Search tips
Search criteria

Results 1-25 (1027164)

Clipboard (0)

Related Articles

1.  Human Bak induces cell death in Schizosaccharomyces pombe with morphological changes similar to those with apoptosis in mammalian cells. 
Molecular and Cellular Biology  1997;17(5):2468-2474.
Apoptosis as a form of programmed cell death (PCD) in multicellular organisms is a well-established genetically controlled process that leads to elimination of unnecessary or damaged cells. Recently, PCD has also been described for unicellular organisms as a process for the socially advantageous regulation of cell survival. The human Bcl-2 family member Bak induces apoptosis in mammalian cells which is counteracted by the Bcl-x(L) protein. We show that Bak also kills the unicellular fission yeast Schizosaccharomyces pombe and that this is inhibited by coexpression of human Bcl-x(L). Moreover, the same critical BH3 domain of Bak that is required for induction of apoptosis in mammalian cells is also required for inducing death in yeast. This suggests that Bak kills mammalian and yeast cells by similar mechanisms. The phenotype of the Bak-induced death in yeast involves condensation and fragmentation of the chromatin as well as dissolution of the nuclear envelope, all of which are features of mammalian apoptosis. These data suggest that the evolutionarily conserved metazoan PCD pathway is also present in unicellular yeast.
PMCID: PMC232095  PMID: 9111315
2.  Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells 
Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis, we screened a human heart cDNA expression library in yeast cells undergoing PCD due to the conditional expression of a mammalian pro-apoptotic Bax cDNA. Analysis of the multiple Bax suppressors identified revealed several previously known as well as a large number of clones representing potential novel anti-apoptotic sequences. The focus of this review is to report on recent achievements in the use of humanized yeast in genetic screens to identify novel stress-induced PCD suppressors, supporting the use of yeast as a unicellular model organism to elucidate anti-apoptotic and cell survival mechanisms.
PMCID: PMC3374133  PMID: 22708116
heart failure; apoptosis; programmed cell death; anti-apoptotic genes; Bax; genetic screen; pre-condition; hormesis
3.  Aging and Cell Death in the Other Yeasts, Schizosaccharomyces pombe and Candida albicans 
FEMS yeast research  2013;14(1):119-135.
How do cells age and die? For the past twenty years, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to uncover the genes that regulate lifespan and cell death. More recently, investigators have begun to interrogate the other yeasts, the fission yeast, Schizosaccharomyces pombe, and the human fungal pathogen, Candida albicans, to determine if similar longevity and cell death pathways exist in these organisms. After summarizing the longevity and cell death phenotypes in S. cerevisiae, this mini-review surveys the progress made in the study of both aging and programmed cell death (PCD) in the yeast models, with a focus on the biology of S. pombe and C. albicans. Particular emphasis is placed on the similarities and differences between the two types of aging, replicative aging and chronological aging, and between the three types of cell death, intrinsic apoptosis, autophagic cell death, and regulated necrosis, found in these yeasts. The development of the additional microbial models for aging and PCD in the other yeasts may help further elucidate the mechanisms of longevity and cell death regulation in eukaryotes.
PMCID: PMC4000287  PMID: 24205865
aging; cell death; S. cerevisiae; Candida albicans; Schizosaccharomyces pombe; apoptosis; autophagy; necrosis
4.  Apoptotic-like programed cell death in fungi: the benefits in filamentous species 
Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fundamental differences between yeast and animal apoptosis; in S. cerevisiae apoptosis is mainly associated with aging and stress adaptation, unlike animal apoptosis, which is essential for proper development. Further, many apoptosis regulatory genes are either missing, or highly divergent in S. cerevisiae. Therefore, in this review we will use the term apoptosis-like programed cell death (PCD) instead of apoptosis. Despite these significant differences, S. cerevisiae has been instrumental in promoting the study of heterologous apoptotic proteins, particularly from human. Work in fungi other than S. cerevisiae revealed differences in the manifestation of PCD in single cell (yeasts) and multicellular (filamentous) species. Such differences may reflect the higher complexity level of filamentous species, and hence the involvement of PCD in a wider range of processes and life styles. It is also expected that differences might be found in the apoptosis apparatus of yeast and filamentous species. In this review we focus on aspects of PCD that are unique or can be better studied in filamentous species. We will highlight the similarities and differences of the PCD machinery between yeast and filamentous species and show the value of using S. cerevisiae along with filamentous species to study apoptosis.
PMCID: PMC3412994  PMID: 22891165
apoptosis; botrytis; fungi; PCD; Saccharomyces
5.  Lipid raft involvement in yeast cell growth and death 
Frontiers in Oncology  2012;2:140.
The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.
