PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (894894)

Clipboard (0)
None

Related Articles

1.  An executioner caspase regulates autophagy 
Autophagy  2009;5(4):530-533.
The relationships between autophagy and cell death are complex and still not well understood. To advance our understanding of the molecular connections between autophagy and apoptosis, we performed an RNAi-based screen of Drosophila melanogaster apoptosis-related genes for their ability to enhance or suppress starvation-induced autophagy. We discovered that six apoptosis-related genes, Dcp-1, hid, Bruce, buffy, debcl and p53 as well as Ras/ Raf/MAPK signaling pathway components play a role in autophagy regulation in Drosophila cultured cells. Our study also provides the first in vivo evidence that the effector caspase Dcp-1 and IAP protein Bruce regulate both autophagy and starvation-induced cell death at two nutrient status checkpoints, germarium and mid-oogenesis, in the Drosophila ovary. Analysis of degenerating mid-stage egg chambers in DmAtg1 and DmAtg7 mutants reveal a reduction in TUNEL staining though DNA condensation appears unaffected. Based on these and previous findings, we propose here a putative molecular pathway that might regulate the sensitivity threshold of apoptotic and autophagic responses. We also discuss multiple interpretations of the Atg mutant egg chamber TUNEL phenotype that are consistent with a possible role for autophagy in either suppressing or enhancing the efficiency of cell degradation and/or promoting cell clearance associated with the death process.
PMCID: PMC3135627  PMID: 19242106 CAMSID: cams1682
autophagy; apoptosis; caspase; Dcp-1; Bruce
2.  TIF-IA-Dependent Regulation of Ribosome Synthesis in Drosophila Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth 
PLoS Genetics  2014;10(10):e1004750.
The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.
Author Summary
All animals need adequate nutrition to grow and develop. Studies in tissue culture and model organisms have identified the TOR kinase signaling pathway as a key nutrient-dependent regulator of growth. Under nutrient rich conditions, TOR kinase is active and stimulates metabolic processes that drive growth. Under nutrient poor conditions, TOR is inhibited and animals alter their metabolism to maintain homeostasis and survival. Here we use Drosophila larvae to identify a role for ribosome synthesis—a key metabolic process—in mediating nutrient and TOR effects on body growth. In particular, we show that ribosome synthesis specifically in larval muscle is necessary to maintain organismal growth. We find that inhibition of muscle ribosome synthesis leads to reduced systemic insulin-like growth factor signaling via two endocrine responses—decreased expression of brain derived Drosophila insulin-like peptides (dILPs) and increased expression of Imp-L2, an inhibitor of insulin signaling. As a result of these effects, body growth is reduced and larval development is delayed. These findings suggest that control of ribosome synthesis, and hence protein synthesis, in specific tissues can exert control on overall body growth.
doi:10.1371/journal.pgen.1004750
PMCID: PMC4214618  PMID: 25356674
3.  Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome 
First systematic analysis of the evolutionary conserved InR/TOR pathway interaction proteome in Drosophila.Quantitative mass spectrometry revealed that 22% of identified protein interactions are regulated by the growth hormone insulin affecting membrane proximal as well as intracellular signaling complexes.Systematic RNA interference linked a significant fraction of network components to the control of dTOR kinase activity.Combined biochemical and genetic data suggest dTTT, a dTOR-containing complex required for cell growth control by dTORC1 and dTORC2 in vivo.
Cellular growth is a fundamental process that requires constant adaptations to changing environmental conditions, like growth factor and nutrient availability, energy levels and more. Over the years, the insulin receptor/target of rapamycin pathway (InR/TOR) emerged as a key signaling system for the control of metazoan cell growth. Genetic screens carried out in the fruit fly Drosophila melanogaster identified key InR/TOR pathway components and their relationships. Phenotypes such as altered cell growth are likely to emerge from perturbed dynamic networks containing InR/TOR pathway components, which stably or transiently interact with other cellular proteins to form complexes and networks thereof. Systematic studies on the topology and dynamics of protein interaction networks become therefore highly relevant to gain systems level understanding of deregulated cell growth. Despite much progress in genetic analysis only few systematic protein interaction studies have been reported for Drosophila, which in most cases lack quantitative information representing the dynamic nature of such networks. Here, we present the first quantitative affinity purification mass spectrometry (AP–MS/MS) analysis on the evolutionary conserved InR/TOR signaling network in Drosophila. Systematic RNAi-based functional analysis of identified network components revealed key components linked to the regulation of the central effector kinase dTOR. This includes also dTTT, a novel dTOR-containing complex required for the control of dTORC1 and dTORC2 in vivo.
For systematic AP–MS analysis, we generated Drosophila Kc167 cell lines inducibly expressing affinity-tagged bait proteins previously linked to InR/TOR signaling. Bait expressing Kc167 cell lines were harvested before and after insulin stimulation for subsequent affinity purification. Following LC–MS/MS analysis and probabilistic data filtering using SAINT (Choi et al, 2010), we generated a quantitative network model from 97 high confidence protein–protein interactions and 58 network components (Figure 2). The presented network displayed a high degree of orthologous interactions conserved also in human cells and identified a number of novel molecular interactions with InR/TOR signaling components for future hypothesis driven analysis.
