Search tips
Search criteria

Results 1-25 (642874)

Clipboard (0)

Related Articles

1.  Colloidal graphite/graphene nanostructures using collagen showing enhanced thermal conductivity 
In the present study, the exfoliation of natural graphite (GR) directly to colloidal GR/graphene (G) nanostructures using collagen (CL) was studied as a safe and scalable process, akin to numerous natural processes and hence can be termed “biomimetic”. Although the exfoliation and functionalization takes place in just 1 day, it takes about 7 days for the nano GR/G flakes to stabilize. The predominantly aromatic residues of the triple helical CL forms its own special micro and nanoarchitecture in acetic acid dispersions. This, with the help of hydrophobic and electrostatic forces, interacts with GR and breaks it down to nanostructures, forming a stable colloidal dispersion. Surface enhanced Raman spectroscopy, X-ray diffraction, photoluminescence, fluorescence, and X-ray photoelectron spectroscopy of the colloid show the interaction between GR and CL on day 1 and 7. Differential interference contrast images in the liquid state clearly reveal how the GR flakes are entrapped in the CL fibrils, with a corresponding fluorescence image showing the intercalation of CL within GR. Atomic force microscopy of graphene-collagen coated on glass substrates shows an average flake size of 350 nm, and the hexagonal diffraction pattern and thickness contours of the G flakes from transmission electron microscopy confirm ≤ five layers of G. Thermal conductivity of the colloid shows an approximate 17% enhancement for a volume fraction of less than approximately 0.00005 of G. Thus, through the use of CL, this new material and process may improve the use of G in terms of biocompatibility for numerous medical applications that currently employ G, such as internally controlled drug-delivery assisted thermal ablation of carcinoma cells.
PMCID: PMC3956625  PMID: 24648728
graphene; collagen; colloid; nanostructures; biomimetic; carbon; nanomaterials; heat; thermal ablation; thermal conductivity
2.  Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites 
This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation.
PMCID: PMC3925980  PMID: 24308286
NEXAFS; electrospinning; carbon nanotubes; PDMS/PMMA; polymer nanocomposites; CH-π bonding
3.  The Effect of Thermal Reduction on the Photoluminescence and Electronic Structures of Graphene Oxides 
Scientific Reports  2014;4:4525.
Electronic structures of graphene oxide (GO) and hydro-thermally reduced graphene oxides (rGOs) processed at low temperatures (120–180°C) were studied using X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). C K-edge XANES spectra of rGOs reveal that thermal reduction restores C = C sp2 bonds and removes some of the oxygen and hydroxyl groups of GO, which initiates the evolution of carbonaceous species. The combination of C K-edge XANES and Kα XES spectra shows that the overlapping π and π* orbitals in rGOs and GO are similar to that of highly ordered pyrolytic graphite (HOPG), which has no band-gap. C Kα RIXS spectra provide evidence that thermal reduction changes the density of states (DOSs) that is generated in the π-region and/or in the gap between the π and π* levels of the GO and rGOs. Two-dimensional C Kα RIXS mapping of the heavy reduction of rGOs further confirms that the residual oxygen and/or oxygen-containing functional groups modify the π and σ features, which are dispersed by the photon excitation energy. The dispersion behavior near the K point is approximately linear and differs from the parabolic-like dispersion observed in HOPG.
PMCID: PMC3982168  PMID: 24717290
4.  Green chemistry approach for the synthesis of biocompatible graphene 
Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. One of the most common methods for preparation of graphene is chemical exfoliation of graphite using powerful oxidizing agents. Generally, graphene is synthesized through deoxygenation of graphene oxide (GO) by using hydrazine, which is one of the most widespread and strongest reducing agents. Due to the high toxicity of hydrazine, it is not a promising reducing agent in large-scale production of graphene; therefore, this study focused on a green or sustainable synthesis of graphene and the biocompatibility of graphene in primary mouse embryonic fibroblast cells (PMEFs).
