PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1398918)

Clipboard (0)
None

Related Articles

1.  Expression of CD147 on monocytes/macrophages in rheumatoid arthritis: its potential role in monocyte accumulation and matrix metalloproteinase production 
Arthritis Research & Therapy  2005;7(5):R1023-R1033.
Monocytes/macrophages play an important role in rheumatoid arthritis (RA) pathogenesis. They can activate fibroblasts through many molecules, including IL-1 and tumor necrosis factor-alpha, but there have been very few reports on the role of CD147 in RA. In our study, the results of flow cytometry reveal that the mean fluorescence intensity (MFI) of CD147 expression on CD14+ monocytes of peripheral blood from RA patients was higher than that in normal control and ankylosing spondylitis (AS) patients. The MFI of CD147 expression on the CD14+ monocytes in RA synovial fluid was higher than that in RA peripheral blood. Immunohistochemical staining shows that CD147 expression in RA synovium correlated with matrix metalloproteinase (MMP)-1 expression. A double immunofluorescent assay shows that CD147 was expressed on CD68+ cells in RA synovium. The potential role of CD147 in cyclophilin A (CyPA)-mediated cell migration was studied using a chemotaxis assay in vitro and it was found that the addition of anti-CD147 antibody or a CD147 antagonistic peptide significantly decreased the chemotactic index of the mononuclear cells. The role of CD147 in MMP production and cell invasion in vitro were studied through the co-culture of human CD14+ monocytes or monocytic line THP-1 cells and human fibroblasts, as well as by gel zymography and an invasion assay. Significantly elevated release and activation of MMP-9 and/or MMP-2 were seen in the co-culture of human monocytes/THP-1 cells and fibroblasts compared with cultures of the cells alone. An increased number of cells invading through the filters in the invasion assays was also observed in the co-cultured cells. The addition of CD147 antagonistic peptide had some inhibitory effect, not only on MMP production but also on cell invasion in the co-culture. Our study demonstrates that the increased expression of CD147 on monocytes/macrophages in RA may be responsible for elevated MMP secretion, cell invasion and CyPA-mediated cell migration into the joints, all of which may contribute to the cartilage and bone destruction of RA. These findings, together with a better understanding of CD147, CyPA and RA, will help in the development of innovative therapeutic interventions for RA.
doi:10.1186/ar1778
PMCID: PMC1257431  PMID: 16207318
2.  Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue 
Arthritis Research  2000;2(2):142-144.
Acute-phase serum amyloid A (A-SAA) is a major component of the acute-phase response. A sustained acute-phase response in rheumatoid arthritis (RA) is associated with increased joint damage. A-SAA mRNA expression was confirmed in all samples obtained from patients with RA, but not in normal synovium. A-SAA mRNA expression was also demonstrated in cultured RA synoviocytes. A-SAA protein was identified in the supernatants of primary synoviocyte cultures, and its expression colocalized with sites of macrophage accumulation and with some vascular endothelial cells. It is concluded that A-SAA is produced by inflamed RA synovial tissue. The known association between the acute-phase response and progressive joint damage may be the direct result of synovial A-SAA-induced effects on cartilage degradation.
Introduction:
Serum amyloid A (SAA) is the circulating precursor of amyloid A protein, the fibrillar component of amyloid deposits. In humans, four SAA genes have been described. Two genes (SAA1 and SAA2) encode A-SAA and are coordinately induced in response to inflammation. SAA1 and SAA2 are 95% homologous in both coding and noncoding regions. SAA3 is a pseudogene. SAA4 encodes constitutive SAA and is minimally inducible. A-SAA increases dramatically during acute inflammation and may reach levels that are 1000-fold greater than normal. A-SAA is mainly synthesized in the liver, but extrahepatic production has been demonstrated in many species, including humans. A-SAA mRNA is expressed in RA synoviocytes and in monocyte/macrophage cell lines such as THP-1 cells, in endothelial cells and in smooth muscle cells of atherosclerotic lesions. A-SAA has also been localized to a wide range of histologically normal tissues, including breast, stomach, intestine, pancreas, kidney, lung, tonsil, thyroid, pituitary, placenta, skin and brain.
Aims:
To identify the cell types that produce A-SAA mRNA and protein, and their location in RA synovium.
Materials and methods:
Rheumatoid synovial tissue was obtained from eight patients undergoing arthroscopic biopsy and at joint replacement surgery. Total RNA was analyzed by reverse transcription (RT) polymerase chain reaction (PCR) for A-SAA mRNA. PCR products generated were confirmed by Southern blot analysis using human A-SAA cDNA. Localization of A-SAA production was examined by immunohistochemistry using a rabbit antihuman A-SAA polyclonal antibody. PrimaryRA synoviocytes were cultured to examine endogenous A-SAA mRNA expression and protein production.
Results:
A-SAA mRNA expression was detected using RT-PCR in all eight synovial tissue samples studied. Figure 1 demonstrates RT-PCR products generated using synovial tissue from three representative RA patients. Analysis of RA synovial tissue revealed differences in A-SAA mRNA levels between individual RA patients.
In order to identify the cells that expressed A-SAA mRNA in RA synovial tissue, we analyzed primary human synoviocytes (n = 2). RT-PCR analysis revealed A-SAA mRNA expression in primary RA synoviocytes (n = 2; Fig. 2). The endogenous A-SAA mRNA levels detected in individual primary RA synoviocytes varied between patients. These findings are consistent with A-SAA expression in RA synovial tissue (Fig. 1). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels were relatively similar in the RA synoviocytes examined (Fig. 2). A-SAA protein in the supernatants of primary synoviocyte cultures from four RA patients was measured using ELISA. Mean values of a control and four RA samples were 77.85, 162.5, 249.8, 321.5 and 339.04 μg/l A-SAA, respectively, confirming the production of A-SAA protein by the primary RA synoviocytes. Immunohistochemical analysis was performed to localize sites of A-SAA production in RA synovial tissue. Positive staining was present in both the lining and sublining layers of all eight RA tissues examined (Fig. 3a). Staining was intense and most prominent in the cells closest to the surface of the synovial lining layer. Positively stained cells were evident in the perivascular areas of the sublining layer. In serial sections stained with anti-CD68 monoclonal antibody, positive staining of macrophages appeared to colocalize with A-SAA-positive cells (Fig. 3b). Immunohistochemical studies of cultured primary RA synoviocytes confirmed specific cytoplasmic A-SAA expression in these cells. The specificity of the staining was confirmed by the absence of staining found on serial sections and synoviocyte cells treated with IgG (Fig. 3c).
Discussion:
This study demonstrates that A-SAA mRNA is expressed in several cell populations infiltrating RA synovial tissue. A-SAA mRNA expression was observed in all eight unseparated RA tissue samples studied. A-SAA mRNA expression and protein production was demonstrated in primary cultures of purified RA synoviocytes. Using immunohistochemical techniques, A-SAA protein appeared to colocalize with both lining layer and sublining layer synoviocytes, macrophages and some endothelial cells. The detection of A-SAA protein in culture media supernatants harvested from unstimulated synoviocytes confirms endogenous A-SAA production, and is consistent with A-SAA mRNA expression and translation by the same cells. Moreover, the demonstration of A-SAA protein in RA synovial tissue, RA cultured synoviocytes, macrophages and endothelial cells is consistent with previous studies that demonstrated A-SAA production by a variety of human cell populations.
The RA synovial lining layer is composed of activated macrophages and fibroblast-like synoviocytes. The macrophage is the predominant cell type and it has been shown to accumulate preferentially in the surface of the lining layer and in the perivascular areas of the sublining layer. Nevertheless, our observations strongly suggest that A-SAA is produced not only by synoviocytes, but also by synovial tissue macrophage populations. Local A-SAA protein production by vascular endothelial cells was detected in some, but not all, of the tissues examined. The reason for the variability in vascular A-SAA staining is unknown, but may be due to differences in endothelial cell activation, events related to angiogenesis or the intensity of local inflammation.
The value of measuring serum A-SAA levels as a reliable surrogate marker of inflammation has been demonstrated for several diseases including RA, juvenile chronic arthritis, psoriatic arthropathy, ankylosing spondylitis, Behçet's disease, reactive arthritis and Crohn's disease. It has been suggested that serum A-SAA levels may represent the most sensitive measurement of the acute-phase reaction. In RA, A-SAA levels provide the strongest correlations with clinical measurements of disease activity, and changes in serum levels best reflect the clinical course.
