Search tips
Search criteria

Results 1-25 (759396)

Clipboard (0)

Related Articles

1.  Transcriptional Repressor Rex Is Involved in Regulation of Oxidative Stress Response and Biofilm Formation by Streptococcus mutans 
FEMS microbiology letters  2011;320(2):110-117.
The transcriptional repressor Rex has been implicated in regulation of energy metabolism and fermentative growth in response to redox potential. Streptococcus mutans, the primary causative agent of human dental caries, possesses a gene that encodes a protein with high similarity to members of the Rex family of proteins. In this study, we showed that Rex-deficiency compromised the ability of S. mutans to cope with oxidative stress and to form biofilms. The Rex-deficient mutant also accumulated less biofilm after 3-days than the wild-type strain, especially when grown in sucrose-containing medium, but produced more extracellular glucans than the parental strain. Rex-deficiency caused substantial alterations in gene transcription, including those involved in heterofermentative metabolism, NAD+ regeneration and oxidative stress. Among the up-regulated genes was gtfC, which encodes glucosyltransferase C, an enzyme primarily responsible for synthesis of water-insoluble glucans. These results reveal that Rex plays an important role in oxidative stress responses and biofilm formation by S. mutans.
PMCID: PMC3115380  PMID: 21521360
Redox sensing; oxidative stress; biofilm formation; Streptococcus mutans
2.  Streptococcus mutans NADH Oxidase Lies at the Intersection of Overlapping Regulons Controlled by Oxygen and NAD+ Levels 
Journal of Bacteriology  2014;196(12):2166-2177.
NADH oxidase (Nox, encoded by nox) is a flavin-containing enzyme used by the oral pathogen Streptococcus mutans to reduce diatomic oxygen to water while oxidizing NADH to NAD+. The critical nature of Nox is 2-fold: it serves to regenerate NAD+, a carbon cycle metabolite, and to reduce intracellular oxygen, preventing formation of destructive reactive oxygen species (ROS). As oxygen and NAD+ have been shown to modulate the activity of the global transcription factors Spx and Rex, respectively, Nox is potentially poised at a critical junction of two stress regulons. In this study, microarray data showed that either addition of oxygen or loss of nox resulted in altered expression of genes involved in energy metabolism and transport and the upregulation of genes encoding ROS-metabolizing enzymes. Loss of nox also resulted in upregulation of several genes encoding transcription factors and signaling molecules, including the redox-sensing regulator gene rex. Characterization of the nox promoter revealed that nox was regulated by oxygen, through SpxA, and by Rex. These data suggest a regulatory loop in which the roles of nox in reduction of oxygen and regeneration of NAD+ affect the activity levels of Spx and Rex, respectively, and their regulons, which control several genes, including nox, crucial to growth of S. mutans under conditions of oxidative stress.
PMCID: PMC4054193  PMID: 24682329
3.  A Rex Family Transcriptional Repressor Influences H2O2 Accumulation by Enterococcus faecalis 
Journal of Bacteriology  2013;195(8):1815-1824.
Rex factors are bacterial transcription factors thought to respond to the cellular NAD+/NADH ratio in order to modulate gene expression by differentially binding DNA. To date, Rex factors have been implicated in regulating genes of central metabolism, oxidative stress response, and biofilm formation. The genome of Enterococcus faecalis, a low-GC Gram-positive opportunistic pathogen, encodes EF2638, a putative Rex factor. To study the role of E. faecalis Rex, we purified EF2638 and evaluated its DNA binding activity in vitro. EF2638 was able to bind putative promoter segments of several E. faecalis genes in an NADH-responsive manner, indicating that it represents an authentic Rex factor. Transcriptome analysis of a ΔEF2638 mutant revealed that genes likely to be involved in anaerobic metabolism were upregulated during aerobic growth, and the mutant exhibited an altered NAD+/NADH ratio. The ΔEF2638 mutant also exhibited a growth defect when grown with aeration on several carbon sources, suggesting an impaired ability to cope with oxidative stress. Inclusion of catalase in the medium alleviated the growth defect. H2O2 measurements revealed that the mutant accumulates significantly more H2O2 than wild-type E. faecalis. In summary, EF2638 represents an authentic Rex factor in E. faecalis that influences the production or detoxification of H2O2 in addition to its more familiar role as a regulator of anaerobic gene expression.
PMCID: PMC3624565  PMID: 23417491
4.  Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus 
Molecular Microbiology  2010;76(5):1142-1161.