To measure insulin-induced changes within the InR/TOR interaction proteome, we applied a recently introduced label-free quantitative MS approach (Rinner et al, 2007). The obtained quantitative data suggest that 22% of all interactions in the network are regulated by insulin. Major changes could be observed within the membrane proximal InR/chico/PI3K signaling complexes, and also in 14-3-3 protein containing signaling complexes and dTORC1, a complex that contains besides dTOR all major orthologous proteins found also in human mTORC1 including the two dTORC1 substrates d4E-BP (Thor) and S6 Kinase (S6K). Insulin triggered both, dissociation and association of dTORC1 proteins. Among the proteins that showed enhanced binding to dTORC1 upon insulin stimulation we found Unkempt, a RING-finger protein with a proposed role in ubiquitin-mediated protein degradation (Lores et al, 2010). Besides dTORC1 our systematic AP–MS analysis also revealed the presence of dTORC2, the second major TOR complex in Drosophila. dTORC2 contains the Drosophila orthologous of human mTORC2 proteins, but in contrast to dTORC1 was not affected upon insulin stimulation. Interestingly, we also found a specific set of proteins that were not linked to the canonical TOR complexes TORC1 and TORC2 in dTOR purifications. These include LqfR (liquid facets related), Pontin, Reptin, Spaghetti and the gene product of CG16908. We found the same set of proteins when we used CG16908 as a bait, suggesting complex formation among the identified proteins. None of the dTORC1/2 components besides dTOR was identified in CG16908 purifications, indicating that these proteins form dTOR complexes distinct from dTORC1 and dTORC2. Based on known interaction information from other species and data obtained from this study we refer to this complex as dTTT (Drosophila TOR, TELO2, TTI1) (Horejsi et al, 2010; [18]Hurov et al, 2010; [20]Kaizuka et al, 2010). A directed quantitative MS analysis of dTOR complex components suggests that dTORC1 is the most abundant dTOR complex we identified in Kc167 cells.
We next studied the potential roles of the identified network components for controlling the activity of the dInR/TOR pathway using systematic RNAi depletion and quantitative western blotting to measure the changes in abundance of phosphorylated substrates of dTORC1 (Thor/d4E-BP, dS6K) and dTORC2 (dPKB) in RNAi-treated cells (Figure 5). Overall, we could identify 16 proteins (out of 58) whose depletion caused an at least 50% increase or decrease in the levels of phosphorylated d4E-BP, S6K and/or PKB compared with control GFP RNAi. Besides established pathway components, we found several novel regulators within the dInR/TOR interaction network. For example, RNAi against the novel insulin-regulated dTORC1 component Unkempt resulted in enhanced phosphorylation of the dTORC1 substrate d4E-BP, which suggests a negative role for Unkempt on dTORC1 activity. In contrast, depletion of CG16908 and LqfR caused hypo-phosphorylation of all dTOR substrates similar to dTOR itself, suggesting a positive role for the dTTT complex on dTOR activity. Subsequently, we tested whether dTTT components also plays a role in dTOR-mediated cell growth in vivo. Depletion of both dTTT components, CG16908 and LqfR, in the Drosophila eye resulted in a substantial decrease in eye size. Likewise, FLP-FRT-mediated mitotic recombination resulted in CG16908 and LqfR mutant clones with a similar reduced growth phenotype as observed in dTOR mutant clones. Hence, the combined biochemical and genetic analysis revealed dTTT as a dTOR-containing complex required for the activity of both dTORC1 and dTORC2 and thus plays a critical role in controlling cell growth.
Taken together, these results illustrate how a systematic quantitative AP–MS approach when combined with systematic functional analysis in Drosophila can reveal novel insights into the dynamic organization of regulatory networks for cell growth control in metazoans.
Using quantitative mass spectrometry, this study reports how insulin affects the modularity of the interaction proteome of the Drosophila InR/TOR pathway, an evolutionary conserved signaling system for the control of metazoan cell growth. Systematic functional analysis linked a significant number of identified network components to the control of dTOR activity and revealed dTTT, a dTOR complex required for in vivo cell growth control by dTORC1 and dTORC2.
Genetic analysis in Drosophila melanogaster has been widely used to identify a system of genes that control cell growth in response to insulin and nutrients. Many of these genes encode components of the insulin receptor/target of rapamycin (InR/TOR) pathway. However, the biochemical context of this regulatory system is still poorly characterized in Drosophila. Here, we present the first quantitative study that systematically characterizes the modularity and hormone sensitivity of the interaction proteome underlying growth control by the dInR/TOR pathway. Applying quantitative affinity purification and mass spectrometry, we identified 97 high confidence protein interactions among 58 network components. In all, 22% of the detected interactions were regulated by insulin affecting membrane proximal as well as intracellular signaling complexes. Systematic functional analysis linked a subset of network components to the control of dTORC1 and dTORC2 activity. Furthermore, our data suggest the presence of three distinct dTOR kinase complexes, including the evolutionary conserved dTTT complex (Drosophila TOR, TELO2, TTI1). Subsequent genetic studies in flies suggest a role for dTTT in controlling cell growth via a dTORC1- and dTORC2-dependent mechanism.
doi:10.1038/msb.2011.79
PMCID: PMC3261712  PMID: 22068330
cell growth; InR/TOR pathway; interaction proteome; quantitative mass spectrometry; signaling
4.  An investigation of nutrient-dependent mRNA translation in Drosophila larvae 
Biology Open  2014;3(11):1020-1031.
