PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (878850)

Clipboard (0)
None

Related Articles

1.  European Bat Lyssaviruses, the Netherlands 
Emerging Infectious Diseases  2005;11(12):1854-1859.
Genotype 5 lyssaviruses are endemic in the Netherlands, and can cause fatal infections in humans.
To study European bat lyssavirus (EBLV) in bat reservoirs in the Netherlands, native bats have been tested for rabies since 1984. For all collected bats, data including species, age, sex, and date and location found were recorded. A total of 1,219 serotine bats, Eptesicus serotinus, were tested, and 251 (21%) were positive for lyssavirus antigen. Five (4%) of 129 specimens from the pond bat, Myotis dasycneme, were positive. Recently detected EBLV RNA segments encoding the nucleoprotein were sequenced and analyzed phylogenetically (45 specimens). All recent serotine bat specimens clustered with genotype 5 (EBLV1) sequences, and homologies within subgenotypes EBLV1a and EBLV1b were 99.0%–100% and 99.2%–100%, respectively. Our findings indicate that EBLVs of genotype 5 are endemic in the serotine bat in the Netherlands. Since EBLVs can cause fatal infections in humans, all serotine and pond bats involved in contact incidents should be tested to determine whether the victim was exposed to EBLVs.
doi:10.3201/eid1112.041200
PMCID: PMC3367619  PMID: 16485470
EBLV; lyssavirus; the Netherlands; bat; Eptesicus serotinus; Myotis dasycneme; Europe; research
2.  Bat rabies surveillance in Finland 
Background
In 1985, a bat researcher in Finland died of rabies encephalitis caused by European bat lyssavirus type 2 (EBLV-2), but an epidemiological study in 1986 did not reveal EBLV-infected bats. In 2009, an EBLV-2-positive Daubenton’s bat was detected. The EBLV-2 isolate from the human case in 1985 and the isolate from the bat in 2009 were genetically closely related. In order to assess the prevalence of EBLVs in Finnish bat populations and to gain a better understanding of the public health risk that EBLV-infected bats pose, a targeted active surveillance project was initiated.
Results
Altogether, 1156 bats of seven species were examined for lyssaviruses in Finland during a 28–year period (1985–2012), 898 in active surveillance and 258 in passive surveillance, with only one positive finding of EBLV-2 in a Daubenton’s bat in 2009. In 2010–2011, saliva samples from 774 bats of seven species were analyzed for EBLV viral RNA, and sera from 423 bats were analyzed for the presence of bat lyssavirus antibodies. Antibodies were detected in Daubenton’s bats in samples collected from two locations in 2010 and from one location in 2011. All seropositive locations are in close proximity to the place where the EBLV-2 positive Daubenton’s bat was found in 2009. In active surveillance, no EBLV viral RNA was detected.
Conclusions
These data suggest that EBLV-2 may circulate in Finland, even though the seroprevalence is low. Our results indicate that passive surveillance of dead or sick bats is a relevant means examine the occurrence of lyssavirus infection, but the number of bats submitted for laboratory analysis should be higher in order to obtain reliable information on the lyssavirus situation in the country.
doi:10.1186/1746-6148-9-174
PMCID: PMC3846527  PMID: 24011337
EBLV; Lyssavirus; Rabies; Seroprevalence
3.  Serologic Evidence of Lyssavirus Infections among Bats, the Philippines 
Emerging Infectious Diseases  2002;8(3):258-262.
Active surveillance for lyssaviruses was conducted among populations of bats in the Philippines. The presence of past or current Lyssavirus infection was determined by use of direct fluorescent antibody assays on bat brains and virus neutralization assays on bat sera. Although no bats were found to have active infection with a Lyssavirus, 22 had evidence of neutralizing antibody against the Australian bat lyssavirus (ABLV). Seropositivity was statistically associated with one species of bat, Miniopterus schreibersi. Results from the virus neutralization assays are consistent with the presence in the Philippines of a naturally occurring Lyssavirus related to ABLV.
doi:10.3201/eid0803.010330
PMCID: PMC2732470  PMID: 11927022
rabies; Lyssavirus; Chiroptera; Philippines
4.  Antigenic and molecular characterization of bat rabies virus in Europe. 
Journal of Clinical Microbiology  1992;30(9):2419-2426.