Here, we demonstrated a simple, rapid, and green chemistry approach for the synthesis of reduced GO (rGO) from GO using triethylamine (TEA) as a reducing agent and stabilizing agent. The obtained TEA reduced GO (TEA-rGO) was characterized by ultraviolet (UV)–visible absorption spectroscopy, X-ray diffraction (XRD), particle size dynamic light scattering (DLS), scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM).
The transition of graphene oxide to graphene was confirmed by UV–visible spectroscopy. XRD and SEM were used to investigate the crystallinity of graphene and the surface morphologies of prepared graphene respectively. The formation of defects further supports the functionalization of graphene as indicated in the Raman spectrum of TEA-rGO. Surface morphology and the thickness of the GO and TEA-rGO were analyzed using AFM. The presented results suggest that TEA-rGO shows significantly more biocompatibility with PMEFs cells than GO.
This is the first report about using TEA as a reducing as well as a stabilizing agent for the preparation of biocompatible graphene. The proposed safe and green method offers substitute routes for large-scale production of graphene for several biomedical applications.
PMCID: PMC3736970  PMID: 23940417
graphene oxide; graphene; triethylamine; ultraviolet; visible spectroscopy; Raman spectroscopy; atomic force microscopy
5.  Stretchable and Flexible High-Strain Sensors Made Using Carbon Nanotubes and Graphite Films on Natural Rubber 
Sensors (Basel, Switzerland)  2014;14(1):868-876.
Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ∼5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain). As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor) and 620% (carbon nanotube sensor) were measured; these values are respectively ∼50 and ∼120 times greater than those of conventional metallic strain sensors.
PMCID: PMC3926590  PMID: 24399158
piezoresistive sensor; soft wearable sensors; electro-mechanical properties; film composite; stretchable device; carbon nanotubes; health monitoring
6.  A simple mechanical technique to obtain carbon nanoscrolls from graphite nanoplatelets 
Nanoscale Research Letters  2013;8(1):403.
A simple approach for the bulk production of carbon nanoscrolls (CNSs) is described. This method is based on the application of shear-friction forces to convert graphite nanoplatelets into carbon nanoscrolls using a bi-axially oriented polypropylene (BOPP) surface. The combined action of shear and friction forces causes the exfoliation of graphite nanoplatelets and the simultaneous roll-up of graphite layers. Evidence of the CNS formation is given by optical microscopy, scanning electron microscopy, and transmission electron microscopy. These investigations reveal that the CNSs have a long tube-like and fusiform structure with a hollow core surrounded by few layers of graphene. Micro-Raman spectroscopy shows that the produced structures are not defect free, and optical spectroscopy reveals distinctive features due to the presence of two weak absorption bands at 224 and 324 nm.
PMCID: PMC3849441  PMID: 24229076
Carbon nanoscrolls; Shear stress; Bi-axially oriented polypropylene; Graphite nanoplatelets
7.  Quantum confinement-induced tunable exciton states in graphene oxide 
Scientific Reports  2013;3:2250.
Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology.
PMCID: PMC3718196  PMID: 23872608
8.  EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide 
Carbon  2014;70:164-171.
A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite.
PMCID: PMC3949993  PMID: 24634536
9.  Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM 
Scientific Reports  2013;3:1195.
In-plane and out-of-plane arrangements of carbon atoms in graphene layers play critical roles in the fundamental physics and practical applications of these novel two-dimensional materials. Here, we report initial results on the edge/crystal orientations and stacking orders of bi- and tri-layer graphene (BLG and TLG) from Raman spectroscopy and transmission electron microscopy (TEM) experiments performed on the same sample. We introduce a new method of transferring graphene flakes onto a normal TEM grid. Using this novel method, we probed the BLG and TLG flakes that had been previously investigated by Raman scattering with high-resolution (atomic) TEM.
PMCID: PMC3561624  PMID: 23378926
10.  The Enzymatic Oxidation of Graphene Oxide 
ACS nano  2011;5(3):2098-2108.
Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors.
