Search tips
Search criteria

Results 1-25 (483972)

Clipboard (0)

Related Articles

1.  Molecular Mechanisms of Drug Resistance in Clinical Candida Species Isolated from Tunisian Hospitals 
Antifungal resistance of Candida species is a clinical problem in the management of diseases caused by these pathogens. In this study we identified from a collection of 423 clinical samples taken from Tunisian hospitals two clinical Candida species (Candida albicans JEY355 and Candida tropicalis JEY162) with decreased susceptibility to azoles and polyenes. For JEY355, the fluconazole (FLC) MIC was 8 μg/ml. Azole resistance in C. albicans JEY355 was mainly caused by overexpression of a multidrug efflux pump of the major facilitator superfamily, Mdr1. The regulator of Mdr1, MRR1, contained a yet-unknown gain-of-function mutation (V877F) causing MDR1 overexpression. The C. tropicalis JEY162 isolate demonstrated cross-resistance between FLC (MIC > 128 μg/ml), voriconazole (MIC > 16 μg/ml), and amphotericin B (MIC > 32 μg/ml). Sterol analysis using gas chromatography-mass spectrometry revealed that ergosterol was undetectable in JEY162 and that it accumulated 14α-methyl fecosterol, thus indicating a perturbation in the function of at least two main ergosterol biosynthesis proteins (Erg11 and Erg3). Sequence analyses of C. tropicalis ERG11 (CtERG11) and CtERG3 from JEY162 revealed a deletion of 132 nucleotides and a single amino acid substitution (S258F), respectively. These two alleles were demonstrated to be nonfunctional and thus are consistent with previous studies showing that ERG11 mutants can only survive in combination with other ERG3 mutations. CtERG3 and CtERG11 wild-type alleles were replaced by the defective genes in a wild-type C. tropicalis strain, resulting in a drug resistance phenotype identical to that of JEY162. This genetic evidence demonstrated that CtERG3 and CtERG11 mutations participated in drug resistance. During reconstitution of the drug resistance in C. tropicalis, a strain was obtained harboring only defective Cterg11 allele and containing as a major sterol the toxic metabolite 14α-methyl-ergosta-8,24(28)-dien-3α,6β-diol, suggesting that ERG3 was still functional. This strain therefore challenged the current belief that ERG11 mutations cannot be viable unless accompanied by compensatory mutations. In conclusion, this study, in addition to identifying a novel MRR1 mutation in C. albicans, constitutes the first report on a clinical C. tropicalis with defective activity of sterol 14α-demethylase and sterol Δ5,6-desaturase leading to azole-polyene cross-resistance.
PMCID: PMC3697321  PMID: 23629718
2.  Identification and Characterization of Four Azole-Resistant erg3 Mutants of Candida albicans▿  
Antimicrobial Agents and Chemotherapy  2010;54(11):4527-4533.
Sterol analysis identified four Candida albicans erg3 mutants in which ergosta 7,22-dienol, indicative of perturbations in sterol Δ5,6-desaturase (Erg3p) activity, comprised >5% of the total sterol fraction. The erg3 mutants (CA12, CA488, CA490, and CA1008) were all resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole under standard CLSI assay conditions (MIC values, ≥256, 16, 16, 8, and 1 μg ml−1, respectively). Importantly, CA12 and CA1008 retained an azole-resistant phenotype even when assayed in the presence of FK506, a multidrug efflux inhibitor. Conversely, CA488, CA490, and three comparator isolates (CA6, CA14, and CA177, in which ergosterol comprised >80% of the total sterol fraction and ergosta 7,22-dienol was undetectable) all displayed azole-sensitive phenotypes under efflux-inhibited assay conditions. Owing to their ergosterol content, CA6, CA14, and CA177 were highly sensitive to amphotericin B (MIC values, <0.25 μg ml−1); CA1008, in which ergosterol comprised <2% of the total sterol fraction, was less sensitive (MIC, 1 μg ml−1). CA1008 harbored multiple amino acid substitutions in Erg3p but only a single conserved polymorphism (E266D) in sterol 14α-demethylase (Erg11p). CA12 harbored one substitution (W332R) in Erg3p and no residue changes in Erg11p. CA488 and CA490 were found to harbor multiple residue changes in both Erg3p and Erg11p. The results suggest that missense mutations in ERG3 might arise in C. albicans more frequently than currently supposed and that the clinical significance of erg3 mutants, including those in which additional mechanisms also contribute to resistance, should not be discounted.
PMCID: PMC2976150  PMID: 20733039
3.  Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. 
Antimicrobial Agents and Chemotherapy  1995;39(12):2708-2717.
We have cloned and sequenced the structural genes encoding the delta 5,6 sterol desaturase (ERG3 gene) and the 14 alpha-methyl sterol demethylase (ERG11 gene) from Candida glabrata L5 (leu2). Single and double mutants of these genes were created by gene deletion. The phenotypes of these mutants, including sterol profiles, aerobic viabilities, antifungal susceptibilities, and generation times, were studied. Strain L5D (erg3 delta::LEU2) accumulated mainly ergosta-7,22-dien-3 beta-ol, was aerobically viable, and remained susceptible to antifungal agents but had a slower generation time than its parent strain. L5LUD (LEU2 erg11 delta::URA3) strains required medium supplemented with ergosterol and an anaerobic environment for growth. A spontaneous aerobically viable mutant, L5LUD40R (LEU erg11 delta::URA3), obtained from L5LUD (LEU2 erg11 delta::URA3), was found to accumulate lanosterol and obtusifoliol, was resistant to azole antifungal agents, demonstrated some increase in resistance to amphotericin B, and exhibited a 1.86-fold increase in generation time in comparison with L5 (leu2). The double-deletion mutant L5DUD61 (erg3 delta::LEU2 erg11 delta::URA3) was aerobically viable, produced mainly 14 alpha-methyl fecosterol, and had the same antifungal susceptibility pattern as L5LUD40R (LEU2 erg11 delta::URA3), and its generation time was threefold greater than that of L5 (leu2). Northern (RNA) analysis revealed that the single-deletion mutants had a marked increase in message for the undeleted ERG3 and ERG11 genes. These results indicate that differences in antifungal susceptibilities and the restoration of aerobic viability exist between the C. glabrata ergosterol mutants created in this study and those sterol mutants with similar genetic lesions previously reported for Saccharomyces cerevisiae.
