Search tips
Search criteria

Results 1-25 (374411)

Clipboard (0)

Related Articles

1.  Type II Topoisomerase Mutations in Fluoroquinolone-Resistant Clinical Strains of Pseudomonas aeruginosa Isolated in 1998 and 1999: Role of Target Enzyme in Mechanism of Fluoroquinolone Resistance 
The major mechanism of resistance to fluoroquinolones for Pseudomonas aeruginosa is the modification of type II topoisomerases (DNA gyrase and topoisomerase IV). We examined the mutations in quinolone-resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE genes of recent clinical isolates. There were 150 isolates with reduced susceptibilities to levofloxacin and 127 with reduced susceptibilities to ciprofloxacin among 513 isolates collected during 1998 and 1999 in Japan. Sequencing results predicted replacement of an amino acid in the QRDR of DNA gyrase (GyrA or GyrB) for 124 of the 150 strains (82.7%); among these, 89 isolates possessed mutations in parC or parE which lead to amino acid changes. Substitutions of both Ile for Thr-83 in GyrA and Leu for Ser-87 in ParC were the principal changes, being detected in 48 strains. These replacements were obviously associated with reduced susceptibilities to levofloxacin, ciprofloxacin, and sparfloxacin; however, sitafloxacin showed high activity against isolates with these replacements. We purified GyrA (The-83 to Ile) and ParC (Ser-87 to Leu) by site-directed mutagenesis and compared the inhibitory activities of the fluoroquinolones. Sitafloxacin showed the most potent inhibitory activities against both altered topoisomerases among the fluoroquinolones tested. These results indicated that, compared with other available quinolones, sitafloxacin maintained higher activity against recent clinical isolates with multiple mutations in gyrA and parC, which can be explained by the high inhibitory activities of sitafloxacin against both mutated enzymes.
PMCID: PMC90640  PMID: 11451683
2.  Alterations in DNA Gyrase and Topoisomerase IV in Resistant Mutants of Clostridium perfringens Found after In Vitro Treatment with Fluoroquinolones 
To compare mutations in the DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) genes of Clostridium perfringens, which are associated with in vitro exposure to fluoroquinolones, resistant mutants were selected from eight strains by serial passage in the presence of increasing concentrations of norfloxacin, ciprofloxacin, gatifloxacin, or trovafloxacin. The nucleotide sequences of the entire gyrA, gyrB, parC, and parE genes of 42 mutants were determined. DNA gyrase was the primary target for each fluoroquinolone, and topoisomerase IV was the secondary target. Most mutations appeared in the quinolone resistance-determining regions of gyrA (resulting in changes of Asp-87 to Tyr or Gly-81 to Cys) and parC (resulting in changes of Asp-93 or Asp-88 to Tyr or Ser-89 to Ile); only two mutations were found in gyrB, and only two mutations were found in parE. More mutants with multiple gyrA and parC mutations were produced with gatifloxacin than with the other fluoroquinolones tested. Allelic diversity was observed among the resistant mutants, for which the drug MICs increased 2- to 256-fold. Both the structures of the drugs and their concentrations influenced the selection of mutants.
PMCID: PMC547304  PMID: 15673722
3.  ParC subunit of DNA topoisomerase IV of Streptococcus pneumoniae is a primary target of fluoroquinolones and cooperates with DNA gyrase A subunit in forming resistance phenotype. 
Antimicrobial Agents and Chemotherapy  1996;40(10):2252-2257.
The genes encoding the ParC and ParE subunits of topoisomerase IV of Streptococcus pneumoniae, together with the region encoding amino acids 46 to 172 (residue numbers are as in Escherichia coli) of the pneumococcal GyrA subunit, were partially characterized. The gyrA gene maps to a physical location distant from the gyrB and parC loci on the chromosome, whereas parC is closely linked to parE. Ciprofloxacin-resistant (Cpr) clinical isolates of S. pneumoniae had mutations affecting amino acid residues of the quinolone resistance-determining region of ParC (low-level Cpr) or in both quinolone resistance-determining regions of ParC and GyrA (high-level Cpr). Mutations were found in residue positions equivalent to the serine at position 83 and the aspartic acid at position 87 of the E. coli GyrA subunit. Transformation experiments suggest that ParC is the primary target of ciprofloxacin. Mutation in parC appears to be a prerequisite before mutations in gyrA can influence resistance levels.