PMCID: PMC3467458  PMID: 23087902
lipid rafts; membrane domains; ergosterol; yeast; S. cerevisiae; ion homeostasis; nutrient transporters; cell death
6.  Apoptotic signals induce specific degradation of ribosomal RNA in yeast 
Nucleic Acids Research  2008;36(9):2874-2888.
Organisms exposed to reactive oxygen species, generated endogenously during respiration or by environmental conditions, undergo oxidative stress. Stress response can either repair the damage or activate one of the programmed cell death (PCD) mechanisms, for example apoptosis, and finally end in cell death. One striking characteristic, which accompanies apoptosis in both vertebrates and yeast, is a fragmentation of cellular DNA and mammalian apoptosis is often associated with degradation of different RNAs. We show that in yeast exposed to stimuli known to induce apoptosis, such as hydrogen peroxide, acetic acid, hyperosmotic stress and ageing, two large subunit ribosomal RNAs, 25S and 5.8S, became extensively degraded with accumulation of specific intermediates that differ slightly depending on cell death conditions. This process is most likely endonucleolytic, is correlated with stress response, and depends on the mitochondrial respiratory status: rRNA is less susceptible to degradation in respiring cells with functional defence against oxidative stress. In addition, RNA fragmentation is independent of two yeast apoptotic factors, metacaspase Yca1 and apoptosis-inducing factor Aif1, but it relies on the apoptotic chromatin condensation induced by histone H2B modifications. These data describe a novel phenotype for certain stress- and ageing-related PCD pathways in yeast.
PMCID: PMC2396418  PMID: 18385160
7.  Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia 
The Journal of Cell Biology  2005;169(5):711-717.
The existence of programmed cell death (PCD) in yeast and its significance to simple unicellular organisms is still questioned. However, such doubts usually do not reflect the fact that microorganisms in nature exist predominantly within structured, multicellular communities capable of differentiation, in which a profit of individual cells is subordinated to a profit of populations. In this study, we show that some PCD features naturally appear during the development of multicellular Saccharomyces cerevisiae colonies. An ammonia signal emitted by aging colonies triggers metabolic changes that localize yeast death only in the colony center. The remaining population can exploit the released nutrients and survives. In colonies defective in Sok2p transcription factor that are unable to produce ammonia (Váchová, L., F. Devaux, H. Kucerova, M. Ricicova, C. Jacq, and Z. Palková. 2004. J. Biol. Chem. 279:37973–37981), death is spread throughout the whole population, thus decreasing the lifetime of the colony. The absence of Mca1p metacaspase or Aif1p orthologue of mammalian apoptosis-inducing factor does not prevent regulated death in yeast colonies.
PMCID: PMC2171614  PMID: 15939758
8.  Comparative analysis of programmed cell death pathways in filamentous fungi 
BMC Genomics  2005;6:177.
Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD) on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI) triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa.
Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae.
Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.
PMCID: PMC1325252  PMID: 16336669
9.  The role of mitochondria in yeast programmed cell death 
Mammalian apoptosis and yeast programmed cell death (PCD) share a variety of features including reactive oxygen species production, protease activity and a major role played by mitochondria. In view of this, and of the distinctive characteristics differentiating yeast and multicellular organism PCD, the mitochondrial contribution to cell death in the genetically tractable yeast Saccharomyces cerevisiae has been intensively investigated. In this mini-review we report whether and how yeast mitochondrial function and proteins belonging to oxidative phosphorylation, protein trafficking into and out of mitochondria, and mitochondrial dynamics, play a role in PCD. Since in PCD many processes take place over time, emphasis will be placed on an experimental model based on acetic acid-induced PCD (AA-PCD) which has the unique feature of having been investigated as a function of time. As will be described there are at least two AA-PCD pathways each with a multifaceted role played by mitochondrial components, in particular by cytochrome c.
PMCID: PMC3388595  PMID: 22783546
yeast; programmed cell death; mitochondria; acetic acid; cytochrome c; protein trafficking; intracellular signaling
10.  Cytolethal Distending Toxin from Aggregatibacter actinomycetemcomitans Induces DNA Damage, S/G2 Cell Cycle Arrest, and Caspase- Independent Death in a Saccharomyces cerevisiae Model▿  
Infection and Immunity  2009;78(2):783-792.