PMCID: PMC163017  PMID: 8593007
4.  Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans. 
Antimicrobial Agents and Chemotherapy  1993;37(10):2101-2105.
As in other pathogenic fungi, the major sterol synthesized by Cryptococcus neoformans var. neoformans is ergosterol. This yeast also shares with most pathogenic fungi a susceptibility of its cytochrome P-450-dependent ergosterol synthesis to nanomolar concentrations of itraconazole. Fifty percent inhibition of ergosterol synthesis was reached after 16 h of growth in the presence of 6.0 +/- 4.7 nM itraconazole, and complete inhibition was reached at approximately 100 nM itraconazole. This inhibition coincided with the accumulation of mainly eburicol and the 3-ketosteroid obtusifolione. The radioactivity incorporated from [14C]acetate in both compounds represents 64.2% +/- 12.9% of the radioactivity incorporated into the sterols plus squalene extracted from cells incubated in the presence of 10 nM itraconazole. The accumulation of obtusifolione as well as eburicol indicates that itraconazole inhibits not only the 14 alpha-demethylase but also (directly or indirectly) the NADPH-dependent 3-ketosteroid reductase, i.e., the enzyme catalyzing the last step in the demethylation at C-4. This latter inhibition obviates the synthesis of 4,4-demethylated 14 alpha-methylsterols that may function at least partly as surrogates of ergosterol. Eburicol and obtusifolione are unable to support cell growth, and the 3-ketosteroid has been shown to disturb membranes. The complete inhibition of ergosterol synthesis and the accumulation of the 4,4,14-trimethylsterol and of the 3-ketosteroid together with the absence of sterols, such as 14 alpha-methylfecosterol and lanosterol, which can partly fulfill some functions of ergosterol, are at the origin of the high activity of itraconazole against C. neoformans. Fifty percent inhibition of growth achieved after 16 h of incubation in the presence of 3.2 +/- 2.6 nM itraconazole.
PMCID: PMC192235  PMID: 8257130
5.  A Clinical Isolate of Candida albicans with Mutations in ERG11 (Encoding Sterol 14α-Demethylase) and ERG5 (Encoding C22 Desaturase) Is Cross Resistant to Azoles and Amphotericin B▿  
A clinical isolate of Candida albicans was identified as an erg5 (encoding sterol C22 desaturase) mutant in which ergosterol was not detectable and ergosta 5,7-dienol comprised >80% of the total sterol fraction. The mutant isolate (CA108) was resistant to fluconazole, voriconazole, itraconazole, ketoconazole, and clotrimazole (MIC values, 64, 8, 2, 1, and 2 μg ml−1, respectively); azole resistance could not be fully explained by the activity of multidrug resistance pumps. When susceptibility tests were performed in the presence of a multidrug efflux inhibitor (tacrolimus; FK506), CA108 remained resistant to azole concentrations higher than suggested clinical breakpoints for C. albicans (efflux-inhibited MIC values, 16 and 4 μg ml−1 for fluconazole and voriconazole, respectively). Gene sequencing revealed that CA108 was an erg11 erg5 double mutant harboring a single amino acid substitution (A114S) in sterol 14α-demethylase (Erg11p) and sequence repetition (10 duplicated amino acids), which nullified C22 desaturase (Erg5p) function. Owing to a lack of ergosterol, CA108 was also resistant to amphotericin B (MIC, 2 μg ml−1). This constitutes the first report of a C. albicans erg5 mutant isolated from the clinic.
PMCID: PMC2934972  PMID: 20547793
6.  Differential Azole Antifungal Efficacies Contrasted Using a Saccharomyces cerevisiae Strain Humanized for Sterol 14α-Demethylase at the Homologous Locus▿  
Antimicrobial Agents and Chemotherapy  2008;52(10):3597-3603.
Inhibition of sterol-14α-demethylase, a cytochrome P450 (CYP51, Erg11p), is the mode of action of azole antifungal drugs, and with high frequencies of fungal infections new agents are required. New drugs that target fungal CYP51 should not inhibit human CYP51, although selective inhibitors of the human target are also of interest as anticholesterol agents. A strain of Saccharomyces cerevisiae that was humanized with respect to the amino acids encoded at the CYP51 (ERG11) yeast locus (BY4741:huCYP51) was produced. The strain was validated with respect to gene expression, protein localization, growth characteristics, and sterol content. The MIC was determined and compared to that for the wild-type parental strain (BY4741), using clotrimazole, econazole, fluconazole, itraconazole, ketoconazole, miconazole, and voriconazole. The humanized strain showed up to >1,000-fold-reduced susceptibility to the orally active azole drugs, while the topical agents showed no difference. Data from growth kinetic measurements substantiated this finding but also revealed reduced effectiveness against the humanized strain for the topical drugs. Cellular sterol profiles reflected the decreased susceptibility of BY4741:huCYP51 and showed a smaller depletion of ergosterol and accumulation of 14α-methyl-ergosta-8, 24(28)-dien-3β-6α-diol than the parental strain under the same treatment conditions. This strain provides a useful tool for initial specificity testing for new drugs targeting CYP51 and clearly differentiates azole antifungals in a side-by-side comparison.