PMCID: PMC163513  PMID: 8891124
4.  Mechanisms Accounting for Fluoroquinolone Resistance in Escherichia coli Clinical Isolates▿  
Fluoroquinolone MICs are increased through the acquisition of chromosomal mutations in the genes encoding gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE), increased levels of the multidrug efflux pump AcrAB, and the plasmid-borne genes aac(6′)-Ib-cr and the qnr variants in Escherichia coli. In the accompanying report, we found that ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant E. coli clinical isolates were very high and widely varied (L. Becnel Boyd, M. J. Maynard, S. K. Morgan-Linnell, L. B. Horton, R. Sucgang, R. J. Hamill, J. Rojo Jimenez, J. Versalovic, D. Steffen, and L. Zechiedrich, Antimicrob. Agents Chemother. 53:229-234, 2009). Here, we sequenced gyrA, gyrB, parC, and parE; screened for aac(6′)-Ib-cr and qnrA; and quantified AcrA levels in E. coli isolates for which patient sex, age, location, and site of infection were known. We found that (i) all fluoroquinolone-resistant isolates had gyrA mutations; (ii) ∼85% of gyrA mutants also had parC mutations; (iii) the ciprofloxacin and norfloxacin MICs for isolates harboring aac(6′)-Ib-cr (∼23%) were significantly higher, but the gatifloxacin and levofloxacin MICs were not; (iv) no isolate had qnrA; and (v) ∼33% of the fluoroquinolone-resistant isolates had increased AcrA levels. Increased AcrA correlated with nonsusceptibility to the fluoroquinolones but did not correlate with nonsusceptibility to any other antimicrobial agents reported from hospital antibiograms. Known mechanisms accounted for the fluoroquinolone MICs of 50 to 70% of the isolates; the remaining included isolates for which the MICs were up to 1,500-fold higher than expected. Thus, additional, unknown fluoroquinolone resistance mechanisms must be present in some clinical isolates.
PMCID: PMC2612180  PMID: 18838592
5.  Comparative Studies of Mutations in Animal Isolates and Experimental In Vitro- and In Vivo-Selected Mutants of Salmonella spp. Suggest a Counterselection of Highly Fluoroquinolone-Resistant Strains in the Field 
The occurrence of mutations in the genes coding for gyrase (gyrA and gyrB) and topoisomerase IV (parE and parC) of Salmonella typhimurium experimental mutants selected in vitro and in vivo and of 138 nalidixic acid-resistant Salmonella field isolates was investigated. The sequencing of the quinolone resistance-determining region of these genes in highly fluoroquinolone-resistant mutants (MICs of 4 to 16 μg/ml) revealed the presence of gyrA mutations at codons corresponding to Gly-81 or Ser-83, some of which were associated with a mutation at Asp-87. No mutations were found in the gyrB, parC, and parE genes. An assay combining allele-specific PCR and restriction fragment length polymorphism was developed to rapidly screen mutations at codons 81, 83, and 87 of gyrA. The MICs of ciprofloxacin for the field isolates reached only 2 μg/ml, versus 16 μg/ml for some in vitro-selected mutants. The field isolates, like the mutants selected in vivo, had only a single gyrA mutation at codon 83 or 87. Single gyrA mutations were also found in highly resistant in vitro-selected mutants (MIC of ciprofloxacin, 8 μg/ml), which indicates that mechanisms other than the unique modification of the intracellular targets could participate in fluoroquinolone resistance in Salmonella spp. A comparison of experimental mutants selected in vitro, field strains, and mutants selected in vivo suggests that highly fluoroquinolone-resistant strains are counterselected in field conditions in the absence of selective pressure.
PMCID: PMC89435  PMID: 10471553
6.  Activities of Different Fluoroquinolones against Bacillus anthracis Mutants Selected In Vitro and Harboring Topoisomerase Mutations 
Three sets of mutants of Bacillus anthracis resistant to fluoroquinolones were selected on ciprofloxacin and moxifloxacin in a stepwise manner from a nalidixic acid-resistant but fluoroquinolone-susceptible plasmidless strain harboring a Ser85Leu GyrA mutation. A high level of resistance to fluoroquinolones could be obtained in four or five selection steps. In each case, ParC was the secondary target. However, in addition to the GyrA mutation, expression of high-level resistance required (i) in the first set of mutants, active drug efflux associated with a mutation in the QRDR of ParC; (ii) in the second set, two mutations in the QRDR of ParC associated with a mutation in GyrB; and (iii) in the third set, two QRDR mutations, one in ParC and one in GyrA. Interestingly, several selection steps occurred without obvious mutations in the QRDR of any topoisomerase, thereby implying the existence of other resistance mechanisms. Among the fluoroquinolones tested, garenoxacin showed the best activity.
PMCID: PMC478509  PMID: 15273116
7.  Prevalence of Mutations within the Quinolone Resistance-Determining Region of gyrA, gyrB, parC, and parE and Association with Antibiotic Resistance in Quinolone-Resistant Salmonella enterica 
Antimicrobial Agents and Chemotherapy  2004;48(10):4012-4015.