An alignment of upstream regions of anaerobically induced genes in Staphylococcus aureus revealed the presence of an inverted repeat, corresponding to Rex binding sites in Streptomyces coelicolor. Gel shift experiments of selected upstream regions demonstrated that the redox-sensing regulator Rex of S. aureus binds to this inverted repeat. The binding sequence – TTGTGAAW4TTCACAA – is highly conserved in S. aureus. Rex binding to this sequence leads to the repression of genes located downstream. The binding activity of Rex is enhanced by NAD+ while NADH, which competes with NAD+ for Rex binding, decreases the activity of Rex. The impact of Rex on global protein synthesis and on the activity of fermentation pathways under aerobic and anaerobic conditions was analysed by using a rex-deficient strain. A direct regulatory effect of Rex on the expression of pathways that lead to anaerobic NAD+ regeneration, such as lactate, formate and ethanol formation, nitrate respiration, and ATP synthesis, is verified. Rex can be considered a central regulator of anaerobic metabolism in S. aureus. Since the activity of lactate dehydrogenase enables S. aureus to resist NO stress and thus the innate immune response, our data suggest that deactivation of Rex is a prerequisite for this phenomenon.
PMCID: PMC2883068  PMID: 20374494
5.  Transcriptional Regulation of Central Carbon and Energy Metabolism in Bacteria by Redox-Responsive Repressor Rex 
Journal of Bacteriology  2012;194(5):1145-1157.
Redox-sensing repressor Rex was previously implicated in the control of anaerobic respiration in response to the cellular NADH/NAD+ levels in Gram-positive bacteria. We utilized the comparative genomics approach to infer candidate Rex-binding DNA motifs and assess the Rex regulon content in 119 genomes from 11 taxonomic groups. Both DNA-binding and NAD-sensing domains are broadly conserved in Rex orthologs identified in the phyla Firmicutes, Thermotogales, Actinobacteria, Chloroflexi, Deinococcus-Thermus, and Proteobacteria. The identified DNA-binding motifs showed significant conservation in these species, with the only exception detected in Clostridia, where the Rex motif deviates in two positions from the generalized consensus, TTGTGAANNNNTTCACAA. Comparative analysis of candidate Rex sites revealed remarkable variations in functional repertoires of candidate Rex-regulated genes in various microorganisms. Most of the reconstructed regulatory interactions are lineage specific, suggesting frequent events of gain and loss of regulator binding sites in the evolution of Rex regulons. We identified more than 50 novel Rex-regulated operons encoding functions that are essential for resumption of the NADH:NAD+ balance. The novel functional role of Rex in the control of the central carbon metabolism and hydrogen production genes was validated by in vitro DNA binding assays using the TM0169 protein in the hydrogen-producing bacterium Thermotoga maritima.
PMCID: PMC3294762  PMID: 22210771
6.  Proteomic Evidences for Rex Regulation of Metabolism in Toxin-Producing Bacillus cereus ATCC 14579 
PLoS ONE  2014;9(9):e107354.
The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.
PMCID: PMC4162614  PMID: 25216269
7.  Suitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in Saccharopolyspora spinosa 
Microbial Cell Factories  2014;13(1):98.
Polyketides, such as spinosad, are mainly synthesized in the stationary phase of the fermentation. The synthesis of these compounds requires many primary metabolites, such as acetyl-CoA, propinyl-CoA, NADPH, and succinyl-CoA. Their synthesis is also significantly influenced by NADH/NAD+. Rex is the sensor of NADH/NAD+ redox state, whose structure is under the control of NADH/NAD+ ratio. The structure of rex controls the expression of many NADH dehydrogenases genes and cytochrome bd genes. Intracellular redox state can be influenced by adding extracellular electron acceptor H2O2. The effect of extracellular oxidoreduction potential on spinosad production has not been studied. Although extracellular oxidoreduction potential is an important environment effect in polyketides production, it has always been overlooked. Thus, it is important to study the effect of extracellular oxidoreduction potential on Saccharopolyspora spinosa growth and spinosad production.
During stationary phase, S. spinosa was cultured under oxidative (H2O2) and reductive (dithiothreitol) conditions. The results show that the yield of spinosad and pseudoaglycone increased 3.11 fold under oxidative condition. As H2O2 can be served as extracellular electron acceptor, the ratios of NADH/NAD+ were measured. We found that the ratio of NADH/NAD+ under oxidative condition was much lower than that in the control group. The expression of cytA and cytB in the rex mutant indicated that the expression of these two genes was controlled by rex, and it was not activated under oxidative condition. Enzyme activities of PFK, ICDH, and G6PDH and metabolites results indicated that more metabolic flux flow through spinosad synthesis.
The regulation function of rex was inhibited by adding extracellular electron acceptor-H2O2 in the stationary phase. Under this condition, many NADH dehydrogenases which were used to balance NADH/NAD+ by converting useful metabolites to useless metabolites and unefficient terminal oxidases (cytochrome bd) were not expressed. So lots of metabolites were not waste to balance. As a result, un-wasted metabolites related to spinosad and PSA synthesis resulted in a high production of spinosad and PSA under oxidative condition.
Electronic supplementary material
The online version of this article (doi:10.1186/s12934-014-0098-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4172946  PMID: 25158803
Saccharopolyspora spinosa; Oxidative condition; H2O2; Rex; Metabolites
8.  Influence of BrpA on Critical Virulence Attributes of Streptococcus mutans 
Journal of Bacteriology  2006;188(8):2983-2992.