The predominant role of Eptesicus serotinus in the epizootic of bat rabies in Europe was further outlined by the first isolation of the rabies virus from this species in France. The distribution of the virus was studied in naturally infected E. serotinus bats at the time of death and suggested that the papillae of the tongue and the respiratory mucosa may play a role in virus production and excretion. The analysis of 501 French rabies virus isolates from various animal species by antinucleocapsid monoclonal antibodies indicated that transmission of the disease from bats to terrestrial animals is unlikely. The antigenic profile of two isolates from French bats corresponded to that of European bat lyssavirus type 1 (EBL1). Comparisons of 12 different isolates from bats with antinucleocapsid and antiglycoprotein monoclonal antibodies and by direct sequencing of the polymerase chain reaction amplification product of the N gene indicated that EBL1, EBL2, Duvenhage virus (serotype 4 of lyssavirus), and the European fox rabies virus (serotype 1) are phylogenetically distant. They formed four tight genetic clusters named genotypes. EBL1 was shown to be antigenically and genetically more closely related to Duvenhage virus than to EBL2. We propose that EBL1 and EBL2 constitute two distinct genotypes which further serologic characterization will probably classify as new serotypes. We also report a simple method for the rapid characterization of EBL based on the digestion of the polymerase chain reaction product of the N gene by three restriction endonucleases.
Images
PMCID: PMC265516  PMID: 1401009
5.  Temporal Dynamics of European Bat Lyssavirus Type 1 and Survival of Myotis myotis Bats in Natural Colonies 
PLoS ONE  2007;2(6):e566.
Many emerging RNA viruses of public health concern have recently been detected in bats. However, the dynamics of these viruses in natural bat colonies is presently unknown. Consequently, prediction of the spread of these viruses and the establishment of appropriate control measures are hindered by a lack of information. To this aim, we collected epidemiological, virological and ecological data during a twelve-year longitudinal study in two colonies of insectivorous bats (Myotis myotis) located in Spain and infected by the most common bat lyssavirus found in Europe, the European bat lyssavirus subtype 1 (EBLV-1). This active survey demonstrates that cyclic lyssavirus infections occurred with periodic oscillations in the number of susceptible, immune and infected bats. Persistence of immunity for more than one year was detected in some individuals. These data were further used to feed models to analyze the temporal dynamics of EBLV-1 and the survival rate of bats. According to these models, the infection is characterized by a predicted low basic reproductive rate (R0 = 1.706) and a short infectious period (D = 5.1 days). In contrast to observations in most non-flying animals infected with rabies, the survival model shows no variation in mortality after EBLV-1 infection of M. myotis. These findings have considerable public health implications in terms of management of colonies where lyssavirus-positive bats have been recorded and confirm the potential risk of rabies transmission to humans. A greater understanding of the dynamics of lyssavirus in bat colonies also provides a model to study how bats contribute to the maintenance and transmission of other viruses of public health concern.
doi:10.1371/journal.pone.0000566
PMCID: PMC1892799  PMID: 17593965
6.  Laboratory Surveillance of Rabies in Humans, Domestic Animals, and Bats in Madagascar from 2005 to 2010 
Background. Rabies virus (RABV) has circulated in Madagascar at least since the 19th century. Objectives. To assess the circulation of lyssavirus in the island from 2005 to 2010. Materials and Methods. Animal (including bats) and human samples were tested for RABV and other lyssavirus using antigen, ribonucleic acid (RNA), and antibodies detection and virus isolation. Results. Half of the 437 domestic or tame wild terrestrial mammal brains tested were found RABV antigen positive, including 54% of the 341 dogs tested. This percentage ranged from 26% to 75% across the period. Nine of the 10 suspected human cases tested were laboratory confirmed. RABV circulation was confirmed in 34 of the 38 districts sampled. No lyssavirus RNA was detected in 1983 bats specimens. Nevertheless, antibodies against Lagos bat virus were detected in the sera of 12 among 50 Eidolon dupreanum specimens sampled. Conclusion. More than a century after the introduction of the vaccine, rabies still remains endemic in Madagascar.
doi:10.4061/2011/727821
PMCID: PMC3170745  PMID: 21991442
7.  Survey for Bat Lyssaviruses, Thailand 
Emerging Infectious Diseases  2005;11(2):232-236.
Surveillance for lyssaviruses was conducted among bat populations in 8 provinces in Thailand. In 2002 and 2003, a total of 932 bats of 11 species were captured and released after serum collection. Lyssavirus infection was determined by conducting virus neutralization assays on bat serum samples. Of collected samples, 538 were either hemolysed or insufficient in volume, which left 394 suitable for analysis. These samples included the following: Pteropus lylei (n = 335), Eonycteris spelaea (n = 45), Hipposideros armiger (n = 13), and Rousettus leschennaulti (n = 1). No serum samples had evidence of neutralizing antibodies when tested against rabies virus. However, 16 samples had detectable neutralizing antibodies against Aravan virus, Khujand virus, Irkut virus, or Australian bat lyssavirus; all were specifically associated with fruit bats P. lylei (n = 15) and E. spelaea (n = 1). These results are consistent with the presence of naturally occurring viruses related to new putative lyssavirus genotypes.
