Search tips
Search criteria

Results 1-25 (914648)

Clipboard (0)

Related Articles

1.  Effect of Shadowing on Survival of Bacteria under Conditions Simulating the Martian Atmosphere and UV Radiation▿ †  
Spacecraft-associated spores and four non-spore-forming bacterial isolates were prepared in Atacama Desert soil suspensions and tested both in solution and in a desiccated state to elucidate the shadowing effect of soil particulates on bacterial survival under simulated Martian atmospheric and UV irradiation conditions. All non-spore-forming cells that were prepared in nutrient-depleted, 0.2-μm-filtered desert soil (DSE) microcosms and desiccated for 75 days on aluminum died, whereas cells prepared similarly in 60-μm-filtered desert soil (DS) microcosms survived such conditions. Among the bacterial cells tested, Microbacterium schleiferi and Arthrobacter sp. exhibited elevated resistance to 254-nm UV irradiation (low-pressure Hg lamp), and their survival indices were comparable to those of DS- and DSE-associated Bacillus pumilus spores. Desiccated DSE-associated spores survived exposure to full Martian UV irradiation (200 to 400 nm) for 5 min and were only slightly affected by Martian atmospheric conditions in the absence of UV irradiation. Although prolonged UV irradiation (5 min to 12 h) killed substantial portions of the spores in DSE microcosms (∼5- to 6-log reduction with Martian UV irradiation), dramatic survival of spores was apparent in DS-spore microcosms. The survival of soil-associated wild-type spores under Martian conditions could have repercussions for forward contamination of extraterrestrial environments, especially Mars.
PMCID: PMC2258572  PMID: 18083857
2.  Dry-heat resistance of selected psychrophiles. 
The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 degrees C with an ambient relative humidity of 50% at 22 degrees C. The spores evaluated had a relatively low resistance to dry heat. D(110 degrees C) values ranged from 7.5 to 122 min, whereas the D(123 degrees C) values ranged from less than 1.0 to 9.8 min.
PMCID: PMC242613  PMID: 410367
3.  Persistence of Biomarker ATP and ATP-Generating Capability in Bacterial Cells and Spores Contaminating Spacecraft Materials under Earth Conditions and in a Simulated Martian Environment▿  
Applied and Environmental Microbiology  2008;74(16):5159-5167.
Most planetary protection research has concentrated on characterizing viable bioloads on spacecraft surfaces, developing techniques for bioload reduction prior to launch, and studying the effects of simulated martian environments on microbial survival. Little research has examined the persistence of biogenic signature molecules on spacecraft materials under simulated martian surface conditions. This study examined how endogenous adenosine-5′-triphosphate (ATP) would persist on aluminum coupons under simulated martian conditions of 7.1 mbar, full-spectrum simulated martian radiation calibrated to 4 W m−2 of UV-C (200 to 280 nm), −10°C, and a Mars gas mix of CO2 (95.54%), N2 (2.7%), Ar (1.6%), O2 (0.13%), and H2O (0.03%). Cell or spore viabilities of Acinetobacter radioresistens, Bacillus pumilus, and B. subtilis were measured in minutes to hours, while high levels of endogenous ATP were recovered after exposures of up to 21 days. The dominant factor responsible for temporal reductions in viability and loss of ATP was the simulated Mars surface radiation; low pressure, low temperature, and the Mars gas composition exhibited only slight effects. The normal burst of endogenous ATP detected during spore germination in B. pumilus and B. subtilis was reduced by 1 or 2 orders of magnitude following, respectively, 8- or 30-min exposures to simulated martian conditions. The results support the conclusion that endogenous ATP will persist for time periods that are likely to extend beyond the nominal lengths of most surface missions on Mars, and planetary protection protocols prior to launch may require additional rigor to further reduce the presence and abundance of biosignature molecules on spacecraft surfaces.
PMCID: PMC2519281  PMID: 18567687
4.  Bacterial Growth at the High Concentrations of Magnesium Sulfate Found in Martian Soils 
Astrobiology  2012;12(2):98-106.
