Search tips
Search criteria

Results 1-25 (1216882)

Clipboard (0)

Related Articles

1.  Multiple interfaces between a serine recombinase and an enhancer control site-specific DNA inversion 
eLife  2013;2:e01211.
Serine recombinases are often tightly controlled by elaborate, topologically-defined, nucleoprotein complexes. Hin is a member of the DNA invertase subclass of serine recombinases that are regulated by a remote recombinational enhancer element containing two binding sites for the protein Fis. Two Hin dimers bound to specific recombination sites associate with the Fis-bound enhancer by DNA looping where they are remodeled into a synaptic tetramer competent for DNA chemistry and exchange. Here we show that the flexible beta-hairpin arms of the Fis dimers contact the DNA binding domain of one subunit of each Hin dimer. These contacts sandwich the Hin dimers to promote remodeling into the tetramer. A basic region on the Hin catalytic domain then contacts enhancer DNA to complete assembly of the active Hin tetramer. Our results reveal how the enhancer generates the recombination complex that specifies DNA inversion and regulates DNA exchange by the subunit rotation mechanism.
eLife digest
Many processes in biology rely on enzymes that break both the strands in a DNA molecule, then rearrange the strands, and finally join them back together in a new configuration. These recombination reactions can, for example, change the positions of genetic elements such as enhancers and promoters within the DNA molecule and, therefore, influence how a given gene is expressed as a protein. Cells need to be able to control recombination reactions because they can lead to leukemia and lymphomas if they go wrong.
The enzymes that catalyze these recombination reactions are called recombinases. One type of recombinase binds to specific sequences of DNA bases and uses an amino acid in the enzyme–usually serine or tyrosine–to break and rejoin the DNA strands. Recombination reactions require the assembly of complexes containing many proteins bound to DNA. Tyrosine recombinases form relatively simple protein-DNA complexes, and these have been studied in detail. Serine recombinases, on the other hand, form more elaborate protein-DNA complexes, and much less is known about these.
Now McLean et al. have unraveled the mechanism that a serine recombinase called Hin uses to reverse the direction of a stretch of chromosomal DNA in the bacteria Salmonella enterica. Inverting this stretch of DNA–which contains about 1000 base pairs–changes the position of a gene promoter that is responsible for the production of flagellin, which is the protein that enables the bacterium to move. This is one of the tricks that Salmonella uses to evade the immune system of its host.
Previous research has established that four Hin subunits and two copies of a protein called Fis are needed to invert this stretch of DNA: two Hin subunits bind to each of the two hix recombination sites, and the Fis proteins (which are dimers) bind to each end of an enhancer that is located between the hix sites. A protein called HU then causes the DNA to bend and form a loop, and the four Hin subunits and the two Fis dimers all come together at the enhancer to form a structure called the invertasome where the recombination reaction occurs. All four DNA strands at the crossover point are broken as a result of a near simultaneous attack by the catalytic serine amino acids in the Hin subunits. One pair of Hin subunits–and the two DNA strands attached to them–then rotate by 180 degrees around the other pair of Hin subunits. This means that the stretch of DNA between the hix sites is inverted when the DNA strands are rejoined at the end of the reaction.
Enhancers often regulate transcription and other reactions from a distance. McLean et al. reveal how an enhancer of a DNA recombination reaction works. The pairs of Hin subunits that initially bind to the DNA are not catalytically active, but when they are brought together by the enhancer and form a tetramer, they become active. Two of the Hin subunits are clamped onto the enhancer by the Fis dimers and by directly interacting with the enhancer DNA, but the other two (and the DNA strands attached to them) are free to rotate within the tetramer. In the Salmonella chromosome the enhancer is located close to one of the hix sites (∼100 base pairs away from it), so the length of the DNA between the enhancer and hix site physically limits the number of Hin subunit rotations to just one.
PMCID: PMC3798978  PMID: 24151546
Salmonella enterica; site-specific DNA recombination; serine recombinase; recombinational enhancer; synaptic complex; DNA strand exchange; E. coli
2.  Two DNA Invertases Contribute to Flagellar Phase Variation in Salmonella enterica Serovar Typhimurium Strain LT2 
Journal of Bacteriology  2006;188(3):950-957.
Salmonella enterica serovar Typhimurium strain LT2 possesses two nonallelic structural genes, fliC and fljB, for flagellin, the component protein of flagellar filaments. Flagellar phase variation occurs by alternative expression of these two genes. This is controlled by the inversion of a DNA segment, called the H segment, containing the fljB promoter. H inversion occurs by site-specific recombination between inverted repetitious sequences flanking the H segment. This recombination has been shown in vivo and in vitro to be mediated by a DNA invertase, Hin, whose gene is located within the H segment. However, a search of the complete genomic sequence revealed that LT2 possesses another DNA invertase gene that is located adjacent to another invertible DNA segment within a resident prophage, Fels-2. Here, we named this gene fin. We constructed hin and fin disruption mutants from LT2 and examined their phase variation abilities. The hin disruption mutant could still undergo flagellar phase variation, indicating that Hin is not the sole DNA invertase responsible for phase variation. Although the fin disruption mutant could undergo phase variation, fin hin double mutants could not. These results clearly indicate that both Hin and Fin contribute to flagellar phase variation in LT2. We further showed that a phase-stable serovar, serovar Abortusequi, which is known to possess a naturally occurring hin mutation, lacks Fels-2, which ensures the phase stability in this serovar.
