PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (590341)

Clipboard (0)
None

Related Articles

1.  Continuous Subcutaneous Insulin Infusion (CSII) Pumps for Type 1 and Type 2 Adult Diabetic Populations 
Executive Summary
In June 2008, the Medical Advisory Secretariat began work on the Diabetes Strategy Evidence Project, an evidence-based review of the literature surrounding strategies for successful management and treatment of diabetes. This project came about when the Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the Ministry’s newly released Diabetes Strategy.
After an initial review of the strategy and consultation with experts, the secretariat identified five key areas in which evidence was needed. Evidence-based analyses have been prepared for each of these five areas: insulin pumps, behavioural interventions, bariatric surgery, home telemonitoring, and community based care. For each area, an economic analysis was completed where appropriate and is described in a separate report.
To review these titles within the Diabetes Strategy Evidence series, please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html,
Diabetes Strategy Evidence Platform: Summary of Evidence-Based Analyses
Continuous Subcutaneous Insulin Infusion Pumps for Type 1 and Type 2 Adult Diabetics: An Evidence-Based Analysis
Behavioural Interventions for Type 2 Diabetes: An Evidence-Based Analysis
Bariatric Surgery for People with Diabetes and Morbid Obesity: An Evidence-Based Summary
Community-Based Care for the Management of Type 2 Diabetes: An Evidence-Based Analysis
Home Telemonitoring for Type 2 Diabetes: An Evidence-Based Analysis
Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario
Objective
The objective of this analysis is to review the efficacy of continuous subcutaneous insulin infusion (CSII) pumps as compared to multiple daily injections (MDI) for the type 1 and type 2 adult diabetics.
Clinical Need and Target Population
Insulin therapy is an integral component of the treatment of many individuals with diabetes. Type 1, or juvenile-onset diabetes, is a life-long disorder that commonly manifests in children and adolescents, but onset can occur at any age. It represents about 10% of the total diabetes population and involves immune-mediated destruction of insulin producing cells in the pancreas. The loss of these cells results in a decrease in insulin production, which in turn necessitates exogenous insulin therapy.
Type 2, or ‘maturity-onset’ diabetes represents about 90% of the total diabetes population and is marked by a resistance to insulin or insufficient insulin secretion. The risk of developing type 2 diabetes increases with age, obesity, and lack of physical activity. The condition tends to develop gradually and may remain undiagnosed for many years. Approximately 30% of patients with type 2 diabetes eventually require insulin therapy.
CSII Pumps
In conventional therapy programs for diabetes, insulin is injected once or twice a day in some combination of short- and long-acting insulin preparations. Some patients require intensive therapy regimes known as multiple daily injection (MDI) programs, in which insulin is injected three or more times a day. It’s a time consuming process and usually requires an injection of slow acting basal insulin in the morning or evening and frequent doses of short-acting insulin prior to eating. The most common form of slower acting insulin used is neutral protamine gagedorn (NPH), which reaches peak activity 3 to 5 hours after injection. There are some concerns surrounding the use of NPH at night-time as, if injected immediately before bed, nocturnal hypoglycemia may occur. To combat nocturnal hypoglycemia and other issues related to absorption, alternative insulins have been developed, such as the slow-acting insulin glargine. Glargine has no peak action time and instead acts consistently over a twenty-four hour period, helping reduce the frequency of hypoglycemic episodes.
Alternatively, intensive therapy regimes can be administered by continuous insulin infusion (CSII) pumps. These devices attempt to closely mimic the behaviour of the pancreas, continuously providing a basal level insulin to the body with additional boluses at meal times. Modern CSII pumps are comprised of a small battery-driven pump that is designed to administer insulin subcutaneously through the abdominal wall via butterfly needle. The insulin dose is adjusted in response to measured capillary glucose values in a fashion similar to MDI and is thus often seen as a preferred method to multiple injection therapy. There are, however, still risks associated with the use of CSII pumps. Despite the increased use of CSII pumps, there is uncertainty around their effectiveness as compared to MDI for improving glycemic control.
Part A: Type 1 Diabetic Adults (≥19 years)
An evidence-based analysis on the efficacy of CSII pumps compared to MDI was carried out on both type 1 and type 2 adult diabetic populations.
Research Questions
Are CSII pumps more effective than MDI for improving glycemic control in adults (≥19 years) with type 1 diabetes?
Are CSII pumps more effective than MDI for improving additional outcomes related to diabetes such as quality of life (QoL)?
Literature Search
Inclusion Criteria
Randomized controlled trials, systematic reviews, meta-analysis and/or health technology assessments from MEDLINE, EMBASE, CINAHL
Adults (≥ 19 years)
Type 1 diabetes
Study evaluates CSII vs. MDI
Published between January 1, 2002 – March 24, 2009
Patient currently on intensive insulin therapy
Exclusion Criteria
Studies with <20 patients
Studies <5 weeks in duration
CSII applied only at night time and not 24 hours/day
Mixed group of diabetes patients (children, adults, type 1, type 2)
Pregnancy studies
Outcomes of Interest
The primary outcomes of interest were glycosylated hemoglobin (HbA1c) levels, mean daily blood glucose, glucose variability, and frequency of hypoglycaemic events. Other outcomes of interest were insulin requirements, adverse events, and quality of life.
Search Strategy
The literature search strategy employed keywords and subject headings to capture the concepts of:
1) insulin pumps, and
2) type 1 diabetes.
The search was run on July 6, 2008 in the following databases: Ovid MEDLINE (1996 to June Week 4 2008), OVID MEDLINE In-Process and Other Non-Indexed Citations, EMBASE (1980 to 2008 Week 26), OVID CINAHL (1982 to June Week 4 2008) the Cochrane Library, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment. A search update was run on March 24, 2009 and studies published prior to 2002 were also examined for inclusion into the review. Parallel search strategies were developed for the remaining databases. Search results were limited to human and English-language published between January 2002 and March 24, 2009. Abstracts were reviewed, and studies meeting the inclusion criteria outlined above were obtained. Reference lists were also checked for relevant studies.
Summary of Findings
The database search identified 519 relevant citations published between 1996 and March 24, 2009. Of the 519 abstracts reviewed, four RCTs and one abstract met the inclusion criteria outlined above. While efficacy outcomes were reported in each of the trials, a meta-analysis was not possible due to missing data around standard deviations of change values as well as missing data for the first period of the crossover arm of the trial. Meta-analysis was not possible on other outcomes (quality of life, insulin requirements, frequency of hypoglycemia) due to differences in reporting.
HbA1c
In studies where no baseline data was reported, the final values were used. Two studies (Hanaire-Broutin et al. 2000, Hoogma et al. 2005) reported a slight reduction in HbA1c of 0.35% and 0.22% respectively for CSII pumps in comparison to MDI. A slightly larger reduction in HbA1c of 0.84% was reported by DeVries et al.; however, this study was the only study to include patients with poor glycemic control marked by higher baseline HbA1c levels. One study (Bruttomesso et al. 2008) showed no difference between CSII pumps and MDI on Hba1c levels and was the only study using insulin glargine (consistent with results of parallel RCT in abstract by Bolli 2004). While there is statistically significant reduction in HbA1c in three of four trials, there is no evidence to suggest these results are clinically significant.
Mean Blood Glucose
Three of four studies reported a statistically significant reduction in the mean daily blood glucose for patients using CSII pump, though these results were not clinically significant. One study (DeVries et al. 2002) did not report study data on mean blood glucose but noted that the differences were not statistically significant. There is difficulty with interpreting study findings as blood glucose was measured differently across studies. Three of four studies used a glucose diary, while one study used a memory meter. In addition, frequency of self monitoring of blood glucose (SMBG) varied from four to nine times per day. Measurements used to determine differences in mean daily blood glucose between the CSII pump group and MDI group at clinic visits were collected at varying time points. Two studies use measurements from the last day prior to the final visit (Hoogma et al. 2005, DeVries et al. 2002), while one study used measurements taken during the last 30 days and another study used measurements taken during the 14 days prior to the final visit of each treatment period.
Glucose Variability
All four studies showed a statistically significant reduction in glucose variability for patients using CSII pumps compared to those using MDI, though one, Bruttomesso et al. 2008, only showed a significant reduction at the morning time point. Brutomesso et al. also used alternate measures of glucose variability and found that both the Lability index and mean amplitude of glycemic excursions (MAGE) were in concordance with the findings using the standard deviation (SD) values of mean blood glucose, but the average daily risk range (ADRR) showed no difference between the CSII pump and MDI groups.
Hypoglycemic Events
There is conflicting evidence concerning the efficacy of CSII pumps in decreasing both mild and severe hypoglycemic events. For mild hypoglycemic events, DeVries et al. observed a higher number of events per patient week in the CSII pump group than the MDI group, while Hoogma et al. observed a higher number of events per patient year in the MDI group. The remaining two studies found no differences between the two groups in the frequency of mild hypoglycemic events. For severe hypoglycemic events, Hoogma et al. found an increase in events per patient year among MDI patients, however, all of the other RCTs showed no difference between the patient groups in this aspect.
Insulin Requirements and Adverse Events
In all four studies, insulin requirements were significantly lower in patients receiving CSII pump treatment in comparison to MDI. This difference was statistically significant in all studies. Adverse events were reported in three studies. Devries et al. found no difference in ketoacidotic episodes between CSII pump and MDI users. Bruttomesso et al. reported no adverse events during the study. Hanaire-Broutin et al. found that 30 patients experienced 58 serious adverse events (SAEs) during MDI and 23 patients had 33 SAEs during treatment out of a total of 256 patients. Most events were related to severe hypoglycemia and diabetic ketoacidosis.
Quality of Life and Patient Preference
QoL was measured in three studies and patient preference was measured in one. All three studies found an improvement in QoL for CSII users compared to those using MDI, although various instruments were used among the studies and possible reporting bias was evident as non-positive outcomes were not consistently reported. Moreover, there was also conflicting results in two of the studies using the Diabetes Treatment Satisfaction Questionnaire (DTSQ). DeVries et al. reported no difference in treatment satisfaction between CSII pump users and MDI users while Brutomesso et al. reported that treatment satisfaction improved among CSII pump users.