The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO4 minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of Mars. The current report demonstrates that halotolerant bacteria from the Great Salt Plains (GSP) of Oklahoma are capable of growing at high concentrations of MgSO4 in the form of 2 M solutions of epsomite. The epsotolerance of isolates in the GSP bacterial collection was determined, with 35% growing at 2 M MgSO4. There was a complex physiological response to mixtures of MgSO4 and NaCl coupled with other environmental stressors. Growth also was measured at 1 M concentrations of other magnesium and sulfate salts. The complex responses may be partially explained by the pattern of chaotropicity observed for high-salt solutions as measured by agar gelation temperature. Select isolates could grow at the high salt concentrations and low temperatures found on Mars. Survival during repetitive freeze-thaw or drying-rewetting cycles was used as other measures of potential success on the martian surface. Our results indicate that terrestrial microbes might survive under the high-salt, low-temperature, anaerobic conditions on Mars and present significant potential for forward contamination. Stringent planetary protection requirements are needed for future life-detection missions to Mars. Key Words: Analogue—Mars—Planetary protection—Salts—Life in extreme environments. Astrobiology 12, 98–106.
PMCID: PMC3277918  PMID: 22248384
5.  Survival of Microorganisms in a Simulated Martian Environment 
Applied Microbiology  1967;15(2):285-291.
The effects of moisture and oxygen concentration on germination of Bacillus cereus and B. subtilis var. niger spores were investigated in a simulated Martian environment. Less moisture was required for germination than for vegetative growth of both organisms. A daily freeze-thaw cycle lowered moisture requirements for spore germination and vegetative growth of both organisms, as compared with a constant 35 C environment. Oxygen had a synergistic effect by lowing the moisture requirements for vegetative growth, and possibly germination, of both organisms. Oxygen was not required for spore germination of either organism, but was required for vegetative growth of B. subtilis and for sporulation of both organisms.
PMCID: PMC546892  PMID: 4961769
6.  Effects of Simulated Mars Conditions on the Survival and Growth of Escherichia coli and Serratia liquefaciens▿  
Escherichia coli and Serratia liquefaciens, two bacterial spacecraft contaminants known to replicate under low atmospheric pressures of 2.5 kPa, were tested for growth and survival under simulated Mars conditions. Environmental stresses of high salinity, low temperature, and low pressure were screened alone and in combination for effects on bacterial survival and replication, and then cells were tested in Mars analog soils under simulated Mars conditions. Survival and replication of E. coli and S. liquefaciens cells in liquid medium were evaluated for 7 days under low temperatures (5, 10, 20, or 30°C) with increasing concentrations (0, 5, 10, or 20%) of three salts (MgCl2, MgSO4, NaCl) reported to be present on the surface of Mars. Moderate to high growth rates were observed for E. coli and S. liquefaciens at 30 or 20°C and in solutions with 0 or 5% salts. In contrast, cell densities of both species generally did not increase above initial inoculum levels under the highest salt concentrations (10 and 20%) and the four temperatures tested, with the exception that moderately higher cell densities were observed for both species at 10% MgSO4 maintained at 20 or 30°C. Growth rates of E. coli and S. liquefaciens in low salt concentrations were robust under all pressures (2.5, 10, or 101.3 kPa), exhibiting a general increase of up to 2.5 orders of magnitude above the initial inoculum levels of the assays. Vegetative E. coli cells were maintained in a Mars analog soil for 7 days under simulated Mars conditions that included temperatures between 20 and −50°C for a day/night diurnal period, UVC irradiation (200 to 280 nm) at 3.6 W m−2 for daytime operations (8 h), pressures held at a constant 0.71 kPa, and a gas composition that included the top five gases found in the martian atmosphere. Cell densities of E. coli failed to increase under simulated Mars conditions, and survival was reduced 1 to 2 orders of magnitude by the interactive effects of desiccation, UV irradiation, high salinity, and low pressure (in decreasing order of importance). Results suggest that E. coli may be able to survive, but not grow, in surficial soils on Mars.
PMCID: PMC2849189  PMID: 20154104
7.  Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission 
Astrobiology  2012;12(5):445-456.
Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456.