ABSTRACT
The larval period of the Drosophila life cycle is characterized by immense growth. In nutrient rich conditions, larvae increase in mass approximately two hundred-fold in five days. However, upon nutrient deprivation, growth is arrested. The prevailing view is that dietary amino acids drive this larval growth by activating the conserved insulin/PI3 kinase and Target of rapamycin (TOR) pathways and promoting anabolic metabolism. One key anabolic process is protein synthesis. However, few studies have attempted to measure mRNA translation during larval development or examine the signaling requirements for nutrient-dependent regulation. Our work addresses this issue. Using polysome analyses, we observed that starvation rapidly (within thirty minutes) decreased larval mRNA translation, with a maximal decrease at 6–18 hours. By analyzing individual genes, we observed that nutrient-deprivation led to a general reduction in mRNA translation, regardless of any starvation-mediated changes (increase or decrease) in total transcript levels. Although sugars and amino acids are key regulators of translation in animal cells and are the major macronutrients in the larval diet, we found that they alone were not sufficient to maintain mRNA translation in larvae. The insulin/PI3 kinase and TOR pathways are widely proposed as the main link between nutrients and mRNA translation in animal cells. However, we found that genetic activation of PI3K and TOR signaling, or regulation of two effectors – 4EBP and S6K – could not prevent the starvation-mediated translation inhibition. Similarly, we showed that the nutrient stress-activated eIF2α kinases, GCN2 and PERK, were not required for starvation-induced inhibition of translation in larvae. These findings indicate that nutrient control of mRNA translation in larvae is more complex than simply amino acid activation of insulin and TOR signaling.
doi:10.1242/bio.20149407
PMCID: PMC4232759  PMID: 25305039
Drosophila; TOR; Growth control; Insulin; mRNA translation; Nutrition
5.  Gbb/BMP signaling is required to maintain energy homeostasis in Drosophila 
Developmental biology  2009;337(2):375-385.
The coordination of animal growth and development requires adequate nutrients. During times of insufficient food, developmental progression is slowed and stored energy is utilized to ensure that cell and tissue survival are maintained. Here, we report our finding that the Gbb/BMP signaling pathway known to play an important role in many developmental processes in both vertebrates and invertebrates, is critical in the Drosophila larval fat body for regulating energy homeostasis. Animals with mutations in the Drosophila BMP-5,7 orthologue, glass bottom boat (gbb), or in its signaling components, display phenotypes similar to nutrient-deprived and Tor mutant larvae. These phenotypes include a developmental delay with reduced overall growth, a transparent appearance, and altered total lipid, glucose and trehalose levels. We find that Gbb/BMP signaling is required in the larval fat body for maintaining proper metabolism, yet interestingly, following nutrient deprivation larvae in turn show a loss of BMP signaling in fat body cells indicating that Gbb/BMP signaling is a central player in homeostasis. Finally, despite strong phenotypic similarities between nutrient-compromised animals and gbb mutants, distinct differences are observed in the expression of a group of starvation responsive genes. Overall, our results implicate Gbb/BMP signaling as a new pathway critical for positive regulation of nutrient storage and energy homeostasis during development.
doi:10.1016/j.ydbio.2009.11.011
PMCID: PMC2838617  PMID: 19914231
gbb; BMP signaling; fat body; Drosophila larvae; energy homeostasis; nutrient status; TOR
6.  grim promotes programmed cell death of Drosophila microchaete glial cells 
Mechanisms of development  2010;127(9-12):407-417.
The Inhibitor of apoptosis (IAP) antagonists Reaper (Rpr), Grim and Hid are central regulators of developmental apoptosis in Drosophila. Ectopic expression of each is sufficient to trigger apoptosis, and hid and rpr have been shown to be important for programmed cell death (PCD). To investigate the role for grim in PCD, a grim null mutant was generated. grim was not a key proapoptotic gene for embryonic PCD, confirming that grim cooperates with rpr and hid in embryogenesis. In contrast, PCD of glial cells in the microchaete lineage required grim, identifying a death process dependent upon endogenous grim. Grim associates with mitochondria and has been shown to activate a mitochondrial death pathway distinct from IAP antagonization; therefore, the Drosophila bcl-2 genes buffy and debcl were investigated for genetic interaction with grim. Loss of buffy led to microchaete glial cell survival and suppressed death in the eye induced by ectopic Grim. This is the first example of a developmental PCD process influenced by buffy, and places buffy in a proapoptotic role. PCD of microchaete glial cells represents an exceptional opportunity to study the mitochondrial proapoptotic process induced by Grim.
doi:10.1016/j.mod.2010.06.001
PMCID: PMC2956798  PMID: 20558283
Drosophila melanogaster; Microchaete bristle; Buffy; Apoptosis; Bcl-2
7.  A Buoyancy-Based Screen of Drosophila Larvae for Fat-Storage Mutants Reveals a Role for Sir2 in Coupling Fat Storage to Nutrient Availability 
PLoS Genetics  2010;6(11):e1001206.
Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified 66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2 mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation irrespective of the sugar content of the diet.
Author Summary
Obesity is a major problem in affluent societies. In addition to dietary intake, there are clearly genetic factors that make some people more likely to become obese. At present, we have a poor understanding of what the genetic differences are that predispose some individuals to obesity. In order to discover genes that regulate the amount of stored fat, we have conducted a study using larvae of the fruit fly Drosophila and shown that 66 different genes, when mutated, cause these larvae to store more fat. For the majority of these genes, very similar genes exist in humans. We have also shown that the Sir2 gene has a role in protecting these larvae from storing excessive amounts of fat and that it does so by regulating the synthesis and breakdown of fat in individual cells of a tissue where fat is stored. Finally, we demonstrate a role for Sir2 in changing metabolism when certain types of nutrients (amino acids) are lacking in the diet.
doi:10.1371/journal.pgen.1001206
PMCID: PMC2978688  PMID: 21085633
8.  The Aspergillus nidulans ATM Kinase Regulates Mitochondrial Function, Glucose Uptake and the Carbon Starvation Response 
G3: Genes|Genomes|Genetics  2013;4(1):49-62.
Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic stress, AtmA appears to perform a role in the regulation of TOR signaling, involving the retrograde and SnfA pathways. Thus, AtmA may represent a link between mitochondrial function and cell cycle or growth, possibly through the influence of the TOR and XprG function.
doi:10.1534/g3.113.008607
PMCID: PMC3887539  PMID: 24192833
ATM kinase; glucose starvation; cell death; autophagy
9.  ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy 
Cell Research  2012;22(7):1181-1198.
In response to nutrient stress, cells start an autophagy program that can lead to adaptation or death. The mechanisms underlying the signaling from starvation to the initiation of autophagy are not fully understood. In the current study we show that the absence or inactivation of PARP-1 strongly delays starvation-induced autophagy. We have found that DNA damage is an early event of starvation-induced autophagy as measured by γ-H2AX accumulation and comet assay, with PARP-1 knockout cells displaying a reduction in both parameters. During starvation, ROS-induced DNA damage activates PARP-1, leading to ATP depletion (an early event after nutrient deprivation). The absence of PARP-1 blunted AMPK activation and prevented the complete loss of mTOR activity, leading to a delay in autophagy. PARP-1 depletion favors apoptosis in starved cells, suggesting a pro-survival role of autophagy and PARP-1 activation after nutrient deprivation. In vivo results show that neonates of PARP-1 mutant mice subjected to acute starvation, also display deficient liver autophagy, implying a physiological role for PARP-1 in starvation-induced autophagy. Thus, the PARP signaling pathway is a key regulator of the initial steps of autophagy commitment following starvation.
doi:10.1038/cr.2012.70
PMCID: PMC3391023  PMID: 22525338
starvation; autophagy; DNA damage; PARP-1; mTOR; AMPK
10.  Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis 
Cell Death and Differentiation  2010;18(6):915-924.
Autophagy, an evolutionarily conserved lysosome-mediated degradation, promotes cell survival under starvation and is controlled by insulin/target of rapamycin (TOR) signaling. In Drosophila, nutrient depletion induces autophagy in the fat body. Interestingly, nutrient availability and insulin/TOR signaling also influence the size and structure of Drosophila ovaries, however, the role of nutrient signaling and autophagy during this process remains to be elucidated. Here, we show that starvation induces autophagy in germline cells (GCs) and in follicle cells (FCs) in Drosophila ovaries. This process is mediated by the ATG machinery and involves the upregulation of Atg genes. We further demonstrate that insulin/TOR signaling controls autophagy in FCs and GCs. The analysis of chimeric females reveals that autophagy in FCs, but not in GCs, is required for egg development. Strikingly, when animals lack Atg gene function in both cell types, ovaries develop normally, suggesting that the incompatibility between autophagy-competent GCs and autophagy-deficient FCs leads to defective egg development. As egg morphogenesis depends on a tightly linked signaling between FCs and GCs, we propose a model in which autophagy is required for the communication between these two cell types. Our data establish an important function for autophagy during oogenesis and contributes to the understanding of the role of autophagy in animal development.
doi:10.1038/cdd.2010.157
PMCID: PMC3131947  PMID: 21151027
autophagy; Drosophila; oogenesis; starvation; insulin/TOR
11.  Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila 
Autophagy  2012;8(7):1124-1135.
Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.
doi:10.4161/auto.20069
PMCID: PMC3429548  PMID: 22562043
antimicrobial peptides; Atg8; autophagy; Drosophila; fat body; glycogen; GSK-3B; microarray; Rack1; starvation
12.  Nutritional control of gene expression in Drosophila larvae via TOR, Myc and a novel cis-regulatory element 
BMC Cell Biology  2010;11:7.
Background
Nutrient availability is a key determinant of eukaryotic cell growth. In unicellular organisms many signaling and transcriptional networks link nutrient availability to the expression of metabolic genes required for growth. However, less is known about the corresponding mechanisms that operate in metazoans. We used gene expression profiling to explore this issue in developing Drosophila larvae.
