Search tips
Search criteria

Results 1-25 (1415102)

Clipboard (0)

Related Articles

1.  CCl4 induced genotoxicity and DNA oxidative damages in rats: hepatoprotective effect of Sonchus arvensis 
Sonchus arvesis is traditionally reported in various human ailments including hepatotoxicity in Pakistan. Presently we designed to assess the protective effects of methanolic extract of Sonchus arvesis against carbon tetrachloride induced genotoxicity and DNA oxidative damages in hepatic tissues of experimental rats.
36 male Sprague–Dawley rats were randomly divided into 6 groups to evaluate the hepatoprotective effects of Sonchus arvensis against CCl4 induced genotoxicity, DNA damages and antioxidant depletion. Rats of normal control group were given free access of food and water add labitum. Group II rats received 3 ml/kg of CCl4 (30% in olive oil v/v) via the intraperitoneal route twice a week for four weeks. Group III and IV received 1 ml of 100 mg/kg b.w. and 200 mg/kg b.w. SME via gavage after 48 h of CCl4 treatment whereas group V was given 1 ml of silymarin (100 mg/kg b.w.) after 48 h of CCl4 treatment. Group VI only received 200 mg/kg b.w. SME. Protective effects of SME were checked by measuring serum markers, activities of antioxidant enzymes, genotoxicity and DNA dmages.
Results of the present study showed that treatment of SME reversed the activities of serum marker enzymes and cholesterol profile as depleted with CCl4 treatment. Activities of endogenous antioxidant enzymes of liver tissue homogenate; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSHpx), glutathione-S-transferase (GST) and glutathione reductase (GSR) were reduced with administration of CCl4, which were returned to the control level with SME treatment. CCl4-induced hepatic cirrhosis decreased hepatic glutathione (GSH) and increased lipid peroxidative products (TBARS), were normalized by treatment with SME. Moreover, administration of CCl4 caused genotoxicity and DNA fragmentation which were significantly restored towards the normal level with SME.
These results reveal that treatment of SME may be useful in the prevention of hepatic stress.
PMCID: PMC4251693  PMID: 25412679
Sonchus arvensis; Carbon tetrachloride; Liver cirrhosis; Lipids peroxidation
2.  Hepatoprotection with a chloroform extract of Launaea procumbens against CCl4-induced injuries in rats 
Launaea procumbens (Asteraceae) is used as a folk medicine to treat hepatic disorders in Pakistan. The effect of a chloroform extract of Launaea procumbens (LPCE) was evaluated against carbon-tetrachloride (CCl4)-induced liver damage in rats.
To evaluate the hepatoprotective effects of LPCE, 36 male Sprague–Dawley rats were equally divided into six groups. Animals of group 1 (control) had free access to food and water. Group II received 3 ml/kg of CCl4 (30% in olive oil v/v) via the intraperitoneal route twice a week for 4 weeks. Group III received 1 ml of silymarin via gavage (100 mg/kg b.w.) after 48 h of CCl4 treatment whereas groups IV and V were given 1 ml of LPCE (100 and 200 mg/kg b.w., respectively) after 48 h of CCl4 treatment. Group VI received 1 ml of LPCE (200 mg/kg b.w.) twice a week for 4 weeks. The activities of the antioxidant enzymes catalase, peroxidase (POD), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), glutathione reductase (GSR), glutathione (GSH) and lipid peroxidation (thiobarbituric acid reactive substances (TBARS)) were measured in liver homogenates. DNA damage, argyrophilic nucleolar organizer regions (AgNORs) counts and histopathology were studied in liver samples. Serum was analyzed for various biochemical parameters. Phytochemical composition in LPCE was determined through high-performance liquid chromatography (HPLC).
LPCE inhibited lipid peroxidation, and reduced the activities of aspartate transaminase, alanine transaminase, alkaline phosphatase, and lactate dehydrogenase in serum induced by CCl4. GSH contents were increased as were the activities of antioxidant enzymes (catalase, SOD, GST, GSR, GSH-Px) when altered due to CCl4 hepatotoxicity. Similarly, absolute liver weight, relative liver weight and the number of hepatic lesions were reduced with co-administration of LPCE. Phyochemical analyses of LPCE indicated that it contained catechin, kaempferol, rutin, hyperoside and myricetin.