A number of biologic activities have been described for A-SAA, including several that are relevant to the understanding of inflammatory and tissue-degrading mechanisms in human arthritis. A-SAA induces migration, adhesion and tissue infiltration of circulating monocytes and polymorphonuclear leukocytes. In addition, human A-SAA can induce interleukin-1β, interleukin-1 receptor antagonist and soluble type II tumour necrosis factor receptor production by a monocyte cell line. Moreover, A-SAA can stimulate the production of cartilage-degrading proteases by both human and rabbit synoviocytes. The effects of A-SAA on protease production are interesting, because in RA a sustained acute-phase reaction has been strongly associated with progressive joint damage. The known association between the acute-phase response and progressive joint damage may be the direct result of synovial A-SAA-induced effects on cartilage degradation.
Conclusion:
In contrast to noninflamed synovium, A-SAA mRNA expression was identified in all RA tissues examined. A-SAA appeared to be produced by synovial tissue synoviocytes, macrophages and endothelial cells. The observation of A-SAA mRNA expression in cultured RA synoviocytes and human RA synovial tissue confirms and extends recently published findings that demonstrated A-SAA mRNA expression in stimulated RA synoviocytes, but not in unstimulated RA synoviocytes.
PMCID: PMC17807  PMID: 11062604
acute-phase response; rheumatoid arthritis; serum amyloid A; synovial tissue
3.  Involvement of CD147 in overexpression of MMP-2 and MMP-9 and enhancement of invasive potential of PMA-differentiated THP-1 
BMC Cell Biology  2005;6:25.
Background
During infection and inflammation, circulating blood monocytes migrate from the intravascular compartments to the extravascular compartments, where they mature into tissue macrophages. The maturation process prepares the cells to actively participate in the inflammatory and immune responses, and many factors have been reported to be involved in the process. We found in our study that CD147 played a very important role in this process.
Results
By using PMA-differentiated human monocyte cells line THP-1, we found that CD147 mediated matrix metalloproteinases (MMPs) expression of the leukemic THP-1 cells and thus enhanced the invasiveness of THP-1 cells. After 24 hours of PMA-induced monocyte differentiation, the mean fluorescence intensity of CD147 in differentiated THP-1 cells (289.61 ± 31.63) was higher than that of the undifferentiated THP-1 cells (205.1 ± 19.25). There was a significant increase of the levels of proMMP-2, proMMP-9 and their activated forms in the differentiated THP-1 cells. Invasion assays using reconstituted basement membrane showed a good correlation between the invasiveness of THP-1 cells and the production of MMP-2 and MMP-9. The difference in the MMPs expression and the invasive ability was significantly blocked by HAb18G/CD147 antagonistic peptide AP-9. The inhibitory rate of the secretion of proMMP-9 in the undifferentiated THP-1 cells was 45.07%. The inhibitory rate of the secretion of proMMP-9, the activated MMP-9 and proMMP-2 in the differentiated THP-1 cells was 52.90%, 53.79% and 47.80%, respectively. The inhibitory rate of invasive potential in the undifferentiated cells and the differentiated THP-1 cells was 41.82 % and 25.15%, respectively.
Conclusion
The results suggest that the expression of CD147 is upregulated during the differentiation of monocyte THP-1 cells to macrophage cells, and CD147 induces the secretion and activation of MMP-2 and MMP-9 and enhances the invasive ability of THP-1 cells. The matured monocytes / macrophages, via their high expression of CD147, may play an important role in promoting the tissue repair or tissue damage during their inflammatory response.
doi:10.1186/1471-2121-6-25
PMCID: PMC1156878  PMID: 15904490
4.  Active synovial matrix metalloproteinase-2 is associated with radiographic erosions in patients with early synovitis 
Arthritis Research  2000;2(2):145-153.
Serum and synovial tissue expression of the matrix metalloproteinase (MMP)-2 and -9 and their molecular regulators, MMP-14 and TIMP-2 was examined in 28 patients with inflammatory early synovitis and 4 healthy volunteers and correlated with the presence of erosions in the patients. Immunohistological staining of MMP-2, MMP-14 and TIMP-2 localized to corresponding areas in the synovial lining layer and was almost absent in normal synovium. Patients with radiographic erosions had significantly higher levels of active MMP-2 than patients with no erosions, suggesting that activated MMP-2 levels in synovial tissue may be a marker for a more aggressive synovial lesion.
Introduction:
In cancer the gelatinases [matrix metalloproteinase (MMP)-2 and MMP-9] have been shown to be associated with tissue invasion and metastatic disease. In patients with inflammatory arthritis the gelatinases are expressed in the synovial membrane, and have been implicated in synovial tissue invasion into adjacent cartilage and bone. It is hypothesized that an imbalance between the activators and inhibitors of the gelatinases results in higher levels of activity, enhanced local proteolysis, and bone erosion.
Objectives:
To determine whether the expression and activity levels of MMP-2 and MMP-9, and their regulators MMP-14 and tissue inhibitor of metalloproteinase (TIMP), are associated with early erosion formation in patients with synovitis of recent onset.
Patients and method:
A subset of 66 patients was selected from a larger early synovitis cohort on the basis of tissue availability for the study of synovial tissue and serum gelatinase expression. Patients with peripheral joint synovitis of less than 1 years' duration were evaluated clinically and serologically on four visits over a period of 12 months. At the initial visit, patients underwent a synovial tissue biopsy of one swollen joint, and patients had radiographic evaluation of hands and feet initially and at 1year. Serum MMP-1, MMP-2, MMP-9, MMP-14, and TIMP-1 and TIMP-2 levels were determined, and synovial tissue was examined by immunohistology for the expression of MMP-2 and MMP-9, and their molecular regulators. Gelatinolytic activity for MMP-2 and MMP-9 was quantified using a sensitive, tissue-based gel zymography technique. Four healthy individuals underwent closed synovial biopsy and their synovial tissues were similarly analyzed.
Results:
Of the 66 patients studied, 45 fulfilled American College of Rheumatology criteria for rheumatoid arthritis (RA), with 32 (71%) being rheumatoid factor positive. Of the 21 non-RA patients, seven had a spondylarthropathy and 14 had undifferentiated arthritis. Radiographically, 12 of the RA patients had erosions at multiple sites by 1 year, whereas none of the non-RA patients had developed erosive disease of this extent. In the tissue, latent MMP-2 was widely expressed in the synovial lining layer and in areas of stromal proliferation in the sublining layer and stroma, whereas MMP-9 was expressed more sparsely and focally. MMP-14, TIMP-2, and MMP-2 were all detected in similar areas of the lining layer on consecutive histologic sections. Tissue expression of MMP-14, the activator for pro-MMP-2, was significantly higher in RA than in non-RA patients (8.4 ± 5 versus 3.7 ± 4 cells/high-power field; P = 0.009). In contrast, the expression of TIMP-2, an inhibitor of MMP-2, was lower in the RA than in the non-RA samples (25 ± 12 versus 39 ± 9 cells/high-power field; P = 0.01). Synovial tissue expressions of MMP-2, MMP-14, and TIMP-2 were virtually undetectable in normal synovial tissue samples. The synovial tissue samples of patients with erosive disease had significantly higher levels of active MMP-2 than did those of patients without erosions (Fig. 1). Tissue expression of MMP-2 and MMP-9, however, did not correlate with the serum levels of these enzymes.
With the exception of serum MMP-2, which was not elevated over normal, serum levels of all of the other MMPs and TIMPs were elevated to varying degrees, and were not predictive of erosive disease. Interestingly, MMP-1 and C-reactive protein, both of which were associated with the presence of erosions, were positively correlated with each other (r = 0.42; P < 0.001).
Discussion:
MMP-2 and MMP-9 are thought to play an important role in the evolution of joint erosions in patients with an inflammatory arthritis. Most studies have concentrated on the contribution of MMP-9 to the synovitis, because synovial fluid and serum MMP-9 levels are markedly increased in inflammatory arthropathies. Previously reported serum levels of MMP-9 have varied widely. In the present sample of patients with synovitis of recent onset, serum MMP-9 levels were elevated in only 21%. Moreover, these elevations were not specific for RA, the tissue expression of MMP-9 was focal, and the levels of MMP-9 activity were not well correlated with early erosions. Although serum MMP-2 levels were not of prognostic value, high synovial tissue levels of MMP-2 activity were significantly correlated with the presence of early erosions. This may reflect augmented activation of MMP-2 by the relatively high levels of MMP-14 and low levels of TIMP-2 seen in these tissues. We were able to localize the components of this trimolecular complex to the synovial lining layer in consecutive tissue sections, a finding that is consistent with their colocalization.
In conclusion, we have provided evidence that active MMP-2 complexes are detectable in the inflamed RA synovium and may be involved in the development of early bony erosions. These results suggest that strategies to inhibit the activation of MMP-2 may have the potential for retarding or preventing early erosions in patients with inflammatory arthritis.
PMCID: PMC17808  PMID: 11062605
early synovitis; erosion; metalloproteinase; matrix metalloproteinase-2; rheumatoid arthritis
5.  Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10 
Annals of the Rheumatic Diseases  2002;61(11):975-980.
