Search tips
Search criteria

Results 1-25 (898042)

Clipboard (0)

Related Articles

1.  Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis 
Cell Death and Differentiation  2010;18(6):915-924.
Autophagy, an evolutionarily conserved lysosome-mediated degradation, promotes cell survival under starvation and is controlled by insulin/target of rapamycin (TOR) signaling. In Drosophila, nutrient depletion induces autophagy in the fat body. Interestingly, nutrient availability and insulin/TOR signaling also influence the size and structure of Drosophila ovaries, however, the role of nutrient signaling and autophagy during this process remains to be elucidated. Here, we show that starvation induces autophagy in germline cells (GCs) and in follicle cells (FCs) in Drosophila ovaries. This process is mediated by the ATG machinery and involves the upregulation of Atg genes. We further demonstrate that insulin/TOR signaling controls autophagy in FCs and GCs. The analysis of chimeric females reveals that autophagy in FCs, but not in GCs, is required for egg development. Strikingly, when animals lack Atg gene function in both cell types, ovaries develop normally, suggesting that the incompatibility between autophagy-competent GCs and autophagy-deficient FCs leads to defective egg development. As egg morphogenesis depends on a tightly linked signaling between FCs and GCs, we propose a model in which autophagy is required for the communication between these two cell types. Our data establish an important function for autophagy during oogenesis and contributes to the understanding of the role of autophagy in animal development.
PMCID: PMC3131947  PMID: 21151027
autophagy; Drosophila; oogenesis; starvation; insulin/TOR
2.  An executioner caspase regulates autophagy 
Autophagy  2009;5(4):530-533.
The relationships between autophagy and cell death are complex and still not well understood. To advance our understanding of the molecular connections between autophagy and apoptosis, we performed an RNAi-based screen of Drosophila melanogaster apoptosis-related genes for their ability to enhance or suppress starvation-induced autophagy. We discovered that six apoptosis-related genes, Dcp-1, hid, Bruce, buffy, debcl and p53 as well as Ras/ Raf/MAPK signaling pathway components play a role in autophagy regulation in Drosophila cultured cells. Our study also provides the first in vivo evidence that the effector caspase Dcp-1 and IAP protein Bruce regulate both autophagy and starvation-induced cell death at two nutrient status checkpoints, germarium and mid-oogenesis, in the Drosophila ovary. Analysis of degenerating mid-stage egg chambers in DmAtg1 and DmAtg7 mutants reveal a reduction in TUNEL staining though DNA condensation appears unaffected. Based on these and previous findings, we propose here a putative molecular pathway that might regulate the sensitivity threshold of apoptotic and autophagic responses. We also discuss multiple interpretations of the Atg mutant egg chamber TUNEL phenotype that are consistent with a possible role for autophagy in either suppressing or enhancing the efficiency of cell degradation and/or promoting cell clearance associated with the death process.
PMCID: PMC3135627  PMID: 19242106 CAMSID: cams1682
autophagy; apoptosis; caspase; Dcp-1; Bruce
3.  grim promotes programmed cell death of Drosophila microchaete glial cells 
Mechanisms of development  2010;127(9-12):407-417.
The Inhibitor of apoptosis (IAP) antagonists Reaper (Rpr), Grim and Hid are central regulators of developmental apoptosis in Drosophila. Ectopic expression of each is sufficient to trigger apoptosis, and hid and rpr have been shown to be important for programmed cell death (PCD). To investigate the role for grim in PCD, a grim null mutant was generated. grim was not a key proapoptotic gene for embryonic PCD, confirming that grim cooperates with rpr and hid in embryogenesis. In contrast, PCD of glial cells in the microchaete lineage required grim, identifying a death process dependent upon endogenous grim. Grim associates with mitochondria and has been shown to activate a mitochondrial death pathway distinct from IAP antagonization; therefore, the Drosophila bcl-2 genes buffy and debcl were investigated for genetic interaction with grim. Loss of buffy led to microchaete glial cell survival and suppressed death in the eye induced by ectopic Grim. This is the first example of a developmental PCD process influenced by buffy, and places buffy in a proapoptotic role. PCD of microchaete glial cells represents an exceptional opportunity to study the mitochondrial proapoptotic process induced by Grim.