Patient preference for CSII pumps was demonstrated in just one study (Hanaire-Broutin et al. 2000) and there are considerable limitations with interpreting this data as it was gathered through interview and 72% of patients that preferred CSII pumps were previously on CSII pump therapy prior to the study. As all studies were industry sponsored, findings on QoL and patient preference must be interpreted with caution.
Quality of Evidence
Overall, the body of evidence was downgraded from high to low due to study quality and issues with directness as identified using the GRADE quality assessment tool (see Table 1) While blinding of patient to intervention/control was not feasible in these studies, blinding of study personnel during outcome assessment and allocation concealment were generally lacking. Trials reported consistent results for the outcomes HbA1c, mean blood glucose and glucose variability, but the directness or generalizability of studies, particularly with respect to the generalizability of the diabetic population, was questionable as most trials used highly motivated populations with fairly good glycemic control. In addition, the populations in each of the studies varied with respect to prior treatment regimens, which may not be generalizable to the population eligible for pumps in Ontario. For the outcome of hypoglycaemic events the evidence was further downgraded to very low since there was conflicting evidence between studies with respect to the frequency of mild and severe hypoglycaemic events in patients using CSII pumps as compared to CSII (see Table 2). The GRADE quality of evidence for the use of CSII in adults with type 1 diabetes is therefore low to very low and any estimate of effect is, therefore, uncertain.
GRADE Quality Assessment for CSII pumps vs. MDI on HbA1c, Mean Blood Glucose, and Glucose Variability for Adults with Type 1 Diabetes
Inadequate or unknown allocation concealment (3/4 studies); Unblinded assessment (all studies) however lack of blinding due to the nature of the study; No ITT analysis (2/4 studies); possible bias SMBG (all studies)
HbA1c: 3/4 studies show consistency however magnitude of effect varies greatly; Single study uses insulin glargine instead of NPH; Mean Blood Glucose: 3/4 studies show consistency however magnitude of effect varies between studies; Glucose Variability: All studies show consistency but 1 study only showed a significant effect in the morning
Generalizability in question due to varying populations: highly motivated populations, educational component of interventions/ run-in phases, insulin pen use in 2/4 studies and varying levels of baseline glycemic control and experience with intensified insulin therapy, pumps and MDI.
GRADE Quality Assessment for CSII pumps vs. MDI on Frequency of Hypoglycemic
Inadequate or unknown allocation concealment (3/4 studies); Unblinded assessment (all studies) however lack of blinding due to the nature of the study; No ITT analysis (2/4 studies); possible bias SMBG (all studies)
Conflicting evidence with respect to mild and severe hypoglycemic events reported in studies
Generalizability in question due to varying populations: highly motivated populations, educational component of interventions/ run-in phases, insulin pen use in 2/4 studies and varying levels of baseline glycemic control and experience with intensified insulin therapy, pumps and MDI.
Economic Analysis
One article was included in the analysis from the economic literature scan. Four other economic evaluations were identified but did not meet our inclusion criteria. Two of these articles did not compare CSII with MDI and the other two articles used summary estimates from a mixed population with Type 1 and 2 diabetes in their economic microsimulation to estimate costs and effects over time. Included were English articles that conducted comparisons between CSII and MDI with the outcome of Quality Adjusted Life Years (QALY) in an adult population with type 1 diabetes.
From one study, a subset of the population with type 1 diabetes was identified that may be suitable and benefit from using insulin pumps. There is, however, limited data in the literature addressing the cost-effectiveness of insulin pumps versus MDI in type 1 diabetes. Longer term models are required to estimate the long term costs and effects of pumps compared to MDI in this population.
Conclusions
CSII pumps for the treatment of adults with type 1 diabetes
Based on low-quality evidence, CSII pumps confer a statistically significant but not clinically significant reduction in HbA1c and mean daily blood glucose as compared to MDI in adults with type 1 diabetes (>19 years).
CSII pumps also confer a statistically significant reduction in glucose variability as compared to MDI in adults with type 1 diabetes (>19 years) however the clinical significance is unknown.
There is indirect evidence that the use of newer long-acting insulins (e.g. insulin glargine) in MDI regimens result in less of a difference between MDI and CSII compared to differences between MDI and CSII in which older insulins are used.
There is conflicting evidence regarding both mild and severe hypoglycemic events in this population when using CSII pumps as compared to MDI. These findings are based on very low-quality evidence.
There is an improved quality of life for patients using CSII pumps as compared to MDI however, limitations exist with this evidence.
Significant limitations of the literature exist specifically:
All studies sponsored by insulin pump manufacturers
All studies used crossover design
Prior treatment regimens varied
Types of insulins used in study varied (NPH vs. glargine)
Generalizability of studies in question as populations were highly motivated and half of studies used insulin pens as the mode of delivery for MDI
One short-term study concluded that pumps are cost-effective, although this was based on limited data and longer term models are required to estimate the long-term costs and effects of pumps compared to MDI in adults with type 1 diabetes.
Part B: Type 2 Diabetic Adults
Research Questions
Are CSII pumps more effective than MDI for improving glycemic control in adults (≥19 years) with type 2 diabetes?
Are CSII pumps more effective than MDI for improving other outcomes related to diabetes such as quality of life?
Literature Search
Inclusion Criteria
Randomized controlled trials, systematic reviews, meta-analysis and/or health technology assessments from MEDLINE, Excerpta Medica Database (EMBASE), Cumulative Index to Nursing & Allied Health Literature (CINAHL)
Any person with type 2 diabetes requiring insulin treatment intensive
Published between January 1, 2000 – August 2008
Exclusion Criteria
Studies with <10 patients
Studies <5 weeks in duration
CSII applied only at night time and not 24 hours/day
Mixed group of diabetes patients (children, adults, type 1, type 2)
Pregnancy studies
Outcomes of Interest
The primary outcome of interest was a reduction in glycosylated hemoglobin (HbA1c) levels. Other outcomes of interest were mean blood glucose level, glucose variability, insulin requirements, frequency of hypoglycemic events, adverse events, and quality of life.
Search Strategy
A comprehensive literature search was performed in OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, The Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published between January 1, 2000 and August 15, 2008. Studies meeting the inclusion criteria were selected from the search results. Data on the study characteristics, patient characteristics, primary and secondary treatment outcomes, and adverse events were abstracted. Reference lists of selected articles were also checked for relevant studies. The quality of the evidence was assessed as high, moderate, low, or very low according to the GRADE methodology.
Summary of Findings
The database search identified 286 relevant citations published between 1996 and August 2008. Of the 286 abstracts reviewed, four RCTs met the inclusion criteria outlined above. Upon examination, two studies were subsequently excluded from the meta-analysis due to small sample size and missing data (Berthe et al.), as well as outlier status and high drop out rate (Wainstein et al) which is consistent with previously reported meta-analyses on this topic (Jeitler et al 2008, and Fatourechi M et al. 2009).
HbA1c
The primary outcome in this analysis was reduction in HbA1c. Both studies demonstrated that both CSII pumps and MDI reduce HbA1c, but neither treatment modality was found to be superior to the other. The results of a random effects model meta-analysis showed a mean difference in HbA1c of -0.14 (-0.40, 0.13) between the two groups, which was found not to be statistically or clinically significant. There was no statistical heterogeneity observed between the two studies (I2=0%).
Forrest plot of two parallel, RCTs comparing CSII to MDI in type 2 diabetes
Secondary Outcomes
Mean Blood Glucose and Glucose Variability
Mean blood glucose was only used as an efficacy outcome in one study (Raskin et al. 2003). The authors found that the only time point in which there were consistently lower blood glucose values for the CSII group compared to the MDI group was 90 minutes after breakfast. Glucose variability was not examined in either study and the authors reported no difference in weight gain between the CSII pump group and MDI groups at the end of study. Conflicting results were reported regarding injection site reactions between the two studies. Herman et al. reported no difference in the number of subjects experiencing site problems between the two groups, while Raskin et al. reported that there were no injection site reactions in the MDI group but 15 such episodes among 8 participants in the CSII pump group.
Frequency of Hypoglycemic Events and Insulin Requirements
All studies reported that there were no differences in the number of mild hypoglycemic events in patients on CSII pumps versus MDI. Herman et al. also reported no differences in the number of severe hypoglycemic events in patients using CSII pumps compared to those on MDI. Raskin et al. reported that there were no severe hypoglycemic events in either group throughout the study duration. Insulin requirements were only examined in Herman et al., who found that daily insulin requirements were equal between the CSII pump and MDI treatment groups.
Quality of Life
QoL was measured by Herman et al. using the Diabetes Quality of Life Clinical Trial Questionnaire (DQOLCTQ). There were no differences reported between CSII users and MDI users for treatment satisfaction, diabetes impact, and worry-related scores. Patient satisfaction was measured in Raskin et al. using a patient satisfaction questionnaire, whose results indicated that patients in the CSII pump group had significantly greater improvement in overall treatment satisfaction at the end of the study compared to the MDI group. Although patient preference was also reported, it was only examined in the CSII pump group, thus results indicating a greater preference for CSII pumps in this groups (as compared to prior injectable insulin regimens) are biased and must be interpreted with caution.
Quality of Evidence
Overall, the body of evidence was downgraded from high to low according to study quality and issues with directness as identified using the GRADE quality assessment tool (see Table 3). While blinding of patient to intervention/control is not feasible in these studies, blinding of study personnel during outcome assessment and allocation concealment were generally lacking. ITT was not clearly explained in one study and heterogeneity between study populations was evident from participants’ treatment regimens prior to study initiation. Although trials reported consistent results for HbA1c outcomes, the directness or generalizability of studies, particularly with respect to the generalizability of the diabetic population, was questionable as trials required patients to adhere to an intense SMBG regimen. This suggests that patients were highly motivated. In addition, since prior treatment regimens varied between participants (no requirement for patients to be on MDI), study findings may not be generalizable to the population eligible for a pump in Ontario. The GRADE quality of evidence for the use of CSII in adults with type 2 diabetes is, therefore, low and any estimate of effect is uncertain.