Streptococcus mutans, the primary etiological agent of human dental caries, has developed multiple mechanisms to colonize and form biofilms on the tooth surface. The brpA gene codes for a predicted surface-associated protein with apparent roles in biofilm formation, autolysis, and cell division. In this study, we used two models to further characterize the biofilm-forming characteristics of a BrpA-deficient mutant, strain TW14. Compared to those of the parent strain, UA159, TW14 formed long chains and sparse microcolonies on hydroxylapatite disks but failed to accumulate and form three-dimensional biofilms when grown on glucose as the carbohydrate source. The biofilm formation defect was also readily apparent by confocal laser scanning microscopy when flow cells were used to grow biofilms. When subjected to acid killing at pH 2.8 for 45 min, the survival rate of strain TW14 was more than 1 log lower than that of the wild-type strain. TW14 was at least 3 logs more susceptible to killing by 0.2% hydrogen peroxide than was UA159. The expression of more than 200 genes was found by microarray analysis to be altered in cells lacking BrpA (P < 0.01). These results suggest that the loss of BrpA can dramatically influence the transcriptome and significantly affects the regulation of acid and oxidative stress tolerance and biofilm formation in S. mutans, which are key virulence attributes of the organism.
PMCID: PMC1447002  PMID: 16585759
9.  CcpA-Independent Glucose Regulation of Lactate Dehydrogenase 1 in Staphylococcus aureus 
PLoS ONE  2013;8(1):e54293.
Lactate Dehydrogenase 1 (Ldh1) is a key enzyme involved in Staphylococcus aureus NO·-resistance. Full ldh1-induction requires the presence of glucose, and mutants lacking the Carbon-Catabolite Protein (CcpA) exhibit decreased ldh1 transcription and diminished Ldh1 activity. The redox-regulator Rex represses ldh1 directly by binding to Rex-sites within the ldh1 promoter (Pldh1). In the absence of Rex, neither glucose nor CcpA affect ldh1 expression implying that glucose/CcpA-mediated activation requires Rex activity. Rex-mediated repression of ldh1 depends on cellular redox status and is maximal when NADH levels are low. However, compared to WT cells, the ΔccpA mutant exhibited impaired redox balance with relatively high NADH levels, yet ldh1 was still poorly expressed. Furthermore, CcpA did not drastically alter Rex transcript levels, nor did glucose or CcpA affect the expression of other Rex-regulated genes indicating that the glucose/CcpA effect is specific for Pldh1. A putative catabolite response element (CRE) is located ∼30 bp upstream of the promoter-distal Rex-binding site in Pldh1. However, CcpA had no affinity for Pldh1 in vitro and a genomic mutation of CRE upstream of Pldh1 in S. aureus had no affect on Ldh1 expression in vivo. In contrast to WT, ΔccpA S. aureus preferentially consumes non-glycolytic carbon sources. However when grown in defined medium with glucose as the primary carbon source, ΔccpA mutants express high levels of Ldh1 compared to growth in media devoid of glucose. Thus, the actual consumption of glucose stimulates Ldh1 expression rather than direct CcpA interaction at Pldh1.
PMCID: PMC3544828  PMID: 23342123
10.  BrpA Is Involved in Regulation of Cell Envelope Stress Responses in Streptococcus mutans 
Previous studies have shown that BrpA plays a major role in acid and oxidative stress tolerance and biofilm formation by Streptococcus mutans. Mutant strains lacking BrpA also display increased autolysis and decreased viability, suggesting a role for BrpA in cell envelope integrity. In this study, we examined the impact of BrpA deficiency on cell envelope stresses induced by envelope-active antimicrobials. Compared to the wild-type strain UA159, the BrpA-deficient mutant (TW14D) was significantly more susceptible to antimicrobial agents, especially lipid II inhibitors. Several genes involved in peptidoglycan synthesis were identified by DNA microarray analysis as downregulated in TW14D. Luciferase reporter gene fusion assays also revealed that expression of brpA is regulated in response to environmental conditions and stresses induced by exposure to subinhibitory concentrations of cell envelope antimicrobials. In a Galleria mellonella (wax worm) model, BrpA deficiency was shown to diminish the virulence of S. mutans OMZ175, which, unlike S. mutans UA159, efficiently kills the worms. Collectively, these results suggest that BrpA plays a role in the regulation of cell envelope integrity and that deficiency of BrpA adversely affects the fitness and diminishes the virulence of OMZ175, a highly invasive strain of S. mutans.
PMCID: PMC3318800  PMID: 22327589
11.  Regulatory Loop between Redox Sensing of the NADH/NAD+ Ratio by Rex (YdiH) and Oxidation of NADH by NADH Dehydrogenase Ndh in Bacillus subtilis 
Journal of Bacteriology  2006;188(20):7062-7071.