Cytolethal distending toxin (CDT) is a bacterial toxin that induces G2/M cell cycle arrest, cell distension, and/or apoptosis in mammalian cells. It is produced by several Gram-negative species and may contribute to their pathogenicity. The catalytic subunit CdtB has homology with DNase I and may act as a genotoxin. However, the mechanism by which CdtB leads to cell death is not yet clearly understood. Here, we used Saccharomyces cerevisiae as a model to study the molecular pathways involved in the function of CdtB from Aggregatibacter actinomycetemcomitans, a cause of aggressive periodontitis. We show that A. actinomycetemcomitans CdtB (AaCdtB) expression induces S/G2 arrest and death in a DNase-catalytic residue and nuclear localization-dependent manner in haploid yeasts. Yeast strains defective in homologous recombination (HR) repair, but not other DNA repair pathways, are hypersensitive to AaCdtB, suggesting that HR is required for survival upon CdtB expression. In addition, yeast does not harbor the substrate for the other activity proposed for CdtB function, which is phosphatidylinositol-3,4,5-triphosphate phosphatase. Thus, these results suggest that direct DNA-damaging activity alone is sufficient for CdtB toxicity. To investigate how CdtB induces cell death, we examined the effect of CdtB in yeast strains with mutations in apoptotic regulators. Our results suggest that yeast death occurs independently of the yeast metacaspase gene YCA1 and the apoptosis-inducing factor AIF1 but is partially dependent on histone H2B serine 10 phosphorylation. Therefore, we report here the evidence that AaCdtB causes DNA damage that leads to nonapoptotic death in yeast and the first mutation that confers resistance to CdtB.
PMCID: PMC2812194  PMID: 19995894
11.  SCS3 and YFT2 Link Transcription of Phospholipid Biosynthetic Genes to ER Stress and the UPR 
PLoS Genetics  2012;8(8):e1002890.
The ability to store nutrients in lipid droplets (LDs) is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT) proteins are conserved ER–resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2) and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol) to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER stress.
Author Summary
The ability to form lipid droplets is a conserved property of eukaryotic cells that allows the storage of excess metabolic energy in a form that can be readily accessed. In adipose tissue, the storage of excess calories in lipid droplets normally protects other tissues from lipotoxicity and insulin resistance, but this protection is lost with chronic over-nutrition. The FAT storage-inducing transmembrane (FIT) proteins were recently identified as a conserved family of proteins that reside in the lipid bilayer of the endoplasmic reticulum and are implicated in lipid droplet formation. In this work we show that specific functions of the FIT proteins are conserved between yeast and humans and that SCS3 and YFT2, the yeast homologs of mammalian FIT2, are part of a large genetic interaction network connecting lipid metabolism, vesicle trafficking, transcription, and protein synthesis. From these interactions we determined that yeast strains lacking SCS3 and YFT2 are defective in their response to chronic ER stress and cannot induce the unfolded protein response pathway or transcription of phospholipid biosynthetic genes in low inositol. Our findings suggest that the mammalian FIT genes may play an important role in ER stress pathways, which are linked to obesity and type 2 diabetes.
PMCID: PMC3426550  PMID: 22927826
12.  The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis 
eLife  2012;1:e00048.
The unfolded protein response (UPR) monitors the protein folding capacity of the endoplasmic reticulum (ER). In all organisms analyzed to date, the UPR drives transcriptional programs that allow cells to cope with ER stress. The non-conventional splicing of Hac1 (yeasts) and XBP1 (metazoans) mRNA, encoding orthologous UPR transcription activators, is conserved and dependent on Ire1, an ER membrane-resident kinase/endoribonuclease. We found that the fission yeast Schizosaccharomyces pombe lacks both a Hac1/XBP1 ortholog and a UPR-dependent-transcriptional-program. Instead, Ire1 initiates the selective decay of a subset of ER-localized-mRNAs that is required to survive ER stress. We identified Bip1 mRNA, encoding a major ER-chaperone, as the sole mRNA cleaved upon Ire1 activation that escapes decay. Instead, truncation of its 3′ UTR, including loss of its polyA tail, stabilized Bip1 mRNA, resulting in increased Bip1 translation. Thus, S. pombe uses a universally conserved stress-sensing machinery in novel ways to maintain homeostasis in the ER.
eLife digest
Protein folding—the process by which a sequence of amino acids adopts the precise shape that is needed to perform a specific biological function—is one of the most important processes in all of biology. Any sequence of amino acids has the potential to fold into a large number of different shapes, and misfolded proteins can lead to toxicity and other problems. For example, all cells rely on signaling proteins in the membranes that enclose them to monitor their environment so that they can adapt to changing conditions and, in multicellular organisms, communicate with neighboring cells: without properly folded signaling proteins, chaos would ensue. Moreover, many diseases—including diabetes, cancer, viral infection and neurodegenerative disease—have been linked to protein folding processes. It is not surprising, therefore, that cells have evolved elaborate mechanisms to exert exquisite quality control over protein folding.
