PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (303971)

Clipboard (0)
None

Related Articles

1.  Antibiotic resistance shaping multi-level population biology of bacteria 
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent “population biologies.” Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of “clinical” antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
doi:10.3389/fmicb.2013.00015
PMCID: PMC3589745  PMID: 23508522
antibiotics; resistance; population biology; multi-level selection; evolution; evolvability; resistome; microbiome
2.  Diverse Antibiotic Resistance Genes in Dairy Cow Manure 
mBio  2014;5(2):e01017-13.
ABSTRACT
Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings.
IMPORTANCE
The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected to intensive antibiotic use, such as pigs and chickens. Cow manure has received less attention, although it is commonly used in crop production. Here, we report the discovery of novel and diverse antibiotic resistance genes in the cow microbiome, demonstrating that it is a significant reservoir of antibiotic resistance genes. The genomic resource presented here lays the groundwork for understanding the dispersal of antibiotic resistance from the agroecosystem to other settings.
doi:10.1128/mBio.01017-13
PMCID: PMC3993861  PMID: 24757214
3.  Functional characterization of a three-component regulatory system involved in quorum sensing-based regulation of peptide antibiotic production in Carnobacterium maltaromaticum 
BMC Microbiology  2006;6:93.
Background
Quorum sensing is a form of cell-to-cell communication that allows bacteria to control a wide range of physiological processes in a population density-dependent manner. Production of peptide antibiotics is one of the processes regulated by quorum sensing in several species of Gram-positive bacteria, including strains of Carnobacterium maltaromaticum. This bacterium and its peptide antibiotics are of interest due to their potential applications in food preservation. The molecular bases of the quorum sensing phenomenon controlling peptide antibiotic production in C. maltaromaticum remain poorly understood. The present study was aimed at gaining a deeper insight into the molecular mechanism involved in quorum sensing-mediated regulation of peptide antibiotic (bacteriocin) production by C. maltaromaticum. We report the functional analyses of the CS (autoinducer)-CbnK (histidine protein kinase)-CbnR (response regulator) three-component regulatory system and the three regulated promoters involved in peptide antibiotic production in C. maltaromaticum LV17B.
Results
CS-CbnK-CbnR system-dependent activation of carnobacterial promoters was demonstrated in both homologous and heterologous hosts using a two-plasmid system with a β-glucuronidase (GusA) reporter read-out. The results of our analyses support a model in which the CbnK-CbnR two-component signal transduction system is necessary and sufficient to transduce the signal of the peptide autoinducer CS into the activation of the promoters that drive the expression of the genes required for production of the carnobacterial peptide antibiotics and the immunity proteins that protect the producer bacterium.
Conclusions
The CS-CbnK-CbnR triad forms a three-component regulatory system by which production of peptide antibiotics by C. maltaromaticum LV17B is controlled in a population density-dependent (or cell proximity-dependent) manner. This regulatory mechanism would permit the bacterial population to synchronize the production of peptide antibiotics and immunity proteins. Such a population-wide action would afford a substantial peptide antibiotic production burst that could increase the ability of the bacterium to inhibit susceptible bacterial competitors. Finally, our CS-CbnK-CbnR-based two-plasmid expression system represents a suitable genetic tool for undertaking structure-function relationship analyses to map the amino acid residues in the components of the CS-CbnK-CbnR system that are required for biological activity. This plasmid system also has potential as a starting point for developing alternative vectors for controlled gene expression in C. maltaromaticum, Lactococcus lactis, and related lactic acid bacteria.
doi:10.1186/1471-2180-6-93
PMCID: PMC1634752  PMID: 17054797
4.  Bioassay-Guided Evolution of Glycosylated Macrolide Antibiotics in Escherichia coli 
PLoS Biology  2007;5(2):e45.
Macrolide antibiotics such as erythromycin are clinically important polyketide natural products. We have engineered a recombinant strain of Escherichia coli that produces small but measurable quantities of the bioactive macrolide 6-deoxyerythromycin D. Bioassay-guided evolution of this strain led to the identification of an antibiotic-overproducing mutation in the mycarose biosynthesis and transfer pathway that was detectable via a colony-based screening assay. This high-throughput assay was then used to evolve second-generation mutants capable of enhanced precursor-directed biosynthesis of macrolide antibiotics. The availability of a screen for macrolide biosynthesis in E. coli offers a fundamentally new approach in dissecting modular megasynthase mechanisms as well as engineering antibiotics with novel pharmacological properties.
An erythromycin-producingE. coli recombinant strain with an antibiotic-overproducing mutation in the mycarose biosynthesis pathway produced second-generation mutants capable of directed biosynthesis of enhanced precursor macrolide antibiotics.