PMCID: PMC3371261  PMID: 22680691
8.  Survival of Microorganisms in a Simulated Martian Environment 
Applied Microbiology  1964;12(3):215-218.
Survival of Bacillus subtilis var. globigii in a simulated Martian environment was demonstrated. Previous contact with the simulated Martian soil or atmosphere reduced germination or outgrowth of unheated spores, or both. Inoculation into simulated Martian soil and then flushing with a simulated Martian atmosphere were lethal to both vegetative cells and spores. After one diurnal temperature cycle (26 to -60 C), the majority of of cells present were spores. No further effect of the diurnal cycle on survival was noted in any of the experimental samples.
PMCID: PMC1058102  PMID: 14170958
9.  Microbiological profiles of the Viking spacecraft. 
Planetary quarantine requirements associated with the launch of two Viking spacecraft necessitated microbiological assessment during assembly and testing at Cape Canaveral and the Kennedy Space Center. Samples were collected from selected surface of the Viking Lander Capsules (VLC), Orbiters, (VO), and Shrouds at predetermined intervals during assembly and testing. Approximately 7,000 samples were assayed. Levels of bacterial spores per square meter on the VLC-1 and VLC-2 were 1.6 x 10(2) and 9.7 x 10(1), respectively, prior to dry-heat sterilization. The ranges of aerobic mesophilic microorganisms detected on the VO-1 and VO-2 at various sampling events were 4.2 x 10(2) to 4.3 x 10(3) and 2.3 x 10(2) to 8.9 x 10(3)/m2, respectively. Approximately 1,300 colonies were picked from culture plates, identified, lypholipized, and stored for future reference. About 75% of all isolates were microorganisms considered indigenous to humans; the remaining isolates were associated with soil and dust in the environment. The percentage of microorganisms of human origin was consistent with results obtained with previous automated spacecraft but slightly lower than those observed for manned (Apollo) spacecraft.
PMCID: PMC170694  PMID: 848957
10.  Survival and growth of Escherichia coli O157:H7 on salad vegetables. 
The influence of modified-atmosphere packaging, storage temperature, and time on survival and growth of Escherichia coli O157:H7 inoculated onto shredded lettuce, sliced cucumber, and shredded carrot was determined. Growth of psychotrophic and mesophilic microorganisms and changes in pH and sensory qualities of vegetables, as judged by subjective evaluation, were also monitored. Packaging under an atmosphere containing 3% oxygen and 97% nitrogen had no apparent effect on populations of E. coli O157:H7, psychotrophs, or mesophiles. Populations of viable E. coli O157:H7 declined on vegetables stored at 5 degrees C and increased on vegetables stored at 12 and 21 degrees C for up to 14 days. The most rapid increases in populations of E. coli O157:H7 occurred on lettuce and cucumbers stored at 21 degrees C. These results suggest that an unknown factor(s) associated with carrots may inhibit the growth of E. coli O157:H7. The reduction in pH of vegetables was correlated with initial increases in populations of E. coli O157:H7 and naturally occurring microfloras. Eventual decreases in E. coli O157:H7 in some samples, e.g., those stored at 21 degrees C, are attributed to the toxic effect of accumulated acids. Changes in visual appearance of vegetables were not influenced substantially by growth of E. coli O157:H7. The ability of E. coli O157:H7 to growth on raw salad vegetables subjected to processing and storage conditions simulating those routinely used in commercial practice has been demonstrated.
PMCID: PMC182227  PMID: 8357240
11.  Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants 
PLoS ONE  2014;9(8):e103138.
When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.