One of these mechanisms, called the unfolded protein response (UPR), operates in a compartment within the cell known as the endoplasmic reticulum (ER). The ER is a labyrinthine network of tubes and sacs within all eukaryotic cells, and most proteins destined for the cell surface or outside the cell adopt their properly folded shapes within this compartment. If the ER does not have enough capacity to fold all of the proteins that are delivered there, the UPR switches on to increase the protein folding capacity, to expand the surface area and volume of the compartment, and to degrade misfolded proteins. If the UPR cannot adequately adjust the folding capacity of the ER to meet the demands of the cell, the UPR triggers a program that kills the cell to prevent putting the whole organism at risk.
Researchers have identified the cellular components that monitor the protein folding conditions inside the ER. All eukaryotic cells, from unicellular yeasts to mammalian cells, contain a highly conserved protein-folding sensor called Ire1. In all species analyzed to date, Ire1 is known to activate the UPR through an messenger RNA (mRNA) splicing mechanism. This splicing event provides the switch that drives a gene expression program in which the production of ER components is increased to boost the protein folding capacity of the compartment.
Kimmig, Diaz et al. now report the first instance of an organism in which the UPR does not involve mRNA splicing or the initiation of a gene expression program. Rather, the yeast Schizosaccharomyces pombe utilizes Ire1 to an entirely different end. The authors find that the activation of Ire1 in S. pombe leads to the selective decay of a specific class of mRNAs that all encode proteins entering the ER. Thus, rather than increasing the protein folding capacity of the ER when faced with an increased protein folding load, S. pombe cells correct the imbalance by decreasing the load.
The authors also show that a lone mRNA—the mRNA that encodes the molecular chaperone BiP, which is one of the major protein-folding components in the ER—uniquely escapes this decay. Rather than being degraded, Ire1 truncates BiP mRNA and renders it more stable. By studying the UPR in a divergent organism, the authors shed new light on the evolution of a universally important process and illustrate how conserved machinery has been repurposed.
PMCID: PMC3470409  PMID: 23066505
Unfolded Protein Response; Ire1; selective mRNA decay; Bip1 mRNA stabilization; ER homeostasis; S. pombe
13.  The Membrane-Associated Transcription Factor NAC089 Controls ER-Stress-Induced Programmed Cell Death in Plants 
PLoS Genetics  2014;10(3):e1004243.
The unfolded protein response (UPR) is activated to sustain cell survival by reducing misfolded protein accumulation in the endoplasmic reticulum (ER). The UPR also promotes programmed cell death (PCD) when the ER stress is severe; however, the underlying molecular mechanisms are less understood, especially in plants. Previously, two membrane-associated transcriptions factors (MTFs), bZIP28 and bZIP60, were identified as the key regulators for cell survival in the plant ER stress response. Here, we report the identification of another MTF, NAC089, as an important PCD regulator in Arabidopsis (Arabidopsis thaliana) plants. NAC089 relocates from the ER membrane to the nucleus under ER stress conditions. Inducible expression of a truncated form of NAC089, in which the transmembrane domain is deleted, induces PCD with increased caspase 3/7-like activity and DNA fragmentation. Knock-down NAC089 in Arabidopsis confers ER stress tolerance and impairs ER-stress-induced caspase-like activity. Transcriptional regulation analysis and ChIP-qPCR reveal that NAC089 plays important role in regulating downstream genes involved in PCD, such as NAC094, MC5 and BAG6. Furthermore, NAC089 is up-regulated by ER stress, which is directly controlled by bZIP28 and bZIP60. These results show that nuclear relocation of NAC089 promotes ER-stress-induced PCD, and both pro-survival and pro-death signals are elicited by bZIP28 and bZIP60 during plant ER stress response.
Author Summary
Protein folding is fundamentally important for development and responses to environmental stresses in eukaryotes. When excess misfolded proteins are accumulated in the endoplasmic reticulum (ER), the unfolded protein response (UPR) is triggered to promote cell survival through optimizing protein folding, and also promote programmed cell death (PCD) when the stress is severe. However, the link from ER-stress-sensing to PCD is largely unknown. Here, we report the identification of one membrane-associated transcription factor NAC089 as an important regulator of ER stress-induced PCD in plants. We have established a previously unrecognized molecular connection between ER stress sensors and PCD regulators. We have shown that organelle-to-organelle translocation of a transcription factor is important for its function in transcriptional regulation. Our results have provided novel insights into the molecular mechanisms of PCD in plants, especially under ER stress conditions.
PMCID: PMC3967986  PMID: 24675811
14.  Boolean Model of Yeast Apoptosis as a Tool to Study Yeast and Human Apoptotic Regulations 
Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested.