Background: Matrix metalloproteinases (MMPs) have a pivotal role in the destruction of cartilage in rheumatoid arthritis (RA), which is mediated by the fibroblast-like synoviocytes (FLS).
Objective: To examine the in vitro invasiveness of synoviocytes obtained from inflamed joints of patients with arthritis in relation to the expression of MMP 1–14, 17, 19, cathepsin-K, the tissue inhibitors of matrix metalloproteinases TIMP-1 and TIMP-2 by FLS.
Methods: FLS were derived from 56 patients (30 with RA, 17 with osteoarthritis (OA), and nine with avascular necrosis (AVN)). Invasive growth of FLS through an artificial matrix (Matrigel) was measured in a transwell system. The number of cells that migrated through the matrix were counted. Proliferation rate was determined by counting the FLS after seven days of culturing. Expression of MMPs, cathepsin-K and TIMPs was investigated with reverse transcriptase-polymerase chain reaction and related to the expression of a household gene, ß-actin.
Results: FLS from RA showed greater invasive growth than FLS from OA and AVN. The median number of cells that grew through the matrix membrane was 4788 for RA, significantly higher than the number for OA, 1875 (p<0.001) and for AVN, 1530 (p=0.014). The median rate of proliferation of RA FLS was 0.27 per day compared with OA 0.22 per day (p= 0.012) and AVN 0.25 per day, but there was no correlation between the rate of proliferation and invasive growth in vitro. FLS from RA and OA that expressed MMP-1, MMP-3, or MMP-10 were significantly more invasive (median number of invasive cells: 3835, 4248, 4990, respectively) than cells that did not express these MMPs (1605, p=0.03; 1970, p=0.004; 2360, p=0.012, respectively). There was also a significant relationship between the expression of MMP-1 and MMP-9 and the diagnosis RA (both p=0.013). The expression levels of mRNA for MMP-1 and MMP-2 correlated with the protein levels produced by the synoviocytes as measured by an enzyme linked immunosorbent assay (ELISA).
Conclusion: FLS of RA invade more aggressively in a Matrigel matrix than OA and AVN FLS; this is not because of a higher rate of proliferation of RA FLS. The significant correlation between the expression of MMP-1, MMP-3, and MMP-10 and invasive growth in a Matrigel transwell system suggests that these MMPs play a part in the invasive growth of FLS obtained from patients with RA.
doi:10.1136/ard.61.11.975
PMCID: PMC1753950  PMID: 12379519
6.  The Ras guanine nucleotide exchange factor RasGRF1 promotes matrix metalloproteinase-3 production in rheumatoid arthritis synovial tissue 
Arthritis Research & Therapy  2009;11(4):R121.
Introduction
Fibroblast-like synoviocytes (FLS) from rheumatoid arthritis (RA) patients share many similarities with transformed cancer cells, including spontaneous production of matrix metalloproteinases (MMPs). Altered or chronic activation of proto-oncogenic Ras family GTPases is thought to contribute to inflammation and joint destruction in RA, and abrogation of Ras family signaling is therapeutic in animal models of RA. Recently, expression and post-translational modification of Ras guanine nucleotide releasing factor 1 (RasGRF1) was found to contribute to spontaneous MMP production in melanoma cancer cells. Here, we examine the potential relationship between RasGRF1 expression and MMP production in RA, reactive arthritis, and inflammatory osteoarthritis synovial tissue and FLS.
Methods
Expression of RasGRF1, MMP-1, MMP-3, and IL-6 was detected in synovial tissue by immunohistochemistry and stained sections were evaluated by digital image analysis. Expression of RasGRF1 in FLS and synovial tissue was also assessed by immunoblotting. Double staining was performed to detect proteins in specific cell populations, and cells producing MMP-1 and MMP-3. RasGRF1 expression was manipulated in RA FLS by cDNA transfection and gene silencing, and effects on MMP-1, TIMP-1, MMP-3, IL-6, and IL-8 production measured by ELISA.
Results
Expression of RasGRF1 was significantly enhanced in RA synovial tissue, and detected in FLS and synovial macrophages in situ. In cultured FLS and synovial biopsies, RasGRF1 was detected by immunoblotting as a truncated fragment lacking its negative regulatory domain. Production of MMP-1 and MMP-3 in RA but not non-RA synovial tissue positively correlated with expression of RasGRF1 and co-localized in cells expressing RasGRF1. RasGRF1 overexpression in FLS induced production of MMP-3, and RasGRF1 silencing inhibited spontaneous MMP-3 production.
Conclusions
Enhanced expression and post-translational modification of RasGRF1 contributes to MMP-3 production in RA synovial tissue and the semi-transformed phenotype of RA FLS.
doi:10.1186/ar2785
PMCID: PMC2745805  PMID: 19678938
7.  The effects of 1α,25-dihydroxyvitamin D3 on matrix metalloproteinase and prostaglandin E2 production by cells of the rheumatoid lesion 
Arthritis Research  1999;1(1):63-70.
The biologically active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], acts through vitamin D receptors, which were found in rheumatoid tissues in the present study. IL-1β-activated rheumatoid synovial fibroblasts and human articular chondrocytes were shown to respond differently to exposure to 1α,25(OH)2D3, which has different effects on the regulatory pathways of specific matrix metalloproteinases and prostaglandin E2.
Introduction:
1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the biologically active metabolite of vitamin D3, acts through an intracellular vitamin D receptor (VDR) and has several immunostimulatory effects. Animal studies have shown that production of some matrix metalloproteinases (MMPs) may be upregulated in rat chondrocytes by administration of 1α,25(OH)2D3; and cell cultures have suggested that 1α,25(OH)2D3 may affect chondrocytic function. Discoordinate regulation by vitamin D of MMP-1 and MMP-9 in human mononuclear phagocytes has also been reported. These data suggest that vitamin D may regulate MMP expression in tissues where VDRs are expressed. Production of 1α,25(OH)2D3 within synovial fluids of arthritic joints has been shown and VDRs have been found in rheumatoid synovial tissues and at sites of cartilage erosion. The physiological function of 1α,25(OH)2D3 at these sites remains obscure. MMPs play a major role in cartilage breakdown in the rheumatoid joint and are produced locally by several cell types under strict control by regulatory factors. As 1α,25(OH)2D3 modulates the production of specific MMPs and is produced within the rheumatoid joint, the present study investigates its effects on MMP and prostaglandin E2 (PGE2) production in two cell types known to express chondrolytic enzymes.
Aims:
To investigate VDR expression in rheumatoid tissues and to examine the effects of 1α,25-dihydroxyvitamin D3 on cultured rheumatoid synovial fibroblasts (RSFs) and human articular chondrocytes (HACs) with respect to MMP and PGE2 production.
Methods:
Rheumatoid synovial tissues were obtained from arthroplasty procedures on patients with late-stage rheumatoid arthritis; normal articular cartilage was obtained from lower limb amputations. Samples were embedded in paraffin, and examined for presence of VDRs by immunolocalisation using a biotinylated antibody and alkaline-phosphatase-conjugated avidin-biotin complex system. Cultured synovial fibroblasts and chondrocytes were treated with either 1α,25(OH)2D3, or interleukin (IL)-1β or both. Conditioned medium was assayed for MMP and PGE2 by enzyme-linked immunosorbent assay (ELISA), and the results were normalised relative to control values.
Results:
The rheumatoid synovial tissue specimens (n = 18) immunostained for VDRs showed positive staining but at variable distributions and in no observable pattern. VDR-positive cells were also observed in association with some cartilage-pannus junctions (the rheumatoid lesion). MMP production by RSFs in monolayer culture was not affected by treatment with 1α,25(OH)2D3 alone, but when added simultaneously with IL-1β the stimulation by IL-1β was reduced from expected levels by up to 50%. In contrast, 1α,25(OH)2D3 had a slight stimulatory effect on basal production of MMPs 1 and 3 by monolayer cultures of HACs, but stimulation of MMP-1 by IL-1β was not affected by the simultaneous addition of 1α,25(OH)2D3 whilst MMP-3 production was enhanced (Table 1). The production of PGE2 by RSFs was unaffected by 1α,25(OH)2D3 addition, but when added concomitantly with IL-1β the expected IL-1 β-stimulated increase was reduced to almost basal levels. In contrast, IL-1β stimulation of PGE2 in HACs was not affected by the simultaneous addition of 1α,25(OH)2D3 (Table 2). Pretreatment of RSFs with 1α,25(OH)2D3 for 1 h made no significant difference to IL-1β-induced stimulation of PGE2, but incubation for 16 h suppressed the expected increase in PGE2 to control values. This effect was also noted when 1α,25(OH)2D3 was removed after the 16h and the IL-1 added alone. Thus it appears that 1α,25(OH)2D3 does not interfere with the IL-1β receptor, but reduces the capacity of RSFs to elaborate PGE2 after IL-1β induction.