PMCID: PMC2565906  PMID: 18694951
7.  Posaconazole Is a Potent Inhibitor of Sterol 14α-Demethylation in Yeasts and Molds 
Antimicrobial Agents and Chemotherapy  2004;48(10):3690-3696.
Posaconazole (POS; SCH 56592) is a novel triazole that is active against a wide variety of fungi, including fluconazole-resistant Candida albicans isolates and fungi that are inherently less susceptible to approved azoles, such as Candida glabrata. In this study, we compared the effects of POS, itraconazole (ITZ), fluconazole (FLZ), and voriconazole (VOR) on sterol biosynthesis in strains of C. albicans (both azole-sensitive and azole-resistant strains), C. glabrata, Aspergillus fumigatus, and Aspergillus flavus. Following exposure to azoles, nonsaponifiable sterols were extracted and resolved by liquid chromatography and sterol identity was confirmed by mass spectroscopy. Ergosterol was the major sterol in all but one of the strains; C. glabrata strain C110 synthesized an unusual sterol in place of ergosterol. Exposure to POS led to a decrease in the total sterol content of all the strains tested. The decrease was accompanied by the accumulation of 14α-methylated sterols, supporting the contention that POS inhibits the cytochrome P450 14α-demethylase enzyme. The degree of sterol inhibition was dependent on both dose and the susceptibility of the strain tested. POS retained activity against C. albicans isolates with mutated forms of the 14α-demethylase that rendered these strains resistant to FLZ, ITZ, and VOR. In addition, POS was a more potent inhibitor of sterol synthesis in A. fumigatus and A. flavus than either ITZ or VOR.
PMCID: PMC521889  PMID: 15388421
8.  Amino Acid Substitutions in the Cytochrome P-450 Lanosterol 14α-Demethylase (CYP51A1) from Azole-Resistant Candida albicans Clinical Isolates Contribute to Resistance to Azole Antifungal Agents 
The cytochrome P-450 lanosterol 14α-demethylase (CYP51A1) of yeasts is involved in an important step in the biosynthesis of ergosterol. Since CYP51A1 is the target of azole antifungal agents, this enzyme is potentially prone to alterations leading to resistance to these agents. Among them, a decrease in the affinity of CYP51A1 for these agents is possible. We showed in a group of Candida albicans isolates from AIDS patients that multidrug efflux transporters were playing an important role in the resistance of C. albicans to azole antifungal agents, but without excluding the involvement of other factors (D. Sanglard, K. Kuchler, F. Ischer, J.-L. Pagani, M. Monod, and J. Bille, Antimicrob. Agents Chemother. 39:2378–2386, 1995). We therefore analyzed in closer detail changes in the affinity of CYP51A1 for azole antifungal agents. A strategy consisting of functional expression in Saccharomyces cerevisiae of the C. albicans CYP51A1 genes of sequential clinical isolates from patients was designed. This selection, which was coupled with a test of susceptibility to the azole derivatives fluconazole, ketoconazole, and itraconazole, enabled the detection of mutations in different cloned CYP51A1 genes, whose products are potentially affected in their affinity for azole derivatives. This selection enabled the detection of five different mutations in the cloned CYP51A1 genes which correlated with the occurrence of azole resistance in clinical C. albicans isolates. These mutations were as follows: replacement of the glycine at position 129 with alanine (G129A), Y132H, S405F, G464S, and R467K. While the S405F mutation was found as a single amino acid substitution in a CYP51A1 gene from an azole-resistant yeast, other mutations were found simultaneously in individual CYP51A1 genes, i.e., R467K with G464S, S405F with Y132H, G129A with G464S, and R467K with G464S and Y132H. Site-directed mutagenesis of a wild-type CYP51A1 gene was performed to estimate the effect of each of these mutations on resistance to azole derivatives. Each single mutation, with the exception of G129A, had a measurable effect on the affinity of the target enzyme for specific azole derivatives. We speculate that these specific mutations could combine with the effect of multidrug efflux transporters in the clinical isolates and contribute to different patterns and stepwise increases in resistance to azole derivatives.
PMCID: PMC105395  PMID: 9527767
9.  Reduced accumulation of drug in Candida krusei accounts for itraconazole resistance. 
Antimicrobial Agents and Chemotherapy  1996;40(11):2443-2446.
Due to intrinsic resistance Candida krusei is emerging as a systemic pathogen in AIDS patients undergoing fluconazole therapy, but acquired resistance to itraconazole has not been studied biochemically. We report here studies on the basis for azole resistance and sterol composition in C. krusei. An itraconazole-resistant isolate showed reduced susceptibility to azole drugs in in vitro growth inhibition studies. Accumulation of 14 alpha-methyl-3,6-diol under azole treatment was associated with growth arrest. In vitro ergosterol biosynthesis and type II binding studies suggested no alteration in the affinity to azole drugs of the target enzyme, the cytochrome P-450 sterol 14 alpha-demethylase, in the resistant isolate. Resistance was associated with a decreased intracellular content of drug in the resistant isolate.
PMCID: PMC163554  PMID: 8913443
10.  Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. 
Antimicrobial Agents and Chemotherapy  1996;40(10):2300-2305.