Author Summary
The antibacterial activity of erythromycin, an important polyketide antibiotic precursor, requires the transfer of two unusual sugars called mycarose and desosamine (both glycosyl groups), onto the nonsugar part of the glycoside molecule (macrocyclic aglycone). We reconstituted the biosynthetic pathways of both sugars in Escherichia coli to yield the 6-deoxyerythromycin D antibiotic. By engineering a recombinant strain of E. coli that produces the bioactive macrolide 6-deoxyerythromycin D from propionate, we have developed a fundamentally new tool for enhancing the efficiency of biosynthetic engineering of this class of antibiotics. Initially, this recombinant strain produced barely enough antibiotic activity to establish an activity-based screening assay. We therefore used the assay to screen for antibiotic overproducers. After three rounds of screening, we identified E. coli cells that overproduced the 6-deoxyerythromycin D antibiotic with significant modifications in the mycarose biosynthetic pathway. We used the same activity-based screening system to evolve E. coli mutants capable of more efficient precursor-directed biosynthesis. As the first example of bioassay-guided evolution of an antibiotic pathway in E. coli, these results open the door for harnessing the power of genetics for mechanistic investigations into polyketide synthases and also for biosynthetic engineering.
doi:10.1371/journal.pbio.0050045
PMCID: PMC1790958  PMID: 17298179
5.  Genomic interplay in bacterial communities: implications for growth promoting practices in animal husbandry 
The discovery of antibiotics heralded the start of a “Golden Age” in the history of medicine. Over the years, the use of antibiotics extended beyond medical practice into animal husbandry, aquaculture and agriculture. Now, however, we face the worldwide threat of diseases caused by pathogenic bacteria that are resistant to all existing major classes of antibiotic, reflecting the possibility of an end to the antibiotic era. The seriousness of the threat is underscored by the severely limited production of new classes of antibiotics. Evolution of bacteria resistant to multiple antibiotics results from the inherent genetic capability that bacteria have to adapt rapidly to changing environmental conditions. Consequently, under antibiotic selection pressures, bacteria have acquired resistance to all classes of antibiotics, sometimes very shortly after their introduction. Arguably, the evolution and rapid dissemination of multiple drug resistant genes en-masse across microbial pathogens is one of the most serious threats to human health. In this context, effective surveillance strategies to track the development of resistance to multiple antibiotics are vital to managing global infection control. These surveillance strategies are necessary for not only human health but also for animal health, aquaculture and plant production. Shortfalls in the present surveillance strategies need to be identified. Raising awareness of the genetic events that promote co-selection of resistance to multiple antimicrobials is an important prerequisite to the design and implementation of molecular surveillance strategies. In this review we will discuss how lateral gene transfer (LGT), driven by the use of low-dose antibiotics in animal husbandry, has likely played a significant role in the evolution of multiple drug resistance (MDR) in Gram-negative bacteria and has complicated molecular surveillance strategies adopted for predicting imminent resistance threats.
doi:10.3389/fmicb.2014.00394
PMCID: PMC4129626  PMID: 25161648
multi drug resistance; lateral gene transfer; bacterial genomes; complex resistance loci; Antimicrobial growth promotion
6.  SOS Response Induces Persistence to Fluoroquinolones in Escherichia coli 
PLoS Genetics  2009;5(12):e1000760.
Bacteria can survive antibiotic treatment without acquiring heritable antibiotic resistance. We investigated persistence to the fluoroquinolone ciprofloxacin in Escherichia coli. Our data show that a majority of persisters to ciprofloxacin were formed upon exposure to the antibiotic, in a manner dependent on the SOS gene network. These findings reveal an active and inducible mechanism of persister formation mediated by the SOS response, challenging the prevailing view that persisters are pre-existing and formed purely by stochastic means. SOS-induced persistence is a novel mechanism by which cells can counteract DNA damage and promote survival to fluoroquinolones. This unique survival mechanism may be an important factor influencing the outcome of antibiotic therapy in vivo.
Author Summary
The frequent failure of antibiotic treatments is an acute public health problem. Bacteria can escape the lethal action of antibiotics by a mutation in the cell's DNA, leading to antibiotic resistance. Alternatively, they can enter a physiological state in which the antibiotics do not affect them. This phenomenon, referred to as persistence, is different from resistance because there is no genetic modification and because it is transient. Persisters are believed to form stochastically prior to antibiotic treatment. The presence of persister cells in bacterial biofilms contributes to the difficulty in treating biofilm-related infections. We investigated the persistence of Escherichia coli to one of the most widely used antibiotics, ciprofloxacin. We show that the majority of persister cells are formed in response to this antibiotic, contrary to the prevailing view of persister formation. Ciprofloxacin kills bacteria by damaging their DNA. DNA damage activates a SOS gene network, the result of which is the production of various repair proteins. We uncovered a novel part of this network that leads to the formation of tolerant persister cells. The induced tolerance as a side effect of antibiotic treatment is an effective bacterial survival strategy and is likely to contribute to recalcitrance of infections.
doi:10.1371/journal.pgen.1000760
PMCID: PMC2780357  PMID: 20011100
7.  Pharmacodynamics, Population Dynamics, and the Evolution of Persistence in Staphylococcus aureus 
PLoS Genetics  2013;9(1):e1003123.
When growing populations of bacteria are confronted with bactericidal antibiotics, the vast majority of cells are killed, but subpopulations of genetically susceptible but phenotypically resistant bacteria survive. In accord with the prevailing view, these “persisters” are non- or slowly dividing cells randomly generated from the dominant population. Antibiotics enrich populations for pre-existing persisters but play no role in their generation. The results of recent studies with Escherichia coli suggest that at least one antibiotic, ciprofloxacin, can contribute to the generation of persisters. To more generally elucidate the role of antibiotics in the generation of and selection for persisters and the nature of persistence in general, we use mathematical models and experiments with Staphylococcus aureus (Newman) and the antibiotics ciprofloxacin, gentamicin, vancomycin, and oxacillin. Our results indicate that the level of persistence varies among these drugs and their concentrations, and there is considerable variation in this level among independent cultures and mixtures of independent cultures. A model that assumes that the rate of production of persisters is low and persisters grow slowly in the presence of antibiotics can account for these observations. As predicted by this model, pre-treatment with sub-MIC concentrations of antibiotics substantially increases the level of persistence to drugs other than those with which the population is pre-treated. Collectively, the results of this jointly theoretical and experimental study along with other observations support the hypothesis that persistence is the product of many different kinds of errors in cell replication that result in transient periods of non-replication and/or slowed metabolism by individual cells in growing populations. This Persistence as Stuff Happens (PaSH) hypothesis can account for the ubiquity of this phenomenon. Like mutation, persistence is inevitable rather than an evolved character. What evolved and have been identified are genes and processes that affect the frequency of persisters.