Discussion:
Cells within the rheumatoid lesion which expressed VDR were fibroblasts, macrophages, lymphocytes and endothelial cells. These cells are thought to be involved in the degradative processes associated with rheumatoid arthritis (RA), thus providing evidence of a functional role of 1α,25(OH)2D3 in RA. MMPs may play important roles in the chondrolytic processes of the rheumatoid lesion and are known to be produced by both fibroblasts and chondrocytes. The 1α,25(OH)2D3 had little effect on basal MMP production by RSFs, although more pronounced differences were noted when IL-1β-stimulated cells were treated with 1α,25(OH)2D3, with the RSF and HAC showing quite disparate responses. These opposite effects may be relevant to the processes of joint destruction, especially cartilage loss, as the ability of 1α,25(OH)2D3 to potentiate MMP-1 and MMP-3 expression by 'activated' chondrocytes might facilitate intrinsic cartilage chondrolysis in vivo. By contrast, the MMP-suppressive effects observed for 1α,25(OH)2D3 treatment of 'activated' synovial fibroblasts might reduce extrinsic chondrolysis and also matrix degradation within the synovial tissue. Prostaglandins have a role in the immune response and inflammatory processes associated with RA. The 1α,25(OH)2D3 had little effect on basal PGE2 production by RSF, but the enhanced PGE2 production observed following IL-1β stimulation of these cells was markedly suppressed by the concomitant addition of 1α,25(OH)2D3. As with MMP production, there are disparate effects of 1α,25(OH)2D3 on IL-1β stimulated PGE2 production by the two cell types; 1α,25(OH)2D3 added concomitantly with IL-1β had no effect on PGE2 production by HACs. In summary, the presence of VDRs in the rheumatoid lesion demonstrates that 1α,25(OH)2D3 may have a functional role in the joint disease process. 1α,25(OH)2D3 does not appear to directly affect MMP or PGE2 production but does modulate cytokine-induced production.
Comparative effects of 1 α,25-dihydroxyvitamin D3 (1 α,25D3) on interleukin (IL)-1-stimulated matrix metalloproteinase (MMP)-1 and MMP-3 production by rheumatoid synovial fibroblasts and human articular chondrocytes in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
Comparative effects of 1α,25-dihydroxyvitamin D3 (1α,25D3) on Interleukin (IL)-1-stimulated prostaglandin E2 production by rheumatoid synovial fibroblasts and human articular chondrocyte in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
PMCID: PMC17774  PMID: 11056661
1α,25-dihydroxyvitamin D3; matrix metalloproteinase; prostaglandin E2; rheumatoid arthritis
8.  The Arthritis Severity Locus Cia5d Is a Novel Genetic Regulator of the Invasive Properties of Synovial Fibroblasts 
Arthritis and rheumatism  2008;58(8):2296-2306.
Objective
The synovial fibroblast, or fibroblast-like synoviocyte (FLS), has a central role in pannus invasion and destruction of cartilage and bone in rheumatoid arthritis (RA). However, regulation of the FLS remains incompletely understood. The aim of this study was to determine whether the invasive properties of FLS are genetically regulated by arthritis severity loci.
Methods
DA rats (arthritis susceptible) and rat strains congenic for arthritis-protective intervals were studied. Primary FLS cell lines were generated from each strain and used in a well-established FLS invasion model through a collagen-rich barrier. Cells or culture supernatants were analyzed for gene expression, activity of different matrix metalloproteinases (MMPs), cytoskeleton integrity, and cell proliferation.
Results
The median number of FLS from DA.F344(Cia5d) rats that invaded through the collagen-rich barrier was reduced 86.5% compared with the median number of invading FLS from DA rats. Histologic examination showed that DA.F344(Cia5d) rats preserved a normal joint without pannus, hyperplasia, or erosions. FLS from DA.F344(Cia5d) rats produced significantly lower levels of active MMP-2 compared with FLS from DA rats, but the levels of proMMP-2 and MMP-2 messenger RNA in DA.F344(Cia5d) rats were similar to those in DA rats. Treatment of FLS from DA rats with an MMP-2 inhibitor reduced cell invasion to a level similar to that in DA.F344(Cia5d) rats, demonstrating that MMP-2 activity accounted for the difference between FLS from these 2 strains. Analysis of MMP-2–activating pathways revealed increased levels of soluble membrane type 1 (MT1)–MMP in DA rats compared with DA.F344(Cia5d) rats.
Conclusion
These data represent the first evidence for a genetic component in the regulation of FLS invasion. A gene located within the Cia5d interval accounts for this effect and operates via the regulation of soluble MT1-MMP production and MMP-2 activation. These observations suggest novel potential pathways for prognostication and therapy.
doi:10.1002/art.23610
PMCID: PMC2714698  PMID: 18668563
9.  Activation of synovial fibroblasts in rheumatoid arthritis: lack of expression of the tumour suppressor PTEN at sites of invasive growth and destruction 
Arthritis Research  1999;2(1):59-64.
In the present study, we searched for mutant PTEN transcripts in aggressive rheumatoid arthritis synovial fibroblasts (RA-SF) and studied the expression of PTEN in RA. By automated sequencing, no evidence for the presence of mutant PTEN transcripts was found. However, in situ hybridization on RA synovium revealed a distinct expression pattern of PTEN, with negligible staining in the lining layer but abundant expression in the sublining. Normal synovial tissue exhibited homogeneous staining for PTEN. In cultured RA-SF, only 40% expressed PTEN. Co-implantation of RA-SF and normal human cartilage into severe combined immunodeficiency (SCID) mice showed only limited expression of PTEN, with no staining in those cells aggressively invading the cartilage. Although PTEN is not genetically altered in RA, these findings suggest that a lack of PTEN expression may constitute a characteristic feature of activated RA-SF in the lining, and may thereby contribute to the invasive behaviour of RA-SF by maintaining their aggressive phenotype at sites of cartilage destruction.
Aims:
PTEN is a novel tumour suppressor which exhibits tyrosine phosphatase activity as well as homology to the cytoskeletal proteins tensin and auxilin. Mutations of PTEN have been described in several human cancers and associated with their invasiveness and metastatic properties. Although not malignant, rheumatoid arthritis synovial fibroblasts (RA-SF) exhibit certain tumour-like features such as attachment to cartilage and invasive growth. In the present study, we analyzed whether mutant transcripts of PTEN were present in RA-SF. In addition, we used in situ hybridization to study the expression of PTEN messenger (m)RNA in tissue samples of RA and normal individuals as well as in cultured RA-SF and in the severe combined immunodeficiency (SCID) mouse model of RA.
Methods:
Synovial tissue specimens were obtained from seven patients with RA and from two nonarthritic individuals. Total RNA was isolated from synovial fibroblasts and after first strand complementary (c)DNA synthesis, polymerase chain reaction (PCR) was performed to amplify a 1063 base pair PTEN fragment that encompassed the coding sequence of PTEN including the phosphatase domain and all mutation sites described so far. The PCR products were subcloned in Escherichia coli, and up to four clones were picked from each plate for automated sequencing. For in situ hybridization, digoxigenin-labelled PTEN-specific RNA probes were generated by in vitro transcription. For control in situ hybridization, a matrix metalloproteinase (MMP)-2-specific probe was prepared. To investigate the expression of PTEN in the absence of human macrophage or lymphocyte derived factors, we implanted RA-SF from three patients together with normal human cartilage under the renal capsule of SCID mice. After 60 days, mice were sacrificed, the implants removed and embedded into paraffin.
Results:
PCR revealed the presence of the expected 1063 base pair PTEN fragment in all (9/9) cell cultures (Fig. 1). No additional bands that could account for mutant PTEN variants were detected. Sequence analysis revealed 100% homology of all RA-derived PTEN fragments to those from normal SF as well as to the published GenBank sequence (accession number U93051). However, in situ hybridization demonstrated considerable differences in the expression of PTEN mRNA within the lining and the sublining layers of RA synovial membranes. As shown in Figure 2a, no staining was observed within the lining layer which has been demonstrated to mediate degradation of cartilage and bone in RA. In contrast, abundant expression of PTEN mRNA was found in the sublining of all RA synovial tissues (Figs 2a and b). Normal synovial specimens showed homogeneous staining for PTEN within the thin synovial membrane (Fig. 2c). In situ hybridization using the sense probe gave no specific staining (Fig. 2d). We also performed in situ hybridization on four of the seven cultured RA-SF and followed one cell line from the first to the sixth passage. Interestingly, only 40% of cultured RA-SF expressed PTEN mRNA (Fig. 3a), and the proportion of PTEN expressing cells did not change throughout the passages. In contrast, control experiments using a specific RNA probe for MMP-2 revealed mRNA expression by nearly all cultured cells (Fig. 3b). As seen before, implantation of RA-SF into the SCID mice showed considerable cartilage degradation. Interestingly, only negligible PTEN expression was found in those RA-SF aggressively invading the cartilage (Fig. 3c). In situ hybridization for MMP-2 showed abundant staining in these cells (Fig. 3d).