Salmonella enterica isolates (n = 182) were examined for mutations in the quinolone resistance-determining region of gyrA, gyrB, parC, and parE. The frequency, location, and type of GyrA substitution varied with the serovar. Mutations were found in parC that encoded Thr57-Ser, Thr66-Ile, and Ser80-Arg substitutions. Mutations in the gyrB quinolone resistance-determining region were located at codon Tyr420-Cys or Arg437-Leu. Novel mutations were also found in parE encoding Glu453-Gly, His461-Tyr, Ala498-Thr, Val512-Gly, and Ser518-Cys. Although it is counterintuitive, isolates with a mutation in both gyrA and parC were more susceptible to ciprofloxacin than were isolates with a mutation in gyrA alone.
PMCID: PMC521866  PMID: 15388468
8.  DNA Gyrase and Topoisomerase IV Mutations Associated with Fluoroquinolone Resistance in Proteus mirabilis 
Mutations associated with fluoroquinolone resistance in clinical isolates of Proteus mirabilis were determined by genetic analysis of the quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE. This study included the P. mirabilis type strain ATCC 29906 and 29 clinical isolates with reduced susceptibility (MIC, 0.5 to 2 μg/ml) or resistance (MIC, ≥4 μg/ml) to ciprofloxacin. Susceptibility profiles for ciprofloxacin, clinafloxacin, gatifloxacin, gemifloxacin, levofloxacin, moxifloxacin, and trovafloxacin were correlated with amino acid changes in the QRDRs. Decreased susceptibility and resistance were associated with double mutations involving both gyrA (S83R or -I) and parC (S80R or -I). Among these double mutants, MICs of ciprofloxacin varied from 1 to 16 μg/ml, indicating that additional factors, such as drug efflux or porin changes, also contribute to the level of resistance. For ParE, a single conservative change of V364I was detected in seven strains. An unexpected result was the association of gyrB mutations with high-level resistance to fluoroquinolones in 12 of 20 ciprofloxacin-resistant isolates. Changes in GyrB included S464Y (six isolates), S464F (three isolates), and E466D (two isolates). A three-nucleotide insertion, resulting in an additional lysine residue between K455 and A456, was detected in gyrB of one strain. Unlike any other bacterial species analyzed to date, mutation of gyrB appears to be a frequent event in the acquisition of fluoroquinolone resistance among clinical isolates of P. mirabilis.
PMCID: PMC127365  PMID: 12121936
9.  Molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis clinical isolates 
Brazilian Journal of Microbiology  2014;45(1):239-242.
To evaluate the molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis (MH) clinical strains isolated from urogenital specimens. 15 MH clinical isolates with different phenotypes of resistance to fluoroquinolones antibiotics were screened for mutations in the quinolone resistance-determining regions (QRDRs) of DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) in comparison with the reference strain PG21, which is susceptible to fluoroquinolones antibiotics. 15 MH isolates with three kinds of quinolone resistance phenotypes were obtained. Thirteen out of these quinolone-resistant isolates were found to carry nucleotide substitutions in either gyrA or parC. There were no alterations in gyrB and no mutations were found in the isolates with a phenotype of resistance to Ofloxacin (OFX), intermediate resistant to Levofloxacin (LVX) and Sparfloxacin (SFX), and those susceptible to all three tested antibiotics. The molecular mechanism of fluoroquinolone resistance in clinical isolates of MH was reported in this study. The single amino acid mutation in ParC of MH may relate to the resistance to OFX and LVX and the high-level resistance to fluoroquinolones for MH is likely associated with mutations in both DNA gyrase and the ParC subunit of topoisomerase IV.
PMCID: PMC4059304  PMID: 24948939
Mycoplasma hominis; quinolones; drug resistance; mutation
10.  Molecular basis of quinolone resistance in Escherichia coli from wild birds 
Nine quinolone resistant (minimal inhibitory concentration [MIC] was > 32 μg/mL for nalidixic acid, > 1 μg/mL for ciprofloxacin) isolates of Escherichia coli have been found in wild birds with septicemia. All of the isolates were aerobactin positive. The mechanisms of resistance were characterised by sequencing the quinolone resistance-determining region (QRDR) of the gyrA, gyrB, parC, and parE genes. Sequence analysis of the gyrA gene in all isolates identified only 1 nucleotide substitution at codon Serine-83 for Leucine-83. Sequence analysis of the gyrB, parC, and parE QRDR genes revealed no mutations in any of the isolates. This study was conducted to determine the importance of these genes in the susceptibility of E. coli strains isolated from wild birds to quinolones.