Results
We found that starvation for dietary amino acids (AA's) leads to dynamic changes in transcript levels of many metabolic genes. The conserved insulin/PI3K and TOR signaling pathways mediate nutrition-dependent growth in Drosophila and other animals. We found that many AA starvation-responsive transcripts were also altered in TOR mutants. In contrast, although PI3K overexpression induced robust changes in the expression of many metabolic genes, these changes showed limited overlap with the AA starvation expression profile. We did however identify a strong overlap between genes regulated by the transcription factor, Myc, and AA starvation-responsive genes, particularly those involved in ribosome biogenesis, protein synthesis and mitochondrial function. The consensus Myc DNA binding site is enriched in promoters of these AA starvation genes, and we found that Myc overexpression could bypass dietary AA to induce expression of these genes. We also identified another sequence motif (Motif 1) enriched in the promoters of AA starvation-responsive genes. We showed that Motif 1 was both necessary and sufficient to mediate transcriptional responses to dietary AA in larvae.
Conclusions
Our data suggest that many of the transcriptional effects of amino acids are mediated via signaling through the TOR pathway in Drosophila larvae. We also find that these transcriptional effects are mediated through at least two mechanisms: via the transcription factor Myc, and via the Motif 1 cis-regulatory element. These studies begin to elucidate a nutrient-responsive signaling network that controls metabolic gene transcription in Drosophila.
doi:10.1186/1471-2121-11-7
PMCID: PMC2827378  PMID: 20089194
13.  Mechanisms of Life Span Extension by Rapamycin in the Fruit Fly Drosophila melanogaster 
Cell Metabolism  2010;11(1):35-46.
Summary
The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically downregulated, increases life span in evolutionarily diverse organisms including mammals. The central component of this pathway, TOR kinase, is the target of the inhibitory drug rapamycin, a highly specific and well-described drug approved for human use. We show here that feeding rapamycin to adult Drosophila produces the life span extension seen in some TOR mutants. Increase in life span by rapamycin was associated with increased resistance to both starvation and paraquat. Analysis of the underlying mechanisms revealed that rapamycin increased longevity specifically through the TORC1 branch of the TOR pathway, through alterations to both autophagy and translation. Rapamycin could increase life span of weak insulin/Igf signaling (IIS) pathway mutants and of flies with life span maximized by dietary restriction, indicating additional mechanisms.
Highlights
► Rapamycin, a drug that inhibits TOR pathway, improves longevity in Drosophila ► Rapamycin longevity effects are mediated through the TOR pathway ► Life span extension by rapamycin is through translation changes and autophagy ► Rapamycin extends life span beyond dietary restriction and mild IIS mutations
doi:10.1016/j.cmet.2009.11.010
PMCID: PMC2824086  PMID: 20074526
HUMDISEASE; PROTEINS
14.  Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis 
The Journal of Cell Biology  2008;182(6):1127-1139.
A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death–related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes—death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53—as well as Ras–Raf–mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo.
doi:10.1083/jcb.200712091
PMCID: PMC2542474  PMID: 18794330
15.  Role of TOR signaling in aging and related biological processes in Drosophila melanogaster 
Experimental gerontology  2010;46(5):382-390.
Extensive studies in model organisms in the last few decades have revealed that aging is subject to profound genetic influence. The conserved nutrient sensing TOR (Target Of Rapamycin) pathway is emerging as a key regulator of lifespan and healthspan in various species from yeast to mammals. The TOR signaling pathway plays a critical role in determining how an eukaryotic cell or a cellular system co-ordinates its growth, development and aging in response to constant changes in its surrounding environment? TOR integrates signals originating from changes in growth factors, nutrient availability, energy status and various physiological stresses. Each of these inputs is specialized to sense particular signal(s), and conveys it to the TOR complex which in turn relays the signal to downstream outputs to appropriately respond to the environmental changes. These outputs include mRNA translation, autophagy, transcription, metabolism, cell survival, proliferation and growth amongst a number of other cellular processes, some of which influence organismal lifespan. Here we review the contribution of the model organism Drosophila in the understanding of TOR signaling and the various biological processes it modulates that may impact on aging. Drosophila was the first organism where the nutrient dependent effects of the TOR pathway on lifespan were first uncovered. We also discuss how the nutrient-sensing TOR pathway appears to be critically important for mediating the longevity effects of dietary restriction (DR), a potent environmental method of lifespan extension by nutrient limitation. Identifying the molecular mechanisms that modulate lifespan downstream of TOR is being intensely investigated and there is hope that these are likely to serve as a potential targets for amelioration of age–related diseases and enhance healthful lifespan extension in humans.
doi:10.1016/j.exger.2010.11.036
PMCID: PMC3058120  PMID: 21130151
Dietary restriction; aging; caloric restriction; nutrients; lifespan; TOR; rapamycin; Drosophila
16.  JNK1-Mediated Phosphorylation of Bcl-2 Regulates Starvation-Induced Autophagy 
Molecular cell  2008;30(6):678-688.