NADH dehydrogenase is a key component of the respiratory chain. It catalyzes the oxidation of NADH by transferring electrons to ubiquinone and establishes a proton motive force across the cell membrane. The yjlD (renamed ndh) gene of Bacillus subtilis is predicted to encode an enzyme similar to the NADH dehydrogenase II of Escherichia coli, encoded by the ndh gene. We have shown that the yjlC-ndh operon is negatively regulated by YdiH (renamed Rex), a homolog of Rex in Streptomyces coelicolor, and a redox-sensing transcriptional regulator that responds to the NADH/NAD+ ratio. The ndh gene regulates expression of the yjlC-ndh operon, as indicated by the fact that mutation in ndh causes a higher NADH/NAD+ ratio. An in vitro study showed that Rex binds to the downstream region of the yjlC-ndh promoter and that NAD+ enhances the binding of Rex to the putative Rex-binding sites in the yjlC-ndh operon as well as in the cydABCD operon. These results indicated that Rex and Ndh together form a regulatory loop which functions to prevent a large fluctuation in the NADH/NAD+ ratio in B. subtilis.
PMCID: PMC1636230  PMID: 17015645
12.  Inhibition of human T-cell leukemia virus type 2 Rex function by truncated forms of Rex encoded in alternatively spliced mRNAs. 
Journal of Virology  1997;71(4):2810-2818.
Three mRNA species encoding the x-III open reading frame are expressed in human T-cell leukemia virus type 2 (HTLV-2)-infected cells. An mRNA composed of exons 1, 2, and 3 produces the essential posttranscriptional regulator Rex; shorter 1-3 and 1-B mRNAs encode a family of x-III proteins of unknown function that represent truncated forms of Rex. This report presents an analysis of the functional interactions between Rex and the x-III proteins, results of which suggest a role for the x-III proteins as negative regulators of Rex function. Cotransfection assays demonstrated that the x-III proteins were able to inhibit the ability of Rex to activate the expression of a Rex-dependent mRNA. Analysis of intracellular compartmentalization in actinomycin D-treated cells showed that coexpression of the x-III proteins resulted in the sequestration of Rex into the nuclear compartment. Subcellular fractionation studies showed that Rex was preferentially localized in the cytoplasmic or nuclear fraction depending on its phosphorylation status and that coexpression of Rex with the x-III proteins changed the phosphorylation pattern of Rex and the intracellular distribution of the x-III proteins. In vitro protein binding assays demonstrated the formation of Rex-Rex homomultimeric complexes; however, mixed Rex/x-III multimers were not detected. These findings indicated a correlation between phosphorylation and intracellular trafficking of Rex and suggested that the mechanism underlying the inhibitory effects of the x-III proteins might result from an interference with these processes.
PMCID: PMC191405  PMID: 9060636
13.  Deficiency of BrpB causes major defects in cell division, stress responses and biofilm formation by Streptococcus mutans 
Microbiology  2014;160(Pt 1):67-78.
Streptococcus mutans, the primary aetiological agent of dental caries, possesses an YjeE-like protein that is encoded by locus SMU.409, herein designated brpB. In this study, a BrpB-deficient mutant, JB409, and a double mutant deficient of BrpB and BrpA (a paralogue of the LytR–CpsA–Psr family of cell wall-associated proteins), JB819, were constructed and characterized using function assays and microscopy analysis. Both JB409 and JB819 displayed extended lag phases and drastically slowed growth rates during growth in brain heart infusion medium as compared to the wild-type, UA159. Relative to UA159, JB409 and JB819 were more than 60- and 10-fold more susceptible to acid killing at pH 2.8, and more than 1 and 2 logs more susceptible to hydrogen peroxide, respectively. Complementation of the deficient mutants with a wild-type copy of the respective gene(s) partly restored the acid and oxidative stress responses to a level similar to the wild-type. As compared to UA159, biofilm formation by JB409 and JB819 was drastically reduced (P<0.001), especially during growth in medium containing sucrose. Under a scanning electron microscope, JB409 had significantly more giant cells with an elongated, rod-like morphology, and JB819 formed marble-like super cells with apparent defects in cell division. As revealed by transmission electron microscopy analysis, BrpB deficiency in both JB409 and JB819 resulted in the development of low electron density patches and formation of a loose nucleoid structure. Taken together, these results suggest that BrpB likely functions together with BrpA in regulating cell envelope biogenesis/homeostasis in Strep. mutans. Further studies are under way to elucidate the mechanism that underlies the BrpA- and BrpB-mediated regulation.
PMCID: PMC3917225  PMID: 24190982
14.  Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance 
BMC Microbiology  2012;12:187.
The S. mutans LrgA/B holin-like proteins have been shown to affect biofilm formation and oxidative stress tolerance, and are regulated by oxygenation, glucose levels, and by the LytST two-component system. In this study, we sought to determine if LytST was involved in regulating lrgAB expression in response to glucose and oxygenation in S. mutans.