GRADE Quality Assessment for CSII pumps vs. MDI on HbA1c Adults with Type 2 Diabetes
Inadequate or unknown allocation concealment (all studies); Unblinded assessment (all studies) however lack of blinding due to the nature of the study; ITT not well explained in 1 of 2 studies
Indirect due to lack of generalizability of findings since participants varied with respect to prior treatment regimens and intensive SMBG suggests highly motivated populations used in trials.
Economic Analysis
An economic analysis of CSII pumps was carried out using the Ontario Diabetes Economic Model (ODEM) and has been previously described in the report entitled “Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario”, part of the diabetes strategy evidence series. Based on the analysis, CSII pumps are not cost-effective for adults with type 2 diabetes, either for the age 65+ sub-group or for all patients in general. Details of the analysis can be found in the full report.
Conclusions
CSII pumps for the treatment of adults with type 2 diabetes
There is low quality evidence demonstrating that the efficacy of CSII pumps is not superior to MDI for adult type 2 diabetics.
There were no differences in the number of mild and severe hypoglycemic events in patients on CSII pumps versus MDI.
There are conflicting findings with respect to an improved quality of life for patients using CSII pumps as compared to MDI.
Significant limitations of the literature exist specifically:
All studies sponsored by insulin pump manufacturers
Prior treatment regimens varied
Types of insulins used in study varied (NPH vs. glargine)
Generalizability of studies in question as populations may not reflect eligible patient population in Ontario (participants not necessarily on MDI prior to study initiation, pen used in one study and frequency of SMBG required during study was high suggesting highly motivated participants)
Based on ODEM, insulin pumps are not cost-effective for adults with type 2 diabetes either for the age 65+ sub-group or for all patients in general.
PMCID: PMC3377523  PMID: 23074525
2.  Strategies for Managing Multi-Sponsored Core Facilities: How do you make “everyone” your first priority? 
FLOW CYTOMETRY SHARED RESOURCE: The VMC FCSR offers a myriad of flow cytometry and immunology related services and support to multiple supporting Centers, Veterans Administration scientist, and external private entities and of course the Vanderbilt research community at large. Users range from undergraduates all the way up to and including Principle Investigators. Every effort is made to tailor each individual's support to his or her specific needs and experience with consideration given to Institution/Center/Department/Lab membership. Prioritizing members of a group that provides sponsorship to our shared resource while maintaining a high standard of customer service and technological support to all members can be challenging, but accomplished with foresight, good communication and transparency in the process. One of the keys for success is a good strategy to ensure adequate capacity for all users, while highlighting support for specific sponsored members whenever relevant. A resource or capacity starved service Core will constantly be struggling to provide acceptable support to a sponsoring group while maintaining customer service standards and meeting the scientific needs of the broader user base. Accurate accounting of each sponsoring groups usage contrasted with the usage of all others is a good way to measure and prioritize changing needs that your core must address. If such metrics can be presented to governing bodies and sponsoring parties at our institution, planning ahead for the acquisition of additional resources or personal before they become critical becomes manageable. Targeted support or new resources that may initially only be pertinent to an individual sponsoring group will generally lead to greater use by the entire user base once successful results are reported by the focused, sponsored group. We have found the implementation of a Scientific Advisory Board comprised of members of supporting Centers and a diverse representation of our general user base to be critical to providing the service and support we strive for. An advising body that can provide a platform to display our Core finances, usage and capacity transparently and allow users at different levels to gain insight on the realities we face and assist us in making decisions is extremely helpful. In a collegial environment such as this consensus can be reached and concerns can be voiced that allow us to continue to support all users at the highest possible level. Each board member can then return to their home department and relay their findings back to their colleagues, which leads to greater overall acceptance and understanding by all. Lastly, oversight by a strong institutional leadership body with broad vision that encompasses all of the sponsoring groups and users has been critical to meet these challenges.
PMCID: PMC3635429
3.  Factors Associated with Findings of Published Trials of Drug–Drug Comparisons: Why Some Statins Appear More Efficacious than Others 
PLoS Medicine  2007;4(6):e184.
Background
Published pharmaceutical industry–sponsored trials are more likely than non-industry-sponsored trials to report results and conclusions that favor drug over placebo. Little is known about potential biases in drug–drug comparisons. This study examined associations between research funding source, study design characteristics aimed at reducing bias, and other factors that potentially influence results and conclusions in randomized controlled trials (RCTs) of statin–drug comparisons.
Methods and Findings
This is a cross-sectional study of 192 published RCTs comparing a statin drug to another statin drug or non-statin drug. Data on concealment of allocation, selection bias, blinding, sample size, disclosed funding source, financial ties of authors, results for primary outcomes, and author conclusions were extracted by two coders (weighted kappa 0.80 to 0.97). Univariate and multivariate logistic regression identified associations between independent variables and favorable results and conclusions. Of the RCTs, 50% (95/192) were funded by industry, and 37% (70/192) did not disclose any funding source. Looking at the totality of available evidence, we found that almost all studies (98%, 189/192) used only surrogate outcome measures. Moreover, study design weaknesses common to published statin–drug comparisons included inadequate blinding, lack of concealment of allocation, poor follow-up, and lack of intention-to-treat analyses. In multivariate analysis of the full sample, trials with adequate blinding were less likely to report results favoring the test drug, and sample size was associated with favorable conclusions when controlling for other factors. In multivariate analysis of industry-funded RCTs, funding from the test drug company was associated with results (odds ratio = 20.16 [95% confidence interval 4.37–92.98], p < 0.001) and conclusions (odds ratio = 34.55 [95% confidence interval 7.09–168.4], p < 0.001) that favor the test drug when controlling for other factors. Studies with adequate blinding were less likely to report statistically significant results favoring the test drug.
Conclusions
RCTs of head-to-head comparisons of statins with other drugs are more likely to report results and conclusions favoring the sponsor's product compared to the comparator drug. This bias in drug–drug comparison trials should be considered when making decisions regarding drug choice.
Lisa Bero and colleagues found published trials comparing one statin with another were more likely to report results and conclusions favoring the sponsor's product than the comparison drug.
Editors' Summary
Background.
Randomized controlled trials are generally considered to be the most reliable type of experimental study for evaluating the effectiveness of different treatments. Randomization involves the assignment of participants in the trial to different treatment groups by the play of chance. Properly done, this procedure means that the different groups are comparable at outset, reducing the chance that outside factors could be responsible for treatment effects seen in the trial. When done properly, randomization also ensures that the clinicians recruiting participants into the trial cannot know the treatment group to which a patient will end up being assigned. However, despite these advantages, a large number of factors can still result in bias creeping in. Bias comes about when the findings of research appear to differ in some systematic way from the true result. Other research studies have suggested that funding is a source of bias; studies sponsored by drug companies seem to more often favor the sponsor's drug than trials not sponsored by drug companies
Why Was This Study Done?
The researchers wanted to more precisely understand the impact of different possible sources of bias in the findings of randomized controlled trials. In particular, they wanted to study the outcomes of “head-to-head” drug comparison studies for one particular class of drugs, the statins. Drugs in this class are commonly prescribed to reduce the levels of cholesterol in blood amongst people who are at risk of heart and other types of disease. This drug class is a good example for studying the role of bias in drug–drug comparison trials, because these trials are extensively used in decision making by health-policy makers.
What Did the Researchers Do and Find?
This research study was based on searching PubMed, a biomedical literature database, with the aim of finding all randomized controlled trials of statins carried out between January 1999 and May 2005 (reference lists also were searched). Only trials which compared one statin to another statin or one statin to another type of drug were included. The researchers extracted the following information from each article: the study's source of funding, aspects of study design, the overall results, and the authors' conclusions. The results were categorized to show whether the findings were favorable to the test drug (the newer statin), inconclusive, or not favorable to the test drug. Aspects of each study's design were also categorized in relation to various features, such as how well the randomization was done (in particular, the degree to which the processes used would have prevented physicians from knowing which treatment a patient was likely to receive on enrollment); whether all participants enrolled in the trial were eventually analyzed; and whether investigators or participants knew what treatment an individual was receiving.
One hundred and ninety-two trials were included in this study, and of these, 95 declared drug company funding; 23 declared government or other nonprofit funding while 74 did not declare funding or were not funded. Trials that were properly blinded (where participants and investigators did not know what treatment an individual received) were less likely to have conclusions favoring the test drug. However, large trials were more likely to favor the test drug than smaller trials. When looking specifically at the trials funded by drug companies, the researchers found various factors that predicted whether a result or conclusion favored the test drug. These included the impact of the journal publishing the results; the size of the trial; and whether funding came from the maker of the test drug. However, properly blinded trials were less likely to produce results favoring the test drug. Even once all other factors were accounted for, the funding source for the study was still linked with results and conclusions that favored the maker of the test drug.
What Do These Findings Mean?
This study shows that the type of sponsorship available for randomized controlled trials of statins was strongly linked to the results and conclusions of those studies, even when other factors were taken into account. However, it is not clear from this study why sponsorship has such a strong link to the overall findings. There are many possible reasons why this might be. Some people have suggested that drug companies may deliberately choose lower dosages for the comparison drug when they carry out “head-to-head” trials; this tactic is likely to result in the company's product doing better in the trial. Others have suggested that trials which produce unfavorable results are not published, or that unfavorable outcomes are suppressed. Whatever the reasons for these findings, the implications are important, and suggest that the evidence base relating to statins may be substantially biased.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040184.