PMCID: PMC2956798  PMID: 20558283
Drosophila melanogaster; Microchaete bristle; Buffy; Apoptosis; Bcl-2
4.  Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis 
The Journal of Cell Biology  2008;182(6):1127-1139.
A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death–related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes—death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53—as well as Ras–Raf–mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo.
PMCID: PMC2542474  PMID: 18794330
5.  Loss of the TOR Kinase Tor2 Mimics Nitrogen Starvation and Activates the Sexual Development Pathway in Fission Yeast▿ †  
Molecular and Cellular Biology  2007;27(8):3154-3164.
Fission yeast has two TOR (target of rapamycin) kinases, namely Tor1 and Tor2. Tor1 is required for survival under stressed conditions, proper G1 arrest, and sexual development. In contrast, Tor2 is essential for growth. To analyze the functions of Tor2, we constructed two temperature-sensitive tor2 mutants. Interestingly, at the restrictive temperature, these mutants mimicked nitrogen starvation by arresting the cell cycle in G1 phase and initiating sexual development. Microarray analysis indicated that expression of nitrogen starvation-responsive genes was induced extensively when Tor2 function was suppressed, suggesting that Tor2 normally mediates a signal from the nitrogen source. As with mammalian and budding yeast TOR, we find that fission yeast TOR also forms multiprotein complexes analogous to TORC1 and TORC2. The raptor homologue, Mip1, likely forms a complex predominantly with Tor2, producing TORC1. The rictor/Avo3 homologue, Ste20, and the Avo1 homologue, Sin1, appear to form TORC2 mainly with Tor1 but may also bind Tor2. The Lst8 homologue, Wat1, binds to both Tor1 and Tor2. Our analysis shows, with respect to promotion of G1 arrest and sexual development, that the loss of Tor1 (TORC2) and the loss of Tor2 (TORC1) exhibit opposite effects. This highlights an intriguing functional relationship among TOR kinase complexes in the fission yeast Schizosaccharomyces pombe.
PMCID: PMC1899950  PMID: 17261596
6.  Nutritional control of gene expression in Drosophila larvae via TOR, Myc and a novel cis-regulatory element 
BMC Cell Biology  2010;11:7.
Nutrient availability is a key determinant of eukaryotic cell growth. In unicellular organisms many signaling and transcriptional networks link nutrient availability to the expression of metabolic genes required for growth. However, less is known about the corresponding mechanisms that operate in metazoans. We used gene expression profiling to explore this issue in developing Drosophila larvae.
We found that starvation for dietary amino acids (AA's) leads to dynamic changes in transcript levels of many metabolic genes. The conserved insulin/PI3K and TOR signaling pathways mediate nutrition-dependent growth in Drosophila and other animals. We found that many AA starvation-responsive transcripts were also altered in TOR mutants. In contrast, although PI3K overexpression induced robust changes in the expression of many metabolic genes, these changes showed limited overlap with the AA starvation expression profile. We did however identify a strong overlap between genes regulated by the transcription factor, Myc, and AA starvation-responsive genes, particularly those involved in ribosome biogenesis, protein synthesis and mitochondrial function. The consensus Myc DNA binding site is enriched in promoters of these AA starvation genes, and we found that Myc overexpression could bypass dietary AA to induce expression of these genes. We also identified another sequence motif (Motif 1) enriched in the promoters of AA starvation-responsive genes. We showed that Motif 1 was both necessary and sufficient to mediate transcriptional responses to dietary AA in larvae.
Our data suggest that many of the transcriptional effects of amino acids are mediated via signaling through the TOR pathway in Drosophila larvae. We also find that these transcriptional effects are mediated through at least two mechanisms: via the transcription factor Myc, and via the Motif 1 cis-regulatory element. These studies begin to elucidate a nutrient-responsive signaling network that controls metabolic gene transcription in Drosophila.
PMCID: PMC2827378  PMID: 20089194
7.  mTOR regulation of autophagy 
FEBS letters  2010;584(7):1287-1295.
Nutrient starvation induces autophagy in eukaryotic cells through inhibition of TOR (target of rapamycin), an evolutionarily-conserved protein kinase. TOR, as a central regulator of cell growth, plays a key role at the interface of the pathways that coordinately regulate the balance between cell growth and autophagy in response to nutritional status, growth factor and stress signals. Although TOR has been known as a key regulator of autophagy for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This review discusses the recent advances in understanding of the mechanism by which TOR regulates autophagy with focus on mammalian TOR (mTOR) and its regulation of the autophagy machinery.