PMCID: PMC3062704  PMID: 21344859
graphene; oxidation; microscopy; peroxidase; field-effect transistor
11.  Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene 
Scientific Reports  2013;3:2636.
Mass production of high-quality graphene nanosheets (GNs) is essential for practical applications. We report that oxidation of graphite by low concentration KMnO4 at relatively high temperature (60°C) leads to edge-selectively oxidized graphite (EOG) which preserves the high crystalline graphitic structure on its basal planes while the edges are functionalized by oxygen-containing groups. Long-chain tetradecyl-ammonium salt (C14N+) could be spontaneously intercalated into EOG to form intercalated EOG-C14N+ compounds. Gentle and short-time sonication of EOG-C14N+ in toluene can full exfoliate EOG into edge-oxidized graphene nanosheets (EOGNs) with concentration of 0.67 mg/ml, monolayer population up to 90% and lateral size from 1 μm to >100 μm. The EOG and EOGN films show excellent electrical conductance, which is far superior to their graphene oxide (GO) counterparts. Our method provides an efficient way to produce high-quality GNs, and the resultant EOG also can be directly used for production of multifunctional materials and devices.
PMCID: PMC3769650  PMID: 24022463
12.  Raman enhancement by graphene-Ga2O3 2D bilayer film 
2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications.
PMCID: PMC3906882  PMID: 24472433
Graphene; Raman enhancement; Gallium oxide; Chemical vapor deposition
13.  Physicochemical insight into gap openings in graphene 
Scientific Reports  2013;3:1524.
Based on a newly developed size-dependent cohesive energy formula for two-dimensional materials, a unified theoretical model was established to illustrate the gap openings in disordered graphene flakes, involving quantum dots, nanoribbons and nanoporous sheets. It tells us that the openings are essentially dominated by the variation in cohesive energy of C atoms, associated to the edge physicochemical nature regarding the coordination imperfection or the chemical bonding. In contrast to those ideal flakes, consequently, the gaps can be opened monotonously for disordered flakes on changing their sizes, affected by the dimension, geometric shape and the edge saturation. Using the density functional theory, accordingly, the electronic structures of disordered flakes differ to the ideal case because of the edge disorder. Our theoretical predictions have been validated by available experimental results, and provide us a distinct way for the quantitative modulation of bandgap in graphene for nanoelectronics.
PMCID: PMC3605827  PMID: 23524635
14.  Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites 
ACS Nano  2013;7(8):7287-7294.
The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place during tensile deformation for mono- and bilayer graphene but that band narrowing occurs when the number of graphene layers is more than two. It is also found that the characteristic asymmetric shape of the 2D Raman band for the graphene with three or more layers changes to a symmetrical shape above about 0.4% strain and that it reverts to an asymmetric shape on unloading. This change in Raman band shape and width has been interpreted as being due to a reversible loss of Bernal stacking in the few-layer graphene during deformation. It has been shown that the elastic strain energy released from the unloading of the inner graphene layers in the few-layer material (∼0.2 meV/atom) is similar to the accepted value of the stacking fault energies of graphite and few layer graphene. It is further shown that this loss of Bernal stacking can be accommodated by the formation of arrays of partial dislocations and stacking faults on the basal plane. The effect of the reversible loss of Bernal stacking upon the electronic structure of few-layer graphene and the possibility of using it to modify the electronic structure of few-layer graphene are discussed.
PMCID: PMC3789269  PMID: 23899378
graphene; Bernal stacking; nanocomposites; Raman spectroscopy; deformation
15.  Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition 
Scientific Reports  2013;3:2666.