The James Lind Library has been created to help people understand fair tests of treatments in health care by illustrating how fair tests have developed over the centuries
The International Committee of Medical Journal Editors has provided guidance regarding sponsorship, authorship, and accountability
The CONSORT statement is a research tool that provides an evidence-based approach for reporting the results of randomized controlled trials
Good Publication Practice guidelines provide standards for responsible publication of research sponsored by pharmaceutical companies
Information from Wikipedia on Statins. Wikipedia is an internet encyclopedia anyone can edit
doi:10.1371/journal.pmed.0040184
PMCID: PMC1885451  PMID: 17550302
4.  Financial Conflicts of Interest and Reporting Bias Regarding the Association between Sugar-Sweetened Beverages and Weight Gain: A Systematic Review of Systematic Reviews 
PLoS Medicine  2013;10(12):e1001578.
Maira Bes-Rastrollo and colleagues examine whether financial conflicts of interest are likely to bias conclusions from systematic reviews that investigate the relationship between sugar-sweetened beverages and weight gain or obesity.
Please see later in the article for the Editors' Summary
Background
Industry sponsors' financial interests might bias the conclusions of scientific research. We examined whether financial industry funding or the disclosure of potential conflicts of interest influenced the results of published systematic reviews (SRs) conducted in the field of sugar-sweetened beverages (SSBs) and weight gain or obesity.
Methods and Findings
We conducted a search of the PubMed, Cochrane Library, and Scopus databases to identify published SRs from the inception of the databases to August 31, 2013, on the association between SSB consumption and weight gain or obesity. SR conclusions were independently classified by two researchers into two groups: those that found a positive association and those that did not. These two reviewers were blinded with respect to the stated source of funding and the disclosure of conflicts of interest.
We identified 17 SRs (with 18 conclusions). In six of the SRs a financial conflict of interest with some food industry was disclosed. Among those reviews without any reported conflict of interest, 83.3% of the conclusions (10/12) were that SSB consumption could be a potential risk factor for weight gain. In contrast, the same percentage of conclusions, 83.3% (5/6), of those SRs disclosing some financial conflict of interest with the food industry were that the scientific evidence was insufficient to support a positive association between SSB consumption and weight gain or obesity. Those reviews with conflicts of interest were five times more likely to present a conclusion of no positive association than those without them (relative risk: 5.0, 95% CI: 1.3–19.3).
An important limitation of this study is the impossibility of ruling out the existence of publication bias among those studies not declaring any conflict of interest. However, the best large randomized trials also support a direct association between SSB consumption and weight gain or obesity.
Conclusions
Financial conflicts of interest may bias conclusions from SRs on SSB consumption and weight gain or obesity.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In our daily lives, we frequently rely on the results of scientific research to make decisions about our health. If we are healthy, we may seek out scientific advice about how much exercise to do to reduce our risk of a heart attack, and we may follow dietary advice issued by public health bodies to help us maintain a healthy weight. If we are ill, we expect our treatment to be based on the results of clinical trials and other studies. We assume that the scientific research that underlies our decisions about health-related issues is unbiased and accurate. However, there is increasing evidence that the conclusions of industry-sponsored scientific research are sometimes biased. So, for example, reports of drug trials sponsored by pharmaceutical companies sometimes emphasize the positive results of trials and “hide” unwanted side effects deep within the report or omit them altogether.
Why Was This Study Done?
Although the effects of company sponsors on the conclusions of pharmaceutical research have been extensively examined, little is known about the effects of industry sponsorship on nutrition research, even though large commercial entities are increasingly involved in global food and drink production. It is important to know whether the scientific evidence about nutrition is free of bias because biased information might negatively affect the health of entire populations. Moreover, scientific evidence from nutrition research underlies the formulation of governmental dietary guidelines and food-related public health interventions. In this systematic review, the researchers investigate whether the disclosure of potential financial conflicts of interest (for example, research funding by a beverage company) has influenced the results of systematic reviews undertaken to examine the association between the consumption of highly lucrative sugar-sweetened beverages (SSBs) and weight gain or obesity. Systematic reviews identify all the research on a given topic using predefined criteria. In an ideal world, systematic reviews provide access to all the available evidence on specific exposure–disease associations, but publication bias related to authors' conflicts of interest may affect the reliability of the conclusions of such studies.
What Did the Researchers Do and Find?
The researchers identified 18 conclusions from 17 systematic reviews that had investigated the association between SSB consumption and weight gain or obesity. In six of these reviews, a financial conflict of interest with a food industry was disclosed. Among the reviews that reported having no conflict of interest, 83.3% of the conclusions were that SSB consumption could be a potential risk factor for weight gain. By contrast, the same percentage of reviews in which a potential financial conflict of interest was disclosed concluded that the scientific evidence was insufficient to support a positive association between SSB consumption and weight gain, or reported contradictory results and did not state any definitive conclusion about the association between SSB consumption and weight gain. Reviews in which a potential conflict of interest was disclosed were five times more likely to present a conclusion of no positive association between SSB consumption and weight gain than reviews that reported having no financial conflict of interest.
What Do These Findings Mean?
These findings indicate that systematic reviews that reported financial conflicts of interest or sponsorship from food or drink companies were more likely to reach a conclusion of no positive association between SSB consumption and weight gain than reviews that reported having no conflicts of interest. A major limitation of this study is that it cannot assess which interpretation of the available evidence is truly accurate. For example, the scientists involved in the systematic reviews that reported having no conflict of interest may have had preexisting prejudices that affected their interpretation of their findings. However, the interests of the food industry (increased sales of their products) are very different from those of most researchers (the honest pursuit of knowledge), and recent randomized trials support a positive association between SSB consumption and overweight/obesity. Thus, these findings draw attention to possible inaccuracies in scientific evidence from research funded by the food and drink industry. They do not imply that industry sponsorship of nutrition research should be avoided entirely. Rather, as in other research areas, clear guidelines and principles (for example, sponsors should sign contracts that state that they will not be involved in the interpretation of results) need to be established to avoid dangerous conflicts of interest.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001578.
The Research Ethics Program at the University of California, San Diego provides an overview of conflicts of interest for researchers and details of US regulations and guidelines
The PLOS Medicine series on Big Food examines the activities and influence of the food industry in global health
A PLOS Medicine Research Article by Basu et al. uses mathematical modeling to investigate whether SSB taxation would avert obesity and diabetes in India
A 2012 policy brief from the Yale Rudd Center for Food Policy and Obesity discusses current evidence regarding SSB taxes
The US National Institutes of Health has regulations on financial conflicts of interest for institutions applying to receive funding
Wikipedia has pages on conflict of interest, reporting bias, systematic review, and SSBs (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001578
PMCID: PMC3876974  PMID: 24391479
5.  Funding sources for continuing medical education: An observational study 
Aims:
Medical accreditation bodies and licensing authorities are increasingly mandating continuing medical education (CME) credits for maintenance of licensure of healthcare providers. However, the costs involved in participating in these CME activities are often substantial and may be a major deterrent in obtaining these mandatory credits. It is assumed that healthcare providers often obtain sponsorship from their institutions or third party payers (i.e. pharmaceutical-industry) to attend these educational activities. Data currently does not exist exploring the funding sources for CME activities in India. In this study, we examine the relative proportion of CME activities sponsored by self, institution and the pharmaceutical-industry. We also wanted to explore the characteristics of courses that have a high proportion of self-sponsorship.
Materials and Methods:
This is a retrospective audit of the data during the year 2009 conducted at an autonomous clinical training academy. The details of the sponsor of each CME activity were collected from an existing database. Participants were subsequently categorized as sponsored by self, sponsored by institution or sponsored by pharmaceutical-industry.
Results:
In the year 2009, a total of 2235 participants attended 40 different CME activities at the training academy. Of the total participants, 881 (39.4%) were sponsored by self, 898 (40.2%) were sponsored by institution and 456 (20.3%) by pharmaceutical-industry. About 47.8% participants attended courses that carried an international accreditation. For the courses that offer international accreditation, 63.3% were sponsored by self, 34.9% were sponsored by institution and 1.6% were sponsored by pharmaceutical-industry. There were 126 participants (5.6%) who returned to the academy for another CME activity during the study period. Self-sponsored (SS) candidates were more likely to sponsor themselves again for subsequent CME activity compared with the other two groups (P < 0.001).
Conclusions:
In our study, majority of healthcare professionals attending CME activities were either self or institution sponsored. There was a greater inclination for self-sponsoring for activities with international accreditation. SS candidates were more likely to sponsor themselves again for subsequent CME activities.
doi:10.4103/0972-5229.138152
PMCID: PMC4134625  PMID: 25136190
Accreditation; continuing medical education; continuing medical education credit; funding; sponsorship
6.  An in silico MS/MS library for automatic annotation of novel FAHFA lipids 
Background
A new lipid class named ‘fatty acid esters of hydroxyl fatty acids’ (FAHFA) was recently discovered in mammalian adipose tissue and in blood plasma and some FAHFAs were found to be associated with type 2 diabetes. To facilitate the automatic annotation of FAHFAs in biological specimens, a tandem mass spectra (MS/MS) library is needed. Due to the limitation of the commercial available standard compounds, we proposed building an in silico MS/MS library to extend the coverage of molecules.
Results
We developed a computer-generated library with 3267 tandem mass spectra (MS/MS) for 1089 FAHFA species. FAHFA spectra were generated based on authentic standards with negative mode electrospray ionization and 10, 20, and 40 V collision induced dissociation at 4 spectra/s as used in in ultra-high performance liquid chromatography-QTOF mass spectrometry studies. However, positional information of the hydroxyl group is only obtained either at lower QTOF spectra acquisition rates of 1 spectrum/s or at the MS3 level in ion trap instruments. Therefore, an additional set of 4290 fragment-rich MS/MS spectra was created to enable distinguishing positional FAHFA isomers. The library was generated based on ion fragmentations and ion intensities of FAHFA external reference standards, developing a heuristic model for fragmentation rules and extending these rules to large swaths of computer-generated structures of FAHFAs with varying chain lengths, degrees of unsaturation and hydroxyl group positions. Subsequently, we validated the new in silico library by discovering several new FAHFA species in egg yolk, showing that this library enables high-throughput screening of FAHFA lipids in various biological matrices.