PMCID: PMC4146463  PMID: 25162657
12.  Microbial Life beneath a High Arctic Glacier† 
The debris-rich basal ice layers of a high Arctic glacier were shown to contain metabolically diverse microbes that could be cultured oligotrophically at low temperatures (0.3 to 4°C). These organisms included aerobic chemoheterotrophs and anaerobic nitrate reducers, sulfate reducers, and methanogens. Colonies purified from subglacial samples at 4°C appeared to be predominantly psychrophilic. Aerobic chemoheterotrophs were metabolically active in unfrozen basal sediments when they were cultured at 0.3°C in the dark (to simulate nearly in situ conditions), producing 14CO2 from radiolabeled sodium acetate with minimal organic amendment (≥38 μM C). In contrast, no activity was observed when samples were cultured at subfreezing temperatures (≤−1.8°C) for 66 days. Electron microscopy of thawed basal ice samples revealed various cell morphologies, including dividing cells. This suggests that the subglacial environment beneath a polythermal glacier provides a viable habitat for life and that microbes may be widespread where the basal ice is temperate and water is present at the base of the glacier and where organic carbon from glacially overridden soils is present. Our observations raise the possibility that in situ microbial production of CO2 and CH4 beneath ice masses (e.g., the Northern Hemisphere ice sheets) is an important factor in carbon cycling during glacial periods. Moreover, this terrestrial environment may provide a model for viable habitats for life on Mars, since similar conditions may exist or may have existed in the basal sediments beneath the Martian north polar ice cap.
PMCID: PMC92136  PMID: 10919772
13.  Survival of Spacecraft-Associated Microorganisms under Simulated Martian UV Irradiation 
Applied and Environmental Microbiology  2005;71(12):8147-8156.
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.
PMCID: PMC1317311  PMID: 16332797
14.  The Effect of Freeze-Thaw Conditions on Arctic Soil Bacterial Communities 
Biology  2013;2(1):356-377.
Climate change is already altering the landscape at high latitudes. Permafrost is thawing, the growing season is starting earlier, and, as a result, certain regions in the Arctic may be subjected to an increased incidence of freeze-thaw events. The potential release of carbon and nutrients from soil microbial cells that have been lysed by freeze-thaw transitions could have significant impacts on the overall carbon balance of arctic ecosystems, and therefore on atmospheric CO2 concentrations. However, the impact of repeated freezing and thawing with the consequent growth and recrystallization of ice on microbial communities is still not well understood. Soil samples from three distinct sites, representing Canadian geographical low arctic, mid-arctic and high arctic soils were collected from Daring Lake, Alexandra Fjord and Cambridge Bay sampling sites, respectively. Laboratory-based experiments subjected the soils to multiple freeze-thaw cycles for 14 days based on field observations (0 °C to −10 °C for 12 h and −10 °C to 0 °C for 12 h) and the impact on the communities was assessed by phospholipid fatty acid (PLFA) methyl ester analysis and 16S ribosomal RNA gene sequencing. Both data sets indicated differences in composition and relative abundance between the three sites, as expected. However, there was also a strong variation within the two high latitude sites in the effects of the freeze-thaw treatment on individual PLFA and 16S-based phylotypes. These site-based heterogeneities suggest that the impact of climate change on soil microbial communities may not be predictable a priori; minor differential susceptibilities to freeze-thaw stress could lead to a “butterfly effect” as described by chaos theory, resulting in subsequent substantive differences in microbial assemblages. This perspectives article suggests that this is an unwelcome finding since it will make future predictions for the impact of on-going climate change on soil microbial communities in arctic regions all but impossible.
PMCID: PMC4009868  PMID: 24832666
climate change; arctic soils; freeze-thaw; phylogenetic composition; fatty acids; bacteria; chaos theory
15.  Cryoprotectants and Extreme Freeze Tolerance in a Subarctic Population of the Wood Frog 
PLoS ONE  2015;10(2):e0117234.
Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to –8°C, either directly or following three cycles of freezing/thawing between –4 and 0°C, or –16°C increased the liver’s synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver) of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea) to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica.
