344(Cia5d) congenics, was enough to significantly and specifically reduce the invasive properties of FLSs. This genetically controlled difference in FLS invasion involves increased production of soluble membrane-type 1 matrix metalloproteinase (MMP) by DA, and is dependent on increased activation of MMP-2. In the present study we aimed to characterize the pattern of gene expression that correlates with differences in invasion in order to identify pathways regulated by the Cia5d locus.
Methods
Synovial tissues were collected from DA and DA.F344(Cia5d) rats 21 days after the induction of PIA. Tissues were digested and FLSs isolated. After a minimum of four passages, FLSs were plated on Matrigel-covered dishes at similar densities, followed by RNA extraction. Illumina RatRef-12 expression BeadChip arrays were used. Expression data were normalized, followed by t-test, logistic regression, and cluster analysis. Real-time PCR was used to validate the microarray data.
Results
Out of the 22,523 RefSeq gene probes present in the array, 7,665 genes were expressed by the FLSs. The expression of 66 genes was significantly different between the DA and DA.F344(Cia5d) FLSs (P < 0.01). Nineteen of the 66 differentially expressed genes (28.7%) are involved in the regulation of cell cycle progression or cancer-associated phenotypes, such as invasion and contact inhibition. These included Cxcl10, Vil2 and Nras, three genes that are upregulated in DA and known to regulate MMP-2 expression and activation. Nine of the 66 genes (13.6%) are involved in the regulation of estrogen receptor signaling or transcription. Five candidate genes located within the Cia5d interval were also differentially expressed.
Conclusions
We have identified a novel FLS invasion associated gene expression signature that is regulated by Cia5d. Many of the genes found to be differentially expressed were previously implicated in cancer cell phenotypes, including invasion. This suggests a parallel in the behavior of arthritis FLSs and cancer cells, and identifies novel pathways and genes for therapeutic intervention and prognostication.
doi:10.1186/ar2476
PMCID: PMC2575606  PMID: 18706093
15.  Adrenomedullin increases fibroblast-like synoviocyte adhesion to extracellular matrix proteins by upregulating integrin activation 
Arthritis Research & Therapy  2010;12(5):R190.
Introduction
Rheumatoid arthritis (RA) is characterized by bone and cartilage invasion by fibroblast-like synoviocytes (FLSs). Adrenomedullin, a peptide with anabolic and antiapoptotic properties, is secreted by rheumatoid FLSs. Adrenomedullin also increases the expression of adhesion molecules in endothelial cells and keratinocytes. Here, we investigated whether adrenomedullin mediated FLS adhesion to extracellular matrix (ECM) proteins.
Methods
FLSs were isolated from synovial tissues from RA and osteoarthritis (OA) patients. Plates were coated overnight with the ECM proteins vitronectin, fibronectin, and type I collagen (Coll.I). Adrenomedullin was used as a soluble FLS ligand before plating. We tested interactions with the adrenomedullin receptor antagonist (22-52)adrenomedullin and with the protein kinase A (PKA) inhibitor H-89, and inhibition of co-receptor RAMP-2 by siRNA. Cell adhesion was measured by using color densitometry. Activation of α2 and β1 integrins was evaluated by fluorescent microscopy; integrin inhibition, by RGD peptides; and the talin-integrin interaction, by immunoprecipitation (IP).
Results
Adrenomedullin specifically increased RA-FLS adhesion to vitronectin, fibronectin, and Coll.I; no such effect was found for OA-FLS adhesion. Basal or adrenomedullin-stimulated RA-FLS adhesion was inhibited by (22-52)adrenomedullin, H-89, and RAMP-2 siRNA. Adrenomedullin-stimulated adhesion was inhibited by RGD peptides, and associated with α2 and β1 integrin activation. This activation was shown with IP to be related to an integrin-talin interaction and was significantly decreased by (22-52)adrenomedullin.
Conclusions
Adrenomedullin-stimulated RA-FLS adhesion was specific for ECM proteins and mediated by α2 and β1 integrins. This effect of adrenomedullin was dependent on adrenomedullin receptors. These results support a new role for adrenomedullin in rheumatoid synovial fibroblast pathobiology.
doi:10.1186/ar3160
PMCID: PMC2991025  PMID: 20942979
16.  CXCL10 and its receptor CXCR3 regulate synovial fibroblast invasion in rheumatoid arthritis 
Arthritis and rheumatism  2011;63(11):3274-3283.
Objectives
CXCL10 is expressed in increased levels in highly invasive fibroblast-like synoviocytes (FLS) from arthritic DA rats and rheumatoid arthritis (RA). In this study we analyzed the role of CXCL10 and its receptor CXCR3 on the regulation of the invasive properties of FLS.