PMCID: PMC1347348  PMID: 16428399
3.  Site-specific recombinase genes in three Shigella subgroups and nucleotide sequences of a pinB gene and an invertible B segment from Shigella boydii. 
Journal of Bacteriology  1991;173(13):4079-4087.
Inversional switching systems in procaryotes are composed of an invertible DNA segment and a site-specific recombinase gene adjacent to or contained in the segment. Four related but functionally distinct systems have previously been characterized in detail: the Salmonella typhimurium H segment-hin gene (H-hin), phage Mu G-gin, phage P1 C-cin, and Escherichia coli e14 P-pin. In this article we report the isolation and characterization of three new recombinase genes: pinB, pinD, and defective pinF from Shigella boydii, Shigella dysenteriae, and Shigella flexneri, respectively. The genes pinB and pinD were detected by the complementation of a hin mutation of Salmonella and were able to mediate inversion of the H, P, and C segments. pinB mediated H inversion as efficiently as the hin gene did and mediated C inversion with a frequency three orders of magnitude lower than that of the cin gene. pinD mediated inversion of H and P segments with frequencies ten times as high as those for the genes intrinsic to each segment and mediated C inversion with a frequency ten times lower than that for cin. Therefore, the pinB and pinD genes were inferred to be different from each other. The invertible B segment-pinB gene cloned from S. boydii is highly homologous to the G-gin in size, organization, and nucleotide sequence of open reading frames, but the 5' constant region outside the segment is quite different in size and predicted amino acid sequence. The B segment underwent inversion in the presence of hin, pin, or cin. The defective pinF gene is suggested to hae the same origin as P-pin on e14 by the restriction map of the fragment cloned from a Pin+ transductant that was obtained in transduction from S. flexneri to E. coli delta pin.
PMCID: PMC208056  PMID: 2061288
4.  Mechanical constraints on Hin subunit rotation imposed by the Fis-enhancer system and DNA supercoiling during site-specific recombination 
Molecular cell  2009;34(6):746-759.
Hin, a member of the serine family of site-specific recombinases, regulates gene expression by inverting a DNA segment. DNA inversion requires assembly of an invertasome complex in which a recombinational enhancer DNA segment bound by the Fis protein associates with the Hin synaptic complex at the base of a supercoiled DNA branch. Each of the four Hin subunits becomes covalently joined to the cleaved DNA ends, and DNA exchange occurs by translocation of a Hin subunit pair within the tetramer. We show here that although the Hin tetramer forms a bidirectional molecular swivel, the Fis/enhancer system determines both the direction and number of subunit rotations. The chirality of supercoiling directs rotational direction, and the short DNA loop stabilized by Fis-Hin contacts limit rotational processivity, thereby ensuring that the DNA strands re-ligate in the recombinant configuration. We identify multiple rotational conformers that are formed under different supercoiling and solution conditions.
PMCID: PMC2752211  PMID: 19560425
5.  Effect of iacP Mutation on Flagellar Phase Variation in Salmonella enterica Serovar Typhimurium Strain UK-1 
Journal of Bacteriology  2012;194(16):4332-4341.
Flagella are surface appendages that are important for bacterial motility and invasion of host cells. Two flagellin subunits in Salmonella enterica serovar Typhimurium, FliC and FljB, are alternatively expressed by a site-specific DNA inversion mechanism called flagellar phase variation. Although this inversion mechanism is understood at the molecular level, the key factor controlling the expression of the two flagellin subunits has not been determined. In this study, we found that a putative acyl carrier protein, IacP, affects flagellar phase variation in S. Typhimurium strain UK-1 under Salmonella pathogenicity island 1 (SPI1)-inducing conditions. Liquid chromatography-mass spectrometry analysis of the secreted proteins from S. Typhimurium determined that the amount of FljB secreted was significantly higher in the iacP mutant strain, a finding confirmed by Western blot analysis. Northern blotting, quantitative PCR, and microarray data showed that the level of FljB in the iacP mutant strain was regulated at the transcriptional level, although the transcription and expression of the fliC gene were independent of IacP. FljB production was abolished by the deletion of the Hin DNA invertase but could be restored by the introduction of a plasmid carrying the hin gene. We also found that in the iacP mutant strain, the orientation of the invertible H segment is in the FljB-expressing phase. Furthermore, electron microscopy observations indicated that the iacP mutant strain had more flagella per cell than the wild-type strain. These results suggest that IacP is associated with flagellar phase switching under SPI1-inducing conditions.
PMCID: PMC3416257  PMID: 22685287
6.  HinT proteins and their putative interaction partners in Mollicutes and Chlamydiaceae 
BMC Microbiology  2005;5:27.
HinT proteins are found in prokaryotes and eukaryotes and belong to the superfamily of HIT proteins, which are characterized by an histidine-triad sequence motif. While the eukaryotic variants hydrolyze AMP derivates and modulate transcription, the function of prokaryotic HinT proteins is less clearly defined. In Mycoplasma hominis, HinT is concomitantly expressed with the proteins P60 and P80, two domains of a surface exposed membrane complex, and in addition interacts with the P80 moiety.