Discussion:
Although this study found no evidence for mutations of PTEN in RA synovium, the observation that PTEN expression is lacking in the lining layer of RA synovium as well as in more than half of cultured RA-SF is of interest. It suggests that loss of PTEN function may not exclusively be caused by genetic alterations, yet at the same time links the low expression of PTEN to a phenotype of cells that have been shown to invade cartilage aggressively.
It has been proposed that the tyrosine phosphatase activity of PTEN is responsible for its tumour suppressor activity by counteracting the actions of protein tyrosine kinases. As some studies have demonstrated an upregulation of tyrosine kinase activity in RA synovial cells, it might be speculated that the lack of PTEN expression in aggressive RA-SF contributes to the imbalance of tyrosine kinases and phosphatases in this disease. However, the extensive amino-terminal homology of the predicted protein to the cytoskeletal proteins tensin and auxilin suggests a complex regulatory function involving cellular adhesion molecules and phosphatase-mediated signalling. The tyrosine phosphatase TEP1 has been shown to be identical to the protein encoded by PTEN, and gene transcription of TEP1 has been demonstrated to be downregulated by transforming growth factor (TGF)-β. Therefore, it could be hypothesized that TGF-β might be responsible for the downregulation of PTEN. However, the expression of TGF-β is not restricted to the lining but found throughout the synovial tissue in RA. Moreover, in our study the percentage of PTEN expressing RA-SF remained stable for six passages in culture, whereas molecules that are cytokine-regulated in vivo frequently change their expression levels when cultured over several passages. Also, cultured RA-SF that were implanted into SCID mice and deeply invaded the cartilage did not show significant expression of PTEN after 60 days. The drop in the percentage of PTEN expressing cells from the original cell cultures to the SCID mouse implants is of interest as this observation goes along with data from previous studies that have shown the prominent expression of activation-related molecules in the SCID mice implants that in vivo are found predominantly in the lining layer. Therefore, our data point to endogenous mechanisms rather than to the influence of exogenous human cytokines or factors in the downregulation of PTEN. Low expression of PTEN may belong to the features that distinguish between the activated phenotype of RA-SF and the sublining, proliferating but nondestructive cells.
PMCID: PMC17804  PMID: 11219390
rheumatoid arthritis; synovial membrane; fibroblasts; PTEN tumour suppressor; severe combined immunodeficiency (SCID) mouse model; cartilage destruction; in situ hybridization
10.  MT1-MMP is a crucial promotor of synovial invasion in human rheumatoid arthritis 
Arthritis and rheumatism  2009;60(3):686.
Objective
A hallmark of rheumatoid arthritis (RA) is invasion of the synovial pannus into cartilage and this step requires degradation of the collagen matrix. The aim of this study was to explore the role of one of the collagen-degrading matrix metalloproteinases (MMPs), membrane-type 1 MMP (MT1-MMP), in synovial pannus invasiveness.
Methods
Expression and localization of MT1-MMP in human RA pannus were investigated by Western blot analysis of primary synovial cells and immunohistochemistry of RA joints specimens. The functional role of MT1-MMP was analyzed by 3D collagen invasion assays and a cartilage invasion assay in the presence or absence of tissue inhibitor of metalloproteinase (TIMP)-1, TIMP-2, or GM6001. The effect of adenoviral expression of a dominant negative MT1-MMP construct lacking a catalytic domain was also examined.
Results
MT1-MMP was highly expressed at the pannus-cartilage junction of RA joints. Freshly isolated rheumatoid synovial tissues and isolated RA synovial fibroblasts invaded into a 3D collagen matrix in an MT1-MMP-dependent manner. Invasion was blocked by TIMP-2 and GM6001, but not by TIMP-1. It was also inhibited by the over-expression of a dominant negative MT1-MMP which inhibits collagenolytic activity and proMMP-2 activation by MT1-MMP on the cell surface. Synovial fibroblasts also invaded into cartilage in an MT1-MMP-dependent manner. This process was further enhanced by removing aggrecan from the cartilage matrix.
Conclusion
MT1-MMP is an essential collagen-degrading proteinase during pannus invasion in human RA. Specific inhibition of MT1-MMP-dependent invasion may form a novel therapeutic strategy for RA.
doi:10.1002/art.24331
PMCID: PMC2819053  PMID: 19248098
MT1-MMP; synovial pannus; rheumatoid arthritis
11.  Abrogation of CC chemokine receptor 9 ameliorates collagen-induced arthritis of mice 
Introduction
Biological drugs are effective in patients with rheumatoid arthritis (RA), but increase severe infections. The CC chemokine receptor (CCR) 9 antagonist was effective for Crohn’s disease without critical adverse effects including infections in clinical trials. The present study was carried out to explore the pathogenic roles of chemokine (C-C motif) ligand (CCL) 25 and its receptor, CCR9, in autoimmune arthritis and to study if the CCR9 antagonist could be a new treatment for RA.
Methods
CCL25 and CCR9 expression was examined with immunohistochemistry and Western blotting. Concentration of interleukin (IL)-6, matrix metalloproteinase (MMP)-3 and tumor necrosis factor (TNF)-α was measured with enzyme-linked immunosorbent assays. Effects of abrogating CCR9 on collagen-induced arthritis (CIA) was evaluated using CCR9-deficient mice or the CCR9 antagonist, CCX8037. Fluorescence labeled-CD11b+ splenocytes from CIA mice were transferred to recipient CIA mice and those infiltrating into the synovial tissues of the recipient mice were counted.
Results
CCL25 and CCR9 proteins were found in the RA synovial tissues. CCR9 was expressed on macrophages, fibroblast-like synoviocytes (FLS) and dendritic cells in the synovial tissues. Stimulation with CCL25 increased IL-6 and MMP-3 production from RA FLS, and IL-6 and TNF-α production from peripheral blood monocytes. CIA was suppressed in CCR9-deficient mice. CCX8037 also inhibited CIA and the migration of transferred CD11b+ splenocytes into the synovial tissues.
Conclusions
The interaction between CCL25 and CCR9 may play important roles in cell infiltration into the RA synovial tissues and inflammatory mediator production. Blocking CCL25 or CCR9 may represent a novel safe therapy for RA.
doi:10.1186/s13075-014-0445-9
PMCID: PMC4201712  PMID: 25248373
12.  High mobility group box 1 potentiates the pro-inflammatory effects of interleukin-1β in osteoarthritic synoviocytes 
Arthritis Research & Therapy  2010;12(4):R165.
Introduction
High mobility group box 1 (HMGB1) is released by necrotic cells or secreted in response to inflammatory stimuli. Extracellular HMGB1 may act as a pro-inflammatory cytokine in rheumatoid arthritis. We have recently reported that HMGB1 is released by osteoarthritic synoviocytes after activation with interleukin-1beta (IL-1β) The present study investigated the role of HMGB1 in synovial inflammation in osteoarthritis (OA).
Methods
HMGB1 was determined in human synovium using immunohistochemistry, comparing normal to OA. OA synoviocytes were incubated with HMGB1 at 15 or 25 ng/ml in the absence or presence of IL-1β (10 ng/ml). Gene expression was analyzed by quantitative PCR and protein expression by Western Blot and ELISA. Matrix metalloproteinase (MMP) activity was studied by fluorometric procedures and nuclear factor (NF)-κB activation by transient transfection with a NF-κB-luciferase plasmid.
Results
In the normal synovium, HMGB1 was found in the synovial lining cells, sublining cells, and in the vascular wall cells. The distribution of HMGB1 in OA synovium was similar but the number of HMGB1 positive cells was higher and HMGB1 was also present in infiltrated cells. In normal synovial membrane cells, HMGB1 was found mostly in the nuclei, whereas in OA, HMGB1 was generally found mostly in the cytoplasm. In OA synoviocytes, HMGB1 alone at concentrations of 15 or 25 ng/ml did not affect the production of IL-6, IL-8, CCL2, CCL20, MMP-1 or MMP-3, but in the presence of IL-1β, a significant potentiation of protein and mRNA expression, as well as MMP activity was observed. HMGB1 also enhanced the phosphorylated ERK1/2 and p38 levels, with a lower effect on phosphorylated Akt. In contrast, JNK1/2 phosphorylation was not affected. In addition, HMGB1 at 25 ng/ml significantly potentiated NF-κB activation in the presence of IL-1β.