Methods
FLS were isolated from synovial tissues of RA patients, and from DA and arthritis-protected Cia5d rats with pristane-induced arthritis. We used an in vitro model of invasion through Matrigel, which has been shown to correlate with articular damage in RA and in rat arthritis. FLS were cultured in the presence or absence of CXCL10, anti-CXCR3 antibody, CXCR3 inhibitor AMG487, or controls, then studied for invasion, MMP-1-3 production, intracellular calcium influx and cell morphology.
Results
DA FLS produced higher levels of CXCL10 compared with minimally-invasive Cia5d. CXCL10 treatment increased Cia5d FLS invasion by 2-fold, and this increase was blocked by anti-CXCR3. Both anti-CXCR3 and AMG487 reduced DA FLS invasion by as much as 77%. AMG487 significantly reduced RA FLS invasion 60%. CXCR3 blockade reduced levels of MMP-1 by 58%, inhibited receptor signaling (64%-100% reduction in intracellular calcium influx) and interfered with actin cytoskeleton reorganization and lamellipodia formation in rat and RA FLS.
Conclusion
We describe and characterize a new autocrine/paracrine role for CXCL10-CXCR3 in the regulation of rat and RA FLS invasion. These observations suggest that the CXCL10-CXCR3 axis is a potential new target for therapies aimed at reducing FLS invasion and its associated joint damage and pannus invasion and destruction in RA.
doi:10.1002/art.30573
PMCID: PMC3205193  PMID: 21811993
17.  Interferon-γ inhibits interleukin-1β-induced matrix metalloproteinase production by synovial fibroblasts and protects articular cartilage in early arthritis 
Introduction
The first few months after symptom onset represents a pathologically distinct phase in rheumatoid arthritis (RA). We used relevant experimental models to define the pathological role of interferon-γ (IFN-γ) during early inflammatory arthritis.
Methods
We studied IFN-γ's capacity to modulate interleukin-1β (IL-1β) induced degenerative responses using RA fibroblast-like synoviocytes (FLS), a bovine articular cartilage explant (BACE)/RA-FLS co-culture model and an experimental inflammatory arthritis model (murine antigen-induced arthritis (AIA)).
Results
IFN-γ modulated IL-1β driven matrix metalloproteinases (MMP) synthesis resulting in the down-regulation of MMP-1 and MMP-3 production in vitro. IFN-γ did not affect IL-1β induced tissue inhibitor of metalloproteinase-1 (TIMP-1) production by RA FLS but skewed the MMP/TIMP-1 balance sufficiently to attenuate glycosaminoglycan-depletion in our BACE model. IFN-γ reduced IL-1β expression in the arthritic joint and prevented cartilage degeneration on Day 3 of AIA.
Conclusions
Early therapeutic intervention with IFN-γ may be critical to orchestrate tissue-protective responses during inflammatory arthritis.
doi:10.1186/ar2960
PMCID: PMC2888198  PMID: 20307272
18.  Potential Role of Fibroblast-Like Synoviocytes in Joint Damage Induced by Brucella abortus Infection through Production and Induction of Matrix Metalloproteinases ▿  
Infection and Immunity  2011;79(9):3619-3632.
Arthritis is one of the most common complications of human brucellosis, but its pathogenic mechanisms have not been elucidated. Fibroblast-like synoviocytes (FLS) are known to be central mediators of joint damage in inflammatory arthritides through the production of matrix metalloproteinases (MMPs) that degrade collagen and of cytokines and chemokines that mediate the recruitment and activation of leukocytes. In this study we show that Brucella abortus infects and replicates in human FLS (SW982 cell line) in vitro and that infection results in the production of MMP-2 and proinflammatory mediators (interleukin-6 [IL-6], IL-8, monocyte chemotactic protein 1 [MCP-1], and granulocyte-macrophage colony-stimulating factor [GM-CSF]). Culture supernatants from Brucella-infected FLS induced the migration of monocytes and neutrophils in vitro and also induced these cells to secrete MMP-9 in a GM-CSF- and IL-6-dependent fashion, respectively. Reciprocally, culture supernatants from Brucella-infected monocytes and neutrophils induced FLS to produce MMP-2 in a tumor necrosis factor alpha (TNF-α)-dependent fashion. The secretion of proinflammatory mediators and MMP-2 by FLS did not depend on bacterial viability, since it was also induced by heat-killed B. abortus (HKBA) and by a model Brucella lipoprotein (L-Omp19). These responses were mediated by the recognition of B. abortus antigens through Toll-like receptor 2. The intra-articular injection of HKBA or L-Omp19 into the knee joint of mice resulted in the local induction of the proinflammatory mediators MMP-2 and MMP-9 and in the generation of a mixed inflammatory infiltrate. These results suggest that FLS, and phagocytes recruited by them to the infection focus, may be involved in joint damage during brucellar arthritis through the production of MMPs and proinflammatory mediators.