To grow precisely aligned graphene on h-BN without metal catalyst is extremely important, which allows for intriguing physical properties and devices of graphene/h-BN hetero-structure to be studied in a controllable manner. In this report, such hetero-structures were fabricated and investigated by atomic resolution scanning probe microscopy. Moiré patterns are observed and the sensitivity of moiré interferometry proves that the graphene grains can align precisely with the underlying h-BN lattice within an error of less than 0.05°. The occurrence of moiré pattern clearly indicates that the graphene locks into h-BN via van der Waals epitaxy with its interfacial stress greatly released. It is worthy to note that the edges of the graphene grains are primarily oriented along the armchair direction. The field effect mobility in such graphene flakes exceeds 20,000 cm2·V−1·s−1 at ambient condition. This work opens the door of atomic engineering of graphene on h-BN, and sheds light on fundamental research as well as electronic applications based on graphene/h-BN hetero-structure.
PMCID: PMC3773621  PMID: 24036628
16.  The Electronic Structure of Mn in Oxides, Coordination Complexes, and the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-ray Scattering 
Resonant inelastic X-ray scattering (RIXS) was used to collect Mn K pre-edge spectra and to study the electronic structure in oxides, molecular coordination complexes, as well as the S1 and S2 states of the oxygen-evolving complex (OEC) of photosystem II (PS II). The RIXS data yield two-dimensional plots that can be interpreted along the incident (absorption) energy or the energy transfer axis. The second energy dimension separates the pre-edge (predominantly 1s to 3d transitions) from the main K-edge, and a detailed analysis is thus possible. The 1s2p RIXS final-state electron configuration along the energy transfer axis is identical to conventional L-edge absorption spectroscopy, and the RIXS spectra are therefore sensitive to the Mn spin state. This new technique thus yields information on the electronic structure that is not accessible in conventional K-edge absorption spectroscopy. The line splittings can be understood within a ligand field multiplet model, i.e., (3d,3d) and (2p,3d) two-electron interactions are crucial to describe the spectral shapes in all systems. We propose to explain the shift of the K pre-edge absorption energy upon Mn oxidation in terms of the effective number of 3d electrons (fractional 3d orbital population). The spectral changes in the Mn 1s2p3/2 RIXS spectra between the PS II S1 and S2 states are small compared to that of the oxides and two of the coordination complexes (MnIII(acac)3 and MnIV(sal)2(bipy)). We conclude that the electron in the step from S1 to S2 is transferred from a strongly delocalized orbital.
PMCID: PMC3960404  PMID: 15303869
17.  Manifestation of Charged and Strained Graphene Layers in the Raman Response of Graphite Intercalation Compounds 
ACS Nano  2013;7(10):9249-9259.
We present detailed multifrequency resonant Raman measurements of potassium graphite intercalation compounds (GICs). From a well-controlled and consecutive in situ intercalation and high-temperature deintercalation approach the response of each stage up to stage VI is identified. The positions of the G and 2D lines as a function of staging depend on the charge transfer from K to the graphite layers and on the lattice expansion. Ab initio calculations of the density and the electronic band structure demonstrate that most (but not all) of the transferred charge remains on the graphene sheets adjacent to the intercalant layers. This leads to an electronic decoupling of these “outer” layers from the ones sandwiched between carbon layers and consequently to a decoupling of the corresponding Raman spectra. Thus, higher stage GICs offer the possibility to measure the vibrations of single, double, and multilayer graphene under conditions of biaxial strain. This strain can additionally be correlated to the in-plane lattice constants of GICs determined by X-ray diffraction. The outcome of this study demonstrates that Raman spectroscopy is a very powerful tool to identify local internal strain in pristine and weakly charged single and few-layer graphene and their composites, yielding even absolute lattice constants.