PMCID: PMC2846630  PMID: 20083114
mTOR; Atg1; ULK1; ULK2; Atg13
8.  Autophagy termination and lysosome reformation regulated by mTOR 
Nature  2010;465(7300):942-946.
Autophagy is an evolutionarily conserved process to catabolize cytoplasmic proteins and organelles1, 2. During starvation, the target of rapamycin (TOR), a nutrient-responsive kinase, is inhibited, thereby inducing autophagy. In autophagy, double-membrane autophagosomes envelop and sequester intracellular components and then fuse with lysosomes to form autolysosomes which degrade their contents to regenerate nutrients. Current models of autophagy terminate with the degradation of autophagosome cargo in autolysosomes3-5, but the regulation of autophagy in response to nutrients and the subsequent fate of the autolysosome are poorly defined. Here we show that mTOR signaling is inhibited during autophagy initiation, but reactivated with prolonged starvation. mTOR reactivation is autophagy-dependent, and requires the degradation of autolysosomal products. Increased mTOR activity attenuates autophagy and generates proto-lysosomal tubules and vesicles that extrude from autolysosomes and ultimately mature into functional lysosomes, thereby restoring the full complement of lysosomes in the cell – a process we identify in multiple animal species. Thus, an evolutionarily-conserved cycle in autophagy governs nutrient sensing and lysosome homeostasis during starvation.
PMCID: PMC2920749  PMID: 20526321
9.  JNK1-Mediated Phosphorylation of Bcl-2 Regulates Starvation-Induced Autophagy 
Molecular cell  2008;30(6):678-688.
Starvation induces autophagy to preserve cellular homeostasis in virtually all eukaryotic organisms. However, the mechanisms by which starvation induces autophagy are not completely understood. In mammalian cells, the anti-apoptotic protein, Bcl-2, binds to Beclin 1 during non-starvation conditions, and inhibits its autophagy function. Here we show that starvation induces phosphorylation of cellular Bcl-2 at residues T69, S70, and S87 of the non-structured loop, Bcl-2 dissociation from Beclin 1, and autophagy activation. In contrast, viral Bcl-2, which lacks the phosphorylation site-containing non-structured loop, fails to dissociate from Beclin 1 during starvation. Furthermore, the stress-activated signaling molecule, c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, mediates starvation-induced Bcl-2 phosphorylation, Bcl-2 dissociation from Beclin 1, and autophagy activation. Together, our findings demonstrate that JNK1-mediated multi-site phosphorylation of Bcl-2 stimulates starvation-induced autophagy by disrupting the Bcl-2/Beclin 1 complex. These findings define a mechanism that cells use to regulate autophagic activity in response to nutrient status.
PMCID: PMC2478643  PMID: 18570871
10.  Mechanisms of Life Span Extension by Rapamycin in the Fruit Fly Drosophila melanogaster 
Cell Metabolism  2010;11(1):35-46.
The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically downregulated, increases life span in evolutionarily diverse organisms including mammals. The central component of this pathway, TOR kinase, is the target of the inhibitory drug rapamycin, a highly specific and well-described drug approved for human use. We show here that feeding rapamycin to adult Drosophila produces the life span extension seen in some TOR mutants. Increase in life span by rapamycin was associated with increased resistance to both starvation and paraquat. Analysis of the underlying mechanisms revealed that rapamycin increased longevity specifically through the TORC1 branch of the TOR pathway, through alterations to both autophagy and translation. Rapamycin could increase life span of weak insulin/Igf signaling (IIS) pathway mutants and of flies with life span maximized by dietary restriction, indicating additional mechanisms.
► Rapamycin, a drug that inhibits TOR pathway, improves longevity in Drosophila ► Rapamycin longevity effects are mediated through the TOR pathway ► Life span extension by rapamycin is through translation changes and autophagy ► Rapamycin extends life span beyond dietary restriction and mild IIS mutations
PMCID: PMC2824086  PMID: 20074526
11.  TOR-dependent control of autophagy: biting the hand that feeds 
Current opinion in cell biology  2009;22(2):157-168.