Real-time PCR revealed that growth phase-dependent regulation of lrgAB expression in response to glucose metabolism is mediated by LytST under low-oxygen conditions. However, the effect of LytST on lrgAB expression was less pronounced when cells were grown with aeration. RNA expression profiles in the wild-type and lytS mutant strains were compared using microarrays in early exponential and late exponential phase cells. The expression of 40 and 136 genes in early-exponential and late exponential phase, respectively, was altered in the lytS mutant. Although expression of comYB, encoding a DNA binding-uptake protein, was substantially increased in the lytS mutant, this did not translate to an effect on competence. However, a lrgA mutant displayed a substantial decrease in transformation efficiency, suggestive of a previously-unknown link between LrgA and S. mutans competence development. Finally, increased expression of genes encoding antioxidant and DNA recombination/repair enzymes was observed in the lytS mutant, suggesting that the mutant may be subjected to increased oxidative stress during normal growth. Although the intracellular levels of reaction oxygen species (ROS) appeared similar between wild-type and lytS mutant strains after overnight growth, challenge of these strains with hydrogen peroxide (H2O2) resulted in increased intracellular ROS in the lytS mutant.
Overall, these results: (1) Reinforce the importance of LytST in governing lrgAB expression in response to glucose and oxygen, (2) Define a new role for LytST in global gene regulation and resistance to H2O2, and (3) Uncover a potential link between LrgAB and competence development in S. mutans.
PMCID: PMC3507848  PMID: 22937869
Stress; Oxygen; Competence; Cid/Lrg system; Streptococcus mutans
15.  Multimer Formation Is Not Essential for Nuclear Export of Human T-Cell Leukemia Virus Type 1 Rex trans-Activator Protein 
Journal of Virology  1998;72(11):8659-8668.
The Rex trans-regulatory protein of human T-cell leukemia virus type 1 (HTLV-1) is required for the nuclear export of incompletely spliced and unspliced viral mRNAs and is therefore essential for virus replication. Rex is a nuclear phosphoprotein that directly binds to its cis-acting Rex response element RNA target sequence and constantly shuttles between the nucleus and cytoplasm. Moreover, Rex induces nuclear accumulation of unspliced viral RNA. Three protein domains which mediate nuclear import-RNA binding, nuclear export, and Rex oligomerization have been mapped within the 189-amino-acid Rex polypeptide. Here we identified a different region in the carboxy-terminal half of Rex which is also required for biological activity. In inactive mutants with mutations that map within this region, as well as in mutants that are deficient in Rex-specific multimerization, Rex trans activation could be reconstituted by fusion to a heterologous leucine zipper dimerization interface. The intracellular trafficking capabilities of wild-type and mutant Rex proteins reveal that biologically inactive and multimerization-deficient Rex mutants are still efficiently translocated from the nucleus to the cytoplasm. This observation indicates that multimerization is essential for Rex function but is not required for nuclear export. Finally, we are able to provide an improved model of the HTLV-1 Rex domain structure.
PMCID: PMC110278  PMID: 9765406
16.  The human T-cell leukemia virus type 1 Rex regulatory protein exhibits an impaired functionality in human lymphoblastoid Jurkat T cells. 
Journal of Virology  1997;71(11):8514-8521.
The Rex protein of human T-cell leukemia virus type 1 (HTLV-1) intervenes in the posttranscriptional regulation of proviral gene expression. Its binding to the Rex response element (XRE) present in the 3' long terminal repeat ensures the coordinate cytoplasmic accumulation of spliced and unspliced forms of viral messengers. Consequently, synthesis of viral structural and enzymatic proteins is strictly dependent on the Rex posttranscriptional activity. Here we report that synthesis of HTLV-1 envelope glycoproteins by Jurkat T cells could be detected only when they were regulated in a Rex-independent manner. Indeed, Jurkat T cells transfected with a Rex-dependent env expression vector (encompassing both the env and pX open reading frames) do not produce significant levels of envelope glycoproteins despite the production of significant amounts of Rex protein. The analysis of levels and distribution patterns of the unspliced env and of the singly spliced tax/rex transcripts suggests that the failure in envelope glycoprotein synthesis may be ascribed to a deficiency of Rex in mediating the nucleocytoplasmic transport of unspliced env RNAs in these cells. Furthermore, despite the synthesis of regulatory proteins, HTLV-1 structural proteins were not detected in Jurkat T cells transfected with an HTLV-1 infectious provirus. Conversely, and as expected, structural proteins were produced by Jurkat cells transfected by a human immunodeficiency virus type 1 (HIV-1) infectious provirus. This phenotype appeared to be linked to a specific dysfunction of Rex, since the functionally equivalent Rev protein of HIV-1 was shown to be fully efficient in promoting the synthesis of HTLV-1 envelope glycoproteins in Jurkat cells. Therefore, it seems likely that the block to Rex function in these lymphoblastoid T cells is determined by inefficient Rex-XRE interactions. These observations suggest that the acquisition of this Rex-deficient phenotype by in vivo-infected HTLV-1 T cells may represent a critical event in the lymphoproliferation induced by this human retrovirus, leading to leukemia.
PMCID: PMC192315  PMID: 9343209
17.  Trigger Factor in Streptococcus mutans Is Involved in Stress Tolerance, Competence Development, and Biofilm Formation  
Infection and Immunity  2005;73(1):219-225.