SUMMARY
Starvation induces autophagy to preserve cellular homeostasis in virtually all eukaryotic organisms. However, the mechanisms by which starvation induces autophagy are not completely understood. In mammalian cells, the anti-apoptotic protein, Bcl-2, binds to Beclin 1 during non-starvation conditions, and inhibits its autophagy function. Here we show that starvation induces phosphorylation of cellular Bcl-2 at residues T69, S70, and S87 of the non-structured loop, Bcl-2 dissociation from Beclin 1, and autophagy activation. In contrast, viral Bcl-2, which lacks the phosphorylation site-containing non-structured loop, fails to dissociate from Beclin 1 during starvation. Furthermore, the stress-activated signaling molecule, c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, mediates starvation-induced Bcl-2 phosphorylation, Bcl-2 dissociation from Beclin 1, and autophagy activation. Together, our findings demonstrate that JNK1-mediated multi-site phosphorylation of Bcl-2 stimulates starvation-induced autophagy by disrupting the Bcl-2/Beclin 1 complex. These findings define a mechanism that cells use to regulate autophagic activity in response to nutrient status.
doi:10.1016/j.molcel.2008.06.001
PMCID: PMC2478643  PMID: 18570871
17.  ULK1, Mammalian Target of Rapamycin, and Mitochondria: Linking Nutrient Availability and Autophagy 
Antioxidants & Redox Signaling  2011;14(10):1953-1958.
Abstract
A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed. Antioxid. Redox Signal. 14, 1953–1958.
doi:10.1089/ars.2010.3809
PMCID: PMC3078489  PMID: 21235397
18.  A novel sphingolipid-TORC1 pathway critically promotes postembryonic development in Caenorhabditis elegans 
eLife  2013;2:e00429.
Regulation of animal development in response to nutritional cues is an intensely studied problem related to disease and aging. While extensive studies indicated roles of the Target of Rapamycin (TOR) in sensing certain nutrients for controlling growth and metabolism, the roles of fatty acids and lipids in TOR-involved nutrient/food responses are obscure. Caenorhabditis elegans halts postembryonic growth and development shortly after hatching in response to monomethyl branched-chain fatty acid (mmBCFA) deficiency. Here, we report that an mmBCFA-derived sphingolipid, d17iso-glucosylceramide, is a critical metabolite in regulating growth and development. Further analysis indicated that this lipid function is mediated by TORC1 and antagonized by the NPRL-2/3 complex in the intestine. Strikingly, the essential lipid function is bypassed by activating TORC1 or inhibiting NPRL-2/3. Our findings uncover a novel lipid-TORC1 signaling pathway that coordinates nutrient and metabolic status with growth and development, advancing our understanding of the physiological roles of mmBCFAs, ceramides, and TOR.
DOI: http://dx.doi.org/10.7554/eLife.00429.001
eLife digest
Animals require nutrients, including carbohydrates, lipids, and amino acids, for development and growth, and to maintain the normal functioning of cells. However, in most natural environments, the availability of food tends to fluctuate. Some animals have therefore acquired the ability to dramatically reduce their metabolic activity, and thus their energy and nutrient needs to survive fasting conditions.
Caenorhabditis elegans is a transparent nematode worm that is used extensively as a model organism. When C. elegans larvae hatch in a food-free environment, they enter a quiescent state in which they suspend growth and cell division to conserve energy. However, the mechanisms that underlie this ability are not fully understood.
Here, Zhu et al. reveal that a type of lipid called a sphingolipid is required for C. elegans larvae to begin postembryonic development. When this lipid is absent in the environment and not synthesized internally, the larvae remain in a state of arrested development, which can be overcome by resupplying the lipid. Zhu et al. show that the lipid acts through a signaling pathway involving an enzyme complex called TORC1 and that the effect of the lipid can be blocked by another protein complex called NPRL-2/3. TORC1 is well known for its role in sensing amino acids and growth factors, but this is the first time that it has been shown to be involved in detecting lipids. Strikingly, Zhu et al. also show that, in the absence of the lipid, postembryonic growth and development can be initiated by activating TORC1 or inhibiting NPRL-2/3.
The work of Zhu et al. thus reveals a novel regulatory function of a specific fatty acid and sphingolipid variant that is used by C. elegans to coordinate its growth and development with its metabolic status or the availability of nutrients. Since all components of the pathway are conserved in mammals, the results could help to improve our understanding of how caloric restriction influences human health and aging.
DOI: http://dx.doi.org/10.7554/eLife.00429.002
doi:10.7554/eLife.00429
PMCID: PMC3660743  PMID: 23705068
branched-chain fatty acid; growth arrest; nutrient sensing; NPRL; glucosylceramide; target of rapamycin; C. elegans
19.  The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila 
The Journal of Cell Biology  2008;181(4):655-666.