PMCID: PMC1142146  PMID: 15352551
11.  Topoisomerase II and IV Quinolone Resistance-Determining Regions in Stenotrophomonas maltophilia Clinical Isolates with Different Levels of Quinolone Susceptibility 
The quinolone resistance-determining regions (QRDRs) of topoisomerase II and IV genes from Stenotrophomonas maltophilia ATCC 13637 were sequenced and compared with the corresponding regions of 32 unrelated S. maltophilia clinical strains for which ciprofloxacin MICs ranged from 0.1 to 64 μg/ml. GyrA (Leu-55 to Gln-155, Escherichia coli numbering), GyrB (Met-391 to Phe-513), ParC (Ile-34 to Arg-124), and ParE (Leu-396 to Leu-567) fragments from strain ATCC 13637 showed high degrees of identity to the corresponding regions from the phytopathogen Xylella fastidiosa, with the degrees of identity ranging from 85.0 to 93.5%. Lower degrees of identity to the corresponding regions from Pseudomonas aeruginosa (70.9 to 88.6%) and E. coli (73.0 to 88.6%) were observed. Amino acid changes were present in GyrA fragments from 9 of the 32 strains at positions 70, 85, 90, 103, 112, 113, 119, and 124; but there was no consistent relation to higher ciprofloxacin MICs. The absence of changes at positions 83 and 87, commonly involved in quinolone resistance in gram-negative bacteria, was unexpected. The GyrB sequences were identical in all strains, and only one strain (ciprofloxacin MIC, 16 μg/ml) showed a ParC amino acid change (Ser-80→Arg). In contrast, a high frequency (16 of 32 strains) of amino acid replacements was present in ParE. The frequencies of alterations at positions 437, 465, 477, and 485 were higher (P < 0.05) in strains from cystic fibrosis patients, but these changes were not linked with high ciprofloxacin MICs. An efflux phenotype, screened by the detection of decreases of at least twofold doubling dilutions of the ciprofloxacin MIC in the presence of carbonyl cyanide m-chlorophenylhydrazone (0.5 μg/ml) or reserpine (10 μg/ml), was suspected in seven strains. These results suggest that topoisomerases II and IV may not be the primary targets involved in quinolone resistance in S. maltophilia.
PMCID: PMC127482  PMID: 11850246
12.  Mutations in Topoisomerase Genes of Fluoroquinolone-Resistant Salmonellae in Hong Kong 
Antimicrobial Agents and Chemotherapy  2003;47(11):3567-3573.
A total of 88 salmonella isolates (72 clinical isolates for which the ciprofloxacin MIC was >0.06 μg/ml, 15 isolates for which the ciprofloxacin MIC was ≤0.06 μg/ml, and Salmonella enterica serotype Typhimurium ATCC 13311) were studied for the presence of genetic alterations in four quinolone resistance genes, gyrA, gyrB, parC, and parE, by multiplex PCR amplimer conformation analysis. The genetic alterations were confirmed by direct nucleotide sequencing. A considerable number of strains had a mutation in parC, the first to be reported in salmonellae. Seven of the isolates sensitive to 0.06 μg of ciprofloxacin per ml had a novel mutation at codon 57 of parC (Tyr57→Ser) which was also found in 29 isolates for which ciprofloxacin MICs were >0.06 μg/ml. Thirty-two isolates had a single gyrA mutation (Ser83→Phe, Ser83→Tyr, Asp87→Asn, Asp87→Tyr, or Asp87→Gly), 34 had both a gyrA mutation and a parC mutation (29 isolates with a parC mutation of Tyr57→Ser and 5 isolates with a parC mutation of Ser80→Arg). Six isolates which were isolated recently (from 1998 to 2001) were resistant to 4 μg of ciprofloxacin per ml. Two of these isolates had double gyrA mutations (Ser83→Phe and Asp87→Asn) and a parC mutation (Ser80→Arg) (MICs, 8 to 32 μg/ml), and four of these isolates had double gyrA mutations (Ser83→Phe and Asp87→Gly), one parC mutation (Ser80→Arg), and one parE mutation (Ser458→Pro) (MICs, 16 to 64 μg/ml). All six of these isolates and those with a Ser80→Arg parC mutation were S. enterica serotype Typhimurium. One S. enterica serotype Typhi isolate harbored a single gyrA mutation (Ser83→Phe), and an S. enterica serotype Paratyphi A isolate harbored a gyrA mutation (Ser83→Tyr) and a parC mutation (Tyr57→Ser); both of these isolates had decreased susceptibilities to the fluoroquinolones. The MICs of ciprofloxacin, levofloxacin, and sparfloxacin were in general the lowest of those of the six fluoroquinolones tested. Isolates with a single gyrA mutation were less resistant to fluoroquinolones than those with an additional parC mutation (Tyr57→Ser or Ser80→Arg), while those with double gyrA mutations were more resistant.