doi:10.3201/eid1102.040691
PMCID: PMC3320458  PMID: 15752440
Lyssavirus; rabies; RNA; bat; chiroptera; zoonosis; animals; fluorescent antibody technique; direct/veterinary; Thailand; research
8.  Isolation of Irkut Virus from a Murina leucogaster Bat in China 
Background and objectives
Bats are recognized as a major reservoir of lyssaviruses; however, no bat lyssavirus has been isolated in Asia except for Aravan and Khujand virus in Central Asia. All Chinese lyssavirus isolates in previous reports have been of species rabies virus, mainly from dogs. Following at least two recent bat-associated human rabies-like cases in northeast China, we have initiated a study of the prevalence of lyssaviruses in bats in Jilin province and their public health implications. A bat lyssavirus has been isolated and its pathogenicity in mice and genomic alignment have been determined.
Results
We report the first isolation of a bat lyssavirus in China, from the brain of a northeastern bat, Murina leucogaster. Its nucleoprotein gene shared 92.4%/98.9% (nucleotide) and 92.2%/98.8% (amino acid) identity with the two known Irkut virus isolates from Russia, and was designated IRKV-THChina12. Following intracranial and intramuscular injection, IRKV-THChina12 produced rabies-like symptoms in adult mice with a short inoculation period and high mortality. Nucleotide sequence analysis showed that IRKV-THChina12 has the same genomic organization as other lyssaviruses and its isolation provides an independent origin for the species IRKV.
Conclusions
We have identified the existence of a bat lyssavirus in a common Chinese bat species. Its high pathogenicity in adult mice suggests that public warnings and medical education regarding bat bites in China should be increased, and that surveillance be extended to provide a better understanding of Irkut virus ecology and its significance for public health.
Author Summary
The Lyssavirus genus presently comprises 12 species and two unapproved species with different antigenic characteristics. Rabies virus is detectable worldwide; Lagos bat virus, Mokola virus, Duvenhage virus, Shimoni bat virus, and Ikoma lyssavirus circulate in Africa; European bat lyssavirus types 1 and 2, Irkut virus, West Caucasian bat virus, and Bokeloh bat lyssavirus are found in Europe; and Australian bat lyssavirus has been isolated in Australia. Only Aravan and Khujand viruses have been identified in central Asia. Bats are recognized as the most important reservoirs of lyssaviruses. In China, all lyssavirus isolates in previous reports have been rabies virus, mainly from dogs; none has been from bats. Recently, however, at least two bat-associated human rabies or rabies-like cases have been reported in northeast China. Therefore, we conducted a search for bat lyssaviruses in Jilin province, close to where the first bat-associated human rabies case was recorded. We isolated a bat lyssavirus, identified as an Irkut virus isolate with high pathogenicity in experimental mice. Our findings suggest that public warnings and medical education regarding bat bites in China should be increased, and that surveillance should be extended to provide a better understanding of Irkut virus ecology and its significance for public health.
doi:10.1371/journal.pntd.0002097
PMCID: PMC3591329  PMID: 23505588
9.  Ecological Factors Associated with European Bat Lyssavirus Seroprevalence in Spanish Bats 
PLoS ONE  2013;8(5):e64467.
Bats have been proposed as major reservoirs for diverse emerging infectious viral diseases, with rabies being the best known in Europe. However, studies exploring the ecological interaction between lyssaviruses and their natural hosts are scarce. This study completes our active surveillance work on Spanish bat colonies that began in 1992. Herein, we analyzed ecological factors that might affect the infection dynamics observed in those colonies. Between 2001 and 2011, we collected and tested 2,393 blood samples and 45 dead bats from 25 localities and 20 bat species. The results for dead confirmed the presence of EBLV-1 RNA in six species analyzed (for the first time in Myotis capaccinii). Samples positive for European bat lyssavirus-1 (EBLV-1)–neutralizing antibodies were detected in 68% of the localities sampled and in 13 bat species, seven of which were found for the first time (even in Myotis daubentonii, a species to date always linked to EBLV-2). EBLV-1 seroprevalence (20.7%) ranged between 11.1 and 40.2% among bat species and seasonal variation was observed, with significantly higher antibody prevalence in summer (July). EBLV-1 seroprevalence was significantly associated with colony size and species richness. Higher seroprevalence percentages were found in large multispecific colonies, suggesting that intra- and interspecific contacts are major risk factors for EBLV-1 transmission in bat colonies. Although bat-roosting behavior strongly determines EBLV-1 variability, we also found some evidence that bat phylogeny might be involved in bat-species seroprevalence. The results of this study highlight the importance of life history and roost ecology in understanding EBLV-1–prevalence patterns in bat colonies and also provide useful information for public health officials.
doi:10.1371/journal.pone.0064467
PMCID: PMC3659107  PMID: 23700480
10.  A universal real-time assay for the detection of Lyssaviruses 
Journal of Virological Methods  2011;177(1-24):87-93.