doi:10.1128/IAI.05408-11
PMCID: PMC3165475  PMID: 21730088
19.  High mobility group box 1 potentiates the pro-inflammatory effects of interleukin-1β in osteoarthritic synoviocytes 
Arthritis Research & Therapy  2010;12(4):R165.
Introduction
High mobility group box 1 (HMGB1) is released by necrotic cells or secreted in response to inflammatory stimuli. Extracellular HMGB1 may act as a pro-inflammatory cytokine in rheumatoid arthritis. We have recently reported that HMGB1 is released by osteoarthritic synoviocytes after activation with interleukin-1beta (IL-1β) The present study investigated the role of HMGB1 in synovial inflammation in osteoarthritis (OA).
Methods
HMGB1 was determined in human synovium using immunohistochemistry, comparing normal to OA. OA synoviocytes were incubated with HMGB1 at 15 or 25 ng/ml in the absence or presence of IL-1β (10 ng/ml). Gene expression was analyzed by quantitative PCR and protein expression by Western Blot and ELISA. Matrix metalloproteinase (MMP) activity was studied by fluorometric procedures and nuclear factor (NF)-κB activation by transient transfection with a NF-κB-luciferase plasmid.
Results
In the normal synovium, HMGB1 was found in the synovial lining cells, sublining cells, and in the vascular wall cells. The distribution of HMGB1 in OA synovium was similar but the number of HMGB1 positive cells was higher and HMGB1 was also present in infiltrated cells. In normal synovial membrane cells, HMGB1 was found mostly in the nuclei, whereas in OA, HMGB1 was generally found mostly in the cytoplasm. In OA synoviocytes, HMGB1 alone at concentrations of 15 or 25 ng/ml did not affect the production of IL-6, IL-8, CCL2, CCL20, MMP-1 or MMP-3, but in the presence of IL-1β, a significant potentiation of protein and mRNA expression, as well as MMP activity was observed. HMGB1 also enhanced the phosphorylated ERK1/2 and p38 levels, with a lower effect on phosphorylated Akt. In contrast, JNK1/2 phosphorylation was not affected. In addition, HMGB1 at 25 ng/ml significantly potentiated NF-κB activation in the presence of IL-1β.
Conclusions
Our results indicate that HMGB1 is overexpressed in OA synovium and mostly present in extracellular form. In OA synoviocytes, HMGB1 cooperates with IL-1β to amplify the inflammatory response leading to the production of a number of cytokines, chemokines and MMPs. Our data support a pro-inflammatory role for this protein contributing to synovitis and articular destruction in OA.
doi:10.1186/ar3124
PMCID: PMC2945068  PMID: 20799933
20.  Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors 
Nature reviews. Rheumatology  2012;9(1):24-33.
Rheumatoid arthritis (RA) is characterized by hyperplastic synovial pannus tissue, which mediates destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS) are a key component of this invasive synovium and have a major role in the initiation and perpetuation of destructive joint inflammation. The pathogenic potential of FLS in RA stems from their ability to express immunomodulating cytokines and mediators as well as a wide array of adhesion molecule and matrix-modelling enzymes. FLS can be viewed as ‘passive responders’ to the immunoreactive process in RA, their activated phenotype reflecting the proinflammatory milieu. However, FLS from patients with RA also display unique aggressive features that are autonomous and vertically transmitted, and these cells can behave as primary promoters of inflammation. The molecular bases of this ‘imprinted aggressor’ phenotype are being clarified through genetic and epigenetic studies. The dual behaviour of FLS in RA suggests that FLS-directed therapies could become a complementary approach to immune-directed therapies in this disease. Pathophysiological characteristics of FLS in RA, as well as progress in targeting these cells, are reviewed in this manuscript.
doi:10.1038/nrrheum.2012.190
PMCID: PMC3970924  PMID: 23147896
21.  Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes 
Arthritis Research & Therapy  2005;7(3):R536-R544.