An cluster of hitABL genes, similar to that of M. hominis was found in M. pulmonis, M. mycoides subspecies mycoides SC, M. mobile and Mesoplasma florum. RT-PCR analyses provided evidence that the P80, P60 and HinT homologues of M. pulmonis were polycistronically organized, suggesting a genetic and physical interaction between the proteins encoded by these genes in these species. While the hit loci of M. pneumoniae and M. genitalium encoded, in addition to HinT, a protein with several transmembrane segments, the hit locus of Ureaplasma parvum encoded a pore-forming protein, UU270, a P60 homologue, UU271, HinT, UU272, and a membrane protein of unknown function, UU273. Although a full-length mRNA spanning the four genes was not detected, amplification of all intergenic regions from the center of UU270 to the end of UU273 by RT-PCR may be indicative of a common, but unstable mRNA.
In Chlamydiaceae the hit gene is flanked upstream by a gene predicted to encode a metal dependent hydrolase and downstream by a gene putatively encoding a protein with ARM-repeats, which are known to be involved in protein-protein interactions. In RT-PCR analyses of C. pneumoniae, regions comprising only two genes, Cp265/Cp266 and Cp266/Cp267 were able to be amplified. In contrast to this in vivo interaction analysis using the yeast two-hybrid system and in vitro immune co-precipitation revealed an interaction between Cp267, which contains the ARM repeats, Cp265, the predicted hydrolase, and Cp266, the HinT protein.
In the Mollicutes HinT proteins were shown to be linked with membrane proteins while in the Chlamydiaceae they were genetically and physically associated with cytoplasmic proteins, one of which is predicted to be a metal-dependent phosphoesterase. Future work will elucidate whether these differing associations indicate that HinT proteins have evolved independently or are indeed two hotspots of a common sphere of action of bacterial HinT proteins.
PMCID: PMC1173108  PMID: 15904496
7.  DNA sequence adjacent to flagellar genes and evolution of flagellar-phase variation. 
Journal of Bacteriology  1983;155(1):74-81.
A variety of factors, including phase variation, are involved in the regulation of flagellin gene expression in Salmonella sp. Flagellar-phase variation refers to the alternate expression of two different flagellin genes, H1 and H2. Site-specific inversion of a DNA segment adjacent to the H2 gene is responsible for switching expression. The segment includes the H2 promoter as well as the hin gene, which is required to mediate the inversion. Sequences in this region have homology with the corresponding sequences adjacent to the H1 flagellin gene in Salmonella sp. and the hag flagellin gene in Escherichia coli. The hin gene has also been shown to be homologous to the gin gene, which is found on bacteriophage Mu. To understand gene expression and the origin of these relationships, we have compared the DNA sequence adjacent to all three flagellin genes. The sequence data suggest a mechanism for the evolution of the hin-H2 locus.
PMCID: PMC217654  PMID: 6305924
8.  Identification, cloning, and sequencing of piv, a new gene involved in inverting the pilin genes of Moraxella lacunata. 
Journal of Bacteriology  1990;172(8):4370-4377.
Moraxella lacunata is a bacterium that is a causative agent of human conjunctivitis and keratitis. We have previously cloned the Q and I pilin (formerly called beta and alpha pilin) genes of Moraxella bovis and determined that an inversion of 2 kilobases (kb) of DNA determines which pilin gene is expressed. Using an M. bovis pilin gene as a hybridization probe to screen a lambda ZAP library of M. lacunata DNA, we have isolated a clone that not only contains the entire type 4 pilin gene inversion region of M. lacunata but inverts the 2-kb region on a plasmid subclone (pMxL1) in Escherichia coli. Deletion derivatives of pMxL1 yielded some plasmids that still had the entire inversion region but were phase locked into one or the other of the two potential orientations. Similarly, insertions of a 2-kb streptomycin-resistant element (omega) within some regions outside of the inversion also resulted in phase-locked plasmids. These deletions and insertions thus localize a probable invertase necessary for the inversion event. The region was sequenced, and an open reading frame with over 98% DNA sequence homology to an open reading frame that we previously found in M. bovis and called ORF2 appeared to be a strong candidate for the invertase. This conclusion was confirmed when a plasmid containing the M. bovis ORF2 supplied, in trans, the inversion function missing from one of the M. lacunata phase-locked inversion mutants. We have named these putative invertase genes piv(ml) (pilin inversion of M. lacunata) and piv(mb) (pilin inversion of M. bovis). Despite previously noted sequence similarities between the M. bovis sites of inversion and those of the Hin family of invertible segments and a 60-base-pair region within the inversion with 50% sequence similarity to the cin recombinational enhancer, there is no significant sequence similarity of the Piv invertases to the Hin family of invertases.
PMCID: PMC213263  PMID: 1973927
9.  Sequence, regulation, and functions of fis in Salmonella typhimurium. 
Journal of Bacteriology  1995;177(8):2021-2032.