Author Summary
Because of its importance to therapy, a great deal of effort has been devoted to understanding the mechanisms responsible for and the genetic basis of persistence in inherently susceptible but phenotypically antibiotic-resistant subpopulations of bacteria. Much of this research is based on the premise that persisters are produced at random from the susceptible population and the antibiotics used to detect them play no role in their generation. The results of this jointly theoretical and experimental study are inconsistent with this hypothesis. These results, along with observations reported by other investigators, including the failure to find bacteria that do not produce persisters but an abundance of genes modifying their frequency, support the hypothesis that there are many mechanisms responsible for persistence. Based on these collective theoretical and experimental results, along with evolutionary considerations, we postulate that persistence is analogous to mutation. It is an inevitable product of errors and glitches in cell replication and metabolism rather than an evolved character.
doi:10.1371/journal.pgen.1003123
PMCID: PMC3536638  PMID: 23300474
8.  A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria 
PLoS ONE  2013;8(10):e77310.
The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into the mechanisms behind and the extent of multi-drug resistance among bacteria living under an extreme antibiotic selection pressure.
doi:10.1371/journal.pone.0077310
PMCID: PMC3812170  PMID: 24204801
9.  An Antibiotic-Responsive Mouse Model of Fulminant Ulcerative Colitis  
PLoS Medicine  2008;5(3):e41.
Background
The constellation of human inflammatory bowel disease (IBD) includes ulcerative colitis and Crohn's disease, which both display a wide spectrum in the severity of pathology. One theory is that multiple genetic hits to the host immune system may contribute to the susceptibility and severity of IBD. However, experimental proof of this concept is still lacking. Several genetic mouse models that each recapitulate some aspects of human IBD have utilized a single gene defect to induce colitis. However, none have produced pathology clearly distinguishable as either ulcerative colitis or Crohn's disease, in part because none of them reproduce the most severe forms of disease that are observed in human patients. This lack of severe IBD models has posed a challenge for research into pathogenic mechanisms and development of new treatments. We hypothesized that multiple genetic hits to the regulatory machinery that normally inhibits immune activation in the intestine would generate more severe, reproducible pathology that would mimic either ulcerative colitis or Crohn's disease.
Methods and Findings
We generated a novel mouse line (dnKO) that possessed defects in both TGFβRII and IL-10R2 signaling. These mice rapidly and reproducibly developed a disease resembling fulminant human ulcerative colitis that was quite distinct from the much longer and more variable course of pathology observed previously in mice possessing only single defects. Pathogenesis was driven by uncontrolled production of proinflammatory cytokines resulting in large part from T cell activation. The disease process could be significantly ameliorated by administration of antibodies against IFNγ and TNFα and was completely inhibited by a combination of broad-spectrum antibiotics.
Conclusions
Here, we develop to our knowledge the first mouse model of fulminant ulcerative colitis by combining multiple genetic hits in immune regulation and demonstrate that the resulting disease is sensitive to both anticytokine therapy and broad-spectrum antibiotics. These findings indicated the IL-10 and TGFβ pathways synergize to inhibit microbially induced production of proinflammatory cytokines, including IFNγ and TNFα, which are known to play a role in the pathogenesis of human ulcerative colitis. Our findings also provide evidence that broad-spectrum antibiotics may have an application in the treatment of patients with ulcerative colitis. This model system will be useful in the future to explore the microbial factors that induce immune activation and characterize how these interactions produce disease.
Paul Allen and colleagues describe the development of a mouse model of fulminant ulcerative colitis with multiple genetic hits in immune regulation which can be moderated by anti-cytokine therapy and broad-spectrum antibiotics.
Editors' Summary
Background.
Inflammatory bowel disease (IBD), a group of disorders characterized by inflammation (swelling) of the digestive tract (the tube that runs from the mouth to the anus), affects about 1.4 million people in the US. There are two main types of IBD. In Crohn's disease, which can affect any area of the digestive tract but most commonly involves the lower part of the small intestine (small bowel), all the layers of the intestine become inflamed. In ulcerative colitis, which primarily affects the colon (large bowel) and the rectum (the part of the bowel closest to the anus), only the lining of the bowel becomes inflamed, the cells in this lining die, and sores or ulcers form. Both types of IBD most commonly develop between the ages of 15 and 35 years, often run in families, and carry an increased risk of cancer. Symptoms—usually diarrhea and abdominal cramps—can be mild or severe and the disorder can develop slowly or suddenly. There is no medical cure for IBD, but drugs that modulate the immune system (for example, corticosteroids) can help some people. Some people benefit from treatment with drugs that specifically inhibit “proinflammatory cytokines,” proteins made by the immune system that stimulate inflammation (for example, TNFα and INFγ). When medical therapy fails, surgery to remove the affected part of the bowel may be necessary.
Why Was This Study Done?