Synovial fluid from patients with various arthritides contains procoagulant, cell-derived microparticles. Here we studied whether synovial microparticles modulate the release of chemokines and cytokines by fibroblast-like synoviocytes (FLS). Microparticles, isolated from the synovial fluid of rheumatoid arthritis (RA) and arthritis control (AC) patients (n = 8 and n = 3, respectively), were identified and quantified by flow cytometry. Simultaneously, arthroscopically guided synovial biopsies were taken from the same knee joint as the synovial fluid. FLS were isolated, cultured, and incubated for 24 hours in the absence or presence of autologous microparticles. Subsequently, cell-free culture supernatants were collected and concentrations of monocyte chemoattractant protein-1 (MCP-1), IL-6, IL-8, granulocyte/macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1) were determined. Results were consistent with previous observations: synovial fluid from all RA as well as AC patients contained microparticles of monocytic and granulocytic origin. Incubation with autologous microparticles increased the levels of MCP-1, IL-8 and RANTES in 6 of 11 cultures of FLS, and IL-6, ICAM-1 and VEGF in 10 cultures. Total numbers of microparticles were correlated with the IL-8 (r = 0.91, P < 0.0001) and MCP-1 concentrations (r = 0.81, P < 0.0001), as did the numbers of granulocyte-derived microparticles (r = 0.89, P < 0.0001 and r = 0.93, P < 0.0001, respectively). In contrast, GM-CSF levels were decreased. These results demonstrate that microparticles might modulate the release of chemokines and cytokines by FLS and might therefore have a function in synovial inflammation and angiogenesis.
doi:10.1186/ar1706
PMCID: PMC1174949  PMID: 15899040
22.  Synoviocytes protect cartilage from the effects of injury in vitro 
Background
It is well documented that osteoarthritis (OA) can develop following traumatic joint injury and is the leading cause of lameness and subsequent wastage of equine athletes. Although much research of injury induced OA has focused on cartilage, OA is a disease that affects the whole joint organ.
Methods
In this study, we investigated the impact of synovial cells on the progression of an OA phenotype in injured articular cartilage. Injured and control cartilage were cultured in the presence of synoviocytes extracted from normal equine synovium. Synoviocytes and cartilage were evaluated for catabolic and anabolic gene expression. The cartilage was also evaluated histologically for loss of extracellular matrix molecules, chondrocyte cell death and chondrocyte cluster formation.
Results
The results indicate synoviocytes exert both positive and negative effects on injured cartilage, but ultimately protect injured cartilage from progressing toward an OA phenotype. Synoviocytes cultured in the presence of injured cartilage had significantly reduced expression of aggrecanase 1 and 2 (ADAMTS4 and 5), but also had increased expression of matrix metalloproteinase (MMP) -1 and reduced expression of tissue inhibitor of metalloproteinases 1 (TIMP-1). Injured cartilage cultured with synoviocytes had increased expression of both collagen type 2 and aggrecanase 2. Histologic examination of cartilage indicated that there was a protective effect of synoviocytes on injured cartilage by reducing the incidence of both focal cell loss and chondrocyte cluster formation, two major hallmarks of OA.
Conclusions
These results support the importance of evaluating more than one synovial joint tissue when investigating injury induced OA.
doi:10.1186/1471-2474-14-54
PMCID: PMC3620939  PMID: 23374282
Cartilage; Synovial cell; Injury
23.  Cyclophilin A secreted from fibroblast-like synoviocytes is involved in the induction of CD147 expression in macrophages of mice with collagen-induced arthritis 
Background
Cyclophilin A (CypA), a member of the immunophilin family, is a ubiquitously distributed intracellular protein. Recent studies have shown that CypA is secreted by cells in response to inflammatory stimuli. Elevated levels of extracellular CypA and its receptor, CD147 have been detected in the synovium of patients with RA. However, the precise process of interaction between CypA and CD147 in the development of RA remains unclear. This study aimed to investigate CypA secretion from fibroblast-like synoviocytes (FLS) isolated from mice with collagen-induced arthritis (CIA) and CypA-induced CD147 expression in mouse macrophages.
Findings
CIA was induced by immunization with type II collagen in mice. The expression and localization of CypA and CD147 was investigated by immunoblotting and immunostaining. Both CypA and CD147 were highly expressed in the joints of CIA mice. CD147 was expressed in the infiltrated macrophages in the synovium of CIA mice. In vitro, spontaneous CypA secretion from FLS was detected and this secretion was increased by stimulation with lipopolysaccharide. CypA markedly increased CD147 levels in macrophages.
