Search tips
Search criteria

Results 1-25 (1298975)

Clipboard (0)

Related Articles

1.  In Vivo Expression Technology Identifies a Novel Virulence Factor Critical for Borrelia burgdorferi Persistence in Mice 
PLoS Pathogens  2013;9(8):e1003567.
Analysis of the transcriptome of Borrelia burgdorferi, the causative agent of Lyme disease, during infection has proven difficult due to the low spirochete loads in the mammalian tissues. To overcome this challenge, we have developed an In Vivo Expression Technology (IVET) system for identification of B. burgdorferi genes expressed during an active murine infection. Spirochetes lacking linear plasmid (lp) 25 are non-infectious yet highly transformable. Mouse infection can be restored to these spirochetes by expression of the essential lp25-encoded pncA gene alone. Therefore, this IVET-based approach selects for in vivo-expressed promoters that drive expression of pncA resulting in the recovery of infectious spirochetes lacking lp25 following a three week infection in mice. Screening of approximately 15,000 clones in mice identified 289 unique in vivo-expressed DNA fragments from across all 22 replicons of the B. burgdorferi B31 genome. The in vivo-expressed candidate genes putatively encode proteins in various functional categories including antigenicity, metabolism, motility, nutrient transport and unknown functions. Candidate gene bbk46 on essential virulence plasmid lp36 was found to be highly induced in vivo and to be RpoS-independent. Immunocompetent mice inoculated with spirochetes lacking bbk46 seroconverted but no spirochetes were recovered from mouse tissues three weeks post inoculation. However, the bbk46 gene was not required for B. burgdorferi infection of immunodeficient mice. Therefore, through an initial IVET screen in B. burgdorferi we have identified a novel in vivo-induced virulence factor critical for the ability of the spirochete to evade the humoral immune response and persistently infect mice.
Author Summary
Lyme disease is caused by tick-bite transmission of the pathogenic spirochete Borrelia burgdorferi. An increased understanding of how B. burgdorferi survives throughout its infectious cycle is critical for the development of innovative diagnostic and therapeutic protocols to reduce the incidence of Lyme disease. One of the major difficulties blocking this effort has been genome-wide identification of the B. burgdorferi genes that are expressed in the mammalian host environment. Using in vivo expression technology (IVET) in B. burgdorferi for the first time, we have identified B. burgdorferi genes that are expressed during an active murine infection. We demonstrate that candidate gene bbk46, encoded on essential linear plasmid 36, is highly expressed in vivo and, unlike some other known B. burgdorferi in vivo-induced genes, is not RpoS regulated. Spirochetes lacking bbk46 establish an infection in mice and elicit an antibody response but are undetectable in mouse tissues three weeks post inoculation. The bbk46 is not required for spirochete infection of mice lacking a functional immune system. In sum, development of an IVET-based approach in B. burgdorferi has identified a novel virulence gene critical for the spirochete's ability to evade the mammalian adaptive immune response.
PMCID: PMC3757035  PMID: 24009501
2.  The Cross-Talk between Spirochetal Lipoproteins and Immunity 
Spirochetal diseases such as syphilis, Lyme disease, and leptospirosis are major threats to public health. However, the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins, and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are pro-inflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases.
PMCID: PMC4075078  PMID: 25071771
spirochetes; lipoproteins; immunity; Borrelia; treponemes; lipopeptides; immunomodulation
3.  Glycerol-3-Phosphate Acquisition in Spirochetes: Distribution and Biological Activity of Glycerophosphodiester Phosphodiesterase (GlpQ) among Borrelia Species 
Journal of Bacteriology  2003;185(4):1346-1356.
Relapsing-fever spirochetes achieve high cell densities (>108/ml) in their host's blood, while Lyme disease spirochetes do not (<105/ml). This striking contrast in pathogenicity of these two groups of bacteria suggests a fundamental difference in their ability to either exploit or survive in blood. Borrelia hermsii, a tick-borne relapsing-fever spirochete, contains orthologs to glpQ and glpT, genes that encode glycerophosphodiester phosphodiesterase (GlpQ) and glycerol-3-phosphate transporter (GlpT), respectively. In other bacteria, GlpQ hydrolyzes deacylated phospholipids to glycerol-3-phosphate (G3P) while GlpT transports G3P into the cytoplasm. Enzyme assays on 17 isolates of borreliae demonstrated GlpQ activity in relapsing-fever spirochetes but not in Lyme disease spirochetes. Southern blots demonstrated glpQ and glpT in all relapsing-fever spirochetes but not in the Lyme disease group. A Lyme disease spirochete, Borrelia burgdorferi, that was transformed with a shuttle vector containing glpTQ from B. hermsii produced active enzyme, which demonstrated the association of glpQ with the hydrolysis of phospholipids. Sequence analysis of B. hermsii identified glpF, glpK, and glpA, which encode the glycerol facilitator, glycerol kinase, and glycerol-3-phosphate dehydrogenase, respectively, all of which are present in B. burgdorferi. All spirochetes examined had gpsA, which encodes the enzyme that reduces dihydroxyacetone phosphate (DHAP) to G3P. Consequently, three pathways for the acquisition of G3P exist among borreliae: (i) hydrolysis of deacylated phospholipids, (ii) reduction of DHAP, and (iii) uptake and phosphorylation of glycerol. The unique ability of relapsing-fever spirochetes to hydrolyze phospholipids may contribute to their higher cell densities in blood than those of Lyme disease spirochetes.
PMCID: PMC142843  PMID: 12562805
4.  Purine Salvage Pathways among Borrelia Species▿  
Infection and Immunity  2007;75(8):3877-3884.