Exactly what causes IBD is not clear, but people with IBD seem to have an overactive immune system. The immune system normally protects the body from harmful substances but in IBD it mistakenly recognizes the food substances and “good” bacteria that are normally present in the human gut as foreign and hence reacts against them. As a result, immune system cells accumulate in the lining of the bowel and cause inflammation. Several different pathways usually prevent inappropriate immune activation, so could IBD be caused by alterations in one or several of these immune regulatory pathways? In previous studies, mice with a defect in just one pathway have developed mild intestinal abnormalities but not the problems seen in the most severe forms of IBD. In this study, therefore, the researchers have generated and characterized a new mouse line with defects in two immune regulatory pathways to see whether this might be a better animal model of human IBD.
What Did the Researchers Do and Find?
To make their new mouse line, the researchers mated mice that had a defective TGFβ signaling pathway in their T lymphocytes with mice that had a defective IL-10 signaling pathway. Both these pathways are anti-inflammatory, and mice with defects in either pathway develop mild and variable inflammation of the colon (colitis) by age 3–4 months. By contrast, the doubly defective mice (dnKO mice) failed to thrive, lost weight, and died by 4–6 weeks of age. The colons of 4- to 5-week old dnKO mice were inflamed and ulcerated (some changes were visible in 3-week-old mice) and contained many immune system cells. Mice with a single defective signaling pathway had no gut abnormalities at this age. The dnKO mice, just like people with IBD, had higher than normal blood levels of IFNγ, TNFα, and other proinflammatory cytokines; these raised levels were the result of abnormal lymphocyte activation. Treatment of the dnKO mice with a combination of agents that neutralize IFNγ and TNFα (anti-cytokine therapy) greatly reduced the colitis seen in these mice; neutralization of IFNγ alone had some beneficial effects, but neutralization of TNFα alone had no effect. Finally, early treatment of the dnKO mice with broad-spectrum antibiotics completely inhibited colitis.
What Do These Findings Mean?
These findings suggest that dnKO mice are a good model for fulminant (severe and rapidly progressing) ulcerative colitis and support the idea that IBD involves multiple genetic defects in immune regulation. They also indicate that the IL-10 and the TGFβ signaling pathways normally cooperate to inhibit the inappropriate immune responses to intestinal bacteria seen in IBD. This new mouse model should help researchers unravel what goes wrong in IBD and should also help them develop new treatments for ulcerative colitis. More immediately, these findings suggest that combined anti-cytokine therapy may be a better treatment for ulcerative colitis than single therapy. In addition, they suggest that clinical studies should be started to test whether broad-spectrum antibiotics can ameliorate ulcerative colitis in people.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050041.
The Medline Plus Encyclopedia has pages on Crohn's disease and on ulcerative colitis (in English and Spanish)
Information is available from the UK National Health Service Direct Health Encyclopedia about Crohn's disease and ulcerative colitis
The US National Institute of Diabetes and Digestive and Kidney Diseases provides information on Crohn's disease and ulcerative colitis
Information and support for patients with inflammatory bowel disease and their caregivers is provided by the Crohn's and Colitis Foundation of America and by the UK National Association for Colitis and Crohn's Disease
doi:10.1371/journal.pmed.0050041
PMCID: PMC2270287  PMID: 18318596
10.  Mobile Genetic Element-Encoded Cytolysin Connects Virulence to Methicillin Resistance in MRSA 
PLoS Pathogens  2009;5(7):e1000533.
Bacterial virulence and antibiotic resistance have a significant influence on disease severity and treatment options during bacterial infections. Frequently, the underlying genetic determinants are encoded on mobile genetic elements (MGEs). In the leading human pathogen Staphylococcus aureus, MGEs that contain antibiotic resistance genes commonly do not contain genes for virulence determinants. The phenol-soluble modulins (PSMs) are staphylococcal cytolytic toxins with a crucial role in immune evasion. While all known PSMs are core genome-encoded, we here describe a previously unidentified psm gene, psm-mec, within the staphylococcal methicillin resistance-encoding MGE SCCmec. PSM-mec was strongly expressed in many strains and showed the physico-chemical, pro-inflammatory, and cytolytic characteristics typical of PSMs. Notably, in an S. aureus strain with low production of core genome-encoded PSMs, expression of PSM-mec had a significant impact on immune evasion and disease. In addition to providing high-level resistance to methicillin, acquisition of SCCmec elements encoding PSM-mec by horizontal gene transfer may therefore contribute to staphylococcal virulence by substituting for the lack of expression of core genome-encoded PSMs. Thus, our study reveals a previously unknown role of methicillin resistance clusters in staphylococcal pathogenesis and shows that important virulence and antibiotic resistance determinants may be combined in staphylococcal MGEs.