Conclusions
Our results indicate that HMGB1 is overexpressed in OA synovium and mostly present in extracellular form. In OA synoviocytes, HMGB1 cooperates with IL-1β to amplify the inflammatory response leading to the production of a number of cytokines, chemokines and MMPs. Our data support a pro-inflammatory role for this protein contributing to synovitis and articular destruction in OA.
doi:10.1186/ar3124
PMCID: PMC2945068  PMID: 20799933
13.  Full-length soluble CD147 promotes MMP-2 expression and is a potential serological marker in detection of hepatocellular carcinoma 
Background
As a surface glycoprotein, CD147 is capable of stimulating the production of matrix metalloproteinases (MMPs) from neighboring fibroblasts. The aim of the present study is to explore the role of soluble CD147 on MMPs secretion from hepatocellular carcinoma (HCC) cells, and to investigate the diagnostic value of serum soluble CD147 in the HCC detection.
Methods
We identified the form of soluble CD147 in cell culture supernate of HCC cells and serum of patients with HCC, and explored the role of soluble CD147 on MMPs secretion. Serum CD147 levels were detected by the enzyme-linked immunosorbent assay, and the value of soluble CD147 as a marker in HCC detection was analyzed.
Results
Full length soluble CD147 was presented in the culture medium of HCC cells and serum of patients with HCC. The extracellular domain of soluble CD147 promoted the expression of CD147 and MMP-2 from HCC cells. Knockdown of CD147 markedly diminished the up-regulation of CD147 and MMP-2 which induced by soluble CD147. Soluble CD147 activated ERK, FAK, and PI3K/Akt pathways, leading to the up-regulation of MMP-2. The level of soluble CD147 in serum of patients with HCC was significantly elevated compared with healthy individuals (P < 0.001). Soluble CD147 levels were found to be associated with HCC tumor size (P = 0.007) and Child-Pugh grade (P = 0.007). Moreover, soluble CD147 showed a better performance in distinguishing HCC compared with alpha-fetoprotein.
Conclusions
The extracellular domain of soluble CD147 enhances the secretion of MMP-2 from HCC cells, requiring the cooperation of membrane CD147 and activation of ERK, FAK, and PI3K/Akt signaling. The measurement of soluble CD147 may offer a useful approach in diagnosis of HCC.
doi:10.1186/1479-5876-12-190
PMCID: PMC4227008  PMID: 24996644
Hepatocellular carcinoma; Soluble CD147; Matrix metalloproteinases; Alpha-fetoprotein; Serological marker
14.  Immunolocalization of MMP-2 and MMP-9 in human rheumatoid synovium 
Matrix metalloproteinase (MMP)-2 and MMP-9, two important members of the matrix metalloproteinase family, have been shown critical contributions in intra-tumor angiogenesis and invasion of tumor progression, and they might also play important roles in the angiogenesis as well as the pannus formation of rheumatoid arthritis (RA). In the present study, we used the immunohistochemistry, the immunofluorescence staining and the con-focal scanning methods to characterize the immunolocalization of MMP-2 and MMP-9 in RA synovium tissues. Our results showed that both MMP-2 and MMP-9 immunostaining could be found in synoviocytes and vascular endothelial cells. Moreover, our con-focal scanning also showed that MMP-2 could be found in infiltrating CD14+ monocytes and CD68+ macrophages, and MMP-9 could be found in infiltrating CD68+ macrophages in RA synovium tissues, while weak or negative staining of these two MMPs could be found in infiltrating CD20+B cells and CD3+T cells in RA synovium. Thus, our finding suggests that both MMP-2 and MMP-9 expressed by synoviocytes as well as certain infiltrating immune cells role importantly in the angiogenesis in RA progression.
PMCID: PMC4097284  PMID: 25031723
Matrix metalloproteinase-2; matrix metalloproteinase-9; confocal scanning; rheumatoid arthritis
15.  Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis 
Background
Some of cannabinoids, which are chemical compounds contained in marijuana, are immunosuppressive. One of the receptors, CB receptor 1 (CB1), is expressed predominantly by the cells in the central nervous system, whereas CB receptor 2 (CB2) is expressed primarily by immune cells. Theoretically, selective CB2 agonists should be devoid of psychoactive effects. In this study, we investigated therapeutic effects of a selective CB2 agonist on arthritis.
Methods
The expression of CB2 was analyzed with immunohistochemistry and Western blotting. Interleukin (IL)-6, matrix metalloproteinase-3 (MMP-3), and chemokine (C-C motif) ligand 2 (CCL2) were quantified with enzyme-linked immunosorbent assays (ELISA). Osteoclastogenesis was assessed with tartrate-resistant acid phosphatase staining and the resorption of coated-calcium phosphate. Effect of JWH133, a selective CB2 agonist, on murine collagen type II (CII)-induced arthritis (CIA) was evaluated with arthritis score, and histological and radiographic changes. IFN-γ and IL-17 production by CII-stimulated splenocytes and serum anti-CII Ab were analyzed by ELISA.
Results
Immunohistochemistry showed that CB2 was expressed more in the synovial tissues from the rheumatoid joints than in those from the osteoarthritis joints. CB2 expression on RA FLS was confirmed with Western blot analysis. JWH133 inhibited IL-6, MMP-3, and CCL2 production from tumor necrosis factor-α-stimulated fibroblast-like synoviocytes (FLS) derived from the rheumatoid joints, and osteoclastogenesis of peripheral blood monocytes. Administration of JWH133 to CIA mice reduced the arthritis score, inflammatory cell infiltration, bone destruction, and anti-CII IgG1 production.
Conclusion
The present study suggests that a selective CB2 agonist could be a new therapy for RA that inhibits production of inflammatory mediators from FLS, and osteoclastogenesis.
doi:10.1186/1471-2474-15-275
PMCID: PMC4243420  PMID: 25115332
Cannabinoid; Cannabinoid receptor 2 (CB2); Rheumatoid arthritis; JWH133; Fibroblast-like synoviocyte; Monocyte
16.  Analysis of the cell infiltrate and expression of proinflammatory cytokines and matrix metalloproteinases in arthroscopic synovial biopsies: comparison with synovial samples from patients with end stage, destructive rheumatoid arthritis 
Annals of the Rheumatic Diseases  2003;62(7):635-638.
Background: Synovial tissue (ST) from end stage destructive rheumatoid arthritis (RA) and arthroscopic biopsies obtained during active inflammation might exhibit different characteristics.
Objective: To define the cell infiltrate and the expression of proinflammatory cytokines, angiogenic factors, and matrix metalloproteinases (MMPs) in ST selected at arthroscopy compared with that from end stage RA.
Methods: Synovial biopsy specimens were obtained from the actively inflamed knee joints of 13 patients with chronic RA by arthroscopy and compared with ST from 10 patients with end stage, destructive RA. Immunohistological analysis was performed to detect T cells, plasma cells, macrophages, fibroblast-like synoviocytes (FLS), and the expression of interleukin (IL)1ß, IL6, tumour necrosis factor α (TNFα), MMP-1, MMP-3, MMP-13, TIMP-1, and VEGF.
Results: The expression of CD68+ macrophages was significantly higher in ST selected at arthroscopy than in samples obtained at surgery, both in the intimal lining layer and in the synovial sublining. The expression of CD3+ T cells also tended to be higher in arthroscopic samples. The expression of TNFα, IL6, MMP-1, MMP-3, MMP-13, TIMP-1, and VEGF was on average higher in ST obtained at arthroscopy. In contrast, the expression of IL1ß was on average higher in surgical samples.
Conclusion: Active arthritis activity is associated with increased cell infiltration, expression of proinflammatory cytokines, MMPs, and angiogenic growth factors in synovial biopsy samples selected at arthroscopy. Increased expression of IL1ß in the synovium of patients with destructive RA requiring joint replacement may well reflect the important role of IL1ß in cartilage and bone destruction.
doi:10.1136/ard.62.7.635
PMCID: PMC1754593  PMID: 12810425
17.  Synoviocytes protect cartilage from the effects of injury in vitro 
Background
It is well documented that osteoarthritis (OA) can develop following traumatic joint injury and is the leading cause of lameness and subsequent wastage of equine athletes. Although much research of injury induced OA has focused on cartilage, OA is a disease that affects the whole joint organ.
Methods
In this study, we investigated the impact of synovial cells on the progression of an OA phenotype in injured articular cartilage. Injured and control cartilage were cultured in the presence of synoviocytes extracted from normal equine synovium. Synoviocytes and cartilage were evaluated for catabolic and anabolic gene expression. The cartilage was also evaluated histologically for loss of extracellular matrix molecules, chondrocyte cell death and chondrocyte cluster formation.