Conclusions
The developed library and templates are freely available for commercial or noncommercial use at http://fiehnlab.ucdavis.edu/staff/yanma/fahfa-lipid-library. This in silico MS/MS library allows users to annotate FAHFAs from accurate mass tandem mass spectra in an easy and fast manner with NIST MS Search or PepSearch software. The developing template is provided for advanced users to modify the parameters and export customized libraries according to their instrument features.
Example of experimental and in silico MS/MS spectra for FAHFA lipids
Electronic supplementary material
The online version of this article (doi:10.1186/s13321-015-0104-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s13321-015-0104-4
PMCID: PMC4646931  PMID: 26579213
In silico library; MS/MS; Lipids; FAHFA
7.  An in silico MS/MS library for automatic annotation of novel FAHFA lipids 
Background
A new lipid class named ‘fatty acid esters of hydroxyl fatty acids’ (FAHFA) was recently discovered in mammalian adipose tissue and in blood plasma and some FAHFAs were found to be associated with type 2 diabetes. To facilitate the automatic annotation of FAHFAs in biological specimens, a tandem mass spectra (MS/MS) library is needed. Due to the limitation of the commercial available standard compounds, we proposed building an in silico MS/MS library to extend the coverage of molecules.
Results
We developed a computer-generated library with 3267 tandem mass spectra (MS/MS) for 1089 FAHFA species. FAHFA spectra were generated based on authentic standards with negative mode electrospray ionization and 10, 20, and 40 V collision induced dissociation at 4 spectra/s as used in in ultra-high performance liquid chromatography-QTOF mass spectrometry studies. However, positional information of the hydroxyl group is only obtained either at lower QTOF spectra acquisition rates of 1 spectrum/s or at the MS3 level in ion trap instruments. Therefore, an additional set of 4290 fragment-rich MS/MS spectra was created to enable distinguishing positional FAHFA isomers. The library was generated based on ion fragmentations and ion intensities of FAHFA external reference standards, developing a heuristic model for fragmentation rules and extending these rules to large swaths of computer-generated structures of FAHFAs with varying chain lengths, degrees of unsaturation and hydroxyl group positions. Subsequently, we validated the new in silico library by discovering several new FAHFA species in egg yolk, showing that this library enables high-throughput screening of FAHFA lipids in various biological matrices.
Conclusions
The developed library and templates are freely available for commercial or noncommercial use at http://fiehnlab.ucdavis.edu/staff/yanma/fahfa-lipid-library. This in silico MS/MS library allows users to annotate FAHFAs from accurate mass tandem mass spectra in an easy and fast manner with NIST MS Search or PepSearch software. The developing template is provided for advanced users to modify the parameters and export customized libraries according to their instrument features.
Example of experimental and in silico MS/MS spectra for FAHFA lipids
Electronic supplementary material
The online version of this article (doi:10.1186/s13321-015-0104-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s13321-015-0104-4
PMCID: PMC4646931  PMID: 26579213
In silico library; MS/MS; Lipids; FAHFA
8.  MedReach: building an Area Health Education Center medical information outreach system for Northwest Ohio*† 
In collaboration with regional partners in northwest Ohio, the Area Health Education Center (AHEC) program at the Medical College of Ohio (MCO) at Toledo is reaching out to underserved areas, helping to provide educational opportunities to health care professionals in these communities. This paper describes the development of MedReach, a medical information outreach system that connects regional AHEC sites to MCO via the Internet. MedReach provides physicians and other health care professionals access and support to search computerized textbooks and databases for current information on medical diagnoses, treatments, and research. A unique aspect of the MedReach project is that users are able to receive personal help with information retrieval by calling or emailing MCO's outreach librarian. Periodically, the AHEC program and the Mulford Library at MCO also sponsor an educational program, titled “Medical Applications of Computers,” for regional practitioners. Current feedback on both the medical information outreach system and the educational program has been positive.
PMCID: PMC116405  PMID: 12113517
9.  Stakeholder perspectives on implementing the National Cancer Institute’s patient-reported outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) 
The National Cancer Institute (NCI) is developing a patient-reported version of its Common Terminology Criteria for Adverse Events, called the “PRO-CTCAE.” The PRO-CTCAE consists of a library of patient-reported items which can be administered in clinical trials to directly capture the patient experience of adverse events during cancer treatment, as well as a software platform for administering these items via computer or telephone. In order to better understand the impressions of stakeholders involved in cancer clinical research about the potential value of the PRO-CTCAE approach to capturing adverse event information in clinical research, as well as their perspectives about barriers and strategies for implementing the PRO-CTCAE in NCI-sponsored cancer trials, a survey was conducted. A survey including structured and open-ended questions was developed to elicit perceptions about the use of patient-reported outcomes (PROs) for adverse event reporting, and to explore logistical considerations for implementing the PRO-CTCAE in cancer trials. The survey was distributed electronically and by paper to a convenience sample of leadership and committee members in the NCI’s cooperative group network, including principal investigators, clinical investigators, research nurses, data managers, patient advocates, and representatives of the NCI and Food and Drug Administration. Between October, 2008 through February, 2009, 727 surveys were collected. Most respondents (93%) agreed that patient reporting of adverse symptoms would be useful for improving understanding of the patient experience with treatment in cancer trials, and 88%, 80%, and 76%, respectively, endorsed that administration of PRO-CTCAE items in clinical trials would improve the completeness, accuracy, and efficiency of symptom data collection. More than three fourths believed that patient reports would be useful for informing treatment dose modifications and towards FDA regulatory evaluation of drugs. Eighty-eight percent felt that patients in clinical trials would be willing to self-report adverse symptoms at clinic visits via computer, and 68% felt patients would self-report weekly from home via the internet or an automated telephone system. Lack of computers and limited space and personnel were seen as potential barriers to in-clinic self-reporting, but these were judged to be surmountable with adequate funding. The PRO-CTCAE items and software are viewed by a majority of survey respondents as a means to improve adverse event data quality and comprehensiveness, enhance clinical decision-making, and foster patient-clinician communication. Research is ongoing to assess the measurement properties and feasibility of implementing this measure in cancer clinical trials.
doi:10.1007/s13142-011-0025-3
PMCID: PMC3717706  PMID: 24073038
Patient-reported outcomes; Symptoms, adverse events; Oncology; Cancer, Clinical trials; Toxicity, safety; Tolerability; Comparative effectiveness research; Cooperative groups; National Cancer Institute
10.  A reliable computational workflow for the selection of optimal screening libraries 
Background
The experimental screening of compound collections is a common starting point in many drug discovery projects. Successes of such screening campaigns critically depend on the quality of the screened library. Many libraries are currently available from different vendors yet the selection of the optimal screening library for a specific project is challenging. We have devised a novel workflow for the rational selection of project-specific screening libraries.
Results
The workflow accepts as input a set of virtual candidate libraries and applies the following steps to each library: (1) data curation; (2) assessment of ADME/T profile; (3) assessment of the number of promiscuous binders/frequent HTS hitters; (4) assessment of internal diversity; (5) assessment of similarity to known active compound(s) (optional); (6) assessment of similarity to in-house or otherwise accessible compound collections (optional). For ADME/T profiling, Lipinski’s and Veber’s rule-based filters were implemented and a new blood brain barrier permeation model was developed and validated (85 and 74 % success rate for training set and test set, respectively). Diversity and similarity descriptors which demonstrated best performances in terms of their ability to select either diverse or focused sets of compounds from three databases (Drug Bank, CMC and CHEMBL) were identified and used for diversity and similarity assessments. The workflow was used to analyze nine common screening libraries available from six vendors. The results of this analysis are reported for each library providing an assessment of its quality. Furthermore, a consensus approach was developed to combine the results of these analyses into a single score for selecting the optimal library under different scenarios.
Conclusions
We have devised and tested a new workflow for the rational selection of screening libraries under different scenarios. The current workflow was implemented using the Pipeline Pilot software yet due to the usage of generic components, it can be easily adapted and reproduced by computational groups interested in rational selection of screening libraries. Furthermore, the workflow could be readily modified to include additional components. This workflow has been routinely used in our laboratory for the selection of libraries in multiple projects and consistently selects libraries which are well balanced across multiple parameters.Graphical abstract.
Electronic supplementary material
The online version of this article (doi:10.1186/s13321-015-0108-0) contains supplementary material, which is available to authorized users.
doi:10.1186/s13321-015-0108-0
PMCID: PMC4676138  PMID: 26692904
Diversity; Fingerprints; QSAR; Screening libraries; Similarity; Library selection
11.  The Recurring Bibliographies Program of MEDLARS * 
Recurring bibliographies are by-products of the MEDLARS system which are prepared by the National Library of Medicine in collaboration with nonprofit scientific and professional societies and institutions and government agencies that represent a specialty area of biomedical research or practice. The sponsor generally assumes responsibility for the costs of publication and distribution. At present MEDLARS has a planned capacity of fifty such recurring bibliographies. The subject parameters and format are defined by the representatives of the sponsoring organization and the NLM Search, MeSH, and Index staffs. As citations are regularly put into the MEDLARS store, each one that qualifies for a recurring bibliography is identified and tagged by the computer with the number assigned to the pertinent RB. The MEDLARS store is searched for citations for a particular recurring bibliography according to the schedule specified by the sponsoring organization, and the output is printed from a GRACE tape.
PMCID: PMC198401  PMID: 5325816
12.  Publicly Funded Clinical Trials and the Future of Cancer Care 
The Oncologist  2013;18(2):232-238.
Publicly sponsored trials, conducted primarily by cooperative groups sponsored by the National Cancer Institute, seek to optimize therapy for a particular disease, create new knowledge, and improve public health; these trials can also result in label extension of a drug and even in initial drug approval. This lecture examines the contributions to cancer care of the cooperative groups, the ongoing reorganization of the cooperative groups to form a national clinical trials network, as well as opportunities for developing and refining new cancer treatments and disseminating results to the medical community and the general public.