Highlights
► Universal real-time PCR primer pair demonstrated to hybridize to and detect each of the known Lyssaviruses (including Rabies virus) with greater sensitivity than a standard pan-Lyssavirus hemi-nested RT-PCR typically used. ► Target sequences of bat derived virus species unavailable for analysis (Aravan-, Khujand-, Irkut-, West Caucasian bat- and Shimoni bat virus) were synthesized to produce oligonucleotides and the synthetic DNA was used as a target for primer hybridization.
Rabies virus (RABV) is enzootic throughout most of the world. It is now widely accepted that RABV had its origins in bats. Ten of the 11 Lyssavirus species recognised, including RABV, have been isolated from bats. There is, however, a lack of understanding regarding both the ecology and host reservoirs of Lyssaviruses. A real-time PCR assay for the detection of all Lyssaviruses using universal primers would be beneficial for Lyssavirus surveillance. It was shown that using SYBR® Green, a universal real-time PCR primer pair previously demonstrated to detect European bat Lyssaviruses 1 and 2, and RABV, was able to detect reverse transcribed RNA for each of the seven virus species available to us. Target sequences of bat derived virus species unavailable for analysis were synthesized to produce oligonucleotides. Lagos Bat-, Duvenhage- and Mokola virus full nucleoprotein gene clones enabled a limit of 5–50 plasmid copies to be detected. Five copies of each of the synthetic DNA oligonucleotides of Aravan-, Khujand-, Irkut-, West Caucasian bat- and Shimoni bat virus were detected. The single universal primer pair was therefore able to detect each of the most divergent known Lyssaviruses with great sensitivity.
doi:10.1016/j.jviromet.2011.07.002
PMCID: PMC3191275  PMID: 21777619
Lyssavirus; Rabies; Bat; SYBR Green; Real-time PCR; Synthetic DNA
11.  European Bat Lyssavirus in Scottish Bats 
Emerging Infectious Diseases  2005;11(4):572-578.
Daubenton bats may roost infrequently in human dwellings, so risk for human contact is low.
We report the first seroprevalence study of the occurrence of specific antibodies to European bat lyssavirus type 2 (EBLV-2) in Daubenton's bats. Bats were captured from 19 sites across eastern and southern Scotland. Samples from 198 Daubenton's bats, 20 Natterer's bats, and 6 Pipistrelle's bats were tested for EBLV-2. Blood samples (N = 94) were subjected to a modified fluorescent antibody virus neutralization test to determine antibody titer. From 0.05% to 3.8% (95% confidence interval) of Daubenton's bats were seropositive. Antibodies to EBLV-2 were not detected in the 2 other species tested. Mouth swabs (N = 218) were obtained, and RNA was extracted for a reverse transcription–polymerase chain reaction (RT-PCR). The RT-PCR included pan lyssavirus-primers (N gene) and internal PCR control primers for ribosomal RNA. EBLV-2 RNA was not detected in any of the saliva samples tested, and live virus was not detected in virus isolation tests.
doi:10.3201/eid1104.040920
PMCID: PMC3320325  PMID: 15829196
Lyssavirus; EBLV-2; seroprevalence; Daubenton bats; Scotland; research
12.  Rabies-Related Knowledge and Practices Among Persons At Risk of Bat Exposures in Thailand 
Background
Rabies is a fatal encephalitis caused by lyssaviruses. Evidence of lyssavirus circulation has recently emerged in Southeast Asian bats. A cross-sectional study was conducted in Thailand to assess rabies-related knowledge and practices among persons regularly exposed to bats and bat habitats. The objectives were to identify deficiencies in rabies awareness, describe the occurrence of bat exposures, and explore factors associated with transdermal bat exposures.
Methods
A survey was administered to a convenience sample of adult guano miners, bat hunters, game wardens, and residents/personnel at Buddhist temples where mass bat roosting occurs. The questionnaire elicited information on demographics, experience with bat exposures, and rabies knowledge. Participants were also asked to describe actions they would take in response to a bat bite as well as actions for a bite from a potentially rabid animal. Bivariate analysis was used to compare responses between groups and multivariable logistic regression was used to explore factors independently associated with being bitten or scratched by a bat.
Findings
Of 106 people interviewed, 11 (10%) identified bats as a potential source of rabies. A history of a bat bite or scratch was reported by 29 (27%), and 38 (36%) stated either that they would do nothing or that they did not know what they would do in response to a bat bite. Guano miners were less likely than other groups to indicate animal bites as a mechanism of rabies transmission (68% vs. 90%, p = 0.03) and were less likely to say they would respond appropriately to a bat bite or scratch (61% vs. 27%, p = 0.003). Guano mining, bat hunting, and being in a bat cave or roost area more than 5 times a year were associated with history of a bat bite or scratch.