Induction of autophagy in response to starvation is a highly conserved ability of eukaryotic cells, indicating a critical and ancient role of this process in adapting to nutrient conditions. The target of rapamycin (TOR) pathway is major conduit for such signals, and in most cell types TOR activity is necessary and sufficient to suppress autophagy under favorable growth conditions. Recent studies have begun to reveal how TOR activity is regulated in response to nutritional cues, and are shedding new light on the mechanisms by which TOR controls the autophagic machinery. In addition, a variety of signals, stressors and pharmacological agents that induce autophagy independent of nutrient conditions have been identified. In some cases these signals appear to have been spliced into the core TOR pathway, whereas others are able to bypass the control mechanisms regulated by TOR. Increasing evidence is pointing to an important role for both positive and negative feedback loops in controlling this pathway, leading to an emerging view that TOR signaling not only regulates autophagy but is also highly sensitive to cellular rates of autophagy and other TOR-dependent processes.
PMCID: PMC2854204  PMID: 20006481
12.  Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila 
Autophagy  2012;8(7):1124-1135.
Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.
PMCID: PMC3429548  PMID: 22562043
antimicrobial peptides; Atg8; autophagy; Drosophila; fat body; glycogen; GSK-3B; microarray; Rack1; starvation
13.  TOR Controls Transcriptional and Translational Programs via Sap-Sit4 Protein Phosphatase Signaling Effectors 
Molecular and Cellular Biology  2004;24(19):8332-8341.
The Tor kinases are the targets of the immunosuppressive drug rapamycin and couple nutrient availability to cell growth. In the budding yeast Saccharomyces cerevisiae, the PP2A-related phosphatase Sit4 together with its regulatory subunit Tap42 mediates several Tor signaling events. Sit4 interacts with other potential regulatory proteins known as the Saps. Deletion of the SAP or SIT4 genes confers increased sensitivity to rapamycin and defects in expression of subsets of Tor-regulated genes. Sap155, Sap185, or Sap190 can restore these responses. Strains lacking Sap185 and Sap190 are hypersensitive to rapamycin, and this sensitivity is Gcn2 dependent and correlated with a defect in translation, constitutive eukaryotic initiation factor 2α hyperphosphorylation, induction of GCN4 translation, and hypersensitivity to amino acid starvation. We conclude that Tor signals via Sap-Sit4 complexes to control both transcriptional and translational programs that couple cell growth to amino acid availability.
PMCID: PMC516738  PMID: 15367655
14.  Lithium Improves Survival of PC12 Pheochromocytoma Cells in High-Density Cultures and after Exposure to Toxic Compounds 
Autophagy is an evolutionary conserved mechanism that allows for the degradation of long-lived proteins and entire organelles which are driven to lysosomes for digestion. Different kinds of stressful conditions such as starvation are able to induce autophagy. Lithium and rapamycin are potent autophagy inducers with different molecular targets. Lithium stimulates autophagy by decreasing the intracellular myo-inositol-1,4,5-triphosphate levels, while rapamycin acts through the inhibition of the mammalian target of rapamycin (mTOR). The correlation between autophagy and cell death is still a matter of debate especially in transformed cells. In fact, the execution of autophagy can protect cells from death by promptly removing damaged organelles such as mitochondria. Nevertheless, an excessive use of the autophagic machinery can drive cells to death via a sort of self-cannibalism. Our data show that lithium (used within its therapeutic window) stimulates the overgrowth of the rat Pheochromocytoma cell line PC12. Besides, lithium and rapamycin protect PC12 cells from toxic compounds such as thapsigargin and trimethyltin. Taken together these data indicate that pharmacological activation of autophagy allows for the survival of Pheochromocytoma cells in stressful conditions such as high-density cultures and exposure to toxins.
PMCID: PMC3915898  PMID: 24563652
15.  Hepatitis C Virus Upregulates Beclin1 for Induction of Autophagy and Activates mTOR Signaling 
Journal of Virology  2012;86(16):8705-8712.