Some Candida albicans isolates from AIDS patients with oropharyngeal candidiasis are becoming resistant to the azole antifungal agent fluconazole after prolonged treatment with this compound. Most of the C. albicans isolates resistant to fluconazole fail to accumulate this antifungal agent, and this has been considered a cause of resistance. This phenomenon was shown to be linked to an increase in the amounts of mRNA of a C. albicans ABC (ATP-binding cassette) transporter gene called CDR1 and of a gene conferring benomyl resistance (BENr), the product of which belongs to the class of major facilitator multidrug efflux transporters (D. Sanglard, K. Kuchler, F. Ischer, J. L. Pagani, M. Monod, and J. Bille, Antimicrob. Agents Chemother. 39:2378-2386, 1995). To analyze the roles of these multidrug transporters in the efflux of azole antifungal agents, we constructed C. albicans mutants with single and double deletion mutations of the corresponding genes. The mutants were tested for their susceptibilities to these antifungal agents. Our results indicated that the delta cdr1 C. albicans mutant was hypersusceptible to the azole derivatives fluconazole, itraconazole, and ketoconazole, thus showing that the ABC transporter Cdr1 can use these compounds as substrates. The delta cdr1 mutant was also hypersusceptible to other antifungal agents (terbinafine and amorolfine) and to different metabolic inhibitors (cycloheximide, brefeldin A, and fluphenazine). The same mutant was slightly more susceptible than the wild type to nocodazole, cerulenin, and crystal violet but not to amphotericin B, nikkomycin Z, flucytosine, or pradimicin. In contrast, the delta ben mutant was rendered more susceptible only to the mutagen 4-nitroquinoline-N-oxide. However, this mutation increased the susceptibilities of the cells to cycloheximide and cerulenin when the mutation was constructed in a delta cdr1 background. The assay used in the present study could be implemented with new antifungal agents and is a powerful tool for assigning these substances as putative substrates of multidrug transporters.
PMCID: PMC163524  PMID: 8891134
11.  Facultative Sterol Uptake in an Ergosterol-Deficient Clinical Isolate of Candida glabrata Harboring a Missense Mutation in ERG11 and Exhibiting Cross-Resistance to Azoles and Amphotericin B 
We identified a clinical isolate of Candida glabrata (CG156) exhibiting flocculent growth and cross-resistance to fluconazole (FLC), voriconazole (VRC), and amphotericin B (AMB), with MICs of >256, >256, and 32 μg ml−1, respectively. Sterol analysis using gas chromatography-mass spectrometry (GC-MS) revealed that CG156 was a sterol 14α-demethylase (Erg11p) mutant, wherein 14α-methylated intermediates (lanosterol was >80% of the total) were the only detectable sterols. ERG11 sequencing indicated that CG156 harbored a single-amino-acid substitution (G315D) which nullified the function of native Erg11p. In heterologous expression studies using a doxycycline-regulatable Saccharomyces cerevisiae erg11 strain, wild-type C. glabrata Erg11p fully complemented the function of S. cerevisiae sterol 14α-demethylase, restoring growth and ergosterol synthesis in recombinant yeast; mutated CG156 Erg11p did not. CG156 was culturable using sterol-free, glucose-containing yeast minimal medium (glcYM). However, when grown on sterol-supplemented glcYM (with ergosta 7,22-dienol, ergosterol, cholestanol, cholesterol, Δ7-cholestenol, or desmosterol), CG156 cultures exhibited shorter lag phases, reached higher cell densities, and showed alterations in cellular sterol composition. Unlike comparator isolates (harboring wild-type ERG11) that became less sensitive to FLC and VRC when cultured on sterol-supplemented glcYM, facultative sterol uptake by CG156 did not affect its azole-resistant phenotype. Conversely, CG156 grown using glcYM with ergosterol (or with ergosta 7,22-dienol) showed increased sensitivity to AMB; CG156 grown using glcYM with cholesterol (or with cholestanol) became more resistant (MICs of 2 and >64 μg AMB ml−1, respectively). Our results provide insights into the consequences of sterol uptake and metabolism on growth and antifungal resistance in C. glabrata.
PMCID: PMC3421581  PMID: 22615281
12.  Molecular Mechanisms of Itraconazole Resistance in Candida dubliniensis 
It has previously been shown that overexpression of the CdMDR1 gene is a major contributor to resistance in fluconazole-resistant isolates of Candida dubliniensis. However, since CdMdr1p does not mediate transport of other azole drugs such as itraconazole, we investigated the molecular mechanisms of stable resistance to itraconazole obtained in three strains of C. dubliniensis (two with nonfunctional CdCDR1 genes and one with functional CdCDR1 genes) by serial exposure to this antifungal agent in vitro. Seven derivatives that were able to grow on agar medium containing 64 μg of itraconazole per ml were selected for detailed analysis. These derivatives were resistant to itraconazole, fluconazole, and ketoconazole but were not cross resistant to inhibitors. CdMDR1 expression was unchanged in the seven resistant derivatives and their parental isolates; however, all seven derivatives exhibited increased levels of CdERG11 expression, and six of the seven derivatives exhibited increased levels of CdCDR1 expression compared to the levels of expression by their respective parental isolates. Except for one derivative, the level of rhodamine 6G efflux was decreased in the itraconazole-resistant derivatives compared to the level of efflux in their parental isolates, suggesting altered membrane properties in these derivatives. Analysis of their membrane sterol contents was consistent with a defective sterol C5,6-desaturase enzyme (CdErg3p), which was confirmed by the identification of mutations in the alleles (CdERG3) encoding this enzyme and their lack of functional complementation in a Saccharomyces cerevisiae erg3 mutant. The results of this study show that the loss of function of CdErg3p was the primary mechanism of in vitro-generated itraconazole resistance in six of the seven the C. dubliniensis derivatives. However, the mechanism(s) of itraconazole resistance in the remaining seventh derivative has yet to be determined.
PMCID: PMC166077  PMID: 12878500
13.  Histone Deacetylase Inhibitors Enhance Candida albicans Sensitivity to Azoles and Related Antifungals: Correlation with Reduction in CDR and ERG Upregulation 
Antimicrobial Agents and Chemotherapy  2002;46(11):3532-3539.