These results indicated that Launaea procumbens efficiently protected against the hepatotoxicity induced by CCl4 in rats, possibly through the antioxidant effects of flavonoids present in LPCE.
PMCID: PMC3492157  PMID: 22862950
Launaea procumbens; Hepatic injuries; Flavonoids; Antioxidant enzymes; Carbon tetrachloride
3.  (Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione protects rats from carbon tetrachloride-induced liver injury and fibrogenesis 
AIM: To evaluate the hepatoprotective roles of (Z)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione (SKLB010) against carbon tetrachloride (CCl4)-induced acute and chronic liver injury and its underlying mechanisms of action.
METHODS: In the first experiment, rats were weighed and randomly divided into 5 groups (five rats in each group) to assess the protective effect of SKLB010 on acute liver injury. For induction of acute injury, rats were administered a single intraperitoneal injection of 2 mL/kg of 50% (v/v) CCl4 dissolved in olive oil (1:1). Group 1 was untreated and served as the control group; group 2 received CCl4 for induction of liver injury and served as the model group. In groups 3, 4 and 5, rats receiving CCl4 were also treated with SKLB010 at doses of 25, 50 and 100 mg/kg, respectively. Blood samples were collected at 6, 12 and 24 h after CCl4 intoxication to determine the serum activity of alanine amino transferase. Tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) were determined using enzyme-linked immunosorbent assay. At 24 h after CCl4 injection,liver fibrogenesis was evaluated by hematoxylin-eosin (HE) staining and immunohistochemical analyses. Cytokine transcript levels of TNF-α, IL-1β and inducible nitric oxide synthase in the liver tissues of rats were measured using a reverse transcriptase reverse transcription-polymerase chain reaction technique. In the second experiment, rats were randomly divided into 2 groups (15 rats in each group), and liver injury in the CCl4-administered groups was induced by a single intraperitoneal injection of 2 mL/kg of 50% (v/v) CCl4 dissolved in olive oil (1:1). The SKLB010-treated groups received oral 100 mg/kg SKLB010 before CCl4 administration. Five rats in each group were sacrificed at 2 h, 6 h, 12 h after CCl4 intoxication and small fortions of livers were rapidly frozen for extraction of total RNA, hepatic proteins and glutathione (GSH) assays. In the hepatic fibrosis model group, rats were randomly divided into 2 groups (5 rats each group). Rats were injected intraperitoneally with a mixture of CCl4 (1 mL/kg body weight) and olive oil [1:1 (v/v)] twice a week for 4 wk. In the SKLB010-treated groups, SKLB010 (100 mg/kg) was given once daily by oral gavage for 4 wk after CCl4 administration. The rats were sacrificed one week after the last injection and the livers from each group were harvested and fixed in 10% formalin for HE and immunohistochemical staining.
RESULTS: In this rat acute liver injury model, oral administration of SKLB010 blocked liver tissue injury by down-regulating the serum levels of alanine aminotransferase, suppressing inflammatory infiltration to liver tissue, and improving the histological architecture of liver. SKLB010 inhibited the activation of NF-κB by suppressing the degradation of IκB, and prevented the secretion of pro-inflammatory mediators such as tumor necrosis factor-α, interleukin-1β, and the reactive free radical, nitric oxide, at the transcriptional and translational levels. In this chronic liver fibrosis model, treatment with 100 mg/kg per day SKLB010 attenuated the degree of hepatic fibrosis and area of collagen, and blocked the accumulation of smooth-muscle actin-expressed cells.
CONCLUSION: These results suggest that SKLB010 is a potent therapeutic agent for the treatment of CCl4-induced hepatic injury.
PMCID: PMC3281222  PMID: 22363136
Anti-inflammatory effects; Anti-oxidative effects; (Z)-5-(4-methoxybenzylidene) thiazolidine-2; 4-dione (SKLB010) against carbon tetrachloride; Fibrogenesis; Hepatitis; Nuclear factor-κB; SKLB010
4.  Protective effect of ethyl acetate fraction of Rhododendron arboreum flowers against carbon tetrachloride-induced hepatotoxicity in experimental models 
Indian Journal of Pharmacology  2011;43(3):291-295.
To evaluate the hepatoprotective potential of ethyl acetate fraction of Rhododendron arboreum (Family: Ericaceae) in Wistar rats against carbon tetrachloride (CCl4)-induced liver damage in preventive and curative models.