The fis operon from Salmonella typhimurium has been cloned and sequenced, and the properties of Fis-deficient and Fis-constitutive strains were examined. The overall fis operon organization in S. typhimurium is the same as that in Escherichia coli, with the deduced Fis amino acid sequences being identical between both species. While the open reading frames upstream of fis have diverged slightly, the promoter regions between the two species are also identical between -49 and +94. Fis protein and mRNA levels fluctuated dramatically during the course of growth in batch cultures, peaking at approximately 40,000 dimers per cell in early exponential phase, and were undetectable after growth in stationary phase. fis autoregulation was less effective in S. typhimurium than that in E. coli, which can be correlated with the absence or reduced affinity of several Fis-binding sites in the S. typhimurium fis promoter region. Phenotypes of fis mutants include loss of Hin-mediated DNA inversion, cell filamentation, reduced growth rates in rich medium, and increased lag times when the mutants are subcultured after prolonged growth in stationary phase. On the other hand, cells constitutively expressing Fis exhibited normal logarithmic growth but showed a sharp reduction in survival during stationary phase. During the course of these studies, the sigma 28-dependent promoter within the hin-invertible segment that is responsible for fljB (H2) flagellin synthesis was precisely located.
PMCID: PMC176845  PMID: 7536730
10.  Engineering bacteria to solve the Burnt Pancake Problem 
We investigated the possibility of executing DNA-based computation in living cells by engineering Escherichia coli to address a classic mathematical puzzle called the Burnt Pancake Problem (BPP). The BPP is solved by sorting a stack of distinct objects (pancakes) into proper order and orientation using the minimum number of manipulations. Each manipulation reverses the order and orientation of one or more adjacent objects in the stack. We have designed a system that uses site-specific DNA recombination to mediate inversions of genetic elements that represent pancakes within plasmid DNA.
Inversions (or "flips") of the DNA fragment pancakes are driven by the Salmonella typhimurium Hin/hix DNA recombinase system that we reconstituted as a collection of modular genetic elements for use in E. coli. Our system sorts DNA segments by inversions to produce different permutations of a promoter and a tetracycline resistance coding region; E. coli cells become antibiotic resistant when the segments are properly sorted. Hin recombinase can mediate all possible inversion operations on adjacent flippable DNA fragments. Mathematical modeling predicts that the system reaches equilibrium after very few flips, where equal numbers of permutations are randomly sorted and unsorted. Semiquantitative PCR analysis of in vivo flipping suggests that inversion products accumulate on a time scale of hours or days rather than minutes.
The Hin/hix system is a proof-of-concept demonstration of in vivo computation with the potential to be scaled up to accommodate larger and more challenging problems. Hin/hix may provide a flexible new tool for manipulating transgenic DNA in vivo.
PMCID: PMC2427008  PMID: 18492232
11.  Novel non-specific DNA adenine methyltransferases 
Nucleic Acids Research  2011;40(5):2119-2130.
The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N6-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N6-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N6-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential ‘sequence specificity’ could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation.
PMCID: PMC3299994  PMID: 22102579
12.  In Vivo Assay of Protein-Protein Interactions in Hin-Mediated DNA Inversion 
Journal of Bacteriology  1998;180(22):5954-5960.
In order to form the catalytic nucleoprotein complex called the invertasome in the Hin-mediated DNA inversion reaction, interactions of the DNA-binding proteins Hin and Fis are required. Assays for these protein-protein interactions have been exploited with protein cross-linkers in vitro. In this study, an in vivo assay system that probes protein-protein interactions was developed. The formation of a DNA loop generated by protein interactions resulted in transcriptional repression of an artificially designed operon, which in turn increased the chance of survival of Escherichia coli host cells in a streptomycin-containing medium. Using this system, we were able to assay the Hin-Hin interaction that results in the pairing of the two recombination sites and protein interactions that result in the formation of the invertasome. This assay system also led us to find that an individual Hin dimer bound on a recombination site can form a stable complex with Fis bound on the recombinational enhancer; this finding has never been observed in in vitro studies. Possible pathways toward the formation of the invertasome are discussed based on the assay results for a previously reported Hin mutant.
PMCID: PMC107670  PMID: 9811654
13.  Sequence analysis of the inversion region containing the pilin genes of Moraxella bovis. 
Journal of Bacteriology  1990;172(1):310-316.
Moraxella bovis EPP63 is able to produce two antigenically distinct pili called Q and I pili (previously called beta and alpha pili). Hybridization studies have shown that the transition between the types is due to inversion of a 2.1-kilobase segment of chromosomal DNA. We present the sequence of a 4.1-kilobase region of cloned DNA spanning the entire inversion region in orientation 1 (Q pilin expressed). Comparison of this sequence with the sequence of the polymerase chain reaction-amplified genomic DNA from orientation 2 (I pilin expressed) allows the site-specific region of recombination to be localized to a 26-base-pair region in which sequence similarity to the left inverted repeat of the Salmonella typhimurium hin system was previously noted. In addition, 50% sequence similarity was seen in a 60-base-pair segment of our sequence to the recombinational enhancer of bacteriophage P1, an inversion system related to the hin system of S. typhimurium. Finally, two open reading frames representing potential genes were identified.