Genome sequencing projects on two relapsing fever spirochetes, Borrelia hermsii and Borrelia turicatae, revealed differences in genes involved in purine metabolism and salvage compared to those in the Lyme disease spirochete Borrelia burgdorferi. The relapsing fever spirochetes contained six open reading frames that are absent from the B. burgdorferi genome. These genes included those for hypoxanthine-guanine phosphoribosyltransferase (hpt), adenylosuccinate synthase (purA), adenylosuccinate lyase (purB), auxiliary protein (nrdI), the ribonucleotide-diphosphate reductase alpha subunit (nrdE), and the ribonucleotide-diphosphate reductase beta subunit (nrdF). Southern blot assays with multiple Borrelia species and isolates confirmed the presence of these genes in the relapsing fever group of spirochetes but not in B. burgdorferi and related species. TaqMan real-time reverse transcription-PCR demonstrated that the chromosomal genes (hpt, purA, and purB) were transcribed in vitro and in mice. Phosphoribosyltransferase assays revealed that, in general, B. hermsii exhibited significantly higher activity than did the B. burgdorferi cell lysate, and enzymatic activity was observed with adenine, hypoxanthine, and guanine as substrates. B. burgdorferi showed low but detectable phosphoribosyltransferase activity with hypoxanthine even though the genome lacks a discernible ortholog to the hpt gene in the relapsing fever spirochetes. B. hermsii incorporated radiolabeled hypoxanthine into RNA and DNA to a much greater extent than did B. burgdorferi. This complete pathway for purine salvage in the relapsing fever spirochetes may contribute, in part, to these spirochetes achieving high cell densities in blood.
PMCID: PMC1952022  PMID: 17502392
5.  Regulatory Protein BBD18 of the Lyme Disease Spirochete: Essential Role During Tick Acquisition? 
mBio  2014;5(2):e01017-14.
The Lyme disease spirochete Borrelia burgdorferi senses and responds to environmental cues as it transits between the tick vector and vertebrate host. Failure to properly adapt can block transmission of the spirochete and persistence in either vector or host. We previously identified BBD18, a novel plasmid-encoded protein of B. burgdorferi, as a putative repressor of the host-essential factor OspC. In this study, we investigate the in vivo role of BBD18 as a regulatory protein, using an experimental mouse-tick model system that closely resembles the natural infectious cycle of B. burgdorferi. We show that spirochetes that have been engineered to constitutively produce BBD18 can colonize and persist in ticks but do not infect mice when introduced by either tick bite or needle inoculation. Conversely, spirochetes lacking BBD18 can persistently infect mice but are not acquired by feeding ticks. Through site-directed mutagenesis, we have demonstrated that abrogation of spirochete infection in mice by overexpression of BBD18 occurs only with bbd18 alleles that can suppress OspC synthesis. Finally, we demonstrate that BBD18-mediated regulation does not utilize a previously described ospC operator sequence required by B. burgdorferi for persistence in immunocompetent mice. These data lead us to conclude that BBD18 does not represent the putative repressor utilized by B. burgdorferi for the specific downregulation of OspC in the mammalian host. Rather, we suggest that BBD18 exhibits features more consistent with those of a global regulatory protein whose critical role occurs during spirochete acquisition by feeding ticks.
Lyme disease, caused by Borrelia burgdorferi, is the most common arthropod-borne disease in North America. B. burgdorferi is transmitted to humans and other vertebrate hosts by ticks as they take a blood meal. Transmission between vectors and hosts requires the bacterium to sense changes in the environment and adapt. However, the mechanisms involved in this process are not well understood. By determining how B. burgdorferi cycles between two very different environments, we can potentially establish novel ways to interfere with transmission and limit infection of this vector-borne pathogen. We are studying a regulatory protein called BBD18 that we recently described. We found that too much BBD18 interferes with the spirochete’s ability to establish infection in mice, whereas too little BBD18 appears to prevent colonization in ticks. Our study provides new insight into key elements of the infectious cycle of the Lyme disease spirochete.
PMCID: PMC3977360  PMID: 24692636
6.  RpoS Is Not Central to the General Stress Response in Borrelia burgdorferi but Does Control Expression of One or More Essential Virulence Determinants  
Infection and Immunity  2004;72(11):6433-6445.
Borrelia burgdorferi, the Lyme disease spirochete, undergoes dramatic changes in antigenic composition as it cycles between its arthropod and mammalian hosts. A growing body of evidence suggests that these changes reflect, at least in part, the need for spirochetes to adapt to the physiological stresses imposed by abrupt changes in environmental conditions and nutrient availability. In many microorganisms, global responses are mediated by master regulators such as alternative sigma factors, with Escherichia coli RpoS (σS) serving as a prototype. The importance of this transcriptional activator in other bacteria, coupled with the report by Hübner et al. (A. Hübner, X. Yang, D. M. Nolen, T. G. Popova, F. C. Cabello, and M. V. Norgard, Proc. Natl. Acad. Sci. USA 98:12724-12729, 2001) demonstrating that the borrelial RpoS ortholog controls expression of OspC and decorin-binding protein A (DbpA), prompted us to examine more closely the roles of RpoS-dependent and -independent differential gene expression in physiological adaptation by the Lyme disease spirochete. We observed that B. burgdorferi rpoS (rpoSBb) was induced following temperature shift and transcript levels were further enhanced by reduced pH (pH 6.8). Using quantitative real-time reverse transcription-PCR (RT-PCR), we demonstrated that, in contrast to its ortholog (rpoSEc) in Escherichia coli, rpoSBb was expressed at significant levels in B. burgdorferi throughout all phases of growth following temperature shift. By comparing a B. burgdorferi strain 297 rpoSBb mutant to its wild-type counterpart, we determined that RpoSBb was not required for survival following exposure to a wide range of environmental stresses (i.e., temperature shift, serum starvation, increased osmolality, reactive oxygen intermediates, and increased or reduced oxygen tension), although the mutant was more sensitive to extremes of pH. While B. burgdorferi strains lacking RpoS were able to survive within intraperitoneal dialysis membrane chambers at a level equivalent to that of the wild type, they were avirulent in mice. Lastly, RT-PCR analysis of the ospE-ospF-elp paralogous lipoprotein families complements earlier findings that many temperature-inducible borrelial loci are controlled in an RpoSBb-independent manner. Together, these data point to fundamental differences between the role(s) of RpoS in B. burgdorferi and that in E. coli. Rather than functioning as a master regulator, RpoSBb appears to serve as a stress-responsive activator of a subset of virulence determinants that, together with the RpoS-independent, differentially expressed regulon, encompass the spirochete's genetic programs required for mammalian host adaptation.
PMCID: PMC523033  PMID: 15501774
7.  A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. 
Journal of Clinical Investigation  1998;101(10):2240-2250.