Author Summary
The extreme danger associated with Staphylococcus aureus infections is due to the combination of frequent antibiotic resistance, which prevents efficient treatment, with extraordinary virulence, which determines the severity of disease. S. aureus is known to exchange antibiotic resistance and virulence determinants between different strains, thereby spreading the capacity to cause serious infections in the S. aureus population. The genetic information for these determinants is usually found on so-called mobile genetic elements. It has been noted that such exchangeable elements carry genes for either virulence or antibiotic resistance, but not both. Here, we identified and characterized a potent toxin, whose gene is located within an element that encodes resistance to the important antibiotic methicillin. The toxin had strong capacity to kill human white and red blood cells and significantly affected the capacity of MRSA to cause disease. Our study shows that acquisition of methicillin resistance may be combined with gaining possession of potent toxins by a single event of genetic exchange, which likely represents an important feature accelerating the evolution of MRSA virulence.
doi:10.1371/journal.ppat.1000533
PMCID: PMC2712073  PMID: 19649313
11.  Acquisition of Certain Streptomycin-Resistant (str) Mutations Enhances Antibiotic Production in Bacteria† 
Physiological differentiation (including antibiotic production) in microorganisms usually starts when cells encounter adverse environmental conditions and is frequently accompanied by an increase in the accumulation of intracellular ppGpp. We have found that the acquisition of certain streptomycin-resistant (str) mutations enables cells to overproduce antibiotics, demonstrating an increase in productivity 5- to 50-fold greater than that of wild-type strains. The frequency of such antibiotic-overproducing strains among the str mutants was shown to range from 3 to 46%, as examined with several strains of the genera Streptomyces, Bacillus, and Pseudomonas. Analysis of str mutants from Bacillus subtilis Marburg 168 revealed that a point mutation occurred within the rpsL gene, which encodes the ribosomal protein S12, changing Lys-56 (corresponding to Lys-43 in Escherichia coli) to Asn, Arg, Thr, or Gln. Antibiotic productivity increased in a hierarchical manner depending upon which amino acid residue replaced Lys at this position. The strA1 mutation, a genetic marker frequently used for mapping, had no effect on antibiotic productivity even though it was found to result in an amino acid alteration of Lys-56 to Ile. Gene replacement experiments with the str alleles demonstrated unambiguously that the str mutation is responsible for the antibiotic overproductivity observed. These results offer a rational approach for improving the production of antibiotic (secondary metabolism) from microorganisms.
PMCID: PMC105730  PMID: 9687404
12.  Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). 
Journal of Bacteriology  1996;178(24):7276-7284.
A strain of Streptomyces lividans, TK24, was found to produce a pigmented antibiotic, actinorhodin, although S. lividans normally does not produce this antibiotic. Genetic analyses revealed that a streptomycin-resistant mutation str-6 in strain TK24 is responsible for induction of antibiotic synthesis. DNA sequencing showed that str-6 is a point mutation in the rpsL gene encoding ribosomal protein S12, changing Lys-88 to Glu. Gene replacement experiments with the Lys88-->Glu str allele demonstrated unambiguously that the str mutation is alone responsible for the activation of actinorhodin production observed. In contrast, the strA1 mutation, a genetic marker frequently used for crosses, did not restore actinorhodin production and was found to result in an amino acid alteration of Lys-43 to Asn. Induction of actinorhodin production was also detected in strain TK21, which does not harbor the str-6 mutation, when cells were incubated with sufficient streptomycin or tetracycline to reduce the cell's growth rate, and 40 and 3% of streptomycin- or tetracycline-resistant mutants, respectively, derived from strain TK21 produced actinorhodin. Streptomycin-resistant mutations also blocked the inhibitory effects of relA and brgA mutations on antibiotic production, aerial mycelium formation or both. These str mutations changed Lys-88 to Glu or Arg and Arg-86 to His in ribosomal protein S12. The decrease in streptomycin production in relC mutants in Streptomyces griseus could also be abolished completely by introducing streptomycin-resistant mutations, although the impairment in antibiotic production due to bldA (in Streptomyces coelicolor) or afs mutations (in S. griseus) was not eliminated. These results indicate that the onset and extent of secondary metabolism in Streptomyces spp. is significantly controlled by the translational machinery.
PMCID: PMC178644  PMID: 8955413
13.  The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella 
Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the US during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli (STEC) and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness genes in the environment.
doi:10.3389/fmicb.2014.00052
PMCID: PMC3920066  PMID: 24575089
Salmonella; bacteriophage; antibiotic; carbadox; prophage; gene transfer; transduction
14.  Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome 
The widespread use and abuse of antibiotic therapy has evolutionary and ecological consequences, some of which are only just beginning to be examined. One well known consequence is the fixation of mutations and lateral gene transfer (LGT) events that confer antibiotic resistance. Sequential selection events, driven by different classes of antibiotics, have resulted in the assembly of diverse resistance determinants and mobile DNAs into novel genetic elements of ever-growing complexity and flexibility. These novel plasmids, integrons, and genomic islands have now become fixed at high frequency in diverse cell lineages by human antibiotic use. Consequently they can be regarded as xenogenetic pollutants, analogous to xenobiotic compounds, but with the critical distinction that they replicate rather than degrade when released to pollute natural environments. Antibiotics themselves must also be regarded as pollutants, since human production overwhelms natural synthesis, and a major proportion of ingested antibiotic is excreted unchanged into waste streams. Such antibiotic pollutants have non-target effects, raising the general rates of mutation, recombination, and LGT in all the microbiome, and simultaneously providing the selective force to fix such changes. This has the consequence of recruiting more genes into the resistome and mobilome, and of increasing the overlap between these two components of microbial genomes. Thus the human use and environmental release of antibiotics is having second order effects on the microbial world, because these small molecules act as drivers of bacterial evolution. Continued pollution with both xenogenetic elements and the selective agents that fix such elements in populations has potentially adverse consequences for human welfare.
doi:10.3389/fmicb.2013.00004
PMCID: PMC3560386  PMID: 23386843
metagenomics; evolvability; pollution; pangenome; resistome; parvome; mobilome
15.  Regulation of the Streptomyces coelicolor Calcium-Dependent Antibiotic by absA, Encoding a Cluster-Linked Two-Component System 
Journal of Bacteriology  2002;184(3):794-805.