PMCID: PMC3807528  PMID: 24025089
graphite intercalation compounds; graphene; Raman spectroscopy; charge transfer; strain determination
18.  NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional 13C Solid-State NMR and ab Initio Chemical Shift Calculations 
Chemically modified graphenes and other graphite-based materials have attracted growing interest for their unique potential as lightweight electronic and structural nanomaterials. It is an important challenge to construct structural models of noncrystalline graphite-based materials on the basis of NMR or other spectroscopic data. To address this challenge, a solid-state NMR (SSNMR)-based structural modeling approach is presented on graphite oxide (GO), which is a prominent precursor and interesting benchmark system of modified graphene. An experimental 2D 13C double-quantum/single-quantum correlation SSNMR spectrum of 13C-labeled GO was compared with spectra simulated for different structural models using ab initio geometry optimization and chemical shift calculations. The results show that the spectral features of the GO sample are best reproduced by a geometry-optimized structural model that is based on the Lerf−Klinowski model (Lerf, A. et al. Phys. Chem. B1998, 102, 4477); this model is composed of interconnected sp2, 1,2-epoxide, and COH carbons. This study also convincingly excludes the possibility of other previously proposed models, including the highly oxidized structures involving 1,3-epoxide carbons (Szabo, I. et al. Chem. Mater.2006, 18, 2740). 13C chemical shift anisotropy (CSA) patterns measured by a 2D 13C CSA/isotropic shift correlation SSNMR were well reproduced by the chemical shift tensor obtained by the ab initio calculation for the former model. The approach presented here is likely to be applicable to other chemically modified graphenes and graphite-based systems.
PMCID: PMC2857913  PMID: 20359218
19.  Controllable functionalization and wettability transition of graphene-based films by an atomic oxygen strategy 
Though chemical modification of graphene based on Hummers method has been most widely used to tailor its properties and interfacial characteristics, a method which could achieve definitive and controllable groups and properties is still highly required. Here, we demonstrate a high-vacuum oxidation strategy by atomic oxygen (AO) and investigate the AO induced functionalization and wettability transition in films made from basal-defect- and oxide-free graphene dispersions. These graphene-based films are neither graphene nor graphite, but graphene blocks constituted by numerous randomly stacked graphene flakes. It is found that AO induced functionalization of these films through the formation of epoxy groups, sp3 configuration, ether, and double and triple C–O groups. The films turn to be hydrophilic after exposed to AO. The contact angle increases with AO exposure time. This phenomenon is attributed to the lower surface roughness induced by collision and/or edge erosion of energetic ions to the film surface and is further explained by the Wenzel model. The demonstrated strategy can overcome limitations of Hummers method, provide possibility to gain functionalization and wettability transition in liquid-phase exfoliated basal-defect- and oxide-free graphene in the dry environment, and may extend the study and application of this material in spacecraft in low earth orbit.
PMCID: PMC3751286  PMID: 23990752
Graphene; Atomic oxygen; Functionalization; Wettability
20.  First-principles study of spin-dependent transport through graphene/BNC/graphene structure 
Nanoscale Research Letters  2013;8(1):199.
First-principles study on the electronic structure and transport property of the boron nitride sheet (BNC) structure, in which a triangular graphene flake surrounded by a hexagonal boron nitride sheet, is implemented. As the graphene flake becomes small and is more isolated by the boron nitride region, the magnetic ordering of the flake increases. When the BNC structure is connected to the graphene electrodes, the spin-polarized charge-density distribution appears only at the triangular graphene flake region, and the electronic structure of the graphene electrode is not spin polarized. First-principles transport calculation reveals that the transport property of the BNC structure is spin dependent.
PMCID: PMC3663827  PMID: 23634806
First-principles calculation; Graphene; Hexagonal boron nitride; Spin-dependent transport property
21.  The microwave-assisted ionic liquid nanocomposite synthesis: platinum nanoparticles on graphene and the application on hydrogenation of styrene 
Nanoscale Research Letters  2013;8(1):414.