Histone acetylation and deacetylation play important roles in eukaryotic gene regulation. Several histone deacetylase (HDA) inhibitors have been characterized, including trichostatin A (TSA), apicidin, and sodium butyrate. We tested their effects on Candida albicans in vitro growth, heat sensitivity, and germ tube formation; minimal effects were observed. However, there was a dramatic effect of TSA on C. albicans sensitivity to the azoles fluconazole, itraconazole, and miconazole. Similar effects were observed with other HDA inhibitors and with the antifungals terbinafine and fenpropimorph, which target, as do azoles, enzymes in the ergosterol biosynthetic pathway. In contrast, HDA inhibitors had minimal effect on the activities of amphotericin B, flucytosine, and echinocandin, which have unrelated targets. Specifically, addition of 3 μg of TSA/ml lowered the itraconazole MIC for five susceptible C. albicans isolates an average of 2.7-fold at 24 h, but this increased to >200-fold at 48 h. Thus, the primary effect of TSA was a reduction in azole trailing. TSA also enhanced itraconazole activity against Candida parapsilosis and Candida tropicalis but had no effect with four less related yeast species. To examine the molecular basis for these effects, we studied expression of ERG genes (encoding azole and terbinafine targets) and CDR/MDR1 genes (encoding multidrug transporters) in C. albicans cells treated with fluconazole or terbinafine with or without TSA. Both antifungals induced to various levels the expression of ERG1, ERG11, CDR1, and CDR2; addition of TSA reduced this upregulation 50 to 100%. This most likely explains the inhibition of azole and terbinafine trailing by TSA and, more generally, provides evidence that trailing is mediated by upregulation of target enzymes and multidrug transporters.
PMCID: PMC128736  PMID: 12384361
14.  Sterol C-22 Desaturase ERG5 Mediates the Sensitivity to Antifungal Azoles in Neurospora crassa and Fusarium verticillioides 
Antifungal azoles inhibit ergosterol biosynthesis by interfering with lanosterol 14α-demethylase. In this study, seven upregulated and four downregulated ergosterol biosynthesis genes in response to ketoconazole treatment were identified in Neurospora crassa. Azole sensitivity test of knockout mutants for six ketoconazole-upregulated genes in ergosterol biosynthesis revealed that deletion of only sterol C-22 desaturase ERG5 altered sensitivity to azoles: the erg5 mutant was hypersensitive to azoles but had no obvious defects in growth and development. The erg5 mutant accumulated higher levels of ergosta 5,7-dienol relative to the wild type but its levels of 14α-methylated sterols were similar to the wild type. ERG5 homologs are highly conserved in fungal kingdom. Deletion of Fusarium verticillioides erg5 also increased ketoconazole sensitivity, suggesting that the roles of ERG5 homologs in azole resistance are highly conserved among different fungal species, and inhibition of ERG5 could reduce the usage of azoles and thus provide a new target for drug design.
PMCID: PMC3666115  PMID: 23755044
resistance to antifungal agents; ergosterol biosynthesis; azole; Neurospora crassa; Fusarium verticillioides
15.  Upregulation of ERG Genes in Candida Species by Azoles and Other Sterol Biosynthesis Inhibitors 
Antimicrobial Agents and Chemotherapy  2000;44(10):2693-2700.
Infections due to Candida albicans are usually treated with azole antifungals such as fluconazole, but treatment failure is not uncommon especially in immunocompromised individuals. Relatedly, in vitro studies demonstrate that azoles are nonfungicidal, with continued growth at strain-dependent rates even at high azole concentrations. We hypothesized that upregulation of ERG11, which encodes the azole target enzyme lanosterol demethylase, contributes to this azole tolerance in Candida species. RNA analysis revealed that ERG11 expression in C. albicans is maximal during logarithmic-phase growth and decreases as the cells approach stationary phase. Incubation with fluconazole, however, resulted in a two- to fivefold increase in ERG11 RNA levels within 2 to 3 h, and this increase was followed by resumption of culture growth. ERG11 upregulation also occurred following treatment with other azoles (itraconazole, ketoconazole, clotrimazole, and miconazole) and was not dependent on the specific medium or pH. Within 1 h of drug removal ERG11 upregulation was reversed. Azole-dependent upregulation was not limited to ERG11: five of five ERG genes tested whose products function upstream and downstream of lanosterol demethylase in the sterol biosynthetic pathway were also upregulated. Similarly, ERG11 upregulation occurred following treatment of C. albicans cultures with terbinafine and fenpropimorph, which target other enzymes in the pathway. These data suggest a common mechanism for global ERG upregulation, e.g., in response to ergosterol depletion. Finally, azole-dependent ERG11 upregulation was demonstrated in three additional Candida species (C. tropicalis, C. glabrata, and C. krusei), indicating a conserved response to sterol biosynthesis inhibitors in opportunistic yeasts.
PMCID: PMC90137  PMID: 10991846
16.  Rapid, Transient Fluconazole Resistance in Candida albicans Is Associated with Increased mRNA Levels of CDR 
Antimicrobial Agents and Chemotherapy  1998;42(10):2584-2589.