Degradation of cytoplasmic components by autophagy requires the class III phosphatidylinositol 3 (PI(3))–kinase Vps34, but the mechanisms by which this kinase and its lipid product PI(3) phosphate (PI(3)P) promote autophagy are unclear. In mammalian cells, Vps34, with the proautophagic tumor suppressors Beclin1/Atg6, Bif-1, and UVRAG, forms a multiprotein complex that initiates autophagosome formation. Distinct Vps34 complexes also regulate endocytic processes that are critical for late-stage autophagosome-lysosome fusion. In contrast, Vps34 may also transduce activating nutrient signals to mammalian target of rapamycin (TOR), a negative regulator of autophagy. To determine potential in vivo functions of Vps34, we generated mutations in the single Drosophila melanogaster Vps34 orthologue, causing cell-autonomous disruption of autophagosome/autolysosome formation in larval fat body cells. Endocytosis is also disrupted in Vps34−/− animals, but we demonstrate that this does not account for their autophagy defect. Unexpectedly, TOR signaling is unaffected in Vps34 mutants, indicating that Vps34 does not act upstream of TOR in this system. Instead, we show that TOR/Atg1 signaling regulates the starvation-induced recruitment of PI(3)P to nascent autophagosomes. Our results suggest that Vps34 is regulated by TOR-dependent nutrient signals directly at sites of autophagosome formation.
doi:10.1083/jcb.200712051
PMCID: PMC2386105  PMID: 18474623
20.  Evaluation of platelet function during extended storage in additive solution, prepared in a new container that allows manual buffy-coat platelet pooling and leucoreduction in the same system 
Blood Transfusion  2012;10(4):480-489.
Background
A novel and practical storage container designed for manual buffy-coat pooling and leucodepletion was evaluated to assess its filtration performance and to analyse the quality of stored leucoreduced buffy-coat-derived platelet pools.
Materials and methods.
To analyse the Grifols Leucored® Transfer PL system, blood was collected from random donors into standard triple bag systems, and fractionated using standard procedures to obtain buffy-coats. Ten leucodepleted platelet pools were prepared each from five units of buffy-coats in additive solution. Concentrates were stored for 10 days at 22 °C on an end-over-end agitator. On days 0, 5, 7, and 10 of storage, samples were tested using standard in vitro platelet parameters.
Results
The use of this novel system for volume reduction and leucodepletion of buffy-coats resuspended in additive solution led to platelet pools that met the European requirements. pH was maintained well, declining from an initial value of 7.11±0.04 to 6.88±0.08 after 10 days. Parameters of cell lysis, response to a hypotonic stimulus and aggregation induced by agonists (arachidonic acid, ristocetin, collagen or thrombin receptor activating peptide) were also well-preserved. During storage, the quality profile of the platelet pools remained very similar to that previously reported in platelet concentrates in terms of metabolism, platelet activation (CD62, CD63, sCD62), expression of glycoproteins Ib and IIb/IIIa, capacity of glycoprotein IIb/IIIa to become activated upon ADP stimulation, and release of biological response modifiers (sCD40L and RANTES).
Discussion.
This new system allows the preparation of leucodepleted buffy-coat platelet pools in additive solution with good preservation of platelet function. The logistics of the procedure are relatively simple and it results in good-quality components, which may reduce costs and ease the process of buffy-coat pooling and leucocyte reduction in transfusion services.
doi:10.2450/2012.0112-11
PMCID: PMC3496218  PMID: 22682335
buffy-coat; platelet; pools; storage; leucodepletion
21.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 
Nature cell biology  2011;13(2):132-141.
Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.
doi:10.1038/ncb2152
PMCID: PMC3987946  PMID: 21258367
22.  Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death 
Current biology : CB  2007;17(1):1-11.
Background
To survive starvation and other forms of stress, eukaryotic cells undergo a lysosomal process of cytoplasmic degradation known as autophagy. Autophagy has been implicated in a number of cellular and developmental processes, including cell growth control and programmed cell death. However, direct evidence of a causal role for autophagy in these processes is lacking, due in part to the pleiotropic effects of signaling molecules such as TOR that regulate autophagy. Here, we circumvent this difficulty by directly manipulating autophagy rates in Drosophila through the autophagy-specific protein kinase Atg1.
Results
We find that overexpression of Atg1 is sufficient to induce high levels of autophagy, the first such demonstration among wild type Atg proteins. In contrast to findings in yeast, induction of autophagy by Atg1 is dependent on its kinase activity. We find that cells with high levels of Atg1-induced autophagy are rapidly eliminated, demonstrating that autophagy is capable of inducing cell death. However, this cell death is caspase dependent and displays DNA fragmentation, suggesting that autophagy represents an alternative induction of apoptosis, rather than a distinct form of cell death. In addition, we demonstrate that Atg1-induced autophagy strongly inhibits cell growth, and that Atg1 mutant cells have a relative growth advantage under conditions of reduced TOR signaling. Finally, we show that Atg1 expression results in negative feedback on the activity of TOR itself.
Conclusions
Our results reveal a central role for Atg1 in mounting a coordinated autophagic response, and demonstrate that autophagy has the capacity to induce cell death. Furthermore, this work identifies autophagy as a critical mechanism by which inhibition of TOR signaling leads to reduced cell growth.
doi:10.1016/j.cub.2006.10.053
PMCID: PMC1865528  PMID: 17208179
autophagy; cell growth; programmed cell death; Target of Rapamycin (TOR); Drosophila
23.  Loss of the TOR Kinase Tor2 Mimics Nitrogen Starvation and Activates the Sexual Development Pathway in Fission Yeast▿ †  
Molecular and Cellular Biology  2007;27(8):3154-3164.