Publicly sponsored trials, conducted primarily by cooperative groups sponsored by the National Cancer Institute, and commercially sponsored trials are necessary to create new knowledge, improve the care of oncology patients, and develop new drugs and devices. Commercial sponsors launch clinical trials that will result in drug approval, label extension, expansion of market share, and an increase in shareholder value. Conversely, publicly sponsored trials seek to optimize therapy for a particular disease, create new knowledge, and improve public health; these trials can also result in label extension of a drug and even in initial drug approval. Publicly sponsored trials may combine and/or compare drugs developed by different commercial sponsors, develop multimodality therapies (e.g., the combination of chemotherapy and radiation), or develop novel treatment schedules or routes of drug administration (e.g., intraperitoneal chemotherapy). Publicly sponsored trials are more likely to focus on therapies for rare diseases and to study survivorship and quality of life; these areas may not be a priority for commercial entities. Screening and prevention strategies have been developed almost exclusively by the public sector given the large sample size and long follow-up period needed to complete the trial and, therefore, the lack of short-term commercial gain. Finally, given the public nature of the funding, clinical investigators are expected to publish their results even if the outcomes are unfavorable for the investigational therapy. With the ongoing reorganization of the cooperative groups to form a national clinical trials network, opportunities exist to create a robust platform for biomarker discovery and validation through the expanded collection of well-annotated biospecimens obtained from clinical trial participants. Thus, publicly funded trials are vital to developing and refining new cancer treatments and disseminating results to the medical community and the general public.
doi:10.1634/theoncologist.2012-0423
PMCID: PMC3579608  PMID: 23363807
13.  A Framework to Support the Sharing and Reuse of Computable Phenotype Definitions Across Health Care Delivery and Clinical Research Applications 
eGEMs  2016;4(3):1232.
Introduction:
The ability to reproducibly identify clinically equivalent patient populations is critical to the vision of learning health care systems that implement and evaluate evidence-based treatments. The use of common or semantically equivalent phenotype definitions across research and health care use cases will support this aim. Currently, there is no single consolidated repository for computable phenotype definitions, making it difficult to find all definitions that already exist, and also hindering the sharing of definitions between user groups.
Method:
Drawing from our experience in an academic medical center that supports a number of multisite research projects and quality improvement studies, we articulate a framework that will support the sharing of phenotype definitions across research and health care use cases, and highlight gaps and areas that need attention and collaborative solutions.
Framework:
An infrastructure for re-using computable phenotype definitions and sharing experience across health care delivery and clinical research applications includes: access to a collection of existing phenotype definitions, information to evaluate their appropriateness for particular applications, a knowledge base of implementation guidance, supporting tools that are user-friendly and intuitive, and a willingness to use them.
Next Steps:
We encourage prospective researchers and health administrators to re-use existing EHR-based condition definitions where appropriate and share their results with others to support a national culture of learning health care. There are a number of federally funded resources to support these activities, and research sponsors should encourage their use.
doi:10.13063/2327-9214.1232
PMCID: PMC4975566  PMID: 27563686
Computable Phenotypes; Electronic Health Records; Data Standards; Learning Health Care Systems
14.  Differential Globalization of Industry- and Non-Industry–Sponsored Clinical Trials 
PLoS ONE  2015;10(12):e0145122.
Background
Mapping the international landscape of clinical trials may inform global health research governance, but no large-scale data are available. Industry or non-industry sponsorship may have a major influence in this mapping. We aimed to map the global landscape of industry- and non-industry–sponsored clinical trials and its evolution over time.
Methods
We analyzed clinical trials initiated between 2006 and 2013 and registered in the WHO International Clinical Trials Registry Platform (ICTRP). We mapped single-country and international trials by World Bank's income groups and by sponsorship (industry- vs. non- industry), including its evolution over time from 2006 to 2012. We identified clusters of countries that collaborated significantly more than expected in industry- and non-industry–sponsored international trials.
Results
119,679 clinical trials conducted in 177 countries were analysed. The median number of trials per million inhabitants in high-income countries was 100 times that in low-income countries (116.0 vs. 1.1). Industry sponsors were involved in three times more trials per million inhabitants than non-industry sponsors in high-income countries (75.0 vs. 24.5) and in ten times fewer trials in low- income countries (0.08 vs. 1.08). Among industry- and non-industry–sponsored trials, 30.3% and 3.2% were international, respectively. In the industry-sponsored network of collaboration, Eastern European and South American countries collaborated more than expected; in the non-industry–sponsored network, collaboration among Scandinavian countries was overrepresented. Industry-sponsored international trials became more inter-continental with time between 2006 and 2012 (from 54.8% to 67.3%) as compared with non-industry–sponsored trials (from 42.4% to 37.2%).
Conclusions
Based on trials registered in the WHO ICTRP we documented a substantial gap between the globalization of industry- and non-industry–sponsored clinical research. Only 3% of academic trials but 30% of industry trials are international. The latter appeared to be conducted in preferentially selected countries.
doi:10.1371/journal.pone.0145122
PMCID: PMC4681996  PMID: 26658791
15.  Electronic imaging of the human body. 
The Human Engineering Division of the Armstrong Laboratory (USAF); the Mallinckrodt Institute of Radiology; the Washington University School of Medicine; and the Lister-Hill National Center for Biomedical Communication, National Library of Medicine are sponsoring a working group on electronic imaging of the human body. Electronic imaging of the surface of the human body has been pursued and developed by a number of disciplines including radiology, forensics, surgery, engineering, medical education, and anthropometry. The applications range from reconstructive surgery to computer-aided design (CAD) of protective equipment. Although these areas appear unrelated, they have a great deal of commonality. All the organizations working in this area are faced with the challenges of collecting, reducing, and formatting the data in an efficient and standard manner; storing this data in a computerized database to make it readily accessible; and developing software applications that can visualize, manipulate, and analyze the data. This working group is being established to encourage effective use of the resources of all the various groups and disciplines involved in electronic imaging of the human body surface by providing a forum for discussing progress and challenges with these types of data.
PMCID: PMC2248098  PMID: 1482896
16.  Friends of the library groups in health sciences libraries. 
The Houston Academy of Medicine--Texas Medical Center (HAM--TMC) Library collected data on friends of the library groups from 103 health sciences libraries, using a mail questionnaire. Sixteen of the responding libraries had independent friends groups; seven had friends groups that were subordinate to a university group. The sixteen independent groups gave as their major purposes (1) to raise money for their associated library and (2) to develop support for their library. These groups contributed an average of $4,870 a year to their libraries, the money being used primarily to purchase rare books and working-collection books and to sponsor social events. The subordinate groups contributed relatively little money to the health sciences libraries responding to the survey.
PMCID: PMC199489  PMID: 678699
17.  A qualitative study of treatment-seeking heroin users in contemporary China 
Background
Heroin has emerged as the primary drug of concern in China, with as many as three million contemporary users. Once a Chinese citizen has been identified by Chinese law enforcement as a ‘drug addict’, that individual is ‘registered’ in an official government tracking system for the rest of his or her life, independent of verified rehabilitation and recovery. Most of what is known about heroin users in China is based on studies of registered heroin users participating, often involuntarily, in government-sponsored treatment.
Methods
Using Grounded Theory Methodology, we collected and analyzed in-depth interviews of heroin users voluntarily seeking treatment at a new, non-government-sponsored, for-profit, addiction treatment hospital in Beijing, China.
Results
We identified three major themes among our participants: (1) intense social stigma towards individuals with drug addiction; (2) a desire for anonymous, confidential treatment to avoid social stigma and the loss of personal freedom that accompanies participation in government-sponsored treatment; and (3) a deep mistrust of government-sponsored treatment and a search for more effective alternatives.
Conclusion
Despite a desire for treatment, our subjects were reluctant to access government-sponsored treatment facilities because of fear of a stigmatized identity, fear of loss of personal freedom, and lack of faith in the efficacy and safety of government-sponsored treatments. Their willingness to pay cash at a new, non-government-sponsored, addiction treatment facility illustrates the lengths to which they will go to remain ‘unregistered’ and to discover better alternatives. That the Chinese government allows such facilities to operate outside of government surveillance suggests a new openness to alternative options to combat China’s rising drug epidemic. The efficacy of these alternative options, however, remains in question.
doi:10.1186/s13722-015-0044-3
PMCID: PMC4672521  PMID: 26538288
China; Heroin; Addiction; Treatment; Methadone; Qualitative
18.  An integrated multi-study analysis of intra-subject variability in cerebrospinal fluid amyloid-β concentrations collected by lumbar puncture and indwelling lumbar catheter 
Introduction
Amyloid-β (Aβ) has been investigated as a diagnostic biomarker and therapeutic drug target. Recent studies found that cerebrospinal fluid (CSF) Aβ fluctuates over time, including as a diurnal pattern, and increases in absolute concentration with serial collection. It is currently unknown what effect differences in CSF collection methodology have on Aβ variability. In this study, we sought to determine the effect of different collection methodologies on the stability of CSF Aβ concentrations over time.
Methods
Grouped analysis of CSF Aβ levels from multiple industry and academic groups collected by either lumbar puncture (n=83) or indwelling lumbar catheter (n=178). Participants were either placebo or untreated subjects from clinical drug trials or observational studies. Participants had CSF collected by lumbar puncture or lumbar catheter for quantitation of Aβ concentration by enzyme linked immunosorbent assay. Data from all sponsors was converted to percent of the mean for Aβ40 and Aβ42 for comparison. Repeated measures analysis of variance was performed to assess for factors affecting the linear rise of Aβ concentrations over time.