Conclusions
These findings suggest that an interaction in the synovial joints between extracellular CypA and CD147 expressed by macrophages may be involved in the mechanisms underlying the development of arthritis.
doi:10.1186/1476-9255-9-44
PMCID: PMC3542031  PMID: 23167819
CD147; Collagen-induced arthritis; Cyclophilin A; Macrophage; Rheumatoid arthritis
24.  Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis 
Annals of the Rheumatic Diseases  2000;59(6):455-461.
OBJECTIVE—Matrix metalloproteinases (MMPs) are expressed in joint tissues of patients with rheumatoid arthritis (RA) and osteoarthritis (OA). The objective of this study was to define the steady state levels of seven different MMPs and two tissue inhibitors of metalloproteinases (TIMPs) as well as the potential metalloproteinase activity in the synovial fluid (SF) to provide more insight into the role of MMPs in cartilage destruction in RA and OA.
METHODS—Levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13, TIMP-1, and TIMP-2 in SF aspirated from knee joints of 97 patients with RA and 103 patients with OA were measured by the corresponding one step sandwich enzyme immunoassays. Proteolytic activity of MMPs in these SFs was examined in an assay using [3H]carboxymethylated transferrin substrate in the presence of inhibitors of serine and cysteine proteinases after activation with p-aminophenylmercuric acetate (APMA). Destruction of RA knee joints was radiographically evaluated.
RESULTS—Levels of MMP-1, MMP-2, MMP-3, MMP-8, and MMP-9 were significantly higher in RA SF than in OA SF. MMP-7 and MMP-13 were detectable in more than 45% of RA SFs and in less than 20% of OA SFs, respectively. Among the MMPs examined, MMP-3 levels were extremely high compared with those of other MMPs. Direct correlations were seen between the levels of MMP-1 and MMP-3 and between those of MMP-8 and MMP-9 in RA SF. Although the levels of MMP-1 and MMP-3 increased even in the early stage of RA, those of MMP-8 and MMP-9 were low in the early stage and increased with the progression of RA. Molar ratios of the total amounts of the MMPs to those of the TIMPs were 5.2-fold higher in patients with RA than in OA, which was significant. APMA-activated metalloproteinase activity in SF showed a similar result, and a direct correlation was seen between the molar ratios and the activity in RA SF.
CONCLUSIONS—Our results show that high levels of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, and TIMP-1 are present in RA SF and suggest that once these MMPs are fully activated, they have an imbalance against TIMPs, which may contribute to the cartilage destruction in RA.


doi:10.1136/ard.59.6.455
PMCID: PMC1753174  PMID: 10834863
25.  Inhibitory Effect of Curcumol on Jak2-STAT Signal Pathway Molecules of Fibroblast-Like Synoviocytes in Patients with Rheumatoid Arthritis 
Hyperplasia of synovial membrane in rheumatoid arthritis (RA) is a critical pathological foundation for inducing articular injury. The janus kinase and signal transducer and activator of transcription (Jak-STAT) pathway plays a critical role in synovial membrane proliferation induced by platelet-derived growth factor (PDGF). To explore the anti-cell proliferation mechanism of curcumol, a pure monomer extracted from Chinese medical plant zedoary rhizome, the changes of Jak2-STAT1/3 signal pathway-related molecules in synoviocytes were observed in vitro. In this study, the fibroblast-like synoviocytes (FLS) in patients with RA were collected and cultured. The following parameters were measured: cell proliferation (WST-1 assay), cell cycles (fluorescence-activated cell sorting, FACS), STAT1 and STAT3 activities (electrophoretic mobility shift assay, EMSA), and the protein expressions of phosphorylated Jak2, STAT1, and STAT3 (Western blot). It was shown that curcumol could inhibit the RA-FLS proliferation and DNA synthesis induced by PDGF-BB in a dose-dependent manner in vitro. The transcription factors activities of STAT1 and STAT3 were obviously elevated after PDGF-BB stimulation (P < 0.05). Super-shift experiments identified the STAT1 or STAT3 proteins in the complex. Furthermore, the different concentration curcumol could downregulate the DNA binding activities of STAT1 and STAT3 (P < 0.05) and inhibit the phosphorylation of Jak2 while it had no effect on the protein expressions of STAT1 and STAT3. Positive correlations were found between changes of cell proliferation and DNA-binding activities of STAT1 and STAT3, respectively (P < 0.01). In conclusion, curcumol might suppress the FLS proliferation and DNA synthesis induced by PDGF-BB through attenuating Jak2 phosphorylation, downregulating STAT1 and STAT3 DNA-binding activities, which could provide theoretical foundation for clinical treatment of RA.
doi:10.1155/2012/746426
PMCID: PMC3310153  PMID: 22474524

Results 1-25 (1076448)