PMCID: PMC208434  PMID: 2403542
14.  E. coli Histidine Triad Nucleotide Binding Protein 1 (ecHinT) Is a Catalytic Regulator of D-Alanine Dehydrogenase (DadA) Activity In Vivo 
PLoS ONE  2011;6(7):e20897.
Histidine triad nucleotide binding proteins (Hints) are highly conserved members of the histidine triad (HIT) protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both Gram-negative and Gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli). Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA) (equivalent to D-amino acid oxidase in eukaryotes), a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli.
PMCID: PMC3130732  PMID: 21754980
15.  Influence of the Hinge Region and Its Adjacent Domains on Binding and Signaling Patterns of the Thyrotropin and Follitropin Receptor 
PLoS ONE  2014;9(10):e111570.
Glycoprotein hormone receptors (GPHR) have a large extracellular domain (ECD) divided into the leucine rich repeat (LRR) domain for binding of the glycoprotein hormones and the hinge region (HinR), which connects the LRR domain with the transmembrane domain (TMD). Understanding of the activation mechanism of GPHRs is hindered by the unknown interaction of the ECD with the TMD and the structural changes upon ligand binding responsible for receptor activation. Recently, our group showed that the HinR of the thyrotropin receptor (TSHR) can be replaced by those of the follitropin (FSHR) and lutropin receptor (LHCGR) without effects on surface expression and hTSH signaling. However, differences in binding characteristics for bovine TSH at the various HinRs were obvious. To gain further insights into the interplay between LRR domain, HinR and TMD we generated chimeras between the TSHR and FSHR. Our results obtained by the determination of cell surface expression, ligand binding and G protein activation confirm the similar characteristics of GPHR HinRs but they also demonstrate an involvement of the HinR in ligand selectivity indicated by the observed promiscuity of some chimeras. While the TSHR HinR contributes to specific binding of TSH and its variants, no such contribution is observed for FSH and its analog TR4401 at the HinR of the FSHR. Furthermore, the charge distribution at the poorly characterized LRR domain/HinR transition affected ligand binding and signaling even though this area is not in direct contact with the ligand. In addition our results also demonstrate the importance of the TMD/HinR interface. Especially the combination of the TSHR HinR with the FSHR-TMD resulted in a loss of cell surface expression of the respective chimeras. In conclusion, the HinRs of GPHRs do not only share similar characteristics but also behave as ligand specific structural and functional entities.
PMCID: PMC4207802  PMID: 25340405
16.  Interferon-Inducible Protein 16: Insight into the Interaction with Tumor Suppressor p53 
IFI16 is a member of the interferon-inducible HIN-200 family of nuclear proteins. It has been implicated in transcriptional regulation by modulating protein-protein interactions with p53 tumor suppressor protein and other transcription factors. However, the mechanisms of interaction remain unknown. Here, we report the crystal structures of both HIN-A and HIN-B domains of IFI16 determined at 2.0 and 2.35 Å resolution, respectively. Each HIN domain comprises a pair of tightly packed OB-fold subdomains that appear to act as a single unit. We show that both HIN domains of IFI16 are capable of enhancing p53-DNA complex formation and transcriptional activation via distinctive means. HIN-A domain binds to the basic C terminus of p53, whereas the HIN-B domain binds to the core DNA-binding region of p53. Both interactions are compatible with the DNA-bound state of p53 and together contribute to the effect of full-length IFI16 on p53-DNA complex formation and transcriptional activation.
PMCID: PMC3760383  PMID: 21397192
17.  DNA binding and bending are necessary but not sufficient for Fis-dependent activation of rrnB P1. 
Journal of Bacteriology  1993;175(6):1580-1589.
The Escherichia coli Fis protein binds to three sites in the upstream activation region of the rrnB P1 promoter and enhances transcription 5- to 10-fold in vivo. In this report, we investigate the mechanism of Fis-dependent activation of transcription. We show that stimulation of rrnB P1 transcription by Fis can occur on linear DNA templates and does not require DNA upstream of the promoter-proximal Fis site I. Mutants of Fis defective for Hin-mediated recombination have been isolated previously and have defined an N-terminal domain required for DNA inversion by Hin in addition to the C-terminal domain which is required for DNA binding. Several of these mutants were found to be defective in stimulation of rrnB P1 transcription in vivo and in vitro. Activation-defective mutants fall into three classes: those that fail to bind to the upstream activation region, those that bind but fail to bend the DNA normally, and those that bind and bend but still fail to activate transcription. We conclude that it is unlikely that Fis functions by simply bringing upstream sequences or bound factors into the proximity of RNA polymerase to activate transcription. Rather, the data are most easily interpreted in terms of transcription activation by direct interactions between Fis and RNA polymerase, requiring precise positioning of the two proteins facilitated by bending of the DNA binding site.
PMCID: PMC203950  PMID: 8449867
18.  The Intracellular DNA Sensor IFI16 Gene Acts as Restriction Factor for Human Cytomegalovirus Replication 
PLoS Pathogens  2012;8(1):e1002498.