PMCID: PMC253778  PMID: 14576119
13.  Plasmid-mediated quinolone resistance (PMQR) and mutations in the topoisomerase genes of Salmonella enterica strains from Brazil 
Brazilian Journal of Microbiology  2013;44(2):651-656.
The objective of this study was to identify mutations in the Quinolone Resistance Determining sources Regions (QRDR) of the gyrA, gyrB, parC, and parE genes and to determine if any of the qnr variants or the aac(6′)-Ib-cr variant were present in strains of Salmonella spp. isolated in Brazil. A total of 126 Salmonella spp. strains from epidemic (n = 114) and poultry (n = 12) origin were evaluated. One hundred and twelve strains (88.8%) were resistant to nalidixic acid (NAL) and 29 (23.01%) showed a reduced susceptibility to ciprofloxacin (Cip). The mutations identified were substitutions limited to the QRDR of the gyrA gene in the codons for Serine 83, Aspartate 87 and Alanine 131. The sensitivity to NAL seems to be a good phenotypic indication of distinguishing mutated and non-mutated strains in the QRDR, however the double mutation in gyrA did not cause resistance to ciprofloxacin. The qnrA1 and qnrB19 genes were detected, respectively, in one epidemic strain of S. Enteritidis and one strain of S. Corvallis of poultry origin. Despite previous detection of qnr genes in Brazil, this is the first report of qnr gene detection in Salmonella, and also the first detection of qnrB19 gene in this country. The results alert for the continuous monitoring of quinolone resistance determinants in order to minimize the emergence and selection of Salmonella spp. strains showing reduced susceptibility or resistance to quinolones.
PMCID: PMC3833171  PMID: 24294265
Salmonella; PMQR; QRDR mutation; quinolone; ciprofloxacin
14.  Grepafloxacin, a Dimethyl Derivative of Ciprofloxacin, Acts Preferentially through Gyrase in Streptococcus pneumoniae: Role of the C-5 Group in Target Specificity 
Grepafloxacin, a 5-methyl-7-piperazinyl-3"-methyl analogue of ciprofloxacin, was used to obtain stepwise-selected mutants of Streptococcus pneumoniae 7785. Analysis of the quinolone resistance-determining regions of the gyrA, gyrB, parC, and parE genes in these mutants revealed that gyrA mutations preceded those in parC. Given that ciprofloxacin (5-H,7-piperazinyl) and AM-1121 (5-H,7-piperazinyl-3"-methyl) both act through topoisomerase IV, we conclude that the 5-methyl group of grepafloxacin favors gyrase in S. pneumoniae.
PMCID: PMC127062  PMID: 11796384
15.  Quinolone Resistance Mutations in Streptococcus pneumoniae GyrA and ParC Proteins: Mechanistic Insights into Quinolone Action from Enzymatic Analysis, Intracellular Levels, and Phenotypes of Wild-Type and Mutant Proteins 
Antimicrobial Agents and Chemotherapy  2001;45(11):3140-3147.
Mutations in DNA gyrase and/or topoisomerase IV genes are frequently encountered in quinolone-resistant mutants of Streptococcus pneumoniae. To investigate the mechanism of their effects at the molecular and cellular levels, we have used an Escherichia coli system to overexpress S. pneumoniae gyrase gyrA and topoisomerase IV parC genes encoding respective Ser81Phe and Ser79Phe mutations, two changes widely associated with quinolone resistance. Nickel chelate chromatography yielded highly purified mutant His-tagged proteins that, in the presence of the corresponding GyrB and ParE subunits, reconstituted gyrase and topoisomerase IV complexes with wild-type specific activities. In enzyme inhibition or DNA cleavage assays, these mutant enzyme complexes were at least 8- to 16-fold less responsive to both sparfloxacin and ciprofloxacin. The ciprofloxacin-resistant (Cipr) phenotype was silent in a sparfloxacin-resistant (Spxr) S. pneumoniae gyrA (Ser81Phe) strain expressing a demonstrably wild-type topoisomerase IV, whereas Spxr was silent in a Cipr parC (Ser79Phe) strain. These epistatic effects provide strong support for a model in which quinolones kill S. pneumoniae by acting not as enzyme inhibitors but as cellular poisons, with sparfloxacin killing preferentially through gyrase and ciprofloxacin through topoisomerase IV. By immunoblotting using subunit-specific antisera, intracellular GyrA/GyrB levels were a modest threefold higher than those of ParC/ParE, most likely insufficient to allow selective drug action by counterbalancing the 20- to 40-fold preference for cleavable-complex formation through topoisomerase IV observed in vitro. To reconcile these results, we suggest that drug-dependent differences in the efficiency by which ternary complexes are formed, processed, or repaired in S. pneumoniae may be key factors determining the killing pathway.