Materials and Methods:
Fraction at a dose of 100, 200, and 400 mg/kg was administered orally once daily for 14 days in CCl4-treated groups (II, III, IV, V and VI). The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), γ-glutamyltransferase (γ -GT), and bilirubin were estimated along with activities of glutathione S-transferase (GST), glutathione reductase, hepatic malondialdehyde formation, and glutathione content.
Result and Discussion:
The substantially elevated serum enzymatic activities of SGOT, SGPT, SALP, γ-GT, and bilirubin due to CCl4 treatment were restored toward normal in a dose-dependent manner. Meanwhile, the decreased activities of GST and glutathione reductase were also restored toward normal. In addition, ethyl acetate fraction also significantly prevented the elevation of hepatic malondialdehyde formation and depletion of reduced glutathione content in the liver of CCl4-intoxicated rats in a dose-dependent manner. Silymarin used as standard reference also exhibited significant hepatoprotective activity on post-treatment against CCl4-induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethyl acetate fraction has a potent hepatoprotective action against CCl4-induced hepatic damage in rats.
PMCID: PMC3113381  PMID: 21713093
Hepatotoxicity; phytochemicals; Rhododendron arboreum (Ericaceae) carbon tetrachloride
5.  CCl4-induced hepatotoxicity: protective effect of rutin on p53, CYP2E1 and the antioxidative status in rat 
Rutin is a polyphenolic natural flavonoid which possesses antioxidant and anticancer activity. In the present study the hepatoprotective effect of rutin was evaluated against carbon tetrachloride (CCl4)-induced liver injuries in rats.
Methods and materials
24 Sprague–Dawley male rats were equally divided into 4 groups for the assessment of hepatoprotective potential of rutin. Rats of group I (control) received only vehicles; 1 ml/kg bw of saline (0.85%) and olive oil (3 ml/kg) and had free access to food and water. Rats of group II, III and IV were treated with CCl4 (30% in olive oil, 3 ml/kg bw) via the intraperitoneal route twice a week for four weeks. The rutin at the doses of 50 and 70 mg/kg were administered intragastrically after 48 h of CCl4 treatment to group III and IV, respectively. Protective effect of rutin on serum enzyme level, lipid profile, activities of antioxidant enzymes and molecular markers were calculated in CCl4-induced hepatotoxicity in rat.
Rutin showed significant protection with the depletion of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transpeptidase (γ-GT) in serum as was raised by the induction of CCl4. Concentration of serum triglycerides, total cholesterol and low density lipoproteins was increased while high-density lipoprotein was decreased with rutin in a dose dependent manner. Activity level of endogenous liver antioxidant enzymes; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSHpx), glutathione-S-transferase (GST) and glutathione reductase (GSR) and glutathione (GSH) contents were increased while lipid peroxidation (TBARS) was decreased dose dependently with rutin. Moreover, increase in DNA fragmentation and oxo8dG damages while decrease in p53 and CYP 2E1 expression induced with CCl4 was restored with the treatment of rutin.
From these results, it is suggested that rutin possesses hepatoprotective properties.
PMCID: PMC3519517  PMID: 23043521
Hepatotoxicity; Rutin; p53; CYP 2E1; Antioxidant enzymes
6.  Hepatoprotective effects of methanol extract of Carissa opaca leaves on CCl4-induced damage in rat 
Carissa opaca (Apocynaceae) leaves possess antioxidant activity and hepatoprotective effects, and so may provide a possible therapeutic alternative in hepatic disorders. The effect produced by methanolic extract of Carissa opaca leaves (MCL) was investigated on CCl4-induced liver damages in rat.
30 rats were divided into five groups of six animals of each, having free access to food and water ad libitum. Group I (control) was given olive oil and DMSO, while group II, III and IV were injected intraperitoneally with CCl4 (0.5 ml/kg) as a 20% (v/v) solution in olive oil twice a week for 8 weeks. Animals of group II received only CCl4. Rats of group III were given MCL intragastrically at a dose of 200 mg/kg bw while that of group IV received silymarin at a dose of 50 mg/kg bw twice a week for 8 weeks. However, animals of group V received MCL only at a dose of 200 mg/kg bw twice a week for 8 weeks. The activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and γ-glutamyltransferase (γ-GT) were determined in serum. Catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GSH-Px), glutathione reductase (GSR) and quinone reductase (QR) activity was measured in liver homogenates. Lipid peroxidation (thiobarbituric acid reactive substances; TBARS), glutathione (GSH) and hydrogen peroxide (H2O2) concentration was also assessed in liver homogenates. Phytochemicals in MCL were determined through qualitative and high performance liquid chromatography (HPLC) analysis.