PMCID: PMC3518040  PMID: 23233838
apoptosis; Boolean modeling; Stm1; Bir1; Hog1; VCP; Bcl-2 family
15.  Cytochrome c Release and Mitochondria Involvement in Programmed Cell Death Induced by Acetic Acid in Saccharomyces cerevisiae 
Molecular Biology of the Cell  2002;13(8):2598-2606.
Evidence is presented that mitochondria are implicated in the previously described programmed cell death (PCD) process induced by acetic acid in Saccharomyces cerevisiae. In yeast cells undergoing a PCD process induced by acetic acid, translocation of cytochrome c (CytC) to the cytosol and reactive oxygen species production, two events known to be proapoptotic in mammals, were observed. Associated with these events, reduction in oxygen consumption and in mitochondrial membrane potential was found. Enzymatic assays showed that the activity of complex bc1 was normal, whereas that of cytochrome c oxidase (COX) was strongly decreased. This decrease is in accordance with the observed reduction in the amounts of COX II subunit and of cytochromes a+a3. The acetic acid-induced PCD process was found to be independent of oxidative phosphorylation because it was not inhibited by oligomycin treatment. The inability of S. cerevisiae mutant strains (lacking mitochondrial DNA, heme lyase, or ATPase) to undergo acetic acid-induced PCD and in the ATPase mutant (knockout in ATP10) the absence of CytC release provides further evidence that the process is mediated by a mitochondria-dependent apoptotic pathway. The understanding of the involvement of a mitochondria-dependent apoptotic pathway in S. cerevisiae PCD process will be most useful in the further elucidation of an ancestral pathway common to PCD in metazoans.
PMCID: PMC117928  PMID: 12181332
16.  Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae 
BMC Genomics  2013;14(1):838.
Acetic acid is mostly known as a toxic by-product of alcoholic fermentation carried out by Saccharomyces cerevisiae, which it frequently impairs. The more recent finding that acetic acid triggers apoptotic programmed cell death (PCD) in yeast sparked an interest to develop strategies to modulate this process, to improve several biotechnological applications, but also for biomedical research. Indeed, acetate can trigger apoptosis in cancer cells, suggesting its exploitation as an anticancer compound. Therefore, we aimed to identify genes involved in the positive and negative regulation of acetic acid-induced PCD by optimizing a functional analysis of a yeast Euroscarf knock-out mutant collection.
The screen consisted of exposing the mutant strains to acetic acid in YPD medium, pH 3.0, in 96-well plates, and subsequently evaluating the presence of culturable cells at different time points. Several functional categories emerged as greatly relevant for modulation of acetic acid-induced PCD (e.g.: mitochondrial function, transcription of glucose-repressed genes, protein synthesis and modifications, and vesicular traffic for protection, or amino acid transport and biosynthesis, oxidative stress response, cell growth and differentiation, protein phosphorylation and histone deacetylation for its execution). Known pro-apoptotic and anti-apoptotic genes were found, validating the approach developed. Metabolism stood out as a main regulator of this process, since impairment of major carbohydrate metabolic pathways conferred resistance to acetic acid-induced PCD. Among these, lipid catabolism arose as one of the most significant new functions identified. The results also showed that many of the cellular and metabolic features that constitute hallmarks of tumour cells (such as higher glycolytic energetic dependence, lower mitochondrial functionality, increased cell division and metabolite synthesis) confer sensitivity to acetic acid-induced PCD, potentially explaining why tumour cells are more susceptible to acetate than untransformed cells and reinforcing the interest in exploiting this acid in cancer therapy. Furthermore, our results clearly establish a connection between cell proliferation and cell death regulation, evidencing a conserved developmental role of programmed cell death in unicellular eukaryotes.
This work advanced the characterization of acetic acid-induced PCD, providing a wealth of new information on putative molecular targets for its control with impact both in biotechnology and biomedicine.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-14-838) contains supplementary material, which is available to authorized users.
PMCID: PMC4046756  PMID: 24286259
Phenotypic screen; Euroscarf knock-out mutant collection; Yeast; Apoptosis; Tumour cells; Alcoholic fermentation
17.  Mutant enrichment of Schizosaccharomyces pombe by inositol-less death. 
Journal of Bacteriology  1992;174(12):4078-4085.