Fluconazole-resistant Candida albicans, a cause of recurrent oropharyngeal candidiasis in patients with human immunodeficiency virus infection, has recently emerged as a cause of candidiasis in patients receiving cancer chemotherapy and marrow transplantation (MT). In this study, we performed detailed molecular analyses of a series of C. albicans isolates from an MT patient who developed disseminated candidiasis caused by an azole-resistant strain 2 weeks after initiation of fluconazole prophylaxis (K. A. Marr, T. C. White, J. A. H. vanBurik, and R. A. Bowden, Clin. Infect. Dis. 25:908–910, 1997). DNA sequence analysis of the gene (ERG11) for the azole target enzyme, lanosterol demethylase, revealed no difference between sensitive and resistant isolates. A sterol biosynthesis assay revealed no difference in sterol intermediates between the sensitive and resistant isolates. Northern blotting, performed to quantify mRNA levels of genes encoding enzymes in the ergosterol biosynthesis pathway (ERG7, ERG9, and ERG11) and genes encoding efflux pumps (MDR1, ABC1, YCF, and CDR), revealed that azole resistance in this series is associated with increased mRNA levels for members of the ATP binding cassette (ABC) transporter superfamily, CDR genes. Serial growth of resistant isolates in azole-free media resulted in an increased susceptibility to azole drugs and corresponding decreased mRNA levels for the CDR genes. These results suggest that C. albicans can become transiently resistant to azole drugs rapidly after exposure to fluconazole, in association with increased expression of ABC transporter efflux pumps.
PMCID: PMC105901  PMID: 9756759
17.  The ATP Binding Cassette Transporter Gene CgCDR1 from Candida glabrata Is Involved in the Resistance of Clinical Isolates to Azole Antifungal Agents 
Antimicrobial Agents and Chemotherapy  1999;43(11):2753-2765.
The resistance mechanisms to azole antifungal agents were investigated in this study with two pairs of Candida glabrata clinical isolates recovered from two separate AIDS patients. The two pairs each contained a fluconazole-susceptible isolate and a fluconazole-resistant isolate, the latter with cross-resistance to itraconazole and ketoconazole. Since the accumulation of fluconazole and of another unrelated substance, rhodamine 6G, was reduced in the azole-resistant isolates, enhanced drug efflux was considered as a possible resistance mechanism. The expression of multidrug efflux transporter genes was therefore examined in the azole-susceptible and azole-resistant yeast isolates. For this purpose, C. glabrata genes conferring resistance to azole antifungals were cloned in a Saccharomyces cerevisiae strain in which the ATP binding cassette (ABC) transporter gene PDR5 was deleted. Three different genes were recovered, and among them, only C. glabrata CDR1 (CgCDR1), a gene similar to the Candida albicans ABC transporter CDR genes, was upregulated by a factor of 5 to 8 in the azole-resistant isolates. A correlation between upregulation of this gene and azole resistance was thus established. The deletion of CgCDR1 in an azole-resistant C. glabrata clinical isolate rendered the resulting mutant (DSY1041) susceptible to azole derivatives as the azole-susceptible clinical parent, thus providing genetic evidence that a specific mechanism was involved in the azole resistance of a clinical isolate. When CgCDR1 obtained from an azole-susceptible isolate was reintroduced with the help of a centromeric vector in DSY1041, azole resistance was restored and thus suggested that a trans-acting mutation(s) could be made responsible for the increased expression of this ABC transporter gene in the azole-resistant strain. This study demonstrates for the first time the determinant role of an ABC transporter gene in the acquisition of resistance to azole antifungals by C. glabrata clinical isolates.
PMCID: PMC89555  PMID: 10543759
18.  A Gain-of-Function Mutation in the Transcription Factor Upc2p Causes Upregulation of Ergosterol Biosynthesis Genes and Increased Fluconazole Resistance in a Clinical Candida albicans Isolate▿ †  
Eukaryotic Cell  2008;7(7):1180-1190.
In the pathogenic yeast Candida albicans, the zinc cluster transcription factor Upc2p has been shown to regulate the expression of ERG11 and other genes involved in ergosterol biosynthesis upon exposure to azole antifungals. ERG11 encodes lanosterol demethylase, the target enzyme of this antifungal class. Overexpression of UPC2 reduces azole susceptibility, whereas its disruption results in hypersusceptibility to azoles and reduced accumulation of exogenous sterols. Overexpression of ERG11 leads to the increased production of lanosterol demethylase, which contributes to azole resistance in clinical isolates of C. albicans, but the mechanism for this has yet to be determined. Using genome-wide gene expression profiling, we found UPC2 and other genes involved in ergosterol biosynthesis to be coordinately upregulated with ERG11 in a fluconazole-resistant clinical isolate compared with a matched susceptible isolate from the same patient. Sequence analysis of the UPC2 alleles of these isolates revealed that the resistant isolate contained a single-nucleotide substitution in one UPC2 allele that resulted in a G648D exchange in the encoded protein. Introduction of the mutated allele into a drug-susceptible strain resulted in constitutive upregulation of ERG11 and increased resistance to fluconazole. By comparing the gene expression profiles of the fluconazole-resistant isolate and of strains carrying wild-type and mutated UPC2 alleles, we identified target genes that are controlled by Upc2p. Here we show for the first time that a gain-of-function mutation in UPC2 leads to the increased expression of ERG11 and imparts resistance to fluconazole in clinical isolates of C. albicans.
PMCID: PMC2446669  PMID: 18487346
19.  Growth inhibition and ultrastructural alterations induced by Δ24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms 
BMC Microbiology  2009;9:74.
Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment.
The purpose of this study was to evaluate the antifungal activity of inhibitors of Δ24(25)-sterol methyltransferase (24-SMTI), 20-piperidin-2-yl-5α-pregnan-3β-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against clinical isolates of Candida spp., analysing the ultrastructural changes.
AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 μ for AZA and 2 μ for EIL, and the MIC90 was 2 μ for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay.
Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including those caused by azole-resistant strains.