There is now substantial evidence that Borrelia burgdorferi, the Lyme disease spirochete, undergoes major alterations in antigenic composition as it cycles between its arthropod and mammalian hosts. In this report, we cultivated B. burgdorferi 297 within dialysis membrane chambers implanted into the peritoneal cavities of rats to induce antigenic changes similar to those which occur during mammalian infection. Chamber-grown spirochetes, which remained fully virulent, did not express either outer surface protein A or Lp6.6, lipoproteins known to be downregulated after mammalian infection. However, they did, express p21, a well characterized outer surface protein E homologue, which is selectively expressed during infection. SDS-PAGE, two-dimensional gel electrophoresis, and immunoblot analysis revealed that chamber-grown borreliae also expressed uncharacterized proteins not expressed by in vitro-cultivated spirochetes; reactivity with sera from mice chronically infected with B. burgdorferi 297 confirmed that many of these novel proteins are selectively expressed during experimental murine infection. Finally, we used differential display RT-PCR to identify transcripts of other differentially expressed B. burgdorferi genes. One gene (2.9-7lpB) identified with this technique belongs to a family of genes located on homologous 32- and 18-kb circular plasmids. The lipoprotein encoded by 2.9-7lpB was shown to be selectively expressed by chamber-grown spirochetes and by spirochetes during experimental infection. Cultivation of B. burgdorferi in rat peritoneal implants represents a novel system for studying Lyme disease spirochetes in a mammalian host-adapted state.
PMCID: PMC508812  PMID: 9593780
8.  Phylogenetic analysis of the spirochetes. 
Journal of Bacteriology  1991;173(19):6101-6109.
The 16S rRNA sequences were determined for species of Spirochaeta, Treponema, Borrelia, Leptospira, Leptonema, and Serpula, using a modified Sanger method of direct RNA sequencing. Analysis of aligned 16S rRNA sequences indicated that the spirochetes form a coherent taxon composed of six major clusters or groups. The first group, termed the treponemes, was divided into two subgroups. The first treponeme subgroup consisted of Treponema pallidum, Treponema phagedenis, Treponema denticola, a thermophilic spirochete strain, and two species of Spirochaeta, Spirochaeta zuelzerae and Spirochaeta stenostrepta, with an average interspecies similarity of 89.9%. The second treponeme subgroup contained Treponema bryantii, Treponema pectinovorum, Treponema saccharophilum, Treponema succinifaciens, and rumen strain CA, with an average interspecies similarity of 86.2%. The average interspecies similarity between the two treponeme subgroups was 84.2%. The division of the treponemes into two subgroups was verified by single-base signature analysis. The second spirochete group contained Spirochaeta aurantia, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirochaeta litoralis, and Spirochaeta isovalerica, with an average similarity of 87.4%. The Spirochaeta group was related to the treponeme group, with an average similarity of 81.9%. The third spirochete group contained borrelias, including Borrelia burgdorferi, Borrelia anserina, Borrelia hermsii, and a rabbit tick strain. The borrelias formed a tight phylogenetic cluster, with average similarity of 97%. THe borrelia group shared a common branch with the Spirochaeta group and was closer to this group than to the treponemes. A single spirochete strain isolated fromt the shew constituted the fourth group. The fifth group was composed of strains of Serpula (Treponema) hyodysenteriae and Serpula (Treponema) innocens. The two species of this group were closely related, with a similarity of greater than 99%. Leptonema illini, Leptospira biflexa, and Leptospira interrogans formed the sixth and most deeply branching group. The average similarity within this group was 83.2%. This study represents the first demonstration that pathogenic and saprophytic Leptospira species are phylogenetically related. The division of the spirochetes into six major phylogenetic clusters was defined also by sequence signature elements. These signature analyses supported the conclusion that the spirochetes represent a monophylectic bacterial phylum.
PMCID: PMC208357  PMID: 1917844
9.  Structure and Expression of the FlaA Periplasmic Flagellar Protein of Borrelia burgdorferi 
Journal of Bacteriology  1998;180(9):2418-2425.
The spirochete which causes Lyme disease, Borrelia burgdorferi, has many features common to other spirochete species. Outermost is a membrane sheath, and within this sheath are the cell cylinder and periplasmic flagella (PFs). The PFs are subterminally attached to the cell cylinder and overlap in the center of the cell. Most descriptions of the B. burgdorferi flagellar filaments indicate that these organelles consist of only one flagellin protein (FlaB). In contrast, the PFs from other spirochete species are comprised of an outer layer of FlaA and a core of FlaB. We recently found that a flaA homolog was expressed in B. burgdorferi and that it mapped in a fla/che operon. These results led us to analyze the PFs and FlaA of B. burgdorferi in detail. Using Triton X-100 to remove the outer membrane and isolate the PFs, we found that the 38.0-kDa FlaA protein purified with the PFs in association with the 41.0-kDa FlaB protein. On the other hand, purifying the PFs by using Sarkosyl resulted in no FlaA in the isolated PFs. Sarkosyl has been used by others to purify B. burgdorferi PFs, and our results explain in part their failure to find FlaA. Unlike other spirochetes, B. burgdorferi FlaA was expressed at a lower level than FlaB. In characterizing FlaA, we found that it was posttranslationally modified by glycosylation, and thus it resembles its counterpart from Serpulina hyodysenteriae. We also tested if FlaA was synthesized in a spontaneously occurring PF mutant of B. burgdorferi (HB19Fla−). Although this mutant still synthesized flaA message in amounts similar to the wild-type amounts, it failed to synthesize FlaA protein. These results suggest that, in agreement with data found for FlaB and other spirochete flagellar proteins, FlaA is likely to be regulated on the translational level. Western blot analysis using Treponema pallidum anti-FlaA serum indicated that FlaA was antigenically well conserved in several spirochete species. Taken together, the results indicate that both FlaA and FlaB comprise the PFs of B. burgdorferi and that they are regulated differently from flagellin proteins of other bacteria.
PMCID: PMC107184  PMID: 9573194
10.  Regulation of OspE-Related, OspF-Related, and Elp Lipoproteins of Borrelia burgdorferi Strain 297 by Mammalian Host-Specific Signals 
Infection and Immunity  2001;69(6):3618-3627.