Enrichment procedures, such as those utilizing inositol-less death, have proven to be extremely powerful for increasing the efficiency of identification of spontaneous mutants in a variety of procaryotic and eucaryotic organisms. We characterized inositol-less death in several widely used strains of the inositol-requiring yeast Schizosaccharomyces pombe and determined conditions under which this phenomenon can be used to enrich for mutants. Conflicting reports in the literature on the effects of inositol starvation upon viability of S. pombe had cast doubt on the suitability of using inositol-less death in a mutant enrichment procedure for this organism. We determined that inositol-less death was strain dependent, with differences in viability of up to 5 orders of magnitude observed between the most-sensitive strain, 972, and the least-sensitive strain, SP837. Inositol-less death was also dependent upon the cell concentration at the time of initiation of starvation. While inositol-less death occurred at all four temperatures tested, the kinetics of death was slower at 16 degrees C than at 23, 30, or 37 degrees C. Inositol-less death was observed during growth in fermentable and nonfermentable carbon sources, although loss of viability in glycerol-ethanol was significantly slower than that in glucose, sucrose, or raffinose. The feasibility of exploiting inositol-less death to enrich for spontaneous mutants was demonstrated by the identification of amino acid auxotrophs, nucleotide auxotrophs, carbon source utilization mutants, and temperature-sensitive mutants. By varying starvation conditions, some mutants were recovered at frequencies as high as 5.7 x 10(-2), orders of magnitude higher than the spontaneous mutation rate.
PMCID: PMC206119  PMID: 1597422
18.  Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces cerevisiae. 
Molecular and Cellular Biology  1997;17(5):2723-2734.
Eukaryotic cells may halt cell cycle progression following exposure to certain exogenous agents that damage cellular structures such as DNA or microtubules. This phenomenon has been attributed to functions of cellular control mechanisms termed checkpoints. Studies with the fission yeast Schizosaccharomyces pombe and mammalian cells have led to the conclusion that cell cycle arrest in response to inhibition of DNA replication or DNA damage is a result of down-regulation of the cyclin-dependent kinases (CDKs). Based on these studies, it has been proposed that inhibition of the CDK activity may constitute a general mechanism for checkpoint controls. Observations made with the budding yeast Saccharomyces cerevisiae, however, appear to disagree with this model. It has been shown that high levels of mitotic CDK activity are present in the budding yeast cells arrested in G2/mitosis as the result of DNA damage or replication inhibition. In this report, we show that a novel mutant allele of the CDC28 gene, encoding the budding yeast CDK, allowed cell cycle passage through mitosis and nuclear division in the presence of DNA damage and the microtubule toxin nocodazole at a restrictive temperature. Unlike the checkpoint-defective mutations in CDKs of fission yeast and mammalian cells, the cdc28 mutation that we identified was recessive and resulted in a loss of the CDK activity, including the Clb2-, Clb5-, and Clb6-associated, but not the Clb3-associated, CDK activities. Examination of several known alleles of cdc28 revealed that they were also, albeit partially, defective in cell cycle arrest in response to UV-generated DNA damage. These findings suggest that Cdc28 kinase in budding yeast may be required for cell cycle arrest resulting from DNA damage and disassembly of mitotic spindles.
PMCID: PMC232123  PMID: 9111343
19.  Conservation of Glutamine-Rich Transactivation Function between Yeast and Humans 
Molecular and Cellular Biology  2000;20(8):2774-2782.
Several eukaryotic transcription factors such as Sp1 or Oct1 contain glutamine-rich domains that mediate transcriptional activation. In human cells, promoter-proximally bound glutamine-rich activation domains activate transcription poorly in the absence of acidic type activators bound at distal enhancers, but synergistically stimulate transcription with these remote activators. Glutamine-rich activation domains were previously reported to also function in the fission yeast Schizosaccharomyces pombe but not in the budding yeast Saccharomyces cerevisiae, suggesting that budding yeast lacks this pathway of transcriptional activation. The strong interaction of an Sp1 glutamine-rich domain with the general transcription factor TAFII110 (TAFII130), and the absence of any obvious TAFII110 homologue in the budding yeast genome, seemed to confirm this notion. We reinvestigated the phenomenon by reconstituting in the budding yeast an enhancer-promoter architecture that is prevalent in higher eukaryotes but less common in yeast. Under these conditions, we observed that glutamine-rich activation domains derived from both mammalian and yeast transcription factors activated only poorly on their own but strongly synergized with acidic activators bound at the remote enhancer position. The level of activation by the glutamine-rich activation domains of Sp1 and Oct1 in combination with a remote enhancer was similar in yeast and human cells. We also found that mutations in a glutamine-rich domain had similar phenotypes in budding yeast and human cells. Our results show that glutamine-rich activation domains behave very similarly in yeast and mammals and that their activity in budding yeast does not depend on the presence of a TAFII110 homologue.
PMCID: PMC85493  PMID: 10733580
20.  Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast 
Journal of cell science  2006;119(Pt 1):124-131.