Human interferon (IFN)-inducible IFI16 protein, an innate immune sensor of intracellular DNA, modulates various cell functions, however, its role in regulating virus growth remains unresolved. Here, we adopt two approaches to investigate whether IFI16 exerts pro- and/or anti-viral actions. First, the IFI16 gene was silenced using specific small interfering RNAs (siRNA) in human embryo lung fibroblasts (HELF) and replication of DNA and RNA viruses evaluated. IFI16-knockdown resulted in enhanced replication of Herpesviruses, in particular, Human Cytomegalovirus (HCMV). Consistent with this, HELF transduction with a dominant negative form of IFI16 lacking the PYRIN domain (PYD) enhanced the replication of HCMV. Second, HCMV replication was compared between HELFs overexpressing either the IFI16 gene or the LacZ gene. IFI16 overexpression decreased both virus yield and viral DNA copy number. Early and late, but not immediate-early, mRNAs and proteins were strongly down-regulated, thus IFI16 may exert its antiviral effect by impairing viral DNA synthesis. Constructs with the luciferase reporter gene driven by deleted or site-specific mutated forms of the HCMV DNA polymerase (UL54) promoter demonstrated that the inverted repeat element 1 (IR-1), located between −54 and −43 relative to the transcription start site, is the target of IFI16 suppression. Indeed, electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated that suppression of the UL54 promoter is mediated by IFI16-induced blocking of Sp1-like factors. Consistent with these results, deletion of the putative Sp1 responsive element from the HCMV UL44 promoter also relieved IFI16 suppression. Together, these data implicate IFI16 as a novel restriction factor against HCMV replication and provide new insight into the physiological functions of the IFN-inducible gene IFI16 as a viral restriction factor.
Author Summary
Only recently, intrinsic cellular-based defense mechanisms which give cells the capacity to resist pathogens have been discovered as an essential component of immunity. However, unlike the innate and adaptive branches of the immune system, intrinsic immune defenses are mediated by cellular restriction factors that are constitutively expressed and active even before a pathogen enters the cell. The protein family HIN-200 may act as sensors of foreign DNA and modulate various functions such as growth, apoptosis, and senescence. Here we show that, in the absence of functional IFI16, the replication of some Herpesviruses and in particular of Human Cytomegalovirus (HCMV) is significantly enhanced. Accordingly, IFI16 overexpression strongly inhibited HCMV replication. Accumulation of viral DNA copies was down-regulated along with expression of early and late viral gene expression suggesting that IFI16 inhibits viral DNA synthesis. Using transient transfection, luciferase, gel shift assay, and chromatin immunoprecipitation, we demonstrate that IFI16 suppresses the transcriptional activity of the viral DNA polymerase gene (UL54) and the UL44 gene, also required for viral DNA synthesis. The finding that the nuclear DNA sensor IFI16 controls virus growth represents an important step forward in understanding the intrinsic mechanisms that drive viral infections sustained by DNA viruses such as Herpesviruses.
PMCID: PMC3266931  PMID: 22291595
19.  Identification and Characterization of the fis Operon in Enteric Bacteria 
Journal of Bacteriology  1998;180(22):5932-5946.
The small DNA binding protein Fis is involved in several different biological processes in Escherichia coli. It has been shown to stimulate DNA inversion reactions mediated by the Hin family of recombinases, stimulate integration and excision of phage λ genome, regulate the transcription of several different genes including those of stable RNA operons, and regulate the initiation of DNA replication at oriC. fis has also been isolated from Salmonella typhimurium, and the genomic sequence of Haemophilus influenzae reveals its presence in this bacteria. This work extends the characterization of fis to other organisms. Very similar fis operon structures were identified in the enteric bacteria Klebsiella pneumoniae, Serratia marcescens, Erwinia carotovora, and Proteus vulgaris but not in several nonenteric bacteria. We found that the deduced amino acid sequences for Fis are 100% identical in K. pneumoniae, S. marcescens, E. coli, and S. typhimurium and 96 to 98% identical when E. carotovora and P. vulgaris Fis are considered. The deduced amino acid sequence for H. influenzae Fis is about 80% identical and 90% similar to Fis in enteric bacteria. However, in spite of these similarities, the E. carotovora, P. vulgaris, and H. influenzae Fis proteins are not functionally identical. An open reading frame (ORF1) preceding fis in E. coli is also found in all these bacteria, and their deduced amino acid sequences are also very similar. The sequence preceding ORF1 in the enteric bacteria showed a very strong similarity to the E. coli fis P region from −53 to +27 and the region around −116 containing an ihf binding site. Both β-galactosidase assays and primer extension assays showed that these regions function as promoters in vivo and are subject to growth phase-dependent regulation. However, their promoter strengths vary, as do their responses to Fis autoregulation and integration host factor stimulation.