Conclusions
These findings indicate the need for educational outreach to raise awareness of bat rabies, promote exposure prevention, and ensure appropriate health-seeking behaviors for bat-inflicted wounds, particularly among at-risk groups in Thailand.
Author Summary
Rabies is a fatal encephalitis caused by lyssaviruses. Evidence of lyssavirus circulation has recently emerged in Southeast Asian bats. We surveyed persons regularly exposed to bats and bat habitats in Thailand to assess rabies‐related knowledge and practices. Targeted groups included guano miners, bat hunters, game wardens, and residents/personnel at Buddhist temples where mass bat roosting occurs. Of the 106 people interviewed, 11 (10%) identified bats as a source of rabies. History of a bat bite/scratch was reported by 29 (27%), and 38 (36%) expressed either that they would do nothing or that they did not know what they would do in response to a bat bite. Guano miners were less likely than other groups to indicate animal bites as a mechanism of transmission (68% vs. 90%, p=0.03) and were less likely to say they would respond appropriately to a bat bite or scratch (61% vs. 27%, p=0.003). These findings indicate a need for educational outreach in Thailand to raise awareness of bat rabies, promote exposure prevention, and ensure health‐seeking behaviors for bat‐inflicted wounds, particularly among at‐risk groups.
doi:10.1371/journal.pntd.0001054
PMCID: PMC3125144  PMID: 21738801
13.  Bat Rabies in Canada 1963-1967 
Six hundred and twenty-eight insectivorous bats originating from seven provinces were submitted to this Institute for rabies diagnosis between August 1, 1963 and December 31, 1967. Brain tissue was examined by the fluorescent antibody technique and the mouse infectivity test was carried out with brain, salivary gland, interscapular adipose tissue and kidney samples. Rabies virus was detected in 44 bats, 29 of which were from Ontario, 12 from British Columbia and three from Manitoba. Most of the positive cases were diagnosed in summer months. Seven species were represented among the specimens found to be rabid; there were 32 big brown bats, three hoary bats, three silver-haired bats, two little brown bats, one eastern pipistrelle, one Keen myotis and one red bat. Another bat which was not identified also proved to be infected with rabies.
PMCID: PMC1319378  PMID: 4242773
14.  Naturally Acquired Rabies Virus Infections in Wild-Caught Bats 
Abstract
The study of a zoonotic disease requires an understanding of the disease incidence in animal reservoirs. Rabies incidence in bats submitted to diagnostic laboratories does not accurately reflect the true incidence in wild bat populations as a bias exists for testing bats that have been in contact with humans or pets. This article details the rabies incidence in two species of bats collected from natural settings without such bias. In this study, brain smears from 0.6% and 2.5% of wild-caught and apparently healthy Tadarida brasiliensis and Eptesicus fuscus, respectively, were positive for rabies virus (RV) antigen. Conversely, 92% of the grounded T. brasiliensis were positive for RV. Serology performed on captive colony and sick bats reveal an immune response to rabies. This work illustrates the complex interplay between immunity, disease state, and the conundrum of RV maintenance in bats.
doi:10.1089/vbz.2011.0674
PMCID: PMC3249890  PMID: 21923271
Antibodies; Bats; Rabies; Viral isolation
15.  Host immunity to repeated rabies virus infection in big brown bats 
The Journal of General Virology  2010;91(Pt 9):2360-2366.
Bats are natural reservoirs for the majority of lyssaviruses globally, and are unique among mammals in having exceptional sociality and longevity. Given these facets, and the recognized status of bats as reservoirs for rabies viruses (RABVs) in the Americas, individual bats may experience repeated exposure to RABV during their lifetime. Nevertheless, little information exists with regard to within-host infection dynamics and the role of immunological memory that may result from abortive RABV infection in bats. In this study, a cohort of big brown bats (Eptesicus fuscus) was infected intramuscularly in the left and right masseter muscles with varying doses [10−0.1–104.9 median mouse intracerebral lethal doses (MICLD50)] of an E. fuscus RABV variant isolated from a naturally infected big brown bat. Surviving bats were infected a second time at 175 days post-(primary) infection with a dose (103.9–104.9 MICLD50) of the same RABV variant. Surviving bats were infected a third time at either 175 or 305 days post-(secondary) infection with a dose (104.9 MICLD50) of the same RABV variant. When correcting for dose, similar mortality was observed following primary and secondary infection, but reduced mortality was observed following the third and last RABV challenge, despite infection with a high viral dose. Inducible RABV-neutralizing antibody titres post-infection were ephemeral among infected individuals, and dropped below levels of detection in several bats between subsequent infections. These results suggest that long-term repeated infection of bats may confer significant immunological memory and reduced susceptibility to RABV infection.
doi:10.1099/vir.0.020073-0
PMCID: PMC3052523  PMID: 20519458
16.  Rabies Virus Infection in Eptesicus fuscus Bats Born in Captivity (Naïve Bats) 
PLoS ONE  2013;8(5):e64808.