PMCID: PMC90795  PMID: 11600369
16.  Fluoroquinolone Resistance Mutations in the parC, parE, and gyrA Genes of Clinical Isolates of Viridans Group Streptococci 
Antimicrobial Agents and Chemotherapy  1998;42(11):2792-2798.
The nucleotide sequences of the quinolone resistance-determining regions (QRDRs) of the parC and gyrA genes from seven ciprofloxacin-resistant (Cpr) isolates of viridans group streptococci (two high-level Cpr Streptococcus oralis and five low-level Cpr Streptococcus mitis isolates) were determined and compared with those obtained from susceptible isolates. The nucleotide sequences of the QRDRs of the parE and gyrB genes from the five low-level Cpr S. mitis isolates and from the NCTC 12261 type strain were also analyzed. Four of these low-level Cpr isolates had changes affecting the subunits of DNA topoisomerase IV: three in Ser-79 (to Phe or Ile) of ParC and one in ParE at a position not previously described to be involved in quinolone resistance (Pro-424). One isolate did not show any mutation. The two high-level Cpr S. oralis isolates showed mutations affecting equivalent residue positions of ParC and GyrA, namely, Ser-79 to Phe and Ser-81 to Phe or Tyr, respectively. The parC mutations were able to transform Streptococcus pneumoniae to ciprofloxacin resistance, while the gyrA mutations transformed S. pneumoniae only when mutations in parC were present. These results suggest that DNA topoisomerase IV is a primary target of ciprofloxacin in viridans group streptococci, DNA gyrase being a secondary target.
PMCID: PMC105945  PMID: 9797205
17.  ParC and GyrA May Be Interchangeable Initial Targets of Some Fluoroquinolones in Streptococcus pneumoniae 
To evaluate the role of known topoisomerase IV and gyrase mutations in the fluoroquinolone (FQ) resistance of Streptococcus pneumoniae, we transformed susceptible strain R6 with PCR-generated fragments encompassing the quinolone resistance-determining regions (QRDRs) of parC or gyrA from different recently characterized FQ-resistant mutants. Considering the MICs of FQs and the GyrA and/or ParC mutations of the individual transformants, we found three levels of resistance. The first level was obtained when a single target, ParC or GyrA, depending on the FQ, was modified. An additional mutation(s) in a second target, GyrA or ParC, led to the second level. The highest increases in resistance levels were seen for Bay y3118 and moxifloxacin with the transformant harboring a double mutation in both ParC and GyrA. When a single modified target was considered, only the ParC mutation(s) led to an increase in the MICs of pefloxacin and trovafloxacin. In contrast, the GyrA or ParC mutation(s) could lead to increases in the MICs of ciprofloxacin, sparfloxacin, grepafloxacin, Bay y3118, and moxifloxacin. These results suggest that the preferential target of trovafloxacin and pefloxacin is ParC, whereas either ParC or GyrA may both be initial targets for the remaining FQs tested. The contribution of the ParC and GyrA mutations to efflux-mediated FQ resistance was also examined. Active efflux was responsible for two- to fourfold increases in the MICs of ciprofloxacin for the transformants, regardless of the initial FQ resistance levels of the recipients.
PMCID: PMC89068  PMID: 9925523
18.  Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. 
The emergence of multidrug-resistant strains of Mycobacterium tuberculosis has resulted in increased interest in the fluoroquinolones (FQs) as antituberculosis agents. To investigate the frequency and mechanisms of FQ resistance in M. tuberculosis, we cloned and sequenced the wild-type gyrA and gyrB genes, which encode the A and B subunits of the DNA gyrase, respectively; DNA gyrase is the main target of the FQs. On the basis of the sequence information, we performed DNA amplification for sequencing and single-strand conformation polymorphism analysis to examine the presumed quinolone resistance regions of gyrA and gyrB from reference strains (n = 4) and clinical isolates (n = 55). Mutations in codons of gyrA analogous to those described in other FQ-resistant bacteria were identified in all isolates (n = 14) for which the ciprofloxacin MIC was > 2 micrograms/ml. In addition, we selected ciprofloxacin-resistant mutants of Mycobacterium bovis BCG and M. tuberculosis Erdman and H37ra. Spontaneously resistant mutants developed at a frequency of 1 in 10(7) to 10(8) at ciprofloxacin concentrations of 2 micrograms/ml, but no primary resistant colonies were selected at higher ciprofloxacin concentrations. Replating of those first-step mutants selected for mutants with high levels of resistance which harbored gyrA mutations similar to those found among clinical FQ-resistant isolates. The gyrA and gyrB sequence information will facilitate analysis of the mechanisms of resistance to drugs which target the gyrase and the implementation of rapid strategies for the estimation of FQ susceptibility in clinical M. tuberculosis isolates.