In previous studies we have characterized the cp32/18 loci in Borrelia burgdorferi 297 which encode OspE and OspF orthologs and a third group of lipoproteins which possess OspE/F-like leader peptides (Elps). To further these studies, we have comprehensively analyzed their patterns of expression throughout the borrelial enzootic cycle. Serial dilution reverse transcription-PCR analysis indicated that although a shift in temperature from 23 to 37°C induced transcription for all nine genes analyzed, this effect was often markedly enhanced in mammalian host-adapted organisms cultivated within dialysis membrane chambers (DMCs) implanted within the peritoneal cavities of rats. Indirect immunofluorescence assays performed on temperature-shifted, in vitro-cultivated spirochetes and organisms in the midguts of unfed and fed ticks revealed distinct expression profiles for many of the OspE-related, OspF-related, and Elp proteins. Other than BbK2.10 and ElpA1, all were expressed by temperature-shifted organisms, while only OspE, ElpB1, OspF, and BbK2.11 were expressed in the midguts of fed ticks. Additionally, although mRNA was detected for all nine lipoprotein-encoding genes, two of these proteins (BbK2.10 and ElpA1) were not expressed by spirochetes cultivated in vitro, within DMCs, or by spirochetes within tick midguts. However, the observation that B. burgdorferi-infected mice generated specific antibodies against BbK2.10 and ElpA1 indicated that these antigens are expressed only in the mammalian host and that a form of posttranscriptional regulation is involved. Analysis of the upstream regions of these genes revealed several differences between their promoter regions, the majority of which were found in the −10 and −35 hexamers and the spacer regions between them. Also, rather than undergoing simultaneous upregulation during tick feeding, these genes and the corresponding lipoproteins appear to be subject to progressive recruitment or enhancement of expression as B. burgdorferi is transmitted from its tick vector to the mammalian host. These findings underscore the potential relevance of these molecules to the pathogenic events of early Lyme disease.
PMCID: PMC98350  PMID: 11349022
11.  Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories 
Nucleic Acids Research  2000;28(18):3417-3432.
Holliday junction resolvases (HJRs) are key enzymes of DNA recombination. A detailed computer analysis of the structural and evolutionary relationships of HJRs and related nucleases suggests that the HJR function has evolved independently from at least four distinct structural folds, namely RNase H, endonuclease, endonuclease VII–colicin E and RusA. The endonuclease fold, whose structural prototypes are the phage λ exonuclease, the very short patch repair nuclease (Vsr) and type II restriction enzymes, is shown to encompass by far a greater diversity of nucleases than previously suspected. This fold unifies archaeal HJRs, repair nucleases such as RecB and Vsr, restriction enzymes and a variety of predicted nucleases whose specific activities remain to be determined. Within the RNase H fold a new family of predicted HJRs, which is nearly ubiquitous in bacteria, was discovered, in addition to the previously characterized RuvC family. The proteins of this family, typified by Escherichia coli YqgF, are likely to function as an alternative to RuvC in most bacteria, but could be the principal HJRs in low-GC Gram-positive bacteria and Aquifex. Endonuclease VII of phage T4 is shown to serve as a structural template for many nucleases, including McrA and other type II restriction enzymes. Together with colicin E7, endonuclease VII defines a distinct metal-dependent nuclease fold. As a result of this analysis, the principal HJRs are now known or confidently predicted for all bacteria and archaea whose genomes have been completely sequenced, with many species encoding multiple potential HJRs. Horizontal gene transfer, lineage-specific gene loss and gene family expansion, and non-orthologous gene displacement seem to have been major forces in the evolution of HJRs and related nucleases. A remarkable case of displacement is seen in the Lyme disease spirochete Borrelia burgdorferi, which does not possess any of the typical HJRs, but instead encodes, in its chromosome and each of the linear plasmids, members of the λ exonuclease family predicted to function as HJRs. The diversity of HJRs and related nucleases in bacteria and archaea contrasts with their near absence in eukaryotes. The few detected eukaryotic representatives of the endonuclease fold and the RNase H fold have probably been acquired from bacteria via horizontal gene transfer. The identity of the principal HJR(s) involved in recombination in eukaryotes remains uncertain; this function could be performed by topoisomerase IB or by a novel, so far undetected, class of enzymes. Likely HJRs and related nucleases were identified in the genomes of numerous bacterial and eukaryotic DNA viruses. Gene flow between viral and cellular genomes has probably played a major role in the evolution of this class of enzymes. This analysis resulted in the prediction of numerous previously unnoticed nucleases, some of which are likely to be new restriction enzymes.
PMCID: PMC110722  PMID: 10982859
12.  Real-Time PCR for Simultaneous Detection and Quantification of Borrelia burgdorferi in Field-Collected Ixodes scapularis Ticks from the Northeastern United States 
The density of spirochetes in field-collected or experimentally infected ticks is estimated mainly by assays based on microscopy. In this study, a real-time quantitative PCR (qPCR) protocol targeting the Borrelia burgdorferi-specific recA gene was adapted for use with a Lightcycler for rapid detection and quantification of the Lyme disease spirochete, B. burgdorferi, in field-collected Ixodes scapularis ticks. The sensitivity of qPCR for detection of B. burgdorferi DNA in infected ticks was comparable to that of a well-established nested PCR targeting the 16S-23S rRNA spacer. Of the 498 I. scapularis ticks collected from four northeastern states (Rhode Island, Connecticut, New York, and New Jersey), 91 of 438 (20.7%) nymphal ticks and 15 of 60 (25.0%) adult ticks were positive by qPCR assay. The number of spirochetes in individual ticks varied from 25 to 197,200 with a mean of 1,964 spirochetes per nymphal tick and a mean of 5,351 spirochetes per adult tick. No significant differences were found in the mean numbers of spirochetes counted either in nymphal ticks collected at different locations in these four states (P = 0.23 by one-way analysis of variance test) or in ticks infected with the three distinct ribosomal spacer restriction fragment length polymorphism types of B. burgdorferi (P = 0.39). A high degree of spirochete aggregation among infected ticks (variance-to-mean ratio of 24,877; moment estimate of k = 0.279) was observed. From the frequency distribution data and previously published transmission studies, we estimated that a minimum of 300 organisms may be required in a host-seeking nymphal tick to be able to transmit infection to mice while feeding on mice. These data indicate that real-time qPCR is a reliable approach for simultaneous detection and quantification of B. burgdorferi infection in field-collected ticks and can be used for ecological and epidemiological surveillance of Lyme disease spirochetes.