The Streptomyces coelicolor absA two-component system was initially identified through analysis of mutations in the sensor kinase absA1 that caused inhibition of all four antibiotics synthesized by this strain. Previous genetic analysis had suggested that the phosphorylated form of AbsA2 acted as a negative regulator of antibiotic biosynthesis in S. coelicolor (T. B. Anderson, P. Brian, and W. C. Champness, Mol. Microbiol. 39:553–566, 2001). Genomic sequence data subsequently provided by the Sanger Centre (Cambridge, United Kingdom) revealed that absA was located within the gene cluster for production of one of the four antibiotics, calcium-dependent antibiotic (CDA). In this paper we have identified numerous transcriptional start sites within the CDA cluster and have shown that the original antibiotic-negative mutants used to identify absA exhibit a stronger negative regulation of promoters upstream of the proposed CDA biosynthetic genes than of promoters in the clusters responsible for production of actinorhodin and undecylprodigiosin. The same antibiotic-negative mutants also showed an increase in transcription from a promoter divergent to that of absA, upstream of a putative ABC transporter, in addition to an increase in transcription of absA itself. Interestingly, the negative regulation of the biosynthetic transcripts did not appear to be mediated by transcriptional regulation of cdaR (a gene encoding a homolog of the pathway-specific regulators of the act and red clusters) or by any other recognizable transcriptional regulator associated with the cluster. The role of absA in regulating the expression of the diverse antibiotic biosynthesis clusters in the genome is discussed in light of its location in the cda cluster.
doi:10.1128/JB.184.3.794-805.2002
PMCID: PMC139508  PMID: 11790750
16.  Improvement of DNA transfer frequency and transposon mutagenesis of Erwinia carotovora subsp. betavasculorum. 
The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled transposon mutagenesis of a wild-type antibiotic-producing strain of E. carotovora subsp. betavasculorum. Twelve antibiotic-negative mutants were isolated, and one of these showed a reduction in antibiotic production in vitro. Many of these mutants also showed a reduction in their ability to macerate potato tissue. The mutants were classified into four genetic groups on the basis of their genetic and phenotypic characteristics, indicating that several genes are involved in antibiotic biosynthesis by E. carotovora subsp. betavasculorum.
PMCID: PMC184227  PMID: 2543291
17.  Use of Staby® technology for development and production of DNA vaccines free of antibiotic resistance gene 
Human Vaccines & Immunotherapeutics  2013;9(10):2203-2210.
The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby® technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby® technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).
doi:10.4161/hv.25086
PMCID: PMC3906405  PMID: 24051431
Aujeszky’s disease; DNA vaccine; Staby; antibiotic-free; ccdA; ccdB; electrotransfer
18.  A Bistable Gene Switch for Antibiotic Biosynthesis: The Butyrolactone Regulon in Streptomyces coelicolor 
PLoS ONE  2008;3(7):e2724.
Many microorganisms, including bacteria of the class Streptomycetes, produce various secondary metabolites including antibiotics to gain a competitive advantage in their natural habitat. The production of these compounds is highly coordinated in a population to expedite accumulation to an effective concentration. Furthermore, as antibiotics are often toxic even to their producers, a coordinated production allows microbes to first arm themselves with a defense mechanism to resist their own antibiotics before production commences. One possible mechanism of coordination among individuals is through the production of signaling molecules. The γ-butyrolactone system in Streptomyces coelicolor is a model of such a signaling system for secondary metabolite production. The accumulation of these signaling molecules triggers antibiotic production in the population. A pair of repressor-amplifier proteins encoded by scbA and scbR mediates the production and action of one particular γ-butyrolactone, SCB1. Based on the proposed interactions of scbA and scbR, a mathematical model was constructed and used to explore the ability of this system to act as a robust genetic switch. Stability analysis shows that the butyrolactone system exhibits bistability and, in response to a threshold SCB1 concentration, can switch from an OFF state to an ON state corresponding to the activation of genes in the cryptic type I polyketide synthase gene cluster, which are responsible for production of the hypothetical polyketide. The switching time is inversely related to the inducer concentration above the threshold, such that short pulses of low inducer concentration cannot switch on the system, suggesting its possible role in noise filtering. In contrast, secondary metabolite production can be triggered rapidly in a population of cells producing the butyrolactone signal due to the presence of an amplification loop in the system. S. coelicolor was perturbed experimentally by varying concentrations of SCB1, and the model simulations match the experimental data well. Deciphering the complexity of this butyrolactone switch will provide valuable insights into how robust and efficient systems can be designed using “simple” two-protein networks.
doi:10.1371/journal.pone.0002724
PMCID: PMC2444045  PMID: 18628968
19.  Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations 
Background
Proteomics was recently used to reveal enzymes whose expression is associated with the production of the glycopeptide antibiotic balhimycin in Amycolatopsis balhimycina batch cultivations. Combining chemostat fermentation technology, where cells proliferate with constant parameters in a highly reproducible steady-state, and differential proteomics, the relationships between physiological status and metabolic pathways during antibiotic producing and non-producing conditions could be highlighted.