PMCID: PMC4331536  PMID: 25688861
16.  Thermal resistance of naturally occurring airborne bacterial spores. 
Simulation of a heat process used in the terminal dry-heat decontamination of the Viking spacecraft is reported. Naturally occurring airborne bacterial spores were collected on Teflon ribbons in selected spacecraft assembly areas and subsequently subjected to dry heat. Thermal inactivation experiments were conducted at 105, 111.7, 120, 125, 130, and 135 degrees C with a moisture level of 1.2 mg of water per liter. Heat survivors were recovered at temperatures of 135 degrees C when a 30-h heating cycle was employed. Survivors were recovered from all cycles studied and randomly selected for identification. The naturally occurring spore population was reduced an average of 2.2 to 4.4 log cycles from 105 to 135 degrees C. Heating cycles of 5 and 15 h at temperature were compared with the standard 30-h cycle at 111.7, 120, and 125 degrees C. No significant differences in inactivation (alpha = 0.05) were observed between 111.7 and 120 degrees C. The 30-h cycle differs from the 5-and 15-h cycles at 125 degrees C. Thus, the heating cycle can be reduced if a small fraction (about 10-3 to 10-4) of very resistant spores can be tolerated.
PMCID: PMC243071  PMID: 727780
17.  Perchlorate Radiolysis on Mars and the Origin of Martian Soil Reactivity 
Astrobiology  2013;13(6):515-520.
Results from the Viking biology experiments indicate the presence of reactive oxidants in martian soils that have previously been attributed to peroxide and superoxide. Instruments on the Mars Phoenix Lander and the Mars Science Laboratory detected perchlorate in martian soil, which is nonreactive under the conditions of the Viking biology experiments. We show that calcium perchlorate exposed to gamma rays decomposes in a CO2 atmosphere to form hypochlorite (ClO−), trapped oxygen (O2), and chlorine dioxide (ClO2). Our results show that the release of trapped O2 (g) from radiation-damaged perchlorate salts and the reaction of ClO− with amino acids that were added to the martian soils can explain the results of the Viking biology experiments. We conclude that neither hydrogen peroxide nor superoxide is required to explain the results of the Viking biology experiments. Key Words: Mars—Radiolysis—Organic degradation—in situ measurement—Planetary habitability and biosignatures. Astrobiology 13, 515–520.
PMCID: PMC3691774  PMID: 23746165
18.  Chloromethane release from carbonaceous meteorite affords new insight into Mars lander findings 
Scientific Reports  2014;4:7010.
Controversy continues as to whether chloromethane (CH3Cl) detected during pyrolysis of Martian soils by the Viking and Curiosity Mars landers is indicative of organic matter indigenous to Mars. Here we demonstrate CH3Cl release (up to 8 μg/g) during low temperature (150–400°C) pyrolysis of the carbonaceous chondrite Murchison with chloride or perchlorate as chlorine source and confirm unequivocally by stable isotope analysis the extraterrestrial origin of the methyl group (δ2H +800 to +1100‰, δ13C −19.2 to +10‰,). In the terrestrial environment CH3Cl released during pyrolysis of organic matter derives from the methoxyl pool. The methoxyl pool in Murchison is consistent both in magnitude (0.044%) and isotope signature (δ2H +1054 ± 626‰, δ13C +43.2 ± 38.8‰,) with that of the CH3Cl released on pyrolysis. Thus CH3Cl emissions recorded by Mars lander experiments may be attributed to methoxyl groups in undegraded organic matter in meteoritic debris reaching the Martian surface being converted to CH3Cl with perchlorate or chloride in Martian soil. However we cannot discount emissions arising additionally from organic matter of indigenous origin. The stable isotope signatures of CH3Cl detected on Mars could potentially be utilized to determine its origin by distinguishing between terrestrial contamination, meteoritic infall and indigenous Martian sources.
PMCID: PMC4230006  PMID: 25394222
19.  The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy 
Life : Open Access Journal  2011;1(1):19-33.
On Earth, marine anaerobic methane oxidation (AOM) can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2) found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to release), a total of about 1020 microbial cells could be supported through methanotrophy with the cells concentrated in regions of methane release.
PMCID: PMC4187123  PMID: 25382054
Archaea; methane; methanotrophy; Mars; subsurface biosphere
20.  Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer 
Geophysical Research Letters  2013;40(23):6033-6037.