PMCID: PMC169074  PMID: 12902243
13.  OspC-Independent Infection and Dissemination by Host-Adapted Borrelia burgdorferi▿  
Infection and Immunity  2009;77(7):2672-2682.
Borrelia burgdorferi OspC is required for the spirochete to establish infection in a mammal by tick transmission or needle inoculation. After a brief essential period, the protein no longer is required and the gene can be shut off. Using a system in which spirochetes contain only an unstable wild-type copy of the ospC gene, we can obtain mice persistently infected with bacteria lacking OspC. We implanted pieces of infected mouse skin subcutaneously in naïve mice, using donors carrying wild-type or ospC mutant spirochetes, and found that both could infect mice by this method, with similar numbers of wild-type or ospC mutant spirochetes disseminated throughout the tissues of recipient mice. Recipient mouse immune responses to tissue transfer-mediated infection with wild-type or ospC mutant spirochetes were similar. These experiments demonstrate that mammalian host-adapted spirochetes can infect and disseminate in mice in the absence of OspC, thereby circumventing this hallmark of tick-derived or in vitro-grown spirochetes. We propose a model in which OspC is one of a succession of functionally equivalent, essential proteins that are synthesized at different stages of mammalian infection. In this model, another protein uniquely present on host-adapted spirochetes performs the same essential function initially fulfilled by OspC. The strict temporal control of B. burgdorferi outer surface protein gene expression may reflect immunological constraints rather than distinct functions.
PMCID: PMC2708573  PMID: 19398538
14.  Extracellular Secretion of the Borrelia burgdorferi Oms28 Porin and Bgp, a Glycosaminoglycan Binding Protein  
Infection and Immunity  2004;72(11):6279-6286.
Borrelia burgdorferi, the Lyme disease pathogen, cycles between its Ixodes tick vector and vertebrate hosts, adapting to vastly different biochemical environments. Spirochete gene expression as a function of temperature, pH, growth phase, and host milieu is well studied, and recent work suggests that regulatory networks are involved. Here, we examine the release of Borrelia burgdorferi strain B31 proteins into conditioned medium. Spirochetes intrinsically radiolabeled at concentrations ranging from 107 to 109 cells per ml secreted Oms28, a previously characterized outer membrane porin, into RPMI medium. As determined by immunoblotting, this secretion was not associated with outer membrane blebs or cytoplasmic contamination. A similar profile of secreted proteins was obtained for spirochetes radiolabeled in mixtures of RPMI medium and serum-free Barbour-Stoenner-Kelly (BSK II) medium. Proteomic liquid chromatography-tandem mass spectrometry analysis of tryptic fragments derived from strain B31 culture supernatants confirmed the identity of the 28-kDa species as Oms28 and revealed a 26-kDa protein as 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs-2), previously described as Bgp, a glycosaminoglycan-binding protein. The release of Oms28 into the culture medium is more selective when the spirochetes are in logarithmic phase of growth compared to organisms obtained from stationary phase. As determined by immunoblotting, stationary-phase spirochetes released OspA, OspB, and flagellin. Oms28 secreted by strains B31, HB19, and N40 was also recovered by radioimmunoprecipitation. This is the first report of B. burgdorferi protein secretion into the extracellular environment. The possible roles of Oms28 and Bgp in the host-pathogen interaction are considered.
PMCID: PMC523065  PMID: 15501754
15.  Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence 
The yaws treponemes, Treponema pallidum ssp. pertenue (TPE) strains, are closely related to syphilis causing strains of Treponema pallidum ssp. pallidum (TPA). Both yaws and syphilis are distinguished on the basis of epidemiological characteristics, clinical symptoms, and several genetic signatures of the corresponding causative agents.
Methodology/Principal Findings
To precisely define genetic differences between TPA and TPE, high-quality whole genome sequences of three TPE strains (Samoa D, CDC-2, Gauthier) were determined using next-generation sequencing techniques. TPE genome sequences were compared to four genomes of TPA strains (Nichols, DAL-1, SS14, Chicago). The genome structure was identical in all three TPE strains with similar length ranging between 1,139,330 bp and 1,139,744 bp. No major genome rearrangements were found when compared to the four TPA genomes. The whole genome nucleotide divergence (dA) between TPA and TPE subspecies was 4.7 and 4.8 times higher than the observed nucleotide diversity (π) among TPA and TPE strains, respectively, corresponding to 99.8% identity between TPA and TPE genomes. A set of 97 (9.9%) TPE genes encoded proteins containing two or more amino acid replacements or other major sequence changes. The TPE divergent genes were mostly from the group encoding potential virulence factors and genes encoding proteins with unknown function.
Hypothetical genes, with genetic differences, consistently found between TPE and TPA strains are candidates for syphilitic treponemes virulence factors. Seventeen TPE genes were predicted under positive selection, and eleven of them coded either for predicted exported proteins or membrane proteins suggesting their possible association with the cell surface. Sequence changes between TPE and TPA strains and changes specific to individual strains represent suitable targets for subspecies- and strain-specific molecular diagnostics.
Author Summary
Spirochete Treponema pallidum ssp. pertenue (TPE) is the causative agent of yaws while strains of Treponema pallidum ssp. pallidum (TPA) cause syphilis. Both yaws and syphilis are distinguished on the basis of epidemiological characteristics and clinical symptoms. Neither treponeme can reproduce outside the host organism, which precludes the use of standard molecular biology techniques used to study cultivable pathogens. In this study, we determined high quality whole genome sequences of TPE strains and compared them to known genetic information for T. pallidum ssp. pallidum strains. The genome structure was identical in all three TPE strains and also between TPA and TPE strains. The TPE genome length ranged between 1,139,330 bp and 1,139,744 bp. The overall sequence identity between TPA and TPE genomes was 99.8%, indicating that the two pathogens are extremely closely related. A set of 34 TPE genes (3.5%) encoded proteins containing six or more amino acid replacements or other major sequence changes. These genes more often belonged to the group of genes with predicted virulence and unknown functions suggesting their involvement in infection differences between yaws and syphilis.