Hepatitis C virus (HCV) induces autophagosome formation in infected human hepatocytes. We have previously reported that HCV exploits autophagic machinery in favor of virus growth and survival in host cells (S. Shrivastava et al., Hepatology 53:406–414, 2011); however, the mechanisms for autophagy induction is poorly understood. In the present study, we observed that HCV infection transcriptionally upregulates Beclin1, which forms complex with Vps34, the class III phosphatidylinositol 3-kinase, as a first step for autophagy initiation. Although Bcl-2 has an anti-autophagy effect by its association with Beclin1 in nutrient-deprived cells, our studies revealed that HCV-mediated autophagy occurs independent of Beclin1–Bcl-2 dissociation. Mammalian target of rapamycin (mTOR) is a positive regulator of cell growth and is recognized as an inhibitor of autophagy induction. Our results demonstrated that HCV infection enhances phospho-mTOR expression and its downstream target 4EBP1 activation, suggesting that mTOR is not a negative regulator of HCV-induced autophagy. On the other hand, HCV infection in autophagy-impaired cells reduced phospho-mTOR, mTOR, and phospho-4EBP1 expression. Together, these results suggested that HCV induces autophagy by upregulating Beclin1 and activates mTOR signaling pathway, which in turn may promote hepatocyte growth.
PMCID: PMC3421755  PMID: 22674982
16.  Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy 
Cardiovascular Research  2011;93(2):320-329.
Insulin-like growth factor 1 (IGF-1) is known to exert cardioprotective actions. However, it remains unknown if autophagy, a major adaptive response to nutritional stress, contributes to IGF-1-mediated cardioprotection.
Methods and results
We subjected cultured neonatal rat cardiomyocytes, as well as live mice, to nutritional stress and assessed cell death and autophagic rates. Nutritional stress induced by serum/glucose deprivation strongly induced autophagy and cell death, and both responses were inhibited by IGF-1. The Akt/mammalian target of rapamycin (mTOR) pathway mediated the effects of IGF-1 upon autophagy. Importantly, starvation also decreased intracellular ATP levels and oxygen consumption leading to AMP-activated protein kinase (AMPK) activation; IGF-1 increased mitochondrial Ca2+ uptake and mitochondrial respiration in nutrient-starved cells. IGF-1 also rescued ATP levels, reduced AMPK phosphorylation and increased p70S6K phosphorylation, which indicates that in addition to Akt/mTOR, IGF-1 inhibits autophagy by the AMPK/mTOR axis. In mice harbouring a liver-specific igf1 deletion, which dramatically reduces IGF-1 plasma levels, AMPK activity and autophagy were increased, and significant heart weight loss was observed in comparison with wild-type starved animals, revealing the importance of IGF-1 in maintaining cardiac adaptability to nutritional insults in vivo.
Our data support the cardioprotective actions of IGF-1, which, by rescuing the mitochondrial metabolism and the energetic state of cells, reduces cell death and controls the potentially harmful autophagic response to nutritional challenges. IGF-1, therefore, may prove beneficial to mitigate damage induced by excessive nutrient-related stress, including ischaemic disease in multiple tissues.
PMCID: PMC3286200  PMID: 22135164
IGF-1; Macroautophagy; Heart; ATP; Akt; mTOR
17.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 
Nature cell biology  2011;13(2):132-141.
Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.
PMCID: PMC3987946  PMID: 21258367
18.  Regulation of Autophagy by Metabolic and Stress Signaling Pathways in the Heart 
Autophagy is an essential process for the maintenance of cellular homeostasis in the heart under both normal and stress conditions. Autophagy is a key degradation pathway and acts as a quality control sensor. It protects myocytes from cytotoxic protein aggregates and dysfunctional organelles by quickly clearing them from cell. It also responds to changes in energy demand and mechanical stressors to maintain contractile function. The autophagic-lysosomal pathway responds to serum starvation to ensure that the cell maintains its metabolism and energy levels when nutrients run low. In contrast, excessive activation of autophagy is detrimental to cells and contributes to development of pathological conditions. A number of signaling pathways and proteins regulate autophagy. These include the AMPK/mTOR pathway, FoxO transcription factors, Sirt1, oxidative stress, Bcl-2 family proteins, and the E3 ubiquitin ligase Parkin. In this review, we will discuss how this diverse cast of characters regulates the important autophagic process in the myocardium.
PMCID: PMC3419780  PMID: 22472907
Autophagy; AMPK; mTOR; Beclin1; ULK1; Parkin; mitochondria
19.  ULK1, Mammalian Target of Rapamycin, and Mitochondria: Linking Nutrient Availability and Autophagy 
Antioxidants & Redox Signaling  2011;14(10):1953-1958.