Hepatotoxicity induced with CCl4 was evidenced by significant increase in lipid peroxidation (TBARS) and H2O2 level, serum activities of AST, ALT, ALP, LDH and γ-GT. Level of GSH determined in liver was significantly reduced, as were the activities of antioxidant enzymes; CAT, POD, SOD, GSH-Px, GSR, GST and QR. On cirrhotic animals treated with CCl4, histological studies showed centrilobular necrosis and infiltration of lymphocytes. MCL (200 mg/kg bw) and silymarin (50 mg/kg bw) co-treatment prevented all the changes observed with CCl4-treated rats. The phytochemical analysis of MCL indicated the presence of flavonoids, tannins, alkaloids, phlobatannins, terpenoids, coumarins, anthraquinones, and cardiac glycosides. Isoquercetin, hyperoside, vitexin, myricetin and kaempherol was determined in MCL.
These results indicate that MCL has a significant protective effect against CCl4 induced hepatotoxicity in rat, which may be due to its antioxidant and membrane stabilizing properties.
PMCID: PMC3141600  PMID: 21699742
Carissa opaca; Carbon tetrachloride; Hepatotoxicity; Oxidative stress; Phytochemical analysis
7.  Hispolon Protects against Acute Liver Damage in the Rat by Inhibiting Lipid Peroxidation, Proinflammatory Cytokine, and Oxidative Stress and Downregulating the Expressions of iNOS, COX-2, and MMP-9 
The hepatoprotective potential of hispolon against carbon tetrachloride (CCl4)-induced liver damage was evaluated in preventive models in rats. Male rats were intraperitoneally treated with hispolon or silymarin once daily for 7 consecutive days. One hour after the final hispolon or silymarin treatment, the rats were injected with CCl4. Administration with hispolon or silymarin significantly decreased the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in serum and increased the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione (GSH) content and decreased the malondialdehyde (MDA) content in liver compared with CCl4-treated group. Liver histopathology also showed that hispolon reduced the incidence of liver lesions induced by CCl4. In addition, hispolon decreased nitric oxide (NO) production and tumor necrosis factor (TNF-α), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) activation in CCl4-treated rats. We also examined the involvement of matrix metalloproteinase (MMP)-9 in the development of CCl4-induced liver damage in rats. Hispolon inhibited the expression of MMP-9 protein, indicating that MMP-9 played an important role in the development of CCl4-induced rat liver damage. Therefore, we speculate that hispolon protects rats from liver damage through their prophylactic redox balancing ability and anti-inflammation capacity.
PMCID: PMC3195309  PMID: 22013489
8.  Melatonin ameliorates experimental hepatic fibrosis induced by carbon tetrachloride in rats 
AIM: To investigate the protective effects of melatonin on carbon tetrachloride (CCl4)-induced hepatic fibrosis in experimental rats.
METHODS: All rats were randomly divided into normal control group, model control group treated with CCl4 for 12 wk, CCl4 + NAC group treated with CCl4 + NAC (100 mg/kg, i.p.) for 12 wk, CCl4 + MEL-1 group treated with CCl4 + melatonin (2.5 mg/kg) for 12 wk, CCl4 + MEL-2 group treated with CCl4 + melatonin (5.0 mg/kg) for 12 wk, and CCl4 + MEL-3 group treated with CCl4 + melatonin (10 mg/kg). Rats in the treatment groups were injected subcutaneously with sterile CCl4 (3 mL/kg, body weight) in a ratio of 2:3 with olive oil twice a week. Rats in normal control group received hypodermic injection of olive oil at the same dose and frequency as those in treatment groups. At the end of experiment, rats in each group were anesthetized and sacrificed. Hematoxylin and eosin (HE) staining and Van Gieson staining were used to examine changes in liver pathology. Serum activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and protein concentration were measured with routine laboratory methods using an autoanalyzer. Hydroxyproline (HYP) content in liver and malondialdehyde (MDA) and glutathione peroxidase (GPx) levels in liver homogenates were assayed by spectrophotometry. Serum hyaluronic acid (HA), laminin (LN), and procollagen III N-terminal peptide (PIIINP) were determined by radioimmunoassay.