PMCID: PMC284541  PMID: 8031045
19.  Sparfloxacin Resistance in Clinical Isolates of Streptococcus pneumoniae: Involvement of Multiple Mutations in gyrA and parC Genes 
Antimicrobial susceptibility testing revealed among 150 clinical isolates of Streptococcus pneumoniae 4 pneumococcal isolates with resistance to fluoroquinolones (MIC of ciprofloxacin, ≥32 μg/ml; MIC of sparfloxacin, ≥16 μg/ml). Gene amplification and sequencing analysis of gyrA and parC revealed nucleotide changes leading to amino acid substitutions in both GyrA and ParC of all four fluoroquinolone-resistant isolates. In the case of strains 182 and 674 for which sparfloxacin MICs were 16 and 64 μg/ml, respectively, nucleotide changes were detected at codon 81 in gyrA and codon 79 in parC; these changes led to an Ser→Phe substitution in GyrA and an Ser→Phe substitution in ParC. Strains 354 and 252, for which sparfloxacin MICs were 128 μg/ml, revealed multiple mutations in both gyrA and parC. These strains exhibited nucleotide changes at codon 85 leading to a Glu→Lys substitution in GyrA, in addition to Ser-79→Tyr and Lys-137→Asn substitutions in ParC. Moreover, strain 252 showed additional nucleotide changes at codon 93, which led to a Trp→Arg substitution in GyrA. These results suggest that sparfloxacin resistance could be due to the multiple mutations in GyrA and ParC. However, it is possible that other yet unidentified mutations may also be involved in the high-level resistance to fluoroquinolones in S. pneumoniae.
PMCID: PMC105774  PMID: 9736534
20.  Mutation Rate and Evolution of Fluoroquinolone Resistance in Escherichia coli Isolates from Patients with Urinary Tract Infections 
Antimicrobial Agents and Chemotherapy  2003;47(10):3222-3232.
Escherichia coli strains from patients with uncomplicated urinary tract infections were examined by DNA sequencing for fluoroquinolone resistance-associated mutations in six genes: gyrA, gyrB, parC, parE, marOR, and acrR. The 54 strains analyzed had a susceptibility range distributed across 15 dilutions of the fluoroquinolone MICs. There was a correlation between the fluoroquinolone MIC and the number of resistance mutations that a strain carried, with resistant strains having mutations in two to five of these genes. Most resistant strains carried two mutations in gyrA and one mutation in parC. In addition, many resistant strains had mutations in parE, marOR, and/or acrR. No (resistance) mutation was found in gyrB. Thus, the evolution of fluoroquinolone resistance involves the accumulation of multiple mutations in several genes. The spontaneous mutation rate in these clinical strains varied by 2 orders of magnitude. A high mutation rate correlated strongly with a clinical resistance phenotype. This correlation suggests that an increased general mutation rate may play a significant role in the development of high-level resistance to fluoroquinolones by increasing the rate of accumulation of rare new mutations.
PMCID: PMC201150  PMID: 14506034
21.  Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa. 
The proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa was examined by introducing the cloned wild-type Escherichia coli gyrA and gyrB genes. Of 101 spontaneous mutants of P. aeruginosa PAO505, 33 (33%) were found to have gyrA mutations. Among 17 clinical isolates, 12 (71%) had gyrA mutations and 1 (6%) had a gyrB mutation.
PMCID: PMC171800  PMID: 2168149
22.  Detection of gyrA and parC Mutations Associated with Ciprofloxacin Resistance in Neisseria gonorrhoeae by Use of Oligonucleotide Biochip Technology 
Journal of Clinical Microbiology  2004;42(12):5819-5824.
An oligonucleotide biochip that specifically detects point mutations in the gyrA and parC genes of Neisseria gonorrhoeae was designed and subsequently evaluated with 87 untreated clinical specimens. The susceptibilities of the N. gonorrhoeae strains were tested to determine the prevalence of ciprofloxacin-resistant strains in Anhui Province, People's Republic of China. Conventional DNA sequencing was also performed to identify mutations in gyrA and parC and to confirm the biochip data. The study demonstrates that all of the point mutations in the gyrA and parC genes of N. gonorrhoeae were easily discriminated by use of the oligonucleotide biochip. Fifteen different alteration patterns involved in the formation of ciprofloxacin resistance were identified by the biochip assay. Double mutations in both Ser91 and Asp95 of the GyrA protein were seen in all nonsensitive isolates. Double mutations in Ser91 and Asp95 of GyrA plus mutation of Glu91 or Ser87 of the ParC protein lead to significant high-level resistance to ciprofloxacin in N. gonorrhoeae isolates. The results obtained by use of the oligonucleotide biochip were identical to those obtained by use of DNA sequencing. In conclusion, the oligonucleotide biochip technology has potential utility for the rapid and reliable identification of point mutations in the drug resistance genes of N. gonorrhoeae.