The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV) studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA) may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats), naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1). Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2.
doi:10.1371/journal.pone.0064808
PMCID: PMC3669413  PMID: 23741396
17.  Lagos Bat Virus in Kenya▿  
Journal of Clinical Microbiology  2008;46(4):1451-1461.
During lyssavirus surveillance, 1,221 bats of at least 30 species were collected from 25 locations in Kenya. One isolate of Lagos bat virus (LBV) was obtained from a dead Eidolon helvum fruit bat. The virus was most similar phylogenetically to LBV isolates from Senegal (1985) and from France (imported from Togo or Egypt; 1999), sharing with these viruses 100% nucleoprotein identity and 99.8 to 100% glycoprotein identity. This genome conservancy across space and time suggests that LBV is well adapted to its natural host species and that populations of reservoir hosts in eastern and western Africa have sufficient interactions to share pathogens. High virus concentrations, in addition to being detected in the brain, were detected in the salivary glands and tongue and in an oral swab, suggesting that LBV is transmitted in the saliva. In other extraneural organs, the virus was generally associated with innervations and ganglia. The presence of infectious virus in the reproductive tract and in a vaginal swab implies an alternative opportunity for transmission. The isolate was pathogenic for laboratory mice by the intracerebral and intramuscular routes. Serologic screening demonstrated the presence of LBV-neutralizing antibodies in E. helvum and Rousettus aegyptiacus fruit bats. In different colonies the seroprevalence ranged from 40 to 67% and 29 to 46% for E. helvum and R. aegyptiacus, respectively. Nested reverse transcription-PCR did not reveal the presence of viral RNA in oral swabs of bats in the absence of brain infection. Several large bat roosts were identified in areas of dense human populations, raising public health concerns for the potential of lyssavirus infection.
doi:10.1128/JCM.00016-08
PMCID: PMC2292963  PMID: 18305130
18.  Endemic Circulation of European Bat Lyssavirus Type 1 in Serotine Bats, Spain 
Emerging Infectious Diseases  2008;14(8):1263-1266.
To determine the presence of European bat lyssavirus type 1 in southern Spain, we studied 19 colonies of serotine bats (Eptesicus isabellinus), its main reservoir, during 1998–2003. Viral genome and antibodies were detected in healthy bats, which suggests subclinical infection. The different temporal patterns of circulation found in each colony indicate independent endemic circulation.
doi:10.3201/1408.080068
PMCID: PMC2600403  PMID: 18680651
lyssavirus; bats; surveillance; rabies; dispatch
19.  Susceptibility and Pathogenesis of Little Brown Bats (Myotis lucifugus) to Heterologous and Homologous Rabies Viruses 
Journal of Virology  2013;87(16):9008-9015.
Rabies virus (RABV) maintenance in bats is not well understood. Big brown bats (Eptesicus fuscus), little brown bats (Myotis lucifugus), and Mexican free-tailed bats (Tadarida brasiliensis) are the most common bats species in the United States. These colonial bat species also have the most frequent contact with humans and domestic animals. However, the silver-haired bat (Lasionycteris noctivagans) RABV is associated with the majority of human rabies virus infections in the United States and Canada. This is of interest because silver-haired bats are more solitary bats with infrequent human interaction. Our goal was to determine the likelihood of a colonial bat species becoming infected with and transmitting a heterologous RABV. To ascertain the potential of heterologous RABV infection in colonial bat species, little brown bats were inoculated with a homologous RABV or one of two heterologous RABVs. Additionally, to determine if the route of exposure influenced the disease process, bats were inoculated either intramuscularly (i.m.) or subcutaneously (s.c.) with a homologous or heterologous RABV. Our results demonstrate that intramuscular inoculation results in a more rapid progression of disease onset, whereas the incubation time in bats inoculated s.c. is significantly longer. Additionally, cross protection was not consistently achieved in bats previously inoculated with a heterologous RABV following a challenge with a homologous RABV 6 months later. Finally, bats that developed rabies following s.c. inoculation were significantly more likely to shed virus in their saliva and demonstrated increased viral dissemination. In summary, bats inoculated via the s.c. route are more likely to shed virus, thus increasing the likelihood of transmission.
doi:10.1128/JVI.03554-12
PMCID: PMC3754046  PMID: 23741002
20.  Molecular Inferences Suggest Multiple Host Shifts of Rabies Viruses from Bats to Mesocarnivores in Arizona during 2001–2009 
PLoS Pathogens  2012;8(6):e1002786.