RESULTS: Pathologic grading showed that the fibrogenesis was much less severe in CCl4 + MEL3 group than in model control group (u = 2.172, P < 0.05), indicating that melatonin (10 mg/kg) can significantly ameliorate CCl4-induced hepatic fibrotic changes. The serum levels of ALT and AST were markedly lower in CCl4 + MEL treatment groups (5, 10 mg/kg) than in model control group (ALT: 286.23 ± 121.91 U/L vs 201.15 ± 101.16 U/L and 178.67 ± 103.14 U/L, P = 0.028, P = 0.007; AST: 431.00 ± 166.35 U/L vs 321.23 ± 162.48 U/L and 292.42 ± 126.23 U/L, P = 0.043, P = 0.013). Similarly, the serum laminin (LN) and hyaluronic acid (HA) levels and hydroxyproline (HYP) contents in liver were significantly lower in CCl4 + MEL-3 group (10 mg/kg) than in model control group (LN: 45.89 ± 11.71 μg/L vs 55.26 ± 12.30 μg/L, P = 0.012; HA: 135.71 ± 76.03 μg/L vs 201.10 ± 68.46 μg/L, P = 0.020; HYP: 0.42 ± 0.08 mg/g tissue vs 0.51 ± 0.07 mg/g tissue, P = 0.012). Moreover, treatment with melatonin (5, 10 mg/kg) significantly reduced the MDA content and increased the GPx activity in liver homogenates compared with model control group (MDA: 7.89 ± 1.49 noml/mg prot vs 6.29 ± 1.42 noml/mg prot and 6.25 ± 2.27 noml/mg prot, respectively, P = 0.015, P = 0.015; GPx: 49.13 ± 8.72 U/mg prot vs 57.38 ± 7.65 U/mg prot and 61.39 ± 13.15 U/mg prot, respectively, P = 0.035, P = 0.003).
CONCLUSION: Melatonin can ameliorate CCl4 -induced hepatic fibrosis in rats. The protective effect of melatonin on hepatic fibrosis may be related to its antioxidant activities.
PMCID: PMC2669124  PMID: 19322917
Melatonin; Hepatic fibrosis; Oxidative stress; Hyaluronic acid; Laminin; Malondialdehyde; Glutathione peroxidase
9.  OA02.07. Experimental evaluation of “yakritashula vinashini vatika” w.s.r. to hepatoprotective potential in albino rats. 
Ancient Science of Life  2013;32(Suppl 2):S13.
According to the latest W.H.O. data published in April, 2011 death due to liver disease in India has reached 2.3% of total deaths. This stands 27th in the world. Till date, there is no effective medicine for treating hepatic disorders in modern medicine, so efforts have been made to search for effective Hepatoprotective drug. The purpose of the present study was to evaluate the Hepatoprotective activity of Yakritashula Vinashini Vatika (YSV) against Carbon tetrachloride induced Hepatotoxicity in rats.
The toxicant CCl4 was used to induce Hepatotoxicity at a dose of (1 ml/kg b. w.) as 1:1 mixture with olive oil. YSV was administered in the dose of (200 and 400 mg/kg b .w. /day) orally for 28 days. And the results were compared with known standard drug Silymarin (100mg/kg b. w.). The Hepatoprotective effect of YSV was evaluated by the assessment of biochemical parameters such as SGOT, SGPT ALP, Total Billirubin, Serum Protein, Lipid profile.
The toxic effect of CCl4 was controlled in the animals treated with the YSV by way of restoration of level of liver function biochemistry similar to that of the standard drug Silymarin. Among the YSV treated groups significant Hepatoprotective activity was observed. In the histopathological studies, the liver sections of rats treated with YSV 200 & 400 mg/kg respectively, a normal hepatic architecture was seen with only moderate accumulation of fatty lobules and mild degree of cell necrosis, clearly indicating the protection offered by drug.
From the results it can be concluded that YSV possesses Hepatoprotective effect against CCl4 induced liver damage in rats.