Results
Analysis of studies collecting CSF via lumbar catheter revealed tremendous inter-subject variability of Aβ40 and Aβ42 as well as an Aβ diurnal pattern in all of the sponsors’ studies. In contrast, Aβ concentrations from CSF samples collected at two time points by lumbar puncture showed no significant differences. Repeated measures analysis of variance found that only time and draw frequency were significantly associated with the slope of linear rise in Aβ40 and Aβ42 concentrations during the first 6 hours of collection.
Conclusions
Based on our findings, we recommend minimizing the frequency of CSF draws in studies measuring Aβ levels and keeping the frequency standardized between experimental groups. The Aβ diurnal pattern was noted in all sponsors’ studies and was not an artifact of study design. Averaging Aβ concentrations at each time point is recommended to minimize the effect of individual variability. Indwelling lumbar catheters are an invaluable research tool for following changes in CSF Aβ over 24-48 hours, but factors affecting Aβ concentration such as linear rise and diurnal variation need to be accounted for in planning study designs.
Electronic supplementary material
The online version of this article (doi:10.1186/s13195-015-0136-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s13195-015-0136-z
PMCID: PMC4518529  PMID: 26225140
19.  Development and Evaluation of a New Technological Way of Engaging Patients and Enhancing Understanding of Drug Tolerability in Early Clinical Development: PROACT 
Advances in Therapy  2016;33:1012-1024.
Introduction
During early clinical testing of a new medication, it is critical to understand and characterise patient tolerability. However, in early clinical studies, it is difficult for patients to contribute directly to the sponsors’ understanding of a new compound. Patient reported opinions about clinical tolerability (PROACT) provides a new, simple and innovative way in which patients can collaborate using an application downloaded to a mobile computer or smartphone.
Methods
PROACT was designed with special consideration given to patient confidentiality, patient engagement and data security. A pilot study was conducted to investigate patient uptake of PROACT and to characterize clinical trial information it captured. Patients recruited to Phase I oncology trials at a UK center were eligible to participate but were required to have a tablet computer or smartphone. Patients used PROACT to upload audio/video messages that became available instantly to their clinical team, who were able to reply to the patient within PROACT. The patient’s message was also analyzed, personally-identifiable information removed and anonymized information then made available to the sponsor in an analytics module for decision-making. In parallel, a patient focus group was engaged to provide feedback on communication needs during early clinical trials and the PROACT concept.
Results
Of the 16 patients informed of PROACT, 8 had a smart device and consented to take part. Use of PROACT varied and all messages volunteered were relevant and informative for drug development. Topics disclosed included tolerability impacts, study design, and drug formulation. Alignment with the clinical study data provided a richer understanding of tolerability and treatment consequences. This information was available to be shared among the clinical team and the sponsor, to improve patient support and experience. Patient forum feedback endorsed the concept and provided further information to enhance the application.
Conclusion
Overall, PROACT achieved proof of concept in this small pilot study and delivered a secure end-to-end system that protected patient privacy and provided preliminary insight into patient experiences beyond the usual clinical trial data set. The use of mobile devices to interact actively with participants in clinical trials may be a new way of engaging and empowering patients. Further validation of this technology in larger patient cohorts is ongoing.
Funding
AstraZeneca.
doi:10.1007/s12325-016-0335-4
PMCID: PMC4920852  PMID: 27167621
Oncology; Phase I; Patient feedback; PROACT; Safety; Tolerability
20.  Industry-sponsored clinical research outside high-income countries: an empirical analysis of registered clinical trials from 2006 to 2013 
Background
Industry-sponsored clinical trials, in the past performed almost exclusively in more developed countries, now often recruit participants globally. However, recruitment from outside high-income countries may not represent the ultimate target population for the intervention. Clinical trial registries provide an opportunity to quantify and examine the type of clinical research performed in various geographic regions. We sought to characterize industry-sponsored randomized controlled trials conducted in high-income countries and to compare these trials to those performed outside high-income countries.
Methods
Clinical trial data on all industry-funded randomized controlled trials conducted between 2006 and 2014 were obtained from the registry ClinicalTrials.gov. Trials were classified according to their study sites as conducted in high or non-high income countries, and data on trial characteristics were collected.
Results
Of 22,511 relevant trials, a total of 6,085 (27.0 %) trials included study sites outside a high-income country, and 2,045 (9.1 %) were conducted exclusively outside high-income countries. Of country groups, Central Europe had the greatest number of trials (3,127), followed by Eastern Europe (2,075). The percentage of trials with study sites outside high-income countries remained relatively constant over the study period. Studies with sites outside high-income countries tended to recruit more participants (median enrolled participants 265 vs. 71, P <0.001), to be longer (median study duration 20 vs. 13 months, P <0.05), and to study more advanced phase interventions (Phase 3 or 4 trial 58 % vs. 33 %, P <0.001).
Conclusions
More than a quarter of industry-sponsored trials include participants from outside high-income countries and this rate remained stable over the 7-year study period. Trials conducted outside high-income countries tend to be larger, have a longer duration, and study later phase interventions compared to studies performed exclusively in high-income countries.
Electronic supplementary material
The online version of this article (doi:10.1186/s12961-015-0019-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s12961-015-0019-6
PMCID: PMC4465475  PMID: 26041551
Clinical trials; Global health; Pharmaceutical companies
21.  Frequency-modulated electromagnetic neural stimulation (FREMS) as a treatment for symptomatic diabetic neuropathy: results from a double-blind, randomised, multicentre, long-term, placebo-controlled clinical trial 
Diabetologia  2012;56(3):467-475.
Aims/hypothesis
The aim was to evaluate the efficacy and safety of transcutaneous frequency-modulated electromagnetic neural stimulation (frequency rhythmic electrical modulation system, FREMS) as a treatment for symptomatic peripheral neuropathy in patients with diabetes mellitus.
Methods
This was a double-blind, randomised, multicentre, parallel-group study of three series, each of ten treatment sessions of FREMS or placebo administered within 3 weeks, 3 months apart, with an overall follow-up of about 51 weeks. The primary endpoint was the change in nerve conduction velocity (NCV) of deep peroneal, tibial and sural nerves. Secondary endpoints included the effects of treatment on pain, tactile, thermal and vibration sensations. Patients eligible to participate were aged 18–75 years with diabetes for ≥1 year, HbA1c <11.0% (97 mmol/mol), with symptomatic diabetic polyneuropathy at the lower extremities (i.e. abnormal amplitude, latency or NCV of either tibial, deep peroneal or sural nerve, but with an evocable potential and measurable NCV of the sural nerve), a Michigan Diabetes Neuropathy Score ≥7 and on a stable dose of medications for diabetic neuropathy in the month prior to enrolment. Data were collected in an outpatient setting. Participants were allocated to the FREMS or placebo arm (1:1 ratio) according to a sequence generated by a computer random number generator, without block or stratification factors. Investigators digitised patients’ date of birth and site number into an interactive voice recording system to obtain the assigned treatment. Participants, investigators conducting the trial, or people assessing the outcomes were blinded to group assignment.
Results
Patients (n = 110) with symptomatic neuropathy were randomised to FREMS (n = 54) or placebo (n = 56). In the intention-to-treat population (50 FREMS, 51 placebo), changes in NCV of the three examined nerves were not different between FREMS and placebo (deep peroneal [means ± SE]: 0.74 ± 0.71 vs 0.06 ± 1.38 m/s; tibial: 2.08 ± 0.84 vs 0.61 ± 0.43 m/s; and sural: 0.80 ± 1.08 vs −0.91 ± 1.13 m/s; FREMS vs placebo, respectively). FREMS induced a significant reduction in day and night pain as measured by a visual analogue scale immediately after each treatment session, although this beneficial effect was no longer measurable 3 months after treatment. Compared with the placebo group, in the FREMS group the cold sensation threshold was significantly improved, while non-significant differences were observed in the vibration and warm sensation thresholds. No relevant side effects were recorded during the study.
Conclusions/interpretation
FREMS proved to be a safe treatment for symptomatic diabetic neuropathy, with immediate, although transient, reduction in pain, and no effect on NCV.
Trial registration
ClinicalTrials.gov NCT01628627
Funding
The clinical trial was sponsored by Lorenz Biotech (Medolla, Italy), lately Lorenz Lifetech (Ozzano dell’Emilia, Italy).
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-012-2795-7) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-012-2795-7
PMCID: PMC3563945  PMID: 23238789
Diabetic neuropathy; Electrical stimulation; Nerve conduction studies; Neuropathic pain; Neurostimulation therapy; Randomised clinical trial
22.  Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial 
Diabetologia  2013;56(12):2582-2592.
Aims/hypothesis
The aim of this work was to evaluate the efficacy and safety of canagliflozin vs placebo and sitagliptin in patients with type 2 diabetes who were being treated with background metformin.
Methods
This randomised, double-blind, four-arm, parallel-group, Phase 3 study was conducted at 169 centres in 22 countries between April 2010 and August 2012. Participants (N = 1,284) with type 2 diabetes aged ≥18 and ≤80 years who had inadequate glycaemic control (HbA1c ≥7.0% [53 mmol/mol] and ≤10.5% [91 mmol/mol]) on metformin therapy received canagliflozin 100 mg or 300 mg, sitagliptin 100 mg, or placebo (n = 368, 367, 366, 183, respectively) for a 26 week, placebo- and active-controlled period followed by a 26 week, active-controlled period (placebo group switched to sitagliptin [placebo/sitagliptin]) and were included in the modified intent-to-treat analysis set. Randomisation was performed using a computer-generated schedule; participants, study centres and the sponsor were blinded to group assignment. The primary endpoint was change from baseline in HbA1c at week 26; secondary endpoints included changes in HbA1c (week 52) and fasting plasma glucose (FPG), body weight, and systolic blood pressure (BP; weeks 26 and 52). Adverse events (AEs) were recorded throughout the study.