[1] The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured a Mars atmospheric14N/15N ratio of 173 ± 11 on sol 341 of the mission, agreeing with Viking's measurement of 168 ± 17. The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched atmospheric sample, with CO2 and H2O removed. Doubly ionized nitrogen data at m/z 14 and 14.5 had the highest signal/background ratio, with results confirmed by m/z 28 and 29 data. Gases in SNC meteorite glasses have been interpreted as mixtures containing a Martian atmospheric component, based partly on distinctive14N/15N and40Ar/14N ratios. Recent MSL/SAM measurements of the40Ar/14N ratio (0.51 ± 0.01) are incompatible with the Viking ratio (0.35 ± 0.08). The meteorite mixing line is more consistent with the atmospheric composition measured by Viking than by MSL.
PMCID: PMC4459194  PMID: 26074632
21.  Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use 
The repeated freeze-thaw events during cold season, freezing of soils in autumn and thawing in spring are typical for the tundra, boreal, and temperate soils. The thawing of soils during winter-summer transitions induces the release of decomposable organic carbon and acceleration of soil respiration. The winter-spring fluxes of CO2 from permanently and seasonally frozen soils are essential part of annual carbon budget varying from 5 to 50%. The mechanisms of the freeze-thaw activation are not absolutely clear and need clarifying. We investigated the effect of repeated freezing-thawing events on CO2 emission from intact arable and forest soils (Luvisols, loamy silt; Central Germany) at different moisture (65% and 100% of WHC).
Due to the measurement of the CO2 flux in two hours intervals, the dynamics of CO2 emission during freezing-thawing events was described in a detailed way. At +10°C (initial level) in soils investigated, carbon dioxide emission varied between 7.4 to 43.8 mg C m-2h-1 depending on land use and moisture. CO2 flux from the totally frozen soil never reached zero and amounted to 5 to 20% of the initial level, indicating that microbial community was still active at -5°C. Significant burst of CO2 emission (1.2–1.7-fold increase depending on moisture and land use) was observed during thawing. There was close linear correlation between CO2 emission and soil temperature (R2 = 0.86–0.97, P < 0.001).
Our investigations showed that soil moisture and land use governed the initial rate of soil respiration, duration of freezing and thawing of soil, pattern of CO2 dynamics and extra CO2 fluxes. As a rule, the emissions of CO2 induced by freezing-thawing were more significant in dry soils and during the first freezing-thawing cycle (FTC). The acceleration of CO2 emission was caused by different processes: the liberation of nutrients upon the soil freezing, biological activity occurring in unfrozen water films, and respiration of cold-adapted microflora.
PMCID: PMC1808452  PMID: 17309792
22.  Simulations of gravitational stress on normovolemic and hypovolemic men and women 
Earth based simulations of physiologic responses to space mission activities are needed to develop prospective countermeasures. To determine whether upright lower body positive pressure (LBPP) provides a suitable space mission simulation, we investigated cardiovascular responses of normovolemic and hypovolemic, men and women, to supine and orthostatic stress, induced by head-up tilt (HUT) and upright LBPP, representing standing in lunar, Martian and Earth’s gravities.
Six men and six women were tested in normovolemic and hypovolemic (furosemide, intravenous, 0.5 mg/kg) conditions. Continuous electrocardiogram, blood pressure, segmental bioimpedance and stroke volume (echocardiography) were recorded supine and at lunar, Martian and Earth’s gravities (10°, 20°, 80° HUT vs. 20%, 40%, 100% body weight upright LBPP), respectively. Cardiovascular responses were assessed from mean values, spectral powers and spontaneous baroreflex parameters.
Hypovolemia reduced plasma volume by ~10% and stroke volume by ~25% at supine and increasing orthostatic stress resulted in further reductions. Upright LBPP induced more plasma volume losses at simulated lunar and Martian gravities compared with HUT, while both techniques induced comparable central hypovolemia at each stress. Cardiovascular responses to orthostatic stress were comparable between HUT and upright LBPP in both normovolemic and hypovolemic conditions, however, hypovolemic blood pressure was greater during standing at 100% body weight compared to 80° HUT due to a greater increase of total peripheral resistance.
HUT and upright LBPP induced comparable cardiovascular responses, supporting the use of upright LBPP as a potential model to simulate activity in lunar and Martian gravities.