Previous studies have indicated that replication stress can trigger apoptosis-like cell death, accompanied (where tested) by production of reactive oxygen species (ROS), in mammalian cells and budding yeast (Saccharomyces cerevisiae). In mammalian cells, inappropriate entry into mitosis also leads to cell death. Here we report similar responses in fission yeast (Schizosaccharomyces pombe). We used ROS- and death-specific fluorescent stains to measure the effects of mutations in replication initiation and checkpoint genes in fission yeast on the frequencies of ROS production and cell death. We found that certain mutant alleles of each of the four tested replication initiation genes caused elevated ROS and cell death. Where tested, these effects were not enhanced by checkpoint gene mutations. Instead, when cells that were competent for replication but defective in both the replication and damage checkpoints were treated with hydroxyurea, which slows replication fork movement, the frequencies of ROS production and cell death were greatly increased. This was a consequence of elevated CDK activity, which permitted inappropriate entry into mitosis. Thus studies in fission yeast are likely to prove helpful in understanding the pathways that lead both from replication stress and from inappropriate mitosis to cell death in mammalian cells.
PMCID: PMC1582148  PMID: 16371652
reactive oxygen species; cell death; checkpoint; replication; mitosis; apoptosis
21.  Loss of Histone H3 Methylation at Lysine 4 Triggers Apoptosis in Saccharomyces cerevisiae 
PLoS Genetics  2014;10(1):e1004095.
Monoubiquitination of histone H2B lysine 123 regulates methylation of histone H3 lysine 4 (H3K4) and 79 (H3K79) and the lack of H2B ubiquitination in Saccharomyces cerevisiae coincides with metacaspase-dependent apoptosis. Here, we discovered that loss of H3K4 methylation due to depletion of the methyltransferase Set1p (or the two COMPASS subunits Spp1p and Bre2p, respectively) leads to enhanced cell death during chronological aging and increased sensitivity to apoptosis induction. In contrast, loss of H3K79 methylation due to DOT1 disruption only slightly affects yeast survival. SET1 depleted cells accumulate DNA damage and co-disruption of Dot1p, the DNA damage adaptor protein Rad9p, the endonuclease Nuc1p, and the metacaspase Yca1p, respectively, impedes their early death. Furthermore, aged and dying wild-type cells lose H3K4 methylation, whereas depletion of the H3K4 demethylase Jhd2p improves survival, indicating that loss of H3K4 methylation is an important trigger for cell death in S. cerevisiae. Given the evolutionary conservation of H3K4 methylation this likely plays a role in apoptosis regulation in a wide range of organisms.
Author Summary
Covalent histone modifications alter chromatin structure and DNA accessibility, which is playing important roles in a wide range of DNA-based processes, such as transcription regulation and DNA repair, but also cell division and apoptosis. Apoptosis is the most common form of programmed cell death and plays important roles in the development and cellular homeostasis of all metazoans. Deregulation of apoptosis contributes to the pathogenesis of multiple diseases including autoimmune, neoplastic and neurodegenerative disorders. The budding yeast Saccharomyces cerevisiae has progressively evolved as model to study the mechanisms of apoptotic regulation, and we study here the role of an evolutionary conserved trans-histone crosstalk, in particular histone methylation, in apoptotic signaling in yeast. We have identified a novel trigger for cell death in yeast and due to the strong evolutionary conservation our findings may apply to human cells and may be of importance for understanding the molecular mechanism underlying a specific subtype of acute leukemia.
PMCID: PMC3907299  PMID: 24497836
22.  Regulation of CDP-diacylglycerol synthesis and utilization by inositol and choline in Schizosaccharomyces pombe. 
Journal of Bacteriology  1992;174(17):5711-5718.
CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eucaryotic phospholipid biosynthesis and could be a key regulatory site in phospholipid metabolism. Therefore, we examined the effects of growth phase, phospholipid precursors, and the disruption of phosphatidylcholine (PC) synthesis on the membrane-associated phospholipid biosynthetic enzymes CDP-DG synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase in cell extracts of the fission yeast Schizosaccharomyces pombe. In complete synthetic medium containing inositol, maximal expression of CDP-DG synthase, PGP synthase, PI synthase, and PS synthase in wild-type cells occurred in the exponential phase of growth and decreased two- to fourfold in the stationary phase of growth. In cells starved for inositol, this decrease in PGP synthase, PI synthase, and PS synthase expression was not observed. Starvation for inositol resulted in a twofold derepression of PGP synthase and PS synthase expression, while PI synthase expression decreased initially and then remained constant. Upon the addition of inositol to inositol-starved cells, there was a rapid and continued increase in PI synthase expression. We examined expression of these enzymes in cho2 and cho1 mutants, which are blocked in the methylation pathway for synthesis of PC. Choline starvation resulted in a decrease in PS synthase and CDP-DG synthase expression in cho1 but not cho2 cells. Expression of PGP synthase and PI synthase was not affected by choline starvation. Inositol starvation resulted in a 1.7-fold derepression of PGP synthase expression in cho2 but not cho1 cells when PC was synthesized. PS synthase expression was not depressed, while CDP-DG synthase and PI synthase expression decreased in cho2 and cho1 cells in the absence of inositol. These results demonstrate that (i) CDP-DG synthase, PGP synthase, PI synthase, and PS synthase are similarly regulated by growth phase; (ii) inositol affects the expression of PGP synthase, PI synthase, and PS synthase; (iii) disruption of the methylation pathway results in aberrant patterns of regulation of growth phase and phospholipid precursors. Important differences between S. pombe and Saccharomyces cerevisiae with regard to regulation of these enzymes are discussed.