Trigger factor is a ribosome-associated peptidyl-prolyl cis/trans isomerase that is highly conserved in most bacteria. A gene, designated ropA, encoding an apparent trigger factor homologue, was identified in Streptococcus mutans, the primary etiological agent of human dental caries. Inactivation of ropA had no major impact on growth rate in planktonic cultures under the conditions tested, although the RopA-deficient mutant formed long chains in broth. Deficiency of RopA decreased tolerance to acid killing and to oxidative stresses induced by hydrogen peroxide and paraquat, and it reduced transformation efficiency about 200-fold. Addition of synthetic competence-stimulating peptide to the culture medium enhanced transformability of both the mutant and wild-type strains, although the ropA strain did not attain levels of competence observed for the parent. Loss of RopA decreased the capacity of S. mutans to form biofilms by over 80% when cultivated in glucose, but it increased biofilm formation by over 50% when sucrose was provided as the carbohydrate source. Western blot analysis revealed that the expression of glucosyltransferases B and D was lower in the RopA-deficient mutant. These results suggest that RopA is a key regulator of acid and oxidative stress tolerance, genetic competence, and biofilm formation, all critical virulence properties of S. mutans.
PMCID: PMC538946  PMID: 15618157
18.  Human T-cell leukemia virus (HTLV) type II Rex protein binds specifically to RNA sequences of the HTLV long terminal repeat but poorly to the human immunodeficiency virus type 1 Rev-responsive element. 
Journal of Virology  1991;65(5):2261-2272.
The human T-cell leukemia viruses (HTLVs) encode a trans-regulatory protein, Rex, which differentially regulates viral gene expression by controlling the cytoplasmic accumulation of viral mRNAs. Because of insufficient amounts of purified protein, biochemical characterization of Rex activity has not previously been performed. Here, utilizing the baculovirus expression system, we purified HTLV type II (HTLV-II) Rex from the cytoplasmic fraction of recombinant baculovirus-infected insect cells by heparin-agarose chromatography. We directly demonstrated that Rex specifically bound HTLV-II 5' long terminal repeat RNA in both gel mobility shift and immunobinding assays. Sequences sufficient for Rex binding were localized to the R-U5 region of the HTLV-II 5' long terminal repeat and correlate with the region required for Rex function. The human immunodeficiency virus type 1 (HIV-1), has an analogous regulatory protein, Rev, which directly binds to and mediates its action through the Rev-responsive element located within the HIV-1 env gene. We demonstrated that HTLV-II Rex rescued an HIV-1JR-CSF Rev-deficient mutant, although inefficiently. This result is consistent with a weak binding activity to the HIV-1 Rev-responsive element under conditions in which it efficiently bound the HTLV-II long terminal repeat RNA.
PMCID: PMC240575  PMID: 2016758
19.  The LiaFSR System Regulates the Cell Envelope Stress Response in Streptococcus mutans▿ †  
Journal of Bacteriology  2009;191(9):2973-2984.
Maintaining cell envelope integrity is critical for bacterial survival, including bacteria living in a complex and dynamic environment such as the human oral cavity. Streptococcus mutans, a major etiological agent of dental caries, uses two-component signal transduction systems (TCSTSs) to monitor and respond to various environmental stimuli. Previous studies have shown that the LiaSR TCSTS in S. mutans regulates virulence traits such as acid tolerance and biofilm formation. Although not examined in streptococci, homologs of LiaSR are widely disseminated in Firmicutes and function as part of the cell envelope stress response network. We describe here liaSR and its upstream liaF gene in the cell envelope stress tolerance of S. mutans strain UA159. Transcriptional analysis established liaSR as part of the pentacistronic liaFSR-ppiB-pnpB operon. A survey of cell envelope antimicrobials revealed that mutants deficient in one or all of the liaFSR genes were susceptible to Lipid II cycle interfering antibiotics and to chemicals that perturbed the cell membrane integrity. These compounds induced liaR transcription in a concentration-dependent manner. Notably, under bacitracin stress conditions, the LiaFSR signaling system was shown to induce transcription of several genes involved in membrane protein synthesis, peptidoglycan biosynthesis, envelope chaperone/proteases, and transcriptional regulators. In the absence of an inducer such as bacitracin, LiaF repressed LiaR-regulated expression, whereas supplementing cultures with bacitracin resulted in derepression of liaSR. While LiaF appears to be an integral component of the LiaSR signaling cascade, taken collectively, we report a novel role for LiaFSR in sensing cell envelope stress and preserving envelope integrity in S. mutans.
PMCID: PMC2681809  PMID: 19251860
20.  The SloR/Dlg Metalloregulator Modulates Streptococcus mutans Virulence Gene Expression 
Journal of Bacteriology  2006;188(14):5033-5044.