PMCID: PMC3265458  PMID: 22292095
16.  Evidence That Two ATP-Dependent (Lon) Proteases in Borrelia burgdorferi Serve Different Functions 
PLoS Pathogens  2009;5(11):e1000676.
The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH2-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host.
Author Summary
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most prevalent arthropod-borne disease in North America. In nature, the bacterium oscillates between its tick vector host (Ixodes spp.) and small rodents (Peromyscus spp.). B. burgdorferi is able to persist in these two very different host environments by modulating the expression of surface lipoproteins proteins, or other proteins, in response to host factors or environmental cues such as temperature and pH. Our interest in this process led to the identification of a homolog of the E. coli ATP-dependent lon protease (lon-1) in B. burgdorferi that was upregulated in response to blood. The prototypical Lon of E. coli is a conserved protease important for the destruction of abnormal and short-lived proteins. B. burgdorferi is unusual in that it also codes for a second lon homolog, lon-2, that was not upregulated in response to blood. In this study, we sought to clarify the roles for Lon-1 and Lon-2 in B. burgdorferi. We present evidence that Lon-1 is an ATP- and Mg2+-dependent protease but does not function in a manner consistent with a prototypical Lon. Lon-2, however, functionally complemented Lon in E. coli. Thus, Lon-1 and Lon-2 appear to have distinct roles in B. burgdorferi; Lon-1 by virtue of its blood induction may be important in host adaptation, while Lon-2 is the functional homolog of E. coli Lon.
PMCID: PMC2777506  PMID: 19956677
17.  Cryo-Electron Tomography Elucidates the Molecular Architecture of Treponema pallidum, the Syphilis Spirochete▿ † 
Journal of Bacteriology  2009;191(24):7566-7580.
Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure's fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete's complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator-P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor and enable us to propose that in most spirochetes motility results from rotation of the flagellar filaments against the PG.
PMCID: PMC2786590  PMID: 19820083
18.  Evidence for an ABC-Type Riboflavin Transporter System in Pathogenic Spirochetes 
mBio  2013;4(1):e00615-12.
Bacterial transporter proteins are involved in the translocation of many essential nutrients and metabolites. However, many of these key bacterial transport systems remain to be identified, including those involved in the transport of riboflavin (vitamin B2). Pathogenic spirochetes lack riboflavin biosynthetic pathways, implying reliance on obtaining riboflavin from their hosts. Using structural and functional characterizations of possible ligand-binding components, we have identified an ABC-type riboflavin transport system within pathogenic spirochetes. The putative lipoprotein ligand-binding components of these systems from three different spirochetes were cloned, hyperexpressed in Escherichia coli, and purified to homogeneity. Solutions of all three of the purified recombinant proteins were bright yellow. UV-visible spectra demonstrated that these proteins were likely flavoproteins; electrospray ionization mass spectrometry and thin-layer chromatography confirmed that they contained riboflavin. A 1.3-Å crystal structure of the protein (TP0298) encoded by Treponema pallidum, the syphilis spirochete, demonstrated that the protein’s fold is similar to the ligand-binding components of ABC-type transporters. The structure also revealed other salient details of the riboflavin binding site. Comparative bioinformatics analyses of spirochetal genomes, coupled with experimental validation, facilitated the discovery of this new ABC-type riboflavin transport system(s). We denote the ligand-binding component as riboflavin uptake transporter A (RfuA). Taken together, it appears that pathogenic spirochetes have evolved an ABC-type transport system (RfuABCD) for survival in their host environments, particularly that of the human host.
Syphilis remains a public health problem, but very little is known about the causative bacterium. This is because Treponema pallidum still cannot be cultured in the laboratory. Rather, T. pallidum must be cultivated in laboratory rabbits, a restriction that poses many insurmountable experimental obstacles. Approaches to learn more about the structure and function of T. pallidum’s cell envelope, which is both the physical and functional interface between T. pallidum and its human host, are severely limited. One approach for elucidating T. pallidum’s cell envelope has been to determine the three-dimensional structures of its membrane lipoproteins, molecules that serve many critical survival functions. Herein, we describe a previously unknown transport system that T. pallidum uses to import riboflavin, an essential nutrient for the organism’s survival. Moreover, we found that this transport system is present in other pathogenic spirochetes. This is the first description of this new type of bacterial riboflavin transport system.
PMCID: PMC3573665  PMID: 23404400
19.  A Tick Gut Protein with Fibronectin III Domains Aids Borrelia burgdorferi Congregation to the Gut during Transmission 
PLoS Pathogens  2014;10(8):e1004278.
Borrelia burgdorferi transmission to the vertebrate host commences with growth of the spirochete in the tick gut and migration from the gut to the salivary glands. This complex process, involving intimate interactions of the spirochete with the gut epithelium, is pivotal to transmission. We utilized a yeast surface display library of tick gut proteins to perform a global screen for tick gut proteins that might interact with Borrelia membrane proteins. A putative fibronectin type III domain-containing tick gut protein (Ixofin3D) was most frequently identified from this screen and prioritized for further analysis. Immunization against Ixofin3D and RNA interference-mediated reduction in expression of Ixofin3D resulted in decreased spirochete burden in tick salivary glands and in the murine host. Microscopic examination showed decreased aggregation of spirochetes on the gut epithelium concomitant with reduced expression of Ixofin3D. Our observations suggest that the interaction between Borrelia and Ixofin3D facilitates spirochete congregation to the gut during transmission, and provides a “molecular exit” direction for spirochete egress from the gut.