PMCID: PMC535257  PMID: 15583317
23.  Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. 
Antimicrobial Agents and Chemotherapy  1996;40(10):2321-2326.
Ciprofloxacin-resistant mutants of Streptococcus pneumoniae 7785 were generated by stepwise selection at increasing drug concentrations. Sequence analysis of PCR products from the strains was used to examine the quinolone resistance-determining regions of the GyrA and GyrB proteins of DNA gyrase and the analogous regions of the ParC and ParE subunits of DNA topoisomerase IV. First-step mutants exhibiting low-level resistance had no detectable changes in their topoisomerase quinolone resistance-determining regions, suggesting altered permeation or another novel resistance mechanism. Nine of 10 second-step mutants exhibited an alteration in ParC at Ser-79 to Tyr or Phe or at Ala-84 to Thr. Third- and fourth-step mutants displaying high-level ciprofloxacin resistance were found to have, in addition to the ParC alteration, a change in GyrA at residues equivalent to Escherichia coli GyrA resistance hot spots Ser-83 and Asp-87 or in GyrB at Asp-435 to Asn, equivalent to E. coli Asp-426, part of a highly conserved EGDSA motif in GyrB. No ParE changes were observed. Complementary analysis of two S. pneumoniae clinical isolates displaying low-level resistance to ciprofloxacin revealed a ParC change at Ser-79 to Phe or Arg-95 to Cys but no changes in GyrA, GyrB, or ParE. A highly resistant isolate, in addition to a ParC mutation, had a GyrA alteration at the residue equivalent to E. coli Asp-87. Thus, in both laboratory strains and clinical isolates, ParC mutations preceded those in GyrA, suggesting that topoisomerase IV is a primary topoisomerase target and gyrase is a secondary target for ciprofloxacin in S. pneumoniae.
PMCID: PMC163528  PMID: 8891138
24.  Ciprofloxacin-resistant Haemophilus influenzae strains possess mutations in analogous positions of GyrA and ParC. 
The nucleotide sequences of the quinolone resistance-determining regions of the gyrA and parC genes from five ciprofloxacin-resistant strains of Haemophilus influenzae (MICs, 2 to 32 micrograms/ml) isolated from patients with cystic fibrosis and three ciprofloxacin-susceptible strains of H. influenzae (MICs, < or = 0.1 micrograms/ml) were determined. Four of the five resistant strains possessed at least one amino acid substitution in each of the GyrA and ParC fragments studied. The mutations identified in GyrA were a serine at residue 84 (Ser-84) to Leu or Tyr and Asp-88 to Asn or Tyr. ParC mutations were in positions exactly analogous to those identified in GyrA, namely, Ser-84 to Ile and Glu-88 to Lys. The Glu-88 to Lys ParC substitution was identified only in high-level ciprofloxacin-resistant strains. These mutations have been shown to be the origin of the observed resistance after transformation into ciprofloxacin-susceptible H. influenzae isolates. These results suggest that H. influenzae isolates require at least one amino acid substitution in both GyrA and ParC in order to attain significant levels of resistance to quinolones.
PMCID: PMC163409  PMID: 8807076
25.  Cloning, Expression, and Enzymatic Characterization of Pseudomonas aeruginosa Topoisomerase IV 
The topoisomerase IV subunit A gene, parC homolog, has been cloned and sequenced from Pseudomonas aeruginosa PAO1, with cDNA encoding the N-terminal region of Escherichia coli parC used as a probe. The homolog and its upstream gene were presumed to be parC and parE through sequence homology with the parC and parE genes of other organisms. The deduced amino acid sequence of ParC and ParE showed 33 and 32% identity with that of the P. aeruginosa DNA gyrase subunits, GyrA and GyrB, respectively, and 69 and 75% identity with that of E. coli ParC and ParE, respectively. The putative ParC and ParE proteins were overexpressed and separately purified by use of a fusion system with a maltose-binding protein, and their enzymatic properties were examined. The reconstituted enzyme had ATP-dependent decatenation activity, which is the main catalytic activity of bacterial topoisomerase IV, and relaxing activities but had no supercoiling activity. So, the cloned genes were identified as P. aeruginosa topoisomerase IV genes. The inhibitory effects of quinolones on the activities of topoisomerase IV and DNA gyrase were compared. The 50% inhibitory concentrations of quinolones for the decatenation activity of topoisomerase IV were from five to eight times higher than those for the supercoiling activities of P. aeruginosa DNA gyrase. These results confirmed that topoisomerase IV is less sensitive to fluoroquinolones than is DNA gyrase and may be a secondary target of new quinolones in wild-type P. aeruginosa.
PMCID: PMC89156  PMID: 10049263

Results 1-25 (374411)