Results
Two minimal defined media, one with low Pi (0.6 mM; LP) and proficient glucose (12 g/l) concentrations and the other one with high Pi (1.8 mM) and limiting (6 g/l; LG) glucose concentrations, were developed to promote and repress antibiotic production, respectively, in A. balhimycina chemostat cultivations. Applying the same dilution rate (0.03 h-1), both LG and LP chemostat cultivations showed a stable steady-state where biomass production yield coefficients, calculated on glucose consumption, were 0.38 ± 0.02 and 0.33 ± 0.02 g/g (biomass dry weight/glucose), respectively. Notably, balhimycin was detected only in LP, where quantitative RT-PCR revealed upregulation of selected bal genes, devoted to balhimycin biosynthesis, and of phoP, phoR, pstS and phoD, known to be associated to Pi limitation stress response. 2D-Differential Gel Electrophoresis (DIGE) and protein identification, performed by mass spectrometry and computer-assisted 2 D reference-map http://www.unipa.it/ampuglia/Abal-proteome-maps matching, demonstrated a differential expression for proteins involved in many metabolic pathways or cellular processes, including central carbon and phosphate metabolism. Interestingly, proteins playing a key role in generation of primary metabolism intermediates and cofactors required for balhimycin biosynthesis were upregulated in LP. Finally, a bioinformatic approach showed PHO box-like regulatory elements in the upstream regions of nine differentially expressed genes, among which two were tested by electrophoresis mobility shift assays (EMSA).
Conclusion
In the two chemostat conditions, used to generate biomass for proteomic analysis, mycelia grew with the same rate and with similar glucose-biomass conversion efficiencies. Global gene expression analysis revealed a differential metabolic adaptation, highlighting strategies for energetic supply and biosynthesis of metabolic intermediates required for biomass production and, in LP, for balhimycin biosynthesis. These data, confirming a relationship between primary metabolism and antibiotic production, could be used to increase antibiotic yield both by rational genetic engineering and fermentation processes improvement.
doi:10.1186/1475-2859-9-95
PMCID: PMC3004843  PMID: 21110849
20.  Pyrosequencing of Antibiotic-Contaminated River Sediments Reveals High Levels of Resistance and Gene Transfer Elements 
PLoS ONE  2011;6(2):e17038.
The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.
doi:10.1371/journal.pone.0017038
PMCID: PMC3040208  PMID: 21359229
21.  Antimicrobials & cholera: are we stranded? 
Antimicrobial resistance poses a major threat in the treatment of infectious diseases. Though significant progress in the management of diarrhoeal diseases has been achieved by improved hygiene, development of new antimicrobials and vaccines, the burden remains the same, especially in children below 5 yr of age. In the case of cholera, though oral rehydration treatment is the mainstay, antimicrobial therapy is mandatory at times to reduce the volume of stool and shorten the duration of the disease. Though for many pathogens, antimicrobial resistance emerged soon after the introduction of antibiotics, Vibrio cholerae remained sensitive to most of the antibiotics for quite a long period. However, the scenario changed over the years and today, V. cholerae strains isolated world over are resistant to multiple antibiotics. A myriad number of mechanisms underlie this phenomenon. These include production of extended-spectrum beta-lactamases, enhanced multi-drug efflux pump activity, plasmid-mediated quinolone and fluoroquinolone resistance, and chromosomal mutations. Horizontal transfer of resistance determinants with mobile genetic elements like integrons and the integrating conjugative elements (ICEs), SXTs help in the dissemination of drug resistance. Though all strains isolated are not resistant to all antibiotics and we are not as yet “stranded”, expanding spectrum of drug resistance is a definite cause for concern. Pipelines of discovery of new antibiotics are drying up as major pharmaceutical companies are losing interest in investing money in this endeavour, mainly due to the short shelf-life of the antibiotics and also due to the fast emergence of drug resistance. To address this issue, attempts are now being made to discover drugs which are pathogen specific and target their “virulence mechanisms”. It is expected that development of resistance against such antibiotics would take much longer. This review briefly focuses on all these issues.
PMCID: PMC3089056  PMID: 21415499
Cholera; genetic elements; multidrug resistance; resistance genes; V. cholerae
22.  Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action 
Resistance to antibiotics has increased dramatically over the past few years and has now reached a level that places future patients in real danger. Microorganisms such as Escherichia coli and Klebsiella pneumoniae, which are commensals and pathogens for humans and animals, have become increasingly resistant to third-generation cephalosporins. Moreover, in certain countries, they are also resistant to carbapenems and therefore susceptible only to tigecycline and colistin. Resistance is primarily attributed to the production of beta-lactamase genes located on mobile genetic elements, which facilitate their transfer between different species. In some rare cases, Gram-negative rods are resistant to virtually all known antibiotics. The causes are numerous, but the role of the overuse of antibiotics in both humans and animals is essential, as well as the transmission of these bacteria in both the hospital and the community, notably via the food chain, contaminated hands, and between animals and humans. In addition, there are very few new antibiotics in the pipeline, particularly for Gram-negative bacilli. The situation is slightly better for Gram-positive cocci as some potent and novel antibiotics have been made available in recent years. A strong and coordinated international programme is urgently needed. To meet this challenge, 70 internationally recognized experts met for a two-day meeting in June 2011 in Annecy (France) and endorsed a global call to action ("The Pensières Antibiotic Resistance Call to Action"). Bundles of measures that must be implemented simultaneously and worldwide are presented in this document. In particular, antibiotics, which represent a treasure for humanity, must be protected and considered as a special class of drugs.
doi:10.1186/2047-2994-1-11
PMCID: PMC3436635  PMID: 22958833
antibiotic resistance; antibiotic stewardship; infection control; hand hygiene; surveillance networks; care bundles; environment; regulations; human medicine; animal medicine
23.  β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity 
Nature Communications  2013;4:1610-.