PMCID: PMC2679025  PMID: 19379501
20.  Comparison of Visual and Spectrophotometric Methods of Broth Microdilution MIC End Point Determination and Evaluation of a Sterol Quantitation Method for In Vitro Susceptibility Testing of Fluconazole and Itraconazole against Trailing and Nontrailing Candida Isolates 
Visual determination of MIC end points for azole antifungal agents can be complicated by the trailing growth phenomenon. To determine the incidence of trailing growth, we performed testing of in vitro susceptibility to fluconazole and itraconazole using the National Committee for Clinical Laboratory Standards broth microdilution M27-A reference procedure and 944 bloodstream isolates of seven Candida spp., obtained through active population-based surveillance between 1998 and 2000. Of 429 C. albicans isolates, 78 (18.2%) showed trailing growth at 48 h in tests with fluconazole, and 70 (16.3%) showed trailing in tests with itraconazole. Of 118 C. tropicalis isolates, 70 (59.3%) showed trailing growth in tests with fluconazole, and 35 (29.7%) showed trailing in tests with itraconazole. Trailing growth was not observed with any of the other five Candida spp. tested (C. dubliniensis, C. glabrata, C. krusei, C. lusitaniae, and C. parapsilosis). To confirm whether or not isolates that showed trailing growth in fluconazole and/or itraconazole were resistant in vitro to these agents, all isolates that showed trailing growth were retested by the sterol quantitation method, which measures cellular ergosterol content rather than growth inhibition after exposure to azoles. By this method, none of the trailing isolates was resistant in vitro to fluconazole or itraconazole. For both agents, a 24-h visual end point or a spectrophotometric end point of 50% reduction in growth relative to the growth control after 24 or 48 h of incubation correlated most closely with the result of sterol quantitation. Our results indicate that MIC results determined by either of these end point rules may be more predictive of in vivo outcome for isolates that give unclear visual end points at 48 h due to trailing growth.
PMCID: PMC127334  PMID: 12121921
21.  Mechanisms of Azole Resistance in Clinical Isolates of Candida glabrata Collected during a Hospital Survey of Antifungal Resistance 
The increasing use of azole antifungals for the treatment of mucosal and systemic Candida glabrata infections has resulted in the selection and/or emergence of resistant strains. The main mechanisms of azole resistance include alterations in the C. glabrata ERG11 gene (CgERG11), which encodes the azole target enzyme, and upregulation of the CgCDR1 and CgCDR2 genes, which encode efflux pumps. In the present study, we evaluated these molecular mechanisms in 29 unmatched clinical isolates of C. glabrata, of which 20 isolates were resistant and 9 were susceptible dose dependent (S-DD) to fluconazole. These isolates were recovered from separate patients during a 3-year hospital survey for antifungal resistance. Four of the 20 fluconazole-resistant isolates were analyzed together with matched susceptible isolates previously taken from the same patients. Twenty other azole-susceptible clinical C. glabrata isolates were included as controls. MIC data for all the fluconazole-resistant isolates revealed extensive cross-resistance to the other azoles tested, i.e., itraconazole, ketoconazole, and voriconazole. Quantitative real-time PCR analyses showed that CgCDR1 and CgCDR2, alone or in combination, were upregulated at high levels in all but two fluconazole-resistant isolates and, to a lesser extent, in the fluconazole-S-DD isolates. In addition, slight increases in the relative level of expression of CgSNQ2 (which encodes an ATP-binding cassette [ABC] transporter and which has not yet been shown to be associated with azole resistance) were seen in some of the 29 isolates studied. Interestingly, the two fluconazole-resistant isolates expressing normal levels of CgCDR1 and CgCDR2 exhibited increased levels of expression of CgSNQ2. Conversely, sequencing of CgERG11 and analysis of its expression showed no mutation or upregulation in any C. glabrata isolate, suggesting that CgERG11 is not involved in azole resistance. When the isolates were grown in the presence of fluconazole, the profiles of expression of all genes, including CgERG11, were not changed or were only minimally changed in the resistant isolates, whereas marked increases in the levels of gene expression, particularly for CgCDR1 and CgCDR2, were observed in either the fluconazole-susceptible or the fluconazole-S-DD isolates. Finally, known ABC transporter inhibitors, such as FK506, were able to reverse the azole resistance of all the isolates. Together, these results provide evidence that the upregulation of the CgCDR1-, CgCDR2-, and CgSNQ2-encoded efflux pumps might explain the azole resistance in our set of isolates.
PMCID: PMC547307  PMID: 15673750
22.  Characterization of an azole-resistant Candida glabrata isolate. 
Antimicrobial Agents and Chemotherapy  1992;36(12):2602-2610.
A Candida (Torulopsis) glabrata strain (B57149) became resistant to fluconazole after a patient carrying the organism was treated with the drug at 400 mg once daily for 9 days. Growth of the pretreatment isolate (B57148) was inhibited by 50% with 0.67 microM ketoconazole, 1.0 microM itraconazole, and 43 microM fluconazole, whereas growth of B57149 was inhibited slightly by 10 microM ketoconazole but was unaffected by 10 microM itraconazole or 100 microM fluconazole. This indicates cross-resistance to all three azole antifungal agents. The cellular fluconazole content of B57149 was from 1.5- to 3-fold lower than that of B57148, suggesting a difference in drug uptake between the strains. However, this difference was smaller than the measured difference in susceptibility and, therefore, cannot fully explain the fluconazole resistance of B57149. Moreover, the intracellular contents of ketoconazole and itraconazole differed by less than twofold between the strains, so that uptake differences did not account for the azole cross-resistance of B57149. The microsomal cytochrome P-450 content of B57149 was about twice that of B57148, a difference quantitatively similar to the increased subcellular ergosterol synthesis from mevalonate or lanosterol. These results indicate that the level of P-450-dependent 14 alpha-demethylation of lanosterol is higher in B57149. Increased ergosterol synthesis was also seen in intact B57149 cells, and this coincided with a decreased susceptibility of B57149 toward all three azoles and amphotericin B. B57149 also had higher squalene epoxidase activity, and thus, more terbinafine was needed to inhibit the synthesis of 2,3-oxidosqualene from squalene. P-450 content and ergosterol synthesis both decreased when isolate B57149 was subcultured repeatedly on drug-free medium. This repeated subculture also fully restored the strain's itraconazole susceptibility, but only partly increased its susceptibility to fluconazole. The results suggest that both lower fluconazole uptake and increased P-450-dependent ergosterol synthesis are involved in the mechanism of fluconazole resistance but that only the increased ergosterol synthesis contributes to itraconazole cross-resistance.