A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed. Antioxid. Redox Signal. 14, 1953–1958.
PMCID: PMC3078489  PMID: 21235397
20.  ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy 
Cell Research  2012;22(7):1181-1198.
In response to nutrient stress, cells start an autophagy program that can lead to adaptation or death. The mechanisms underlying the signaling from starvation to the initiation of autophagy are not fully understood. In the current study we show that the absence or inactivation of PARP-1 strongly delays starvation-induced autophagy. We have found that DNA damage is an early event of starvation-induced autophagy as measured by γ-H2AX accumulation and comet assay, with PARP-1 knockout cells displaying a reduction in both parameters. During starvation, ROS-induced DNA damage activates PARP-1, leading to ATP depletion (an early event after nutrient deprivation). The absence of PARP-1 blunted AMPK activation and prevented the complete loss of mTOR activity, leading to a delay in autophagy. PARP-1 depletion favors apoptosis in starved cells, suggesting a pro-survival role of autophagy and PARP-1 activation after nutrient deprivation. In vivo results show that neonates of PARP-1 mutant mice subjected to acute starvation, also display deficient liver autophagy, implying a physiological role for PARP-1 in starvation-induced autophagy. Thus, the PARP signaling pathway is a key regulator of the initial steps of autophagy commitment following starvation.
PMCID: PMC3391023  PMID: 22525338
starvation; autophagy; DNA damage; PARP-1; mTOR; AMPK
21.  TOR coordinates bulk and targeted endocytosis in the Drosophila melanogaster fat body to regulate cell growth 
The Journal of Cell Biology  2006;173(6):963-974.
Target of rapamycin (TOR) is a central regulator of cellular and organismal growth in response to nutrient conditions. In a genetic screen for novel TOR interactors in Drosophila melanogaster, we have identified the clathrin-uncoating ATPase Hsc70-4, which is a key regulator of endocytosis. We present genetic evidence that TOR signaling stimulates bulk endocytic uptake and inhibits the targeted endocytic degradation of the amino acid importer Slimfast. Thus, TOR simultaneously down-regulates aspects of endocytosis that inhibit growth and up-regulates potential growth-promoting functions of endocytosis. In addition, we find that disruption of endocytosis leads to changes in TOR and phosphatidylinositol-3 kinase activity, affecting cell growth, autophagy, and rapamycin sensitivity. Our data indicate that endocytosis acts both as an effector function downstream of TOR and as a physiologically relevant regulator of TOR signaling.
PMCID: PMC1950482  PMID: 16785324
22.  TOR Coordinates Bulk and Targeted Endocytosis in the Drosophila Fat Body to Regulate Cell Growth 
The Journal of cell biology  2006;173(6):963-974.
Target of Rapamycin (TOR) is a central regulator of cellular and organismal growth in response to nutrient conditions. In a genetic screen for novel TOR interactors in Drosophila, we have identified the clathrin-uncoating ATPase Hsc70-4, a key regulator of endocytosis. We present genetic evidence that TOR signaling stimulates bulk endocytic uptake, and inhibits the targeted endocytic degradation of the amino acid importer Slimfast. Thus, TOR simultaneously downregulates aspects of endocytosis that inhibit growth, and upregulates potential growth-promoting functions of endocytosis. In addition, we find that disruption of endocytosis leads to changes in TOR and PI3K activity, affecting cell growth, autophagy and rapamycin sensitivity. Our data indicate that endocytosis acts both as a novel effector function downstream of TOR and as a physiologically relevant regulator of TOR signaling.
PMCID: PMC1950482  PMID: 16785324
endocytosis; cell growth; Target of Rapamycin (TOR); Drosophila; nutrient signaling
23.  Autophagy in Drosophila melanogaster 
Biochimica et biophysica acta  2009;1793(9):1452-1460.