Author Summary
Lyme borreliosis, the most common vector-borne illness in Northeastern parts of USA, is caused by Borrelia burgdorferi sensu lato spirochetes, and transmitted by the Ixodes scapularis ticks. Currently there is no vaccine available to prevent Lyme borreliosis. A better understanding of tick proteins that interact with Borrelia to facilitate spirochete transmission could identify new targets for the development of a tick-based vaccine to prevent Lyme borreliosis. Spirochete growth and exit from the gut is central to transmission, and might involve intimate interactions between the spirochete and the tick gut. We therefore performed a global screen to identify Borrelia-interacting tick gut proteins. One of the four Borrelia-interacting tick proteins, referred to as Ixofin3D, was further characterized. RNA-interference-mediated down-regulation of Ixofin3D resulted in decreased spirochete numbers in the salivary glands and consequently decreased transmission to the host during tick feeding. We demonstrate that Ixofin3D aids spirochete congregation to the gut epithelium, a critical first step that might direct spirochete exit from the gut.
PMCID: PMC4125277  PMID: 25102051
20.  Dissolved Oxygen Levels Alter Gene Expression and Antigen Profiles in Borrelia burgdorferi  
Infection and Immunity  2004;72(3):1580-1586.
The Lyme disease spirochete, Borrelia burgdorferi, encounters many environmental signals as it cycles between the arthropod vector and mammalian hosts, including temperature, pH, and other host factors. To test the possibility that dissolved oxygen modulates gene expression in B. burgdorferi, spirochetes were exposed to differential levels of dissolved oxygen, and distinct alterations were observed at both the transcriptional and translational levels. Specifically NapA, a Dps/Dpr homologue involved in the oxidative stress response in other bacteria, was reduced when B. burgdorferi was grown under oxygen-limiting conditions. In contrast, several immunoreactive proteins were altered when tested with infection-derived sera from different hosts. Specifically, OspC, DbpA, and VlsE were synthesized at greater levels when cells were grown in limiting oxygen, whereas VraA was reduced. The levels of oxygen in the medium did not affect OspA production. Real-time reverse transcription-PCR analysis of RNA isolated from infectious isolates of strains B31 and cN40 indicated that the expression of ospC, dbpA, and vlsE increased while napA expression decreased under dissolved-oxygen-limiting conditions, whereas flaB was not affected. The reverse transcription-PCR results corroborated the immunoblot analyses and indicated that the increase in OspC, DbpA, and VlsE was due to regulation at the transcriptional level of the genes encoding these antigens. These results indicate that dissolved oxygen modulates gene expression in B. burgdorferi and imply that the redox environment may be an additional regulatory cue that spirochetes exploit to adapt to the disparate niches that they occupy in nature.
PMCID: PMC356058  PMID: 14977964
21.  Whole Genome Sequence of Treponema pallidum ssp. pallidum, Strain Mexico A, Suggests Recombination between Yaws and Syphilis Strains 
Treponema pallidum ssp. pallidum (TPA), the causative agent of syphilis, and Treponema pallidum ssp. pertenue (TPE), the causative agent of yaws, are closely related spirochetes causing diseases with distinct clinical manifestations. The TPA Mexico A strain was isolated in 1953 from male, with primary syphilis, living in Mexico. Attempts to cultivate TPA Mexico A strain under in vitro conditions have revealed lower growth potential compared to other tested TPA strains.
Methodology/Principal Findings
The complete genome sequence of the TPA Mexico A strain was determined using the Illumina sequencing technique. The genome sequence assembly was verified using the whole genome fingerprinting technique and the final sequence was annotated. The genome size of the Mexico A strain was determined to be 1,140,038 bp with 1,035 predicted ORFs. The Mexico A genome sequence was compared to the whole genome sequences of three TPA (Nichols, SS14 and Chicago) and three TPE (CDC-2, Samoa D and Gauthier) strains. No large rearrangements in the Mexico A genome were found and the identified nucleotide changes occurred most frequently in genes encoding putative virulence factors. Nevertheless, the genome of the Mexico A strain, revealed two genes (TPAMA_0326 (tp92) and TPAMA_0488 (mcp2-1)) which combine TPA- and TPE- specific nucleotide sequences. Both genes were found to be under positive selection within TPA strains and also between TPA and TPE strains.
The observed mosaic character of the TPAMA_0326 and TPAMA_0488 loci is likely a result of inter-strain recombination between TPA and TPE strains during simultaneous infection of a single host suggesting horizontal gene transfer between treponemal subspecies.
Author Summary
Treponema pallidum is a Gram-negative spirochete that causes diseases with distinct clinical manifestations and uses different transmission strategies. While syphilis (caused by subspecies pallidum) is a worldwide venereal and congenital disease, yaws (caused by subspecies pertenue) is a tropical disease transmitted by direct skin contact. Currently the genetic basis and evolution of these diseases remain unknown.
In this study, we describe a high quality whole genome sequence of T. pallidum ssp. pallidum strain Mexico A, determined using the ?next generation? sequencing technique (Illumina). Although the genome of this strain contains no large rearrangements in comparison with other treponemal genomes, we found two genes which combined sequences from both subspecies pallidum and pertenue. The observed mosaic character of these two genes is likely a result of inter-strain recombination between pallidum and pertenue during simultaneous infection of a single host.
PMCID: PMC3447947  PMID: 23029591
22.  Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. 
Journal of Bacteriology  1994;176(8):2151-2157.
A fundamental ultrastructural feature shared by the spirochetal pathogens Treponema pallidum subsp. pallidum (T. pallidum) and Borrelia burgdorferi, the etiological agents of venereal syphilis and Lyme disease, respectively, is that their most abundant membrane proteins contain covalently attached fatty acids. In this study, we identified the fatty acids covalently bound to lipoproteins of B. burgdorferi and T. pallidum and examined potential acyl donors to these molecules. Palmitate was the predominant fatty acid of both B. burgdorferi and T. pallidum lipoproteins. T. pallidum lipoproteins also contained substantial amounts of stearate, a fatty acid not typically prevalent in prokaryotic lipoproteins. In both spirochetes, the fatty acids of cellular lipids differed from those of their respective lipoproteins. To characterize phospholipids in these organisms, spirochetes were metabolically labeled with [3H]palmitate or [3H]oleate; B. burgdorferi contained only phosphatidylglycerol and phosphatidylcholine, while T. pallidum contained phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and cardiolipin. Although palmitate predominated in the lipoproteins, there were no apparent differences in the incorporation of these two fatty acids into phospholipids (putative acyl donors). Phospholipase A1 and A2 digestion of phosphatidylcholine from B. burgdorferi and T. pallidum labeled with either [3H]palmitate or [3H]oleate also revealed that neither fatty acid was incorporated preferentially into the 1 and 2 positions (potential acyl donor sites) of the glycerol backbone. The combined findings suggest that fatty acid utilization during lipoprotein synthesis is determined largely by the fatty acid specificities of the lipoprotein acyl transferases. These findings also provide the basis for ongoing efforts to elucidate the relationship between lipoprotein acylation and the physiological functions and inflammatory activities of these molecules.