In nature, rabies virus (RABV; genus Lyssavirus, family Rhabdoviridae) represents an assemblage of phylogenetic lineages, associated with specific mammalian host species. Although it is generally accepted that RABV evolved originally in bats and further shifted to carnivores, mechanisms of such host shifts are poorly understood, and examples are rarely present in surveillance data. Outbreaks in carnivores caused by a RABV variant, associated with big brown bats, occurred repeatedly during 2001–2009 in the Flagstaff area of Arizona. After each outbreak, extensive control campaigns were undertaken, with no reports of further rabies cases in carnivores for the next several years. However, questions remained whether all outbreaks were caused by a single introduction and further perpetuation of bat RABV in carnivore populations, or each outbreak was caused by an independent introduction of a bat virus. Another question of concern was related to adaptive changes in the RABV genome associated with host shifts. To address these questions, we sequenced and analyzed 66 complete and 20 nearly complete RABV genomes, including those from the Flagstaff area and other similar outbreaks in carnivores, caused by bat RABVs, and representatives of the major RABV lineages circulating in North America and worldwide. Phylogenetic analysis demonstrated that each Flagstaff outbreak was caused by an independent introduction of bat RABV into populations of carnivores. Positive selection analysis confirmed the absence of post-shift changes in RABV genes. In contrast, convergent evolution analysis demonstrated several amino acids in the N, P, G and L proteins, which might be significant for pre-adaptation of bat viruses to cause effective infection in carnivores. The substitution S/T242 in the viral glycoprotein is of particular merit, as a similar substitution was suggested for pathogenicity of Nishigahara RABV strain. Roles of the amino acid changes, detected in our study, require additional investigations, using reverse genetics and other approaches.
Author Summary
Host shifts of the rabies virus (RABV) from bats to carnivores are important for our understanding of viral evolution and emergence, and have significant public health implications, particularly for the areas where “terrestrial” rabies has been eliminated. In this study we addressed several rabies outbreaks in carnivores that occurred in the Flagstaff area of Arizona during 2001–2009, and caused by the RABV variant associated with big brown bats (Eptesicus fuscus). Based on phylogenetic analysis we demonstrated that each outbreak resulted from a separate introduction of bat RABV into populations of carnivores. No post-shift changes in viral genomes were detected under the positive selection analysis. Trying to answer the question why certain bat RABV variants are capable for host shifts to carnivores and other variants are not, we developed a convergent evolution analysis, and implemented it for multiple RABV lineages circulating worldwide. This analysis identified several amino acids in RABV proteins which may facilitate host shifts from bats to carnivores. Precise roles of these amino acids require additional investigations, using reverse genetics and animal experimentation. In general, our approach and the results obtained can be used for prediction of host shifts and emergence of other zoonotic pathogens.
doi:10.1371/journal.ppat.1002786
PMCID: PMC3380930  PMID: 22737076
21.  Novel Papillomaviruses in Free-Ranging Iberian Bats: No Virus–Host Co-evolution, No Strict Host Specificity, and Hints for Recombination 
Genome Biology and Evolution  2014;6(1):94-104.
Papillomaviruses (PVs) are widespread pathogens. However, the extent of PV infections in bats remains largely unknown. This work represents the first comprehensive study of PVs in Iberian bats. We identified four novel PVs in the mucosa of free-ranging Eptesicus serotinus (EserPV1, EserPV2, and EserPV3) and Rhinolophus ferrumequinum (RferPV1) individuals and analyzed their phylogenetic relationships within the viral family. We further assessed their prevalence in different populations of E. serotinus and its close relative E. isabellinus. Although it is frequent to read that PVs co-evolve with their host, that PVs are highly species-specific, and that PVs do not usually recombine, our results suggest otherwise. First, strict virus–host co-evolution is rejected by the existence of five, distantly related bat PV lineages and by the lack of congruence between bats and bat PVs phylogenies. Second, the ability of EserPV2 and EserPV3 to infect two different bat species (E. serotinus and E. isabellinus) argues against strict host specificity. Finally, the description of a second noncoding region in the RferPV1 genome reinforces the view of an increased susceptibility to recombination in the E2-L2 genomic region. These findings prompt the question of whether the prevailing paradigms regarding PVs evolution should be reconsidered.
doi:10.1093/gbe/evt211
PMCID: PMC3914694  PMID: 24391150
bats; papillomavirus; evolution; phylogeny; biodiversity; wildlife
22.  The epidemiology of bat rabies in New York State, 1988-92. 
Epidemiology and Infection  1994;113(3):501-511.