PMCID: PMC245514  PMID: 1482129
23.  Azole Resistance by Loss of Function of the Sterol Δ5,6-Desaturase Gene (ERG3) in Candida albicans Does Not Necessarily Decrease Virulence 
The inactivation of ERG3, a gene encoding sterol Δ5,6-desaturase (essential for ergosterol biosynthesis), is a known mechanism of in vitro resistance to azole antifungal drugs in the human pathogen Candida albicans. ERG3 inactivation typically results in loss of filamentation and attenuated virulence in animal models of disseminated candidiasis. In this work, we identified a C. albicans clinical isolate (VSY2) with high-level resistance to azole drugs in vitro and an absence of ergosterol but normal filamentation. Sequencing of ERG3 in VSY2 revealed a double base deletion leading to a premature stop codon and thus a nonfunctional enzyme. The reversion of the double base deletion in the mutant allele (erg3-1) restored ergosterol biosynthesis and full fluconazole susceptibility in VSY2, confirming that ERG3 inactivation was the mechanism of azole resistance. Additionally, the replacement of both ERG3 alleles by erg3-1 in the wild-type strain SC5314 led to the absence of ergosterol and to fluconazole resistance without affecting filamentation. In a mouse model of disseminated candidiasis, the clinical ERG3 mutant VSY2 produced kidney fungal burdens and mouse survival comparable to those obtained with the wild-type control. Interestingly, while VSY2 was resistant to fluconazole both in vitro and in vivo, the ERG3-derived mutant of SC5314 was resistant only in vitro and was less virulent than the wild type. This suggests that VSY2 compensated for the in vivo fitness defect of ERG3 inactivation by a still unknown mechanism(s). Taken together, our results provide evidence that contrary to previous reports inactivation of ERG3 does not necessarily affect filamentation and virulence.
PMCID: PMC3318373  PMID: 22252807
24.  Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. 
Resistance to antifungal drugs, specifically azoles such as fluconazole, in the opportunistic yeast Candida albicans has become an increasing problem in human immunodeficiency virus (HIV)-infected individuals. The molecular mechanisms responsible for this resistance have only recently become apparent and can include alterations in the target enzyme of the azole drugs (lanosterol 14alpha demethylase [14DM]), or in various efflux pumps from both the ABC transporter and major facilitator gene families. To determine which of these possible mechanisms was associated with the development of drug resistance in a particular case, mRNA levels have been studied in a series of 17 clinical isolates taken from a single HIV-infected patient over 2 years, during which time the levels of fluconazole resistance of the strain increased over 200-fold. Using Northern blot analysis of steady-state levels of total RNA from these isolates, we observed increased mRNA levels of ERG16 (the 14DM-encoding gene), CDR1 (an ABC transporter), and MDR1 (a major facilitator) in this series. The timing of the increase in mRNA levels of each of these genes correlated with increases in fluconazole resistance of the isolates. Increased mRNA levels were not observed for three other ABC transporters, two other genes in the ergosterol biosynthetic pathway, or the NADPH-cytochrome P-450 oxidoreductase gene that transfers electrons from NADPH to 14DM. Increases in mRNA levels of ERG16 and CDR1 correlated with increased cross-resistance to ketoconazole and itraconazole but not to amphotericin B. A compilation of the genetic alterations identified in this series suggests that resistance develops gradually and is the sum of several different changes, all of which contribute to the final resistant phenotype.
PMCID: PMC163944  PMID: 9210670
25.  Possible Inhibitory Molecular Mechanism of Farnesol on the Development of Fluconazole Resistance in Candida albicans Biofilm 
Candida albicans biofilm infections are usually treated with azole antifungals such as fluconazole. However, the development of resistance to this drug in C. albicans biofilms is very common, especially in immunocompromised individuals. The upregulation of the sterol biosynthetic pathway gene ERG and the efflux pump genes CDR and MDR may contribute to this azole tolerance in Candida species. We hypothesize that farnesol, an endogenous quorum sensing molecule with possible antimicrobial properties which is also the precursor of ergosterols in C. albicans, may interfere with the development of fluconazole resistance in C. albicans biofilms. To test this hypothesis, MICs were compared and morphology changes were observed by confocal laser scanning microscopy (CLSM) for farnesol-treated and -untreated and fluconazole-resistant groups. The expression of possible target genes (ERG11, ERG25, ERG6, ERG5, ERG3, ERG1, MDR1, CDR1, and CDR2) in biofilms was analyzed by reverse transcription-PCR (RT-PCR) and quantitative PCR (qPCR) to investigate the molecular mechanisms of the inhibitory effects of farnesol. The results showed a decreased MIC of fluconazole and thinner biofilms for the farnesol-treated group, indicating that farnesol inhibited the development of fluconazole resistance. The sterol biosynthetic pathway may contribute to the inhibitory effects of farnesol, as the transcription levels of the ERG11, ERG25, ERG6, ERG3, and ERG1 genes decreased in the farnesol-treated group.
PMCID: PMC3264247  PMID: 22106223

Results 1-25 (483972)