Metal ion availability in the human oral cavity plays a putative role in Streptococcus mutans virulence gene expression and in appropriate formation of the plaque biofilm. In this report, we present evidence that supports such a role for the DtxR-like SloR metalloregulator (called Dlg in our previous publications) in this oral pathogen. Specifically, the results of gel mobility shift assays revealed the sloABC, sloR, comDE, ropA, sod, and spaP promoters as targets of SloR binding. We confirmed differential expression of these genes in a GMS584 SloR-deficient mutant versus the UA159 wild-type progenitor by real-time semiquantitative reverse transcriptase PCR experiments. The results of additional expression studies support a role for SloR in S. mutans control of glucosyltransferases, glucan binding proteins, and genes relevant to antibiotic resistance. Phenotypic analysis of GMS584 revealed that it forms aberrant biofilms on an abiotic surface, is compromised for genetic competence, and demonstrates heightened incorporation of iron and manganese as well as resistance to oxidative stress compared to the wild type. Taken together, these findings support a role for SloR in S. mutans adherence, biofilm formation, genetic competence, metal ion homeostasis, oxidative stress tolerance, and antibiotic gene regulation, all of which contribute to S. mutans-induced disease.
PMCID: PMC1539950  PMID: 16816176
21.  Psr is involved in regulation of glucan production, and double deficiency of BrpA and Psr is lethal in Streptococcus mutans 
Microbiology  2013;159(Pt 3):493-506.
Streptococcus mutans, the primary causative agent of dental caries, contains two paralogues of the LytR-CpsA-Psr family proteins encoded by brpA and psr, respectively. Previous studies have shown that BrpA plays an important role in cell envelope biogenesis/homeostasis and affects stress responses and biofilm formation by Strep. mutans, traits critical to cariogenicity of this bacterium. In this study, a Psr-deficient mutant, TW251, was constructed. Characterization of TW251 showed that deficiency of Psr did not have any major impact on growth rate. However, when subjected to acid killing at pH 2.8, the survival rate of TW251 was decreased dramatically compared with the parent strain UA159. In addition, TW251 also displayed major defects in biofilm formation, especially during growth with sucrose. When compared to UA159, the biofilms of TW251 were mainly planar and devoid of extracellular glucans. Real-time-PCR and Western blot analyses revealed that deficiency of Psr significantly decreased the expression of glucosyltransferase C, a protein known to play a major role in biofilm formation by Strep. mutans. Transmission electron microscopy analysis showed that deficiency of BrpA caused alterations in cell envelope and cell division, and the most significant defects were observed in TW314, a Psr-deficient and BrpA-down mutant. No such effects were observed with Psr mutant TW251 under similar conditions. These results suggest that while there are similarities in functions between BrpA and Psr, distinctive differences also exist between these two paralogues. Like Bacillus subtilis but different from Staphylococcus aureus, a functional BrpA or Psr is required for viability in Strep. mutans.
PMCID: PMC3709821  PMID: 23288544
22.  Effects of Oxygen on Biofilm Formation and the AtlA Autolysin of Streptococcus mutans▿  
Journal of Bacteriology  2007;189(17):6293-6302.
The Streptococcus mutans atlA gene encodes an autolysin required for biofilm maturation and biogenesis of a normal cell surface. We found that the capacity to form biofilms by S. mutans, one of the principal causative agents of dental caries, was dramatically impaired by growth of the organism in an aerated environment and that cells exposed to oxygen displayed marked changes in surface protein profiles. Inactivation of the atlA gene alleviated repression of biofilm formation in the presence of oxygen. Also, the formation of long chains, a characteristic of AtlA-deficient strains, was less evident in cells grown with aeration. The SMu0629 gene is immediately upstream of atlA and encodes a product that contains a C-X-X-C motif, a characteristic of thiol-disulfide oxidoreductases. Inactivation of SMu0629 significantly reduced the levels of AtlA protein and led to resistance to autolysis. The SMu0629 mutant also displayed an enhanced capacity to form biofilms in the presence of oxygen compared to that of the parental strain. The expression of SMu0629 was shown to be under the control of the VicRK two-component system, which influences oxidative stress tolerance in S. mutans. Disruption of vicK also led to inhibition of processing of AtlA, and the mutant was hyperresistant to autolysis. When grown under aerobic conditions, the vicK mutant also showed significantly increased biofilm formation compared to strain UA159. This study illustrates the central role of AtlA and VicK in orchestrating growth on surfaces and envelope biogenesis in response to redox conditions.
PMCID: PMC1951938  PMID: 17616606
23.  Cell Density Modulates Acid Adaptation in Streptococcus mutans: Implications for Survival in Biofilms 
Journal of Bacteriology  2001;183(23):6875-6884.