PMCID: PMC107668  PMID: 9811652
20.  Clinicopathological observations of colorectal serrated lesions associated with invasive carcinoma and high-grade intraepithelial neoplasm 
The aim of this study was to investigate the clinicopathological characteristics of colorectal serrated lesions associated with invasive carcinoma and high-grade intraepithelial neoplasm (HIN), as well as to determine the immunohistochemical expression of MutL homolog 1 (MLH1), MutS homolog 2 (MSH2), K-ras and O6-methylguanine-DNA methyltransferase (MGMT). A total of 5,347 cases diagnosed with colorectal polyp or adenoma were included in this study from October 2002 to September 2009. A total of 16 cases of colorectal serrated lesions associated with invasive carcinoma/HIN were screened. These comprised seven cases of traditional serrated adenoma (TSA) associated with invasive carcinoma and HIN, six cases of sessile serrated adenoma (SSA) associated with invasive carcinoma/HIN and three cases of hyperplastic polyp (HP) associated with invasive carcinoma/HIN. TSA associated with invasive carcinoma/HIN predominantly occurred in the rectum with a clearly serrated structure and ectopic crypts. High-grade dysplasia was observed in filiform TSA, which was more prone to carcinogenesis. SSA associated with invasive carcinoma/HIN mainly occurred in the ileocecal junction, with the SSA serrated glands closely located adjacent to the muscularis mucosa and the basal crypt expanded with inverted T- or L-shaped branches. HPs were observed in three cases in the cancer-adjacent tissues with invasive carcinoma, while a HP-SSA/TSA-carcinoma sequence was found in two cases. Immunohistochemistry showed that MGMT expression was significantly different in the serrated lesion tissues compared with that in cancer tissues (P=0.022), control cancer tissues (P=0.002) and normal colorectal epithelial tissues (P=0.003). TSA and SSA may progress to cancer or directly develop into invasive adenocarcinoma. Filiform TSA easily develops into HIN, followed by infiltration. HP may arise from the cancer-adjacent tissues of the invasive carcinoma, which are closely adjacent to the cancer tissues. Further research is needed to investigate the potential direct involvement of HP in carcinogenesis.
PMCID: PMC3820725  PMID: 24223631
colorectal serrated lesion; invasive adenocarcinoma; immunohistochemistry; intraepithelial neoplasm
21.  31P NMR and Genetic Analysis Establish hinT as the only E. coli Purine Nucleoside Phosphoramidase and as Essential for Growth under High Salt Conditions 
The Journal of biological chemistry  2005;280(15):15356-15361.
Eukaryotic cells encode AMP-lysine hydrolases related to the rabbit histidine triad nucleotide-binding protein 1 (Hint1) sequence. Bacterial and archaeal cells have Hint homologs annotated in a variety of ways but the enzymes have not been characterized, nor have phenotypes been described due to loss of enzymatic activity. We developed a quantitative 31P NMR assay to determine whether Escherichia coli possesses an adenosine phosphoramidase activity. Indeed, soluble lysates prepared from wild-type laboratory Escherichia coli exhibited activity on the model substrate adenosine monophosphoramidate (AMP-NH2). The Escherichia coli Hint homolog, which had been comprehensively designated ycfF and is here named hinT, was cloned, over-expressed, purified and characterized with respect to purine nucleoside phosphoramidate substrates. Bacterial hinT was several times more active than mammalian Hint on three model substrates. In addition, bacterial and mammalian enzymes preferred guanosine versus adenosine phosphoramidates as substrates. Analysis of the lysates from a constructed hinT knockout strain of Escherichia coli demonstrated that all of the cellular purine nucleoside phosphoramidase activity is due to hinT. Physiological analysis of this mutant revealed that the loss of hinT enzymatic activity results in failure to grow in media containing 0.75 KCl, 0.9 M NaCl, 0.5 M NaOAc and 10 mM MnCl2. Thus, bacteria may possess nucleotidylylated phosphoramidate substrates that must be hydrolyzed to support growth under certain high salt conditions.
PMCID: PMC2556068  PMID: 15703176
Phosphoramidase; E. coli hinT; AMP-lysine hydrolase; ycfF
22.  Pilin-gene phase variation of Moraxella bovis is caused by an inversion of the pilin genes. 
Journal of Bacteriology  1988;170(7):3032-3039.
Moraxella bovis Epp63 can express either of two different pilin proteins, called alpha and beta. We have previously cloned and sequenced the beta-pilin gene and now report that DNAs isolated from bacteria expressing alpha pilin have hybridization patterns consistently different from those of bacteria expressing beta pilin. The phase variation between alpha- and beta-pilin gene expression appears to be associated with an inversion of about 2 kilobases of DNA, whose endpoints occur within the coding region of the expressed pilin gene. Comparisons of the beta-pilin gene sequence with those of well-studied bacterial inversion systems revealed a stretch of 58% sequence similarity (21 of 36 base pairs) between the left inverted repeat of the Salmonella typhimurium flagellar hin control region and the amino-terminal portion of the beta-pilin gene.
PMCID: PMC211245  PMID: 2898471
23.  Role of the HIN Domain in Regulation of Innate Immune Responses 
The oligonucleotide/oligosaccharide binding (OB) fold is employed by proteins to bind nucleic acids during replication, transcription, and translation. Recently, a variation of the OB fold consisting of a tandem pair of OB folds named the HIN (hematopoietic expression, interferon-inducible nature, and nuclear localization) domain was shown to play essential roles in the regulation of innate immune responses originating from binding of nucleic acids in the cytoplasm or the nucleus of the cell. Although the two OB folds of the HIN domain are linked via a long linker region, conserved hydrophobic contacts between the two OB folds hold them together firmly, resulting in a single compact domain. This overall topology of the HIN domain seems to be highly conserved, and proteins containing the HIN domain have been grouped in the PYHIN family. Structures of the recently solved HIN domains reveal that these domains exhibit either absent in melanoma2 (Aim2) HIN-like or p202 HINa-like modes of DNA binding. These two modes of DNA binding seem to result in different responses and as a consequence confer distinct roles on the proteins. This review summarizes our current understanding of the structure and function of the HIN domains in context with the innate immune responses.