Results
The results indicate synoviocytes exert both positive and negative effects on injured cartilage, but ultimately protect injured cartilage from progressing toward an OA phenotype. Synoviocytes cultured in the presence of injured cartilage had significantly reduced expression of aggrecanase 1 and 2 (ADAMTS4 and 5), but also had increased expression of matrix metalloproteinase (MMP) -1 and reduced expression of tissue inhibitor of metalloproteinases 1 (TIMP-1). Injured cartilage cultured with synoviocytes had increased expression of both collagen type 2 and aggrecanase 2. Histologic examination of cartilage indicated that there was a protective effect of synoviocytes on injured cartilage by reducing the incidence of both focal cell loss and chondrocyte cluster formation, two major hallmarks of OA.
Conclusions
These results support the importance of evaluating more than one synovial joint tissue when investigating injury induced OA.
doi:10.1186/1471-2474-14-54
PMCID: PMC3620939  PMID: 23374282
Cartilage; Synovial cell; Injury
18.  Expression and localisation of the new metalloproteinase inhibitor RECK (reversion inducing cysteine-rich protein with Kazal motifs) in inflamed synovial membranes of patients with rheumatoid arthritis 
Annals of the Rheumatic Diseases  2004;64(3):368-374.
Objective: To assess the expression and localisation of the new metalloproteinase inhibitor RECK, an inhibitor of matrix metalloproteinase-14 (MMP-14) secretion and activity, in the synovial membrane of patients with rheumatoid arthritis (RA).
Methods: RECK expression in synovium samples from patients with RA, osteoarthritis (OA), and "trauma" were studied by quantitative real time reverse transcription-polymerase chain reaction (Q-PCR). RECK mRNA levels were compared with those of the enzyme MMP-14. RECK expression on cryostat sections of synovium was disclosed by goat-antihuman RECK monoclonal antibody. RECK protein was detected on synovial cryostat sections and measured by western blotting. RECK expression on macrophages was investigated by double staining of CD68 and RECK on cryostat sections and characterised by confocal microscopy. RECK expression on RA monocytes or normal monocytes was further investigated by FACS analysis.
Results: RECK expression in the synovial membrane of patients with RA was significantly lower than in OA and controls. MMP-14 mRNA levels were not significantly different between the three groups. In RA synovium, RECK protein was expressed mainly in the lining layer but also by macrophages around blood vessels. Fibroblasts and about 50% of the CD68 positive macrophages expressed RECK. In CD68 positive macrophages, RECK was only expressed in secretory granules and not on the membrane. The same pattern was found in M-CSF cultured macrophages of patients with RA and controls. In contrast, synovial fibroblasts showed a diffuse membrane expression within the synovium similar to cultured RA fibroblasts. RECK expression was low on the membrane of monocytes according to FACS analysis.
Conclusion: The new MMP inhibitor RECK is expressed in synovial membranes of RA, OA, and controls. RECK mRNA is lowest in RA synovial membranes. In contrast with fibroblasts, macrophages in the synovium express RECK only cytoplasmically and not on their membrane.
doi:10.1136/ard.2004.027870
PMCID: PMC1755425  PMID: 15485996
19.  Adiponectin may contribute to synovitis and joint destruction in rheumatoid arthritis by stimulating vascular endothelial growth factor, matrix metalloproteinase-1, and matrix metalloproteinase-13 expression in fibroblast-like synoviocytes more than proinflammatory mediators 
Arthritis Research & Therapy  2009;11(6):R161.
Introduction
The role of adiponectin in the pathogenesis of arthritis is still controversial. This study was performed to examine whether adiponectin is involved in joint inflammation and destruction in rheumatoid arthritis (RA) in relation to the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs).
Methods
Synovial cells from RA patients were treated with adiponectin or interleukin (IL)-1β for 24 hours. The culture supernatant was collected and analyzed for the levels of IL-6, IL-8, prostaglandin E2 (PGE2), VEGF, and MMPs by enzyme-linked immunosorbent assay. The levels of adiponectin, VEGF, MMP-1, and MMP-13 in the joint fluids from 30 RA or osteoarthritis (OA) patients were also measured.
Results
Adiponectin at the concentration of 10 μg/mL stimulated the production of IL-6, IL-8, and PGE2 in RA fibroblast-like synoviocytes (FLSs), although the level of these was much lower than with 1 ng/mL IL-1β. However, adiponectin stimulated the production of VEGF, MMP-1, and MMP-13 at the same level as IL-1β. In addition, the level of adiponectin and MMP-1 in the joint fluid of RA patients was significantly higher than in OA patients. Adiponectin was positively correlated with VEGF in RA patients but not in OA patients, while the level of MMPs in joint fluid was not correlated with adiponectin in either RA or OA patients.
Conclusions
Adiponectin may play a significant role in the pathogenesis of RA by stimulating the production of VEGF and MMPs in FLSs, leading to joint inflammation and destruction, respectively.
doi:10.1186/ar2844
PMCID: PMC3003518  PMID: 19883500
20.  Diverse patterns of cyclooxygenase-independent metalloproteinase gene regulation in human monocytes 
British Journal of Pharmacology  2011;163(8):1679-1690.
BACKGROUND AND PURPOSE
Matrix metalloproteinase (MMP) production from monocyte/macrophages is implicated in matrix remodelling and modulation of inflammation. However, knowledge of the patterns and mechanisms of gene regulation of MMPs and their endogenous tissue inhibitors (TIMPs) is fragmentary. MMP up-regulation may be a target for cyclooxygenase (COX) and prostaglandin (PG) receptor inhibition, but the extent and mechanisms of COX-independent MMP up-regulation are unclear.
EXPERIMENTAL APPROACH
We studied MMP mRNA expression and selected protein levels in human peripheral blood monocytes before and after adhesion, upon stimulation with bacterial lipopolysaccharide (LPS), PGE2 or forskolin and after culturing with monocyte colony-stimulating factor on plastic or human fibronectin for up to 7 days.
KEY RESULTS
Monocyte adherence for 2 h transiently up-regulated COX-2, MMP-1, MMP-7 and MMP-10 mRNAs, and persistently up-regulated MMP-2, MMP-9, MMP-14 and MMP-19 mRNAs. LPS, PGE2 or forskolin selectively increased MMP-1, MMP-9, MMP-10, MMP-12 and MMP-14 mRNAs. LPS increased PGE2 production through COX but up-regulated MMP levels independently of COX. Differential dependence on inhibition of p42/44 and p38 mitogen-activated protein kinases, c-jun N-terminal kinase and inhibitor of κB kinase2 paralleled the diverse patterns of MMP stimulation by LPS. Differentiation on plastic increased mRNA levels of MMP-7, MMP-9, MMP-12 and MMP-14 and TIMP-2 and TIMP-3 independently of COX; fibronectin accelerated MMP but not TIMP up-regulation.
CONCLUSIONS AND IMPLICATIONS
Adhesion, LPS stimulation and maturation of human monocytes lead to selective, COX-independent MMP and TIMP gene regulation, which is a potential target for selective inhibition by signalling kinase inhibitors.
doi:10.1111/j.1476-5381.2011.01298.x
PMCID: PMC3166655  PMID: 21371008
inflammation; monocytes; cyclooxygenase inhibitors; metalloproteinases; prostaglandins; Toll-like receptors
21.  Diverse patterns of cyclooxygenase-independent metalloproteinase gene regulation in human monocytes 
British Journal of Pharmacology  2011;163(8):1679-1690.
BACKGROUND AND PURPOSE
Matrix metalloproteinase (MMP) production from monocyte/macrophages is implicated in matrix remodelling and modulation of inflammation. However, knowledge of the patterns and mechanisms of gene regulation of MMPs and their endogenous tissue inhibitors (TIMPs) is fragmentary. MMP up-regulation may be a target for cyclooxygenase (COX) and prostaglandin (PG) receptor inhibition, but the extent and mechanisms of COX-independent MMP up-regulation are unclear.
EXPERIMENTAL APPROACH
We studied MMP mRNA expression and selected protein levels in human peripheral blood monocytes before and after adhesion, upon stimulation with bacterial lipopolysaccharide (LPS), PGE2 or forskolin and after culturing with monocyte colony-stimulating factor on plastic or human fibronectin for up to 7 days.
KEY RESULTS
Monocyte adherence for 2 h transiently up-regulated COX-2, MMP-1, MMP-7 and MMP-10 mRNAs, and persistently up-regulated MMP-2, MMP-9, MMP-14 and MMP-19 mRNAs. LPS, PGE2 or forskolin selectively increased MMP-1, MMP-9, MMP-10, MMP-12 and MMP-14 mRNAs. LPS increased PGE2 production through COX but up-regulated MMP levels independently of COX. Differential dependence on inhibition of p42/44 and p38 mitogen-activated protein kinases, c-jun N-terminal kinase and inhibitor of κB kinase2 paralleled the diverse patterns of MMP stimulation by LPS. Differentiation on plastic increased mRNA levels of MMP-7, MMP-9, MMP-12 and MMP-14 and TIMP-2 and TIMP-3 independently of COX; fibronectin accelerated MMP but not TIMP up-regulation.