Regardless of their targets and modes of action, subinhibitory concentrations of antibiotics can have an impact on cell physiology and trigger a large variety of cellular responses in different bacterial species. Subinhibitory concentrations of β-lactam antibiotics cause reactive oxygen species production and induce PolIV-dependent mutagenesis in Escherichia coli. Here we show that subinhibitory concentrations of β-lactam antibiotics induce the RpoS regulon. RpoS-regulon induction is required for PolIV-dependent mutagenesis because it diminishes the control of DNA-replication fidelity by depleting MutS in E. coli, Vibrio cholerae and Pseudomonas aeruginosa. We also show that in E. coli, the reduction in mismatch-repair activity is mediated by SdsR, the RpoS-controlled small RNA. In summary, we show that mutagenesis induced by subinhibitory concentrations of antibiotics is a genetically controlled process. Because this mutagenesis can generate mutations conferring antibiotic resistance, it should be taken into consideration for the development of more efficient antimicrobial therapeutic strategies.
Sub-lethal concentrations of antibiotics are known to promote mutagenesis of bacterial DNA. Here the authors show that β-lactam antibiotics trigger mutagenesis by upregulating the stress-response protein RpoS, which downregulates mismatch-repair activity.
doi:10.1038/ncomms2607
PMCID: PMC3615471  PMID: 23511474
24.  Frequency and factors associated with carriage of multi-drug resistant commensal Escherichia coli among women attending antenatal clinics in Central India 
BMC Infectious Diseases  2013;13:199.
Background
Commensal Escherichia coli are a prominent reservoir of genes coding for antibiotic resistance and also responsible for endogenous infections in pregnant women. We studied the factors in pregnant women associated with carriage of multi-drug resistant (MDR) E. coli and genetic determinants of antibiotic resistance in them.
Methods
Women attending to Obstetric and Gynaecology department outpatient clinics for routine antenatal check-up were administered a questionnaire. Peri-anal swabs were collected for culture isolation and identification of E.coil. Antibiotic sensitivity was done using the Kirby-Bauer disc diffusion method as recommended by the CLSI guidelines. MICs for quinolones and third generation cephalosporins were done using the agar dilution method. Genes coding for production of beta lactamses and for the quinolone resistance determinant were screened by polymerase chain reaction. Rep-PCR was done on MDR isolates for detecting possible genetic similarity. Multiple logistic regression models were used to determine the independent factors associated with carriage of MDR isolates.
Results
A total of 710 isolates of E. coli from 710 women (mean age 26 years) were included in the study. Resistance to at least one antibiotic tested was detected in 94% of the E. coli isolates. A total of 109 isolates were ESBL producing and 35 isolates were MDR. In the MDR isolates MIC50 and MIC90 for quinolones and third generation cephalosporins were high for those isolates that carried blaTEM gene (26 isolates) and blaCTX-M gene (24 isolates). Both blaTEM and blaCTX-M genes were detected in 19 isolates. The commonest Plasmid Mediated Quinolone Resistance (PMQR) gene identified was aac(6′)-Ib-cr (n = 23/25). All isolates carrying the PMQR genes were also positive for blaCTX-M and blaTEM gene. Mutations in gyr A and par C genes were present in all 35 MDR isolates. The statistically significant risk factors for carriage of MDR E. coli were graduate or post-graduate education, a self-employed status, a family size of more than 10 members, antibiotic usage in last four weeks, and history of hospitalization in the last four weeks.
Conclusions
The presence of genes coding for extended spectrum of beta lactamases and plasmid mediated quinolone resistance in commensal E. coli is disconcerting. The study provides strong basis good antibiotic stewardship.
doi:10.1186/1471-2334-13-199
PMCID: PMC3655905  PMID: 23638834
25.  Genetic Diversity among Enterococcus faecalis 
PLoS ONE  2007;2(7):e582.
Enterococcus faecalis, a ubiquitous member of mammalian gastrointestinal flora, is a leading cause of nosocomial infections and a growing public health concern. The enterococci responsible for these infections are often resistant to multiple antibiotics and have become notorious for their ability to acquire and disseminate antibiotic resistances. In the current study, we examined genetic relationships among 106 strains of E. faecalis isolated over the past 100 years, including strains identified for their diversity and used historically for serotyping, strains that have been adapted for laboratory use, and isolates from previously described E. faecalis infection outbreaks. This collection also includes isolates first characterized as having novel plasmids, virulence traits, antibiotic resistances, and pathogenicity island (PAI) components. We evaluated variation in factors contributing to pathogenicity, including toxin production, antibiotic resistance, polymorphism in the capsule (cps) operon, pathogenicity island (PAI) gene content, and other accessory factors. This information was correlated with multi-locus sequence typing (MLST) data, which was used to define genetic lineages. Our findings show that virulence and antibiotic resistance traits can be found within many diverse lineages of E. faecalis. However, lineages have emerged that have caused infection outbreaks globally, in which several new antibiotic resistances have entered the species, and in which virulence traits have converged. Comparing genomic hybridization profiles, using a microarray, of strains identified by MLST as spanning the diversity of the species, allowed us to identify the core E. faecalis genome as consisting of an estimated 2057 unique genes.
doi:10.1371/journal.pone.0000582
PMCID: PMC1899230  PMID: 17611618

Results 1-25 (303971)