PMCID: PMC4147481
10.  Hepatoprotective activity of Symplocos racemosa bark on carbon tetrachloride-induced hepatic damage in rats 
The present study aims to evaluate the hepatoprotective activity of ethanol extract of Symplocos racemosa (EESR) bark on carbon tetrachloride (CCl4)-induced hepatic damage in rats. CCl4 with olive oil (1 : 1) (0.2 ml/kg, i.p.) was administered for ten days to induce hepatotoxicity. EESR (200 and 400 mg/kg, p.o.) and silymarin (100 mg/kg p.o.) were administered concomitantly for fourteen days. The degree of hepatoprotection was measured using serum transaminases (AST and ALT), alkaline phosphatase, bilirubin, albumin, and total protein levels. Metabolic function of the liver was evaluated by thiopentone-induced sleeping time. Antioxidant activity was assessed by measuring liver malondialdehyde, glutathione, catalase, and superoxide dismutase levels. Histopathological changes of liver sample were also observed. Significant hepatotoxicity was induced by CCl4 in experimental animals. EESR treatment showed significant dose-dependent restoration of serum enzymes, bilirubin, albumin, total proteins, and antioxidant levels. Improvements in hepatoprotection and morphological and histopathological changes were also observed in the EESR treated rats. It was therefore concluded that EESR bark is an effective hepatoprotective agent in CCl4-induced hepatic damage, and has potential clinical applications for treatment of liver diseases.
PMCID: PMC3193685  PMID: 22022156
Carbon tetrachloride; hepatoprotective; Symplocos racemosa; silymarin
11.  Hepatoprotective Effects of Silybum marianum (Silymarin) and Glycyrrhiza glabra (Glycyrrhizin) in Combination: A Possible Synergy 
Oxidative stress, lipid peroxidation, and transaminase reactions are some of the mechanisms that can lead to liver dysfunction. A time-dependent study was designed to evaluate the ability of silymarin (SLN) and glycyrrhizin (GLN) in different dosage regimens to lessen oxidative stress in the rats with hepatic injury caused by the hepatotoxin carbon tetrachloride. Wistar male albino rats (n = 60) were randomly assigned to six groups. Group A served as a positive control while groups B, C, D, E, and F received a dose of CCl4 (50% solution of CCl4 in liquid paraffin, 2 mL/kg, intraperitoneally) twice a week to induce hepatic injury. Additionally, the animals received SLN and GLN in different doses for a period of six weeks. CCl4 was found to induce hepatic injury by significantly increasing serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and thiobarbituric acid reactive substances while decreasing total protein and the activities of reduced glutathione, superoxide dismutase, and catalase. Treatment with various doses of SLN and GLN significantly reduced ALT, AST, ALP, and TBARS levels and increased GSH, SOD, and CAT levels. Our findings indicated that SLN and GLN have hepatoprotective effects against oxidative stress of the liver.
PMCID: PMC3984823  PMID: 24795768
12.  Esculetin Ameliorates Carbon Tetrachloride-Mediated Hepatic Apoptosis in Rats 
Esculetin (ESC) is a coumarin that is present in several plants such as Fraxinus rhynchophylla and Artemisia capillaris. Our previous study found that FR ethanol extract (FREtOH) significantly ameliorated rats’ liver function. This study was intended to investigate the protective mechanism of ESC in hepatic apoptosis in rats induced by carbon tetrachloride. Rat hepatic apoptosis was induced by oral administration of CCl4. All rats were administered orally with CCl4 (20%, 0.5 mL/rat) twice a week for 8 weeks. Rats in the ESC groups were treated daily with ESC, and silymarin group were treated daily with silymarin. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the activities of the anti-oxidative enzymes glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase in the liver were measured. In addition, expression of liver apoptosis proteins and anti-apoptotic proteins were detected. ESC (100, 500 mg/kg) significantly reduced the elevated activities of serum ALT and AST caused by CCl4 and significantly increased the activities of catalase, GPx and SOD. Furthermore, ESC (100, 500 mg/kg) significantly decreased the levels of the proapoptotic proteins (t-Bid, Bak and Bad) and significantly increased the levels of the anti-apoptotic proteins (Bcl-2 and Bcl-xL). ESC inhibited the release of cytochrome c from mitochondria. In addition, the levels of activated caspase-9 and activated caspase-3 were significantly decreased in rats