Results
At week 26, canagliflozin 100 mg and 300 mg reduced HbA1c vs placebo (−0.79%, –0.94%, –0.17%, respectively; p < 0.001). At week 52, canagliflozin 100 mg and 300 mg demonstrated non-inferiority, and canagliflozin 300 mg demonstrated statistical superiority, to sitagliptin in lowering HbA1c (−0.73%, –0.88%,–0.73%, respectively); differences (95% CI) vs sitagliptin were 0% (−0.12, 0.12) and −0.15% (−0.27, –0.03), respectively. Canagliflozin 100 mg and 300 mg reduced body weight vs placebo (week 26: –3.7%, –4.2%, –1.2%, respectively; p < 0.001) and sitagliptin (week 52: –3.8%, –4.2%, –1.3%, respectively; p < 0.001). Both canagliflozin doses reduced FPG and systolic BP vs placebo (week 26) and sitagliptin (week 52) (p < 0.001). Overall AE and AE-related discontinuation rates were generally similar across groups, but higher with canagliflozin 100 mg. Genital mycotic infection and osmotic diuresis-related AE rates were higher with canagliflozin; few led to discontinuations. Hypoglycaemia incidence was higher with canagliflozin.
Conclusions/interpretation
Canagliflozin improved glycaemia and reduced body weight vs placebo (week 26) and sitagliptin (week 52) and was generally well tolerated in patients with type 2 diabetes on metformin.
Clinical trial registry
ClinicalTrials.gov NCT01106677
Funding
This study was supported by Janssen Research & Development, LLC.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-013-3039-1) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-013-3039-1
PMCID: PMC3825495  PMID: 24026211
Canagliflozin; Metformin; Sitagliptin; Sodium glucose co-transporter 2 (SGLT2) inhibitor; Type 2 diabetes mellitus
23.  Health Science Libraries of National, State, and Local Medical Organizations 
This second survey of medical society-sponsored libraries has been expanded to include national association libraries in allied medical fields, as well as special libraries which do not fall into categories established for the MLA survey of health science libraries. A total of fifty-eight libraries in this subset have been identified, and selected characteristics have been measured. Observations are made concerning methodology, user population, and services.
PMCID: PMC199050  PMID: 6041830
24.  ParallABEL: an R library for generalized parallelization of genome-wide association studies 
BMC Bioinformatics  2010;11:217.
Background
Genome-Wide Association (GWA) analysis is a powerful method for identifying loci associated with complex traits and drug response. Parts of GWA analyses, especially those involving thousands of individuals and consuming hours to months, will benefit from parallel computation. It is arduous acquiring the necessary programming skills to correctly partition and distribute data, control and monitor tasks on clustered computers, and merge output files.
Results
Most components of GWA analysis can be divided into four groups based on the types of input data and statistical outputs. The first group contains statistics computed for a particular Single Nucleotide Polymorphism (SNP), or trait, such as SNP characterization statistics or association test statistics. The input data of this group includes the SNPs/traits. The second group concerns statistics characterizing an individual in a study, for example, the summary statistics of genotype quality for each sample. The input data of this group includes individuals. The third group consists of pair-wise statistics derived from analyses between each pair of individuals in the study, for example genome-wide identity-by-state or genomic kinship analyses. The input data of this group includes pairs of SNPs/traits. The final group concerns pair-wise statistics derived for pairs of SNPs, such as the linkage disequilibrium characterisation. The input data of this group includes pairs of individuals. We developed the ParallABEL library, which utilizes the Rmpi library, to parallelize these four types of computations. ParallABEL library is not only aimed at GenABEL, but may also be employed to parallelize various GWA packages in R. The data set from the North American Rheumatoid Arthritis Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, was used to measure ParallABEL performance. Almost perfect speed-up was achieved for many types of analyses. For example, the computing time for the identity-by-state matrix was linearly reduced from approximately eight hours to one hour when ParallABEL employed eight processors.
Conclusions
Executing genome-wide association analysis using the ParallABEL library on a computer cluster is an effective way to boost performance, and simplify the parallelization of GWA studies. ParallABEL is a user-friendly parallelization of GenABEL.
doi:10.1186/1471-2105-11-217
PMCID: PMC2879286  PMID: 20429914
25.  Trial Publication after Registration in ClinicalTrials.Gov: A Cross-Sectional Analysis 
PLoS Medicine  2009;6(9):e1000144.
Joseph Ross and colleagues examine publication rates of clinical trials and find low rates of publication even following registration in Clinicaltrials.gov.
Background
ClinicalTrials.gov is a publicly accessible, Internet-based registry of clinical trials managed by the US National Library of Medicine that has the potential to address selective trial publication. Our objectives were to examine completeness of registration within ClinicalTrials.gov and to determine the extent and correlates of selective publication.
Methods and Findings
We examined reporting of registration information among a cross-section of trials that had been registered at ClinicalTrials.gov after December 31, 1999 and updated as having been completed by June 8, 2007, excluding phase I trials. We then determined publication status among a random 10% subsample by searching MEDLINE using a systematic protocol, after excluding trials completed after December 31, 2005 to allow at least 2 y for publication following completion. Among the full sample of completed trials (n = 7,515), nearly 100% reported all data elements mandated by ClinicalTrials.gov, such as intervention and sponsorship. Optional data element reporting varied, with 53% reporting trial end date, 66% reporting primary outcome, and 87% reporting trial start date. Among the 10% subsample, less than half (311 of 677, 46%) of trials were published, among which 96 (31%) provided a citation within ClinicalTrials.gov of a publication describing trial results. Trials primarily sponsored by industry (40%, 144 of 357) were less likely to be published when compared with nonindustry/nongovernment sponsored trials (56%, 110 of 198; p<0.001), but there was no significant difference when compared with government sponsored trials (47%, 57 of 122; p = 0.22). Among trials that reported an end date, 75 of 123 (61%) completed prior to 2004, 50 of 96 (52%) completed during 2004, and 62 of 149 (42%) completed during 2005 were published (p = 0.006).
Conclusions
Reporting of optional data elements varied and publication rates among completed trials registered within ClinicalTrials.gov were low. Without greater attention to reporting of all data elements, the potential for ClinicalTrials.gov to address selective publication of clinical trials will be limited.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
People assume that whenever they are ill, health care professionals will make sure they get the best available treatment. But how do clinicians know which treatment is most appropriate? In the past, clinicians used their own experience to make treatment decisions. Nowadays, they rely on evidence-based medicine—the systematic review and appraisal of the results of clinical trials, studies that investigate the efficacy and safety of medical interventions in people. However, evidence-based medicine can only be effective if all the results from clinical trials are published promptly in medical journals. Unfortunately, the results of trials in which a new drug did not perform better than existing drugs or in which it had unwanted side effects often remain unpublished or only appear in the public domain many years after the drug has been approved for clinical use by the US Food and Drug Administration (FDA) and other governmental bodies.
Why Was This Study Done?
The extent of this “selective” publication, which can impair evidence-based clinical practice, remains unclear but is thought to be substantial. In this study, the researchers investigate the problem of selective publication by systematically examining the extent of publication of the results of trials registered in ClinicalTrials.gov, a Web-based registry of US and international clinical trials. ClinicalTrials.gov was established in 2000 by the US National Library of Medicine in response to the 1997 FDA Modernization Act. This act required preregistration of all trials of new drugs to provide the public with information about trials in which they might be able to participate. Mandatory data elements for registration in ClinicalTrials.gov initially included the trial's title, the condition studied in the trial, the trial design, and the intervention studied. In September 2007, the FDA Amendments Act expanded the mandatory requirements for registration in ClinicalTrials.gov by making it necessary, for example, to report the trial start date and to report primary and secondary outcomes (the effect of the intervention on predefined clinical measurements) in the registry within 2 years of trial completion.
What Did the Researchers Do and Find?
The researchers identified 7,515 trials that were registered within ClinicalTrials.gov after December 31, 1999 (excluding phase I, safety trials), and whose record indicated trial completion by June 8, 2007. Most of these trials reported all the mandatory data elements that were required by ClinicalTrials.gov before the FDA Amendments Act but reporting of optional data elements was less complete. For example, only two-thirds of the trials reported their primary outcome. Next, the researchers randomly selected 10% of the trials and, after excluding trials whose completion date was after December 31, 2005 (to allow at least two years for publication), determined the publication status of this subsample by systematically searching MEDLINE (an online database of articles published in selected medical and scientific journals). Fewer than half of the trials in the subsample had been published, and the citation for only a third of these publications had been entered into ClinicalTrials.gov. Only 40% of industry-sponsored trials had been published compared to 56% of nonindustry/nongovernment-sponsored trials, a difference that is unlikely to have occurred by chance. Finally, 61% of trials with a completion date before 2004 had been published, but only 42% of trials completed during 2005 had been published.
What Do These Findings Mean?
These findings indicate that, over the period studied, critical trial information was not included in the ClinicalTrials.gov registry. The FDA Amendments Act should remedy some of these shortcomings but only if the accuracy and completeness of the information in ClinicalTrials.gov is carefully monitored. These findings also reveal that registration in ClinicalTrials.gov does not guarantee that trial results will appear in a timely manner in the scientific literature. However, they do not address the reasons for selective publication (which may be, in part, because it is harder to publish negative results than positive results), and they are potentially limited by the methods used to discover whether trial results had been published. Nevertheless, these findings suggest that the FDA, trial sponsors, and the scientific community all need to make a firm commitment to minimize the selective publication of trial results to ensure that patients and clinicians have access to the information they need to make fully informed treatment decisions.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000144.
PLoS Medicine recently published two related articles on selected publication by Ida Sim and colleagues and by Lisa Bero and colleagues and an editorial discussing the FDA Amendments Act
ClinicalTrials.gov provides information about the US National Institutes of Health clinical trial registry, including background information about clinical trials, and a fact sheet detailing the requirements of the FDA Amendments Act 2007 for trial registration
The US Food and Drug Administration provides further information about drug approval in the US for consumers and health care professionals
doi:10.1371/journal.pmed.1000144
PMCID: PMC2728480  PMID: 19901971

Results 1-25 (590341)