PMCID: PMC205333  PMID: 8157583
23.  Alzheimer's disease - a neurospirochetosis. Analysis of the evidence following Koch's and Hill's criteria 
It is established that chronic spirochetal infection can cause slowly progressive dementia, brain atrophy and amyloid deposition in late neurosyphilis. Recently it has been suggested that various types of spirochetes, in an analogous way to Treponema pallidum, could cause dementia and may be involved in the pathogenesis of Alzheimer's disease (AD). Here, we review all data available in the literature on the detection of spirochetes in AD and critically analyze the association and causal relationship between spirochetes and AD following established criteria of Koch and Hill. The results show a statistically significant association between spirochetes and AD (P = 1.5 × 10-17, OR = 20, 95% CI = 8-60, N = 247). When neutral techniques recognizing all types of spirochetes were used, or the highly prevalent periodontal pathogen Treponemas were analyzed, spirochetes were observed in the brain in more than 90% of AD cases. Borrelia burgdorferi was detected in the brain in 25.3% of AD cases analyzed and was 13 times more frequent in AD compared to controls. Periodontal pathogen Treponemas (T. pectinovorum, T. amylovorum, T. lecithinolyticum, T. maltophilum, T. medium, T. socranskii) and Borrelia burgdorferi were detected using species specific PCR and antibodies. Importantly, co-infection with several spirochetes occurs in AD. The pathological and biological hallmarks of AD were reproduced in vitro by exposure of mammalian cells to spirochetes. The analysis of reviewed data following Koch's and Hill's postulates shows a probable causal relationship between neurospirochetosis and AD. Persisting inflammation and amyloid deposition initiated and sustained by chronic spirochetal infection form together with the various hypotheses suggested to play a role in the pathogenesis of AD a comprehensive entity. As suggested by Hill, once the probability of a causal relationship is established prompt action is needed. Support and attention should be given to this field of AD research. Spirochetal infection occurs years or decades before the manifestation of dementia. As adequate antibiotic and anti-inflammatory therapies are available, as in syphilis, one might prevent and eradicate dementia.
PMCID: PMC3171359  PMID: 21816039
Alzheimer's disease; bacteria; Borrelia burgdorferi; dementia; infection; Lyme disease; periodontal pathogen; spirochetes; Treponema; syphilis
24.  Real-Time High Resolution 3D Imaging of the Lyme Disease Spirochete Adhering to and Escaping from the Vasculature of a Living Host 
PLoS Pathogens  2008;4(6):e1000090.
Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood–brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP). Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo.
Author Summary
Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme disease. They exhibit an unusual form of motility and can infect many different tissues; however, the mechanism by which they disseminate from the blood to target sites is unknown. Direct visualization of bacterial pathogens at the single cell level in living hosts is an important goal of microbiology, since this approach is likely to yield critical insight into disease processes. We engineered a fluorescent strain of Borrelia burgdorferi, a Lyme disease pathogen, and used conventional and spinning disk confocal intravital microscopy to directly visualize these bacteria in real time and 3D in living mice. We found that spirochete interaction with and dissemination out of the vasculature was a multi-stage process of unexpected complexity and that spirochete movement appeared to play an integral role in dissemination. To our knowledge, this is the first report of high resolution 3D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo.
PMCID: PMC2408724  PMID: 18566656
25.  Borrelia burgdorferi Requires Glycerol for Maximum Fitness During The Tick Phase of the Enzootic Cycle 
PLoS Pathogens  2011;7(7):e1002102.
Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a vector-borne pathogen that cycles between a mammalian host and tick vector. This complex life cycle requires that the spirochete modulate its gene expression program to facilitate growth and maintenance in these diverse milieus. B. burgdorferi contains an operon that is predicted to encode proteins that would mediate the uptake and conversion of glycerol to dihydroxyacetone phosphate. Previous studies indicated that expression of the operon is elevated at 23°C and is repressed in the presence of the alternative sigma factor RpoS, suggesting that glycerol utilization may play an important role during the tick phase. This possibility was further explored in the current study by expression analysis and mutagenesis of glpD, a gene predicted to encode glycerol 3-phosphate dehydrogenase. Transcript levels for glpD were significantly lower in mouse joints relative to their levels in ticks. Expression of GlpD protein was repressed in an RpoS-dependent manner during growth of spirochetes within dialysis membrane chambers implanted in rat peritoneal cavities. In medium supplemented with glycerol as the principal carbohydrate, wild-type B. burgdorferi grew to a significantly higher cell density than glpD mutant spirochetes during growth in vitro at 25°C. glpD mutant spirochetes were fully infectious in mice by either needle or tick inoculation. In contrast, glpD mutants grew to significantly lower densities than wild-type B. burgdorferi in nymphal ticks and displayed a replication defect in feeding nymphs. The findings suggest that B. burgdorferi undergoes a switch in carbohydrate utilization during the mammal to tick transition. Further, the results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness.
Author Summary
Borrelia burgdorferi is the vector-borne pathogen that causes Lyme disease. It has a complex life cycle that involves growth in a tick vector and a mammalian host — two diverse environments that present B. burgdorferi with alternative carbohydrate sources for support of growth. Previous studies suggested that glycerol may be an important nutrient in the tick vector. Here we show that genes predicted to be involved in glycerol metabolism have significantly elevated expression during all tick stages. Repression of expression in the mammalian host is dependent on the alternative sigma factor, RpoS. A mutant that cannot convert glycerol into dihydroxyacetone phosphate to support glycolysis was able to infect mice. In contrast, the mutant was present at significantly lower levels in nymphal ticks, its replication was delayed during nymphal feeding and longer feeding times were required for transmission from nymph to mouse. The results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness.
PMCID: PMC3131272  PMID: 21750672

Results 1-25 (1298975)