Fission yeast has two TOR (target of rapamycin) kinases, namely Tor1 and Tor2. Tor1 is required for survival under stressed conditions, proper G1 arrest, and sexual development. In contrast, Tor2 is essential for growth. To analyze the functions of Tor2, we constructed two temperature-sensitive tor2 mutants. Interestingly, at the restrictive temperature, these mutants mimicked nitrogen starvation by arresting the cell cycle in G1 phase and initiating sexual development. Microarray analysis indicated that expression of nitrogen starvation-responsive genes was induced extensively when Tor2 function was suppressed, suggesting that Tor2 normally mediates a signal from the nitrogen source. As with mammalian and budding yeast TOR, we find that fission yeast TOR also forms multiprotein complexes analogous to TORC1 and TORC2. The raptor homologue, Mip1, likely forms a complex predominantly with Tor2, producing TORC1. The rictor/Avo3 homologue, Ste20, and the Avo1 homologue, Sin1, appear to form TORC2 mainly with Tor1 but may also bind Tor2. The Lst8 homologue, Wat1, binds to both Tor1 and Tor2. Our analysis shows, with respect to promotion of G1 arrest and sexual development, that the loss of Tor1 (TORC2) and the loss of Tor2 (TORC1) exhibit opposite effects. This highlights an intriguing functional relationship among TOR kinase complexes in the fission yeast Schizosaccharomyces pombe.
doi:10.1128/MCB.01039-06
PMCID: PMC1899950  PMID: 17261596
24.  Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy 
Cardiovascular Research  2011;93(2):320-329.
Aims
Insulin-like growth factor 1 (IGF-1) is known to exert cardioprotective actions. However, it remains unknown if autophagy, a major adaptive response to nutritional stress, contributes to IGF-1-mediated cardioprotection.
Methods and results
We subjected cultured neonatal rat cardiomyocytes, as well as live mice, to nutritional stress and assessed cell death and autophagic rates. Nutritional stress induced by serum/glucose deprivation strongly induced autophagy and cell death, and both responses were inhibited by IGF-1. The Akt/mammalian target of rapamycin (mTOR) pathway mediated the effects of IGF-1 upon autophagy. Importantly, starvation also decreased intracellular ATP levels and oxygen consumption leading to AMP-activated protein kinase (AMPK) activation; IGF-1 increased mitochondrial Ca2+ uptake and mitochondrial respiration in nutrient-starved cells. IGF-1 also rescued ATP levels, reduced AMPK phosphorylation and increased p70S6K phosphorylation, which indicates that in addition to Akt/mTOR, IGF-1 inhibits autophagy by the AMPK/mTOR axis. In mice harbouring a liver-specific igf1 deletion, which dramatically reduces IGF-1 plasma levels, AMPK activity and autophagy were increased, and significant heart weight loss was observed in comparison with wild-type starved animals, revealing the importance of IGF-1 in maintaining cardiac adaptability to nutritional insults in vivo.
Conclusion
Our data support the cardioprotective actions of IGF-1, which, by rescuing the mitochondrial metabolism and the energetic state of cells, reduces cell death and controls the potentially harmful autophagic response to nutritional challenges. IGF-1, therefore, may prove beneficial to mitigate damage induced by excessive nutrient-related stress, including ischaemic disease in multiple tissues.
doi:10.1093/cvr/cvr321
PMCID: PMC3286200  PMID: 22135164
IGF-1; Macroautophagy; Heart; ATP; Akt; mTOR
25.  PP2A Phosphatase Activity Is Required for Stress and Tor Kinase Regulation of Yeast Stress Response Factor Msn2p 
Eukaryotic Cell  2004;3(5):1261-1271.
In response to stress and nutrient starvation, the Saccharomyces cerevisiae transcription factor Msn2p accumulates in the nucleus and activates expression of a broad array of genes. Here, we analyze the role of the Tor (target of rapamycin) signaling pathway in mediating these responses. Inactivation of the Tor pathway component Tap42p using tap42(Ts) alleles causes a sustained nuclear localization similar to that after the addition of the Tor kinase inhibitor rapamycin. Effects of Tap42p inactivation and rapamycin addition could be suppressed by deletion of TIP41, which encodes a Tap42p-interacting protein. These results support the notion that rapamycin affects Msn2p by inactivating Tap42p function. Tap42p interacts with the catalytic subunit of PP2A (protein phosphatase 2A) and PP2A-like phosphatases. Deletion of either the catalytic or regulatory subunit that forms the PP2A phosphatase complex prevents nuclear accumulation of Msn2p in the tap42(Ts) strain and in wild-type strains treated with rapamycin. These results suggest that Tap42p is an inhibitor of PP2A phosphatase, which in turn inhibits nuclear export of Msn2p. Interestingly, PP2A function is also required for nuclear accumulation of Msn2p in response to stresses, such as heat and osmotic shock, as well as nitrogen (but not glucose) starvation. Thus, PP2A and the Tor kinase pathway transduce stress and nitrogen starvation signals to Msn2p. Finally, Msn2p localization is unaffected by conditional loss of 14-3-3 protein function, ruling out the possibility that 14-3-3 proteins act as a scaffold to sequester Msn2p in the cytoplasm.
doi:10.1128/EC.3.5.1261-1271.2004
PMCID: PMC522594  PMID: 15470255

Results 1-25 (894894)