PMCID: PMC4376358  PMID: 24754201
Blood pressure regulation; hypovolemia; baroreflex
23.  The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. 
Applied and Environmental Microbiology  1997;63(10):3818-3824.
The ability of cells to survive freezing and thawing is expected to depend on the physiological conditions experienced prior to freezing. We examined factors affecting yeast cell survival during freeze-thaw stress, including those associated with growth phase, requirement for mitochondrial functions, and prior stress treatment(s), and the role played by relevant signal transduction pathways. The yeast Saccharomyces cerevisiae was frozen at -20 degrees C for 2 h (cooling rate, less than 4 degrees C min-1) and thawed on ice for 40 min. Supercooling occurred without reducing cell survival and was followed by freezing. Loss of viability was proportional to the freezing duration, indicating that freezing is the main determinant of freeze-thaw damage. Regardless of the carbon source used, the wild-type strain and an isogenic petite mutant ([rho 0]) showed the same pattern of freeze-thaw tolerance throughout growth, i.e., high resistance during lag phase and low resistance during log phase, indicating that the response to freeze-thaw stress is growth phase specific and not controlled by glucose repression. In addition, respiratory ability and functional mitochondria are necessary to confer full resistance to freeze-thaw stress. Both nitrogen and carbon source starvation led to freeze-thaw tolerance. The use of strains affected in the RAS-cyclic AMP (RAS-cAMP) pathway or supplementation of an rca1 mutant (defective in the cAMP phosphodiesterase gene) with cAMP showed that the freeze-thaw response of yeast is under the control of the RAS-cAMP pathway. Yeast did not adapt to freeze-thaw stress following repeated freeze-thaw treatment with or without a recovery period between freeze-thaw cycles, nor could it adapt following pretreatment by cold shock. However, freeze-thaw tolerance of yeast cells was induced during fermentative and respiratory growth by pretreatment with H2O2, cycloheximide, mild heat shock, or NaCl, indicating that cross protection between freeze-thaw stress and a limited number of other types of stress exists.
PMCID: PMC168690  PMID: 9327544
24.  Evidence for methane in Martian meteorites 
Nature Communications  2015;6:7399.
The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.
Extremophiles on Earth are known to respire methane, and the potential existence of methane on Mars indicates similar organisms could survive there. Here, the authors present data from Martian meteorites confirming the presence of methane, indicating that a habitat capable of supporting organisms exists on Mars.
PMCID: PMC4521231  PMID: 26079798
25.  Crucial Role of Extracellular Polysaccharides in Desiccation and Freezing Tolerance in the Terrestrial Cyanobacterium Nostoc commune 
Applied and Environmental Microbiology  2005;71(11):7327-7333.
The cyanobacterium Nostoc commune is adapted to the terrestrial environment and has a cosmopolitan distribution. In this study, the role of extracellular polysaccharides (EPS) in the desiccation tolerance of photosynthesis in N. commune was examined. Although photosynthetic O2 evolution was not detected in desiccated colonies, the ability of the cells to evolve O2 rapidly recovered after rehydration. The air-dried colonies contained approximately 10% (wt/wt) water, and field-isolated, natural colonies with EPS were highly water absorbent and were rapidly hydrated by atmospheric moisture. The cells embedded in EPS in Nostoc colonies were highly desiccation tolerant, and O2 evolution was not damaged by air drying. Although N. commune was determined to be a mesophilic cyanobacterium, the cells with EPS were heat tolerant in a desiccated state. EPS could be removed from cells by homogenizing colonies with a blender and filtering with coarse filter paper. This treatment to remove EPS did not damage Nostoc cells or their ability to evolve O2, but O2 evolution was significantly damaged by desiccation treatment of the EPS-depleted cells. Similar to the EPS-depleted cells, the laboratory culture strain KU002 had only small amount of EPS and was highly sensitive to desiccation. In the EPS-depleted cells, O2 evolution was also sensitive to freeze-thaw treatment. These results strongly suggest that EPS of N. commune is crucial for the stress tolerance of photosynthesis during desiccation and during freezing and thawing.
PMCID: PMC1287664  PMID: 16269775

Results 1-25 (914648)