In 1993 New York and Texas each reported a human rabies case traced to a rare variant of rabies virus found in an uncommon species of bat. This study examined the epidemiology of bat rabies in New York State. Demographic, species, and animal-contact information for bats submitted for rabies testing from 1988-92 was analysed. The prevalence of rabies in 6810 bats was 4.6%. Nearly 90% of the 308 rabid bats identified to species were the common big brown bat (Eptesicus fuscus), which comprised 62% of all submissions. Only 25 submissions were silver-haired bats (Lasionycterus noctivagans), the species associated with the two 1993 human cases of rabies, and only two of these bats were positive. Rabies was most prevalent in female bats, in bats submitted because of human [corrected] contact, and in animals tested during September and October. These results highlight the unusual circumstances surrounding the recent human rabies cases in the United States. A species of bat rarely encountered by humans, and contributing little to the total rabies cases in bats, has been implicated in the majority of the indigenously acquired human rabies cases in the United States. The factors contributing to the transmission of this rare rabies variant remain unclear.
Images
PMCID: PMC2271321  PMID: 7995360
23.  Bat Rabies in British Columbia 1971-1985 
Rabies virus was demonstrated in 99 of 1154 bats submitted from British Columbia between 1971 and 1985. Rabies was diagnosed in seven species including big brown bats (Eptesicus fuscus), the latter accounting for 51% of all positive cases. Colonial species represented 92.9% of all identified bats and 87.7% of all rabid cases. Most bats were submitted from the more densely populated areas of the province, and submissions and positive cases both peaked in the month of August. Daytime activity and inability to fly were the most common behaviors reported in rabid bats.
PMCID: PMC1680738  PMID: 17422945
24.  Characteristics of bat rabies in Alberta. 
Rabies in bats was monitored in Alberta from 1971 to 1978 Big brown bats replaced silver-haired bats as the species most frequently reported rabid during these years. Rabies infection was comparatively high among little brown bats in central Alberta in 1973 and has subsequently declined. Only one rabid little brown bat was discovered in southern Alberta which is populated by a different subspecies. Outbreaks of rabies in little brown and big brown bat colonies tended to be brief events. Observations of free-ranging bats with probable furious rabies suggested that bats do not generally identify humans as targets for attack. Independent trends in infection rates suggested that spread of rabies is primarily intraspecific but there is evidence that migratory bats play a role in introduction and maintenance of rabies in northern temperate bat communities. The dynamics of bat rabies in Alberta are discussed.
PMCID: PMC1320036  PMID: 7397600
25.  First Human Rabies Case in French Guiana, 2008: Epidemiological Investigation and Control 
Background
Until 2008, human rabies had never been reported in French Guiana. On 28 May 2008, the French National Reference Center for Rabies (Institut Pasteur, Paris) confirmed the rabies diagnosis, based on hemi-nested polymerase chain reaction on skin biopsy and saliva specimens from a Guianan, who had never travelled overseas and died in Cayenne after presenting clinically typical meningoencephalitis.
Methodology/Principal Findings
Molecular typing of the virus identified a Lyssavirus (Rabies virus species), closely related to those circulating in hematophagous bats (mainly Desmodus rotundus) in Latin America. A multidisciplinary Crisis Unit was activated. Its objectives were to implement an epidemiological investigation and a veterinary survey, to provide control measures and establish a communications program. The origin of the contamination was not formally established, but was probably linked to a bat bite based on the virus type isolated. After confirming exposure of 90 persons, they were vaccinated against rabies: 42 from the case's entourage and 48 healthcare workers. To handle that emergence and the local population's increased demand to be vaccinated, a specific communications program was established using several media: television, newspaper, radio.
Conclusion/Significance
This episode, occurring in the context of a Department far from continental France, strongly affected the local population, healthcare workers and authorities, and the management team faced intense pressure. This observation confirms that the risk of contracting rabies in French Guiana is real, with consequences for population educational program, control measures, medical diagnosis and post-exposure prophylaxis.
Author Summary
Until 2008, rabies had never been described within the French Guianan human population. Emergence of the first case in May 2008 in this French Overseas Department represented a public health event that markedly affected the local population, healthcare workers and public health authorities. The antirabies clinic of French Guiana, located at Institut Pasteur de la Guyane, had to reorganize its functioning to handle the dramatically increased demand for vaccination. A rigorous epidemiological investigation and a veterinary study were conducted to identify the contamination source, probably linked to a bat bite, and the exposed population. Communication was a key factor to controlling this episode and changing the local perception of this formerly neglected disease. Because similar clinical cases had previously been described, without having been diagnosed, medical practices must be adapted and the rabies virus should be sought more systematically in similarly presenting cases. Sharing this experience could be useful for other countries that might someday have to manage such an emergence.
doi:10.1371/journal.pntd.0001537
PMCID: PMC3283561  PMID: 22363830

Results 1-25 (878850)