The microwave-assisted nanocomposite synthesis of metal nanoparticles on graphene or graphite oxide was introduced in this research. With microwave assistance, the Pt nanoparticles on graphene/graphite oxide were successfully produced in the ionic liquid of 2-hydroxyethanaminium formate [HOCH2CH2NH3][HCO2]. On graphene/graphite oxide, the sizes of Pt nanoparticles were about 5 to 30 nm from transmitted electron microscopy (TEM) results. The crystalline Pt structures were examined by X-ray diffraction (XRD). Since hydrogenation of styrene is one of the important well-known chemical reactions, herein, we demonstrated then the catalytic hydrogenation capability of the Pt nanoparticles on graphene/graphite oxide for the nanocomposite to compare with that of the commercial catalysts (Pt/C and Pd/C, 10 wt.% metal catalysts on activated carbon from Strem chemicals, Inc.). The conversions with the Pt nanoparticles on graphene are >99% from styrene to ethyl benzene at 100°C and under 140 psi H2 atmosphere. However, ethyl cyclohexane could be found as a side product at 100°C and under 1,520 psi H2 atmosphere utilizing the same nanocomposite catalyst.
PMCID: PMC3854513  PMID: 24103100
Graphene; Pt nanoparticle; Ionic liquid; Microwave; Hydrogenation of styrene
22.  High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene 
ACS nano  2012;6(9):8241-8249.
Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene.
PMCID: PMC3493488  PMID: 22906199
bilayer graphene; band gap; AB stacking; chemical vapor deposition; copper foil
23.  Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes 
Nanoscale Research Letters  2007;2(7):331-336.
Multi-walled carbon nanotubes (MWNT) have been synthesized by chemical vapour decomposition (CVD) of acetylene over Rare Earth (RE) based AB2(DyNi2) alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric Analysis and Raman Spectroscopy. Fully carbon based field emitters have been fabricated by spin coating a solutions of both as-grown and purified MWNT and dichloro ethane (DCE) over carbon paper with and without graphitized layer. The use of graphitized carbon paper as substrate opens several new possibilities for carbon nanotube (CNT) field emitters, as the presence of the graphitic layer provides strong adhesion between the nanotubes and carbon paper and reduces contact resistance. The field emission characteristics have been studied using an indigenously fabricated set up and the results are discussed. CNT field emitter prepared by spin coating of the purified MWNT–DCE solution over graphitized carbon paper shows excellent emission properties with a fairly stable emission current over a period of 4 h. Analysis of the field emission characteristics based on the Fowler–Nordheim (FN) theory reveals current saturation effects at high applied fields for all the samples.
PMCID: PMC3246377  PMID: 21798103
Multi-walled carbon nanotubes; DyNi2alloy hydride; Spin coating; Dichloro ethane; Graphitized carbon paper; CNT field emitter; Fowler–Nordheim theory
24.  Designed nitrogen doping of few-layer graphene functionalized by selective oxygenic groups 
Nanoscale Research Letters  2014;9(1):646.
Few-layer nitrogen doped graphene was synthesized originating from graphene oxide functionalized by selective oxygenic functional groups (hydroxyl, carbonyl, carboxyl etc.) under hydrothermal conditions, respectively. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) observation evidenced few-layer feature of the graphene oxide. X-ray diffraction (XRD) pattern confirmed phase structure of the graphene oxide and reduced graphene oxide. Nitrogen doping content and bonding configuration of the graphene was determined by X-ray photoelectron spectroscopy (XPS), which indicated that different oxygenic functional groups were evidently different in affecting the nitrogen doping process. Compared with other oxygenic groups, carboxyl group played a crucial role in the initial stage of nitrogen doping while hydroxyls exhibited more evident contribution to the doping process in the late stage of the reaction. Formation of graphitic-like nitrogen species was controlled by a synergistic effect of the involved oxygenic groups (e.g., -COOH, -OH, C-O-C, etc.). The doping mechanism of nitrogen in the graphene was scrutinized. The research in this work may not only contribute to the fundamental understandings of nitrogen doping within graphene but promote the development of producing novel graphene-based devices with designed surface functionalization.
PMCID: PMC4266512  PMID: 25520594
Few-layer graphene; Oxygenic functional groups; Nitrogen doping; Hydrothermal
25.  Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions 
Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor–acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor–acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor–acceptor graphene-based hybrids, will be discussed.
PMCID: PMC4168901  PMID: 25247140
donor–acceptor; electron-transfer; functionalization; graphene; photophysical properties

Results 1-25 (642874)