Streptococcus mutans normally colonizes dental biofilms and is regularly exposed to continual cycles of acidic pH during ingestion of fermentable dietary carbohydrates. The ability of S. mutans to survive at low pH is an important virulence factor in the pathogenesis of dental caries. Despite a few studies of the acid adaptation mechanism of this organism, little work has focused on the acid tolerance of S. mutans growing in high-cell-density biofilms. It is unknown whether biofilm growth mode or high cell density affects acid adaptation by S. mutans. This study was initiated to examine the acid tolerance response (ATR) of S. mutans biofilm cells and to determine the effect of cell density on the induction of acid adaptation. S. mutans BM71 cells were first grown in broth cultures to examine acid adaptation associated with growth phase, cell density, carbon starvation, and induction by culture filtrates. The cells were also grown in a chemostat-based biofilm fermentor for biofilm formation. Adaptation of biofilm cells to low pH was established in the chemostat by the acid generated from excess glucose metabolism, followed by a pH 3.5 acid shock for 3 h. Both biofilm and planktonic cells were removed to assay percentages of survival. The results showed that S. mutans BM71 exhibited a log-phase ATR induced by low pH and a stationary-phase acid resistance induced by carbon starvation. Cell density was found to modulate acid adaptation in S. mutans log-phase cells, since pre-adapted cells at a higher cell density or from a dense biofilm displayed significantly higher resistance to the killing pH than the cells at a lower cell density. The log-phase ATR could also be induced by a neutralized culture filtrate collected from a low-pH culture, suggesting that the culture filtrate contained an extracellular induction component(s) involved in acid adaptation in S. mutans. Heat or proteinase treatment abolished the induction by the culture filtrate. The results also showed that mutants defective in the comC, -D, or -E genes, which encode a quorum sensing system essential for cell density-dependent induction of genetic competence, had a diminished log-phase ATR. Addition of synthetic competence stimulating peptide (CSP) to the comC mutant restored the ATR. This study demonstrated that cell density and biofilm growth mode modulated acid adaptation in S. mutans, suggesting that optimal development of acid adaptation in this organism involves both low pH induction and cell-cell communication.
PMCID: PMC95529  PMID: 11698377
24.  The Streptococcus mutans vicX Gene Product Modulates gtfB/C Expression, Biofilm Formation, Genetic Competence, and Oxidative Stress Tolerance▿  
Journal of Bacteriology  2006;189(4):1451-1458.
Streptococcus mutans is considered one of the primary etiologic agents of dental caries. Previously, we characterized the VicRK two-component signal transduction system, which regulates multiple virulence factors of S. mutans. In this study, we focused on the vicX gene of the vicRKX tricistronic operon. To characterize vicX, we constructed a nonpolar deletion mutation in the vicX coding region in S. mutans UA159. The growth kinetics of the mutant (designated SmuvicX) showed that the doubling time was longer and that there was considerable sensitivity to paraquat-induced oxidative stress. Supplementing a culture of the wild-type UA159 strain with paraquat significantly increased the expression of vicX (P < 0.05, as determined by analysis of variance [ANOVA]), confirming the role of this gene in oxidative stress tolerance in S. mutans. Examination of mutant biofilms revealed architecturally altered cell clusters that were seemingly denser than the wild-type cell clusters. Interestingly, vicX-deficient cells grown in a glucose-supplemented medium exhibited significantly increased glucosyltransferase B/C (gtfB/C) expression compared with the expression in the wild type (P < 0.05, as determined by ANOVA). Moreover, a sucrose-dependent adhesion assay performed using an S. mutans GS5-derived vicX null mutant demonstrated that the adhesiveness of this mutant was enhanced compared with that of the parent strain and isogenic mutants of the parent strain lacking gtfB and/or gtfC. Also, disruption of vicX reduced the genetic transformability of the mutant approximately 10-fold compared with that of the parent strain (P < 0.05, as determined by ANOVA). Collectively, these findings provide insight into important phenotypes controlled by the vicX gene product that can impact S. mutans pathogenicity.
PMCID: PMC1797355  PMID: 17114248
25.  In vitro Manganese-Dependent Cross-Talk between Streptococcus mutans VicK and GcrR: Implications for Overlapping Stress Response Pathways 
PLoS ONE  2014;9(12):e115975.
Streptococcus mutans, a major acidogenic component of the dental plaque biofilm, has a key role in caries etiology. Previously, we demonstrated that the VicRK two-component signal transduction system modulates biofilm formation, oxidative stress and acid tolerance responses in S. mutans. Using in vitro phosphorylation assays, here we demonstrate for the first time, that in addition to activating its cognate response regulator protein, the sensor kinase, VicK can transphosphorylate a non-cognate stress regulatory response regulator, GcrR, in the presence of manganese. Manganese is an important micronutrient that has been previously correlated with caries incidence, and which serves as an effector of SloR-mediated metalloregulation in S. mutans. Our findings supporting regulatory effects of manganese on the VicRK, GcrR and SloR, and the cross-regulatory networks formed by these components are more complex than previously appreciated. Using DNaseI footprinting we observed overlapping DNA binding specificities for VicR and GcrR in native promoters, consistent with these proteins being part of the same transcriptional regulon. Our results also support a role for SloR as a positive regulator of the vicRK two component signaling system, since its transcription was drastically reduced in a SloR-deficient mutant. These findings demonstrate the regulatory complexities observed with the S. mutans manganese-dependent response, which involves cross-talk between non-cognate signal transduction systems (VicRK and GcrR) to modulate stress response pathways.
PMCID: PMC4275253  PMID: 25536343

Results 1-25 (759396)