Macroautophagy (autophagy) is a bulk cytoplasmic degradation process that is conserved from yeast to mammals. Autophagy is an important cellular response to starvation and stress, and plays important roles in development, cell death, aging, immunity, and cancer. The fruit fly Drosophila melanogaster provides an excellent model system to study autophagy in vivo, in the context of a developing organism. Autophagy (atg) genes and their regulators are conserved in Drosophila, and autophagy is induced in response to nutrient starvation and hormones during development. In this review we provide an overview of how Drosophila research has contributed to our understanding of the role and regulation of autophagy in cell survival, growth, nutrient utilization, and cell death. Recent Drosophila research has also provided important mechanistic information about the role of autophagy in protein aggregation disorders, neurodegeneration, aging, and innate immunity. Differences in the role of autophagy in specific contexts and/or cell types suggest that there may be cell-context-specific regulators of autophagy, and studies in Drosophila are well-suited to yield discoveries about this specificity.
PMCID: PMC2739249  PMID: 19264097
24.  The Drosophila FoxA Ortholog Fork Head Regulates Growth and Gene Expression Downstream of Target of Rapamycin 
PLoS ONE  2010;5(12):e15171.
Forkhead transcription factors of the FoxO subfamily regulate gene expression programs downstream of the insulin signaling network. It is less clear which proteins mediate transcriptional control exerted by Target of rapamycin (TOR) signaling, but recent studies in nematodes suggest a role for FoxA transcription factors downstream of TOR. In this study we present evidence that outlines a similar connection in Drosophila, in which the FoxA protein Fork head (FKH) regulates cellular and organismal size downstream of TOR. We find that ectopic expression and targeted knockdown of FKH in larval tissues elicits different size phenotypes depending on nutrient state and TOR signaling levels. FKH overexpression has a negative effect on growth under fed conditions, and this phenotype is not further exacerbated by inhibition of TOR via rapamycin feeding. Under conditions of starvation or low TOR signaling levels, knockdown of FKH attenuates the size reduction associated with these conditions. Subcellular localization of endogenous FKH protein is shifted from predominantly cytoplasmic on a high-protein diet to a pronounced nuclear accumulation in animals with reduced levels of TOR or fed with rapamycin. Two putative FKH target genes, CG6770 and cabut, are transcriptionally induced by rapamycin or FKH expression, and silenced by FKH knockdown. Induction of both target genes in heterozygous TOR mutant animals is suppressed by mutations in fkh. Furthermore, TOR signaling levels and FKH impact on transcription of the dFOXO target gene d4E-BP, implying a point of crosstalk with the insulin pathway. In summary, our observations show that an alteration of FKH levels has an effect on cellular and organismal size, and that FKH function is required for the growth inhibition and target gene induction caused by low TOR signaling levels.
PMCID: PMC3013099  PMID: 21217822
25.  Dimorphic Ovary Differentiation in Honeybee (Apis mellifera) Larvae Involves Caste-Specific Expression of Homologs of Ark and Buffy Cell Death Genes 
PLoS ONE  2014;9(5):e98088.
The establishment of the number of repeated structural units, the ovarioles, in the ovaries is one of the critical events that shape caste polyphenism in social insects. In early postembryonic development, honeybee (Apis mellifera) larvae have a pair of ovaries, each one consisting of almost two hundred ovariole primordia. While practically all these ovarioles continue developing in queen-destined larvae, they undergo massive programmed cell death (PCD) in worker-destined larvae. So as to gain insight into the molecular basis of this fundamental process in caste differentiation we used quantitative PCR (qPCR) and fluorescent in situ hybridization (FISH) to investigate the expression of the Amark and Ambuffy genes in the ovaries of the two honeybee castes throughout the fifth larval instar. These are the homologs of ark and buffy Drosophila melanogaster genes, respectively, involved in activating and inhibiting PCD. Caste-specific expression patterns were found during this time-window defining ovariole number. Amark transcript levels were increased when ovariole resorption was intensified in workers, but remained at low levels in queen ovaries. The transcripts were mainly localized at the apical end of all the worker ovarioles, but appeared in only a few queen ovarioles, thus strongly suggesting a function in mediating massive ovariolar cell death in worker larvae. Ambuffy was mainly expressed in the peritoneal sheath cells covering each ovariole. The levels of Ambuffy transcripts increased earlier in the developing ovaries of queens than in workers. Consistent with a protective role against cell death, Ambuffy transcripts were localized in practically all queen ovarioles, but only in few worker ovarioles. The results are indicative of a functional relationship between the expression of evolutionary conserved cell death genes and the morphological events leading to caste-specific ovary differentiation in a social insect.
PMCID: PMC4028266  PMID: 24844304

Results 1-25 (898042)