PMCID: PMC3911281  PMID: 24164899
24.  Naturally arising recombinants that are missing portions of the simian virus 40 regulatory region. 
Molecular and Cellular Biology  1983;3(11):1930-1936.
When simian virus 40 (SV40) is serially passaged at high multiplicity, a heterogeneous collection of naturally arising variants is generated. Those which are the most abundant presumably have a selective replicative advantage over other defective and wild-type helper SV40s. Two such naturally arising host-substituted variants of SV40 have been characterized in terms of complete nucleotide sequence determination. Evolutionary variant ev-1101 (previously isolated by Lee et al., Virology 66:53-69, 1975) is from undiluted serial passage 13, whereas ev-2101 is newly isolated from undiluted serial passage 6 of an independently-derived evolutionary series. Both variants contain a five-times tandemly repeated segment of DNA consisting of viral Hin C and Hin A sequences that have recombined with a segment of host DNA that is not highly reiterated in the monkey genome. The monkey segment differs in the two variants as does the size of the viral segment retained. In two additional host-substituted variants, ev-1102 (previously isolated from serial passage 20 by Brockman et al., Virology 54:384-397, 1973) and ev-1108 (newly isolated from serial passage 40), the SV40 sequences derived from the replication origin are present as inverted repetitions. The inverted repeat regions of these two variants have been analyzed at the nucleotide sequence level and are compared with SV40 variant ev-1104 from passage 45 (previously characterized by Gutai and Nathans, J. Mol. Biol. 126:259-274, 1978). The viral segment containing the regulatory signals for replication and viral gene expression is considerably shortened in later serial passages as demonstrated by these five variants. It is of interest that the variants presumably arose due to their enhanced replication efficiency, yet are missing some of the sequence elements implicated in the regulation of replication. Furthermore, a comparison of the structure of the replication origin regions indicates that additional changes occur in the SV40 regulatory region with continued undiluted serial passage.
PMCID: PMC370059  PMID: 6318075
25.  The Involvement of Intracellular Calcium in the MCT-Mediated Uptake of Lactic Acid by HeLa Cells 
Molecular pharmaceutics  2010;7(1):169.
The main object of this study is to evaluate the role of intracellular free calcium ion [Ca2+]in in monocarboxylate transporter (MCT) mediated drug uptake by HeLa cells. It was hypothesized that alterations in the [Ca2+]in levels affect Na+-H+ exchanger (NHE) regulated pHin and thereby produce the proton-motivated driving force for monocarboxylate-mediated substrate transport.
The changes in intracellular pH (pHin) and MCT-mediated uptake rates of L-lactic acid by HeLa cells, a human cervical adenocarcinoma cell line, were evaluated under the conditions, whose [Ca2+]in concentrations were altered by various calcium modulators, such as EGTA-AM (a chelator), nifedipine (a Ca++ channel antagonist) and A23187 (an ionophore). For comparison purpose, the L-lactic acid uptake by HeLa cells was also evaluated under various pHin conditions induced by dexamethasone. The effects of the extracellular sodium concentration on the L-lactic acid uptake by HeLa cells were evaluated to determine the involvement of NHE-regulated pH changes in the MCT mediated drug uptake process. The [Ca2+]in concentrations and pHin in HeLa were assessed using fluorescent probes fura-2 and 2′,7′-bis[2-carboxyethyl-5-carboxyfluorescein] (BCECF), respectively.
The treatment of HeLa cells with A23187 at concentrations of 50 and 100 μM enhanced [Ca2+]in by 100% and 200% of the control, respectively. EGTA/AM (50 μM) or nifedipine (100 μM) did not cause any significant changes in the [Ca2+]in levels, whereas EGTA/AM (100 μM) and nifedipine (200 μM) reduced the [Ca2+]in levels by 30% and 25%, respectively, as compared with the control. A23187 at a concentration of 100 μM in the incubation medium lowered pHin (pH 5) and subsequently the uptake rate of lactic acid by 50% (0.47 ± 0.03 μmol/mg protein/min) of the control. In contrast, nifedipine (200 μM) and EGTA-AM (100 μM), the calcium modulators that lowered the [Ca2+]in levels and maintained the higher pHin (pH>6) of HeLa cells, enhanced the uptake rate of lactic acid by 60% and 130% of the control, respectively.
The results of this study demonstrated that there was a close correlation between the [Ca2+]in level and pHin and that NHEs were involved with the MCT mediated uptake process in HeLa cells. An understanding of the role of [Ca2+]in in the MCT mediated transport process could provide an efficient strategy to improve the systemic delivery of monocarboxylate substrates through the cervical mucosa.
PMCID: PMC2815175  PMID: 19905008
Calcium Modulators; Lactic Acid; Intracellular pH (pHin); Monocarboxylate Transporters (MCTs); Na+-H+ Exchangers (NHEs)

Results 1-25 (1216882)