PMCID: PMC206519  PMID: 1324908
23.  Accelerated Cell Death in Podospora Autophagy Mutants†  
Eukaryotic Cell  2005;4(11):1765-1774.
Although autophagy is characteristic of type II programmed cell death (PCD), its role in cell death is currently debated. Both cell death-promoting and prosurvival roles of autophagy have been reported depending on the organism and the cell type. In filamentous fungi, a cell death reaction known as an incompatibility reaction occurs when cells of unlike genotype fuse. Cell death by incompatibility is characterized by a dramatic vacuolar enlargement and cell lysis. In Podospora anserina, autophagy is induced early during this cell death reaction. Cell death by incompatibility in Podospora is a model of type II PCD used here to assess the role of autophagy in this type of cell death. We have inactivated PaATG1, the Podospora ortholog of the Saccharomyces cerevisiae ATG1 gene involved in the early steps of autophagy in yeast. The ΔPaATG1 mutant displays developmental defects characteristic of abrogated autophagy in Podospora. Using the green fluorescent protein-PaATG8 autophagosome marker, we show that autophagy is abolished in this mutant. Neither cell death by incompatibility nor vacuolization are suppressed in ΔPaATG1 and ΔPaATG8 autophagy mutants, indicating that a vacuolar cell death reaction without autophagy occurs in Podospora. Our results thus provide a novel example of a type II PCD reaction in which autophagy is not the cause of cell death. In addition, we found that cell death is accelerated in ΔPaATG null mutants, suggesting that autophagy has a protective role in this type II PCD reaction.
PMCID: PMC1287858  PMID: 16278443
24.  Protection and replication of telomeres in fission yeast1 
Telomeres, the natural ends of linear chromosomes, must be protected and completely replicated to guarantee genomic stability in eukaryotic cells. However, the protected state of telomeres is not compatible with recruitment of telomerase, an enzyme responsible for extending telomeric G-rich repeats during S-phase; thus, telomeres must undergo switches from a protected state to an accessible state during the cell cycle. In this minireview, we will summarize recent advances in our understanding of proteins involved in the protection and replication of telomeres, and the way these factors are dynamically recruited to telomeres during the cell cycle. We will focus mainly on recent results from fission yeast Schizosaccharomyces pombe, and compare them with results from budding yeast Saccharomyces cerevisiae and mammalian cell studies. In addition, a model for the way in which fission yeast cells replicate telomeres will be presented.
PMCID: PMC2854563  PMID: 19898524
telomere; telomerase; DNA replication; checkpoint; DNA repair
25.  Global Analysis of Fission Yeast Mating Genes Reveals New Autophagy Factors 
PLoS Genetics  2013;9(8):e1003715.
Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12–Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy.
Author Summary
Autophagy is a eukaryotic cellular process that transports cytoplasmic contents into lysosomes/vacuoles for degradation. It has been linked to multiple human diseases, including cancer and neurodegenerative disorders. The molecular machinery of autophagy was first identified and has been best characterized in the budding yeast Saccharomyces cerevisiae, but little is known about the autophagy machinery in another important unicellular model organism, the fission yeast Schizosaccharomyces pombe. In this study, we performed an unbiased and comprehensive screening of the fission yeast autophagy genes by profiling the mating phenotypes of nearly 3000 deletion strains. Following up on the screening results, we systematically characterized both previously known and newly identified fission yeast autophagy factors by examining their localization and the phenotype of their mutants. Our analysis increased the number of experimentally defined fission yeast autophagy factors from 14 to 23, including two novel factors that act in ways different from all previously known autophagy proteins. Together, our data reveal unexpected evolutionary divergence of autophagy mechanisms and establish a new model system for unraveling the molecular details of the autophagy process.
PMCID: PMC3738441  PMID: 23950735

Results 1-25 (1027164)