CONCLUSIONS AND IMPLICATIONS
Adhesion, LPS stimulation and maturation of human monocytes lead to selective, COX-independent MMP and TIMP gene regulation, which is a potential target for selective inhibition by signalling kinase inhibitors.
doi:10.1111/j.1476-5381.2011.01298.x
PMCID: PMC3166655  PMID: 21371008
inflammation; monocytes; cyclooxygenase inhibitors; metalloproteinases; prostaglandins; Toll-like receptors
22.  Analysis of the cell infiltrate and expression of matrix metalloproteinases and granzyme B in paired synovial biopsy specimens from the cartilage-pannus junction in patients with RA 
Annals of the Rheumatic Diseases  2001;60(6):561-565.
OBJECTIVES—Examination of synovial tissue (ST) obtained at surgery because of end stage destructive rheumatoid arthritis (RA) showed that macrophages and fibroblasts are the major cell types at the cartilage-pannus junction (CPJ). This study aimed at defining the cell infiltrate and mediators of joint destruction in ST selected at arthroscopy from the CPJ in patients with RA who did not require joint surgery.
METHODS—Paired synovial biopsy specimens were obtained at arthroscopy from ST adjacent to the CPJ and the suprapatellar pouch from the knee joints of 17 patients with RA. Immunohistological analysis was performed using monoclonal antibodies to detect T cells, B cells, plasma cells, macrophages, fibroblast-like synoviocytes, mast cells, and granzyme B+ cytotoxic cells as well as the expression of metalloproteinase (MMP)-1, MMP-3, and MMP-13. The sections were evaluated by computer assisted image analysis and semiquantitative analysis.
RESULTS—The cell infiltrate comprised mainly T cells, macrophages, and plasma cells. The ST was also infiltrated by the other cell types, but at lower numbers. Expression of MMPs was abundant, especially MMP-3. The features of ST at the CPJ were generally similar to those at the suprapatellar pouch.
CONCLUSIONS—The synovium at the CPJ in patients with RA who did not require joint surgery exhibits, in general, the same type of cell infiltrate and expression of MMPs and granzymes as ST from the suprapatellar pouch. The pathological changes that have been described at the CPJ in patients with RA with end stage, destructive disease may well reflect the transition to a process in which macrophages, fibroblast-like synoviocytes, and other cell types become increasingly important.


doi:10.1136/ard.60.6.561
PMCID: PMC1753677  PMID: 11350843
23.  Tartrate resistant acid phosphatase (TRAP) positive cells in rheumatoid synovium may induce the destruction of articular cartilage 
Annals of the Rheumatic Diseases  2003;62(3):196-203.
Objective: To examine the role of tartrate resistant acid phosphatase (TRAP) positive mononuclear and multinucleated cells in the destruction of articular cartilage in patients with rheumatoid arthritis (RA).
Methods: The presence of TRAP positive cells in the synovial tissue of patients with RA was examined by enzyme histochemistry and immunohistochemistry. Expression of mRNAs for matrix metalloproteinases (MMPs) was assessed by the reverse transcriptase-polymerase chain reaction (RT-PCR) and northern blot analysis. Production of MMPs by mononuclear and multinucleated TRAP positive cells was examined by immunocytochemistry, enzyme linked immunosorbent assay (ELISA) of conditioned medium, and immunohistochemistry of human RA synovial tissue. In addition, a cartilage degradation assay was performed by incubation of 35S prelabelled cartilage discs with TRAP positive cells.
Results: TRAP positive mononuclear cells and multinucleated cells were found in proliferating synovial tissue adjacent to the bone-cartilage interface in patients with RA. Expression of MMP-2 (gelatinase A), MMP-9 (gelatinase B), MMP-12 (macrophage metalloelastase), and MMP-14 (MT1-MMP) mRNA was detected in TRAP positive mononuclear and multinucleated cells by both RT-PCR and northern blot analysis. Immunocytochemistry for these MMPs showed that MMP-2 and MMP-9 were produced by both TRAP positive mononuclear and multinucleated cells, whereas MMP-12 and MMP-14 were produced by TRAP positive multinucleated cells. MMP-2 and MMP-9 were detected in the conditioned medium of TRAP positive mononuclear cells. TRAP positive mononuclear cells also induced the release of 35S from prelabelled cartilage discs.
Conclusion: This study suggests that TRAP positive mononuclear and multinucleated cells located in the synovium at the cartilage-synovial interface produce MMP-2 and MMP-9, and may have an important role in articular cartilage destruction in patients with RA.
doi:10.1136/ard.62.3.196
PMCID: PMC1754448  PMID: 12594102
24.  Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis 
Annals of the Rheumatic Diseases  2000;59(6):455-461.
OBJECTIVE—Matrix metalloproteinases (MMPs) are expressed in joint tissues of patients with rheumatoid arthritis (RA) and osteoarthritis (OA). The objective of this study was to define the steady state levels of seven different MMPs and two tissue inhibitors of metalloproteinases (TIMPs) as well as the potential metalloproteinase activity in the synovial fluid (SF) to provide more insight into the role of MMPs in cartilage destruction in RA and OA.
METHODS—Levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13, TIMP-1, and TIMP-2 in SF aspirated from knee joints of 97 patients with RA and 103 patients with OA were measured by the corresponding one step sandwich enzyme immunoassays. Proteolytic activity of MMPs in these SFs was examined in an assay using [3H]carboxymethylated transferrin substrate in the presence of inhibitors of serine and cysteine proteinases after activation with p-aminophenylmercuric acetate (APMA). Destruction of RA knee joints was radiographically evaluated.
RESULTS—Levels of MMP-1, MMP-2, MMP-3, MMP-8, and MMP-9 were significantly higher in RA SF than in OA SF. MMP-7 and MMP-13 were detectable in more than 45% of RA SFs and in less than 20% of OA SFs, respectively. Among the MMPs examined, MMP-3 levels were extremely high compared with those of other MMPs. Direct correlations were seen between the levels of MMP-1 and MMP-3 and between those of MMP-8 and MMP-9 in RA SF. Although the levels of MMP-1 and MMP-3 increased even in the early stage of RA, those of MMP-8 and MMP-9 were low in the early stage and increased with the progression of RA. Molar ratios of the total amounts of the MMPs to those of the TIMPs were 5.2-fold higher in patients with RA than in OA, which was significant. APMA-activated metalloproteinase activity in SF showed a similar result, and a direct correlation was seen between the molar ratios and the activity in RA SF.
CONCLUSIONS—Our results show that high levels of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, and TIMP-1 are present in RA SF and suggest that once these MMPs are fully activated, they have an imbalance against TIMPs, which may contribute to the cartilage destruction in RA.


doi:10.1136/ard.59.6.455
PMCID: PMC1753174  PMID: 10834863
25.  Sulforaphane has opposing effects on TNF-alpha stimulated and unstimulated synoviocytes 
Arthritis Research & Therapy  2012;14(5):R220.
Introduction
Rheumatoid arthritis (RA) is characterized by progressive inflammation associated with rampantly proliferating synoviocytes and joint destruction due to oxidative stress. Recently, we described nuclear factor erythroid 2-related factor 2 (Nrf2) as a major requirement for limiting cartilage destruction. NF-κB and AP-1 are the main transcription factors triggering the inflammatory progression in RA. We used sulforaphane, an isothiocyanate, which is both an Nrf2 inducer and a NF-κB and AP-1 inhibitor.
Methods
Cultured synoviocytes were stimulated with sulforaphane (SFN) with or without TNF-α pre-treatment. NF-κB, AP-1, and Nrf2 activation was investigated via dual luciferase reporter gene assays. Matrix metalloproteinases (MMPs) were measured via zymography and luminex technique. Cytokine levels were detected using ELISA. Cell viability, apoptosis and caspase activity were studied. Cell proliferation was analysed by real-time cell analysis.
Results
SFN treatment decreased inflammation and proliferation dose-dependently in TNF-α-stimulated synoviocytes. SFN did not reduce MMP-3 and MMP-9 activity or expression significantly. Interestingly, we demonstrated that SFN has opposing effects on naïve and TNF-α-stimulated synoviocytes. In naïve cells, SFN activated the cytoprotective transcription factor Nrf2. In marked contrast to this, SFN induced apoptosis in TNF-α-pre-stimulated synoviocytes.
Conclusions
We were able to show that SFN treatment acts contrary on naïve and inflammatory synoviocytes. SFN induces the cytoprotective transcription factor Nrf2 in naïve synoviocytes, whereas it induces apoptosis in inflamed synoviocytes. These findings indicate that the use of sulforaphane might be considered as an adjunctive therapeutic strategy to combat inflammation, pannus formation, and cartilage destruction in RA.
doi:10.1186/ar4059
PMCID: PMC3580531  PMID: 23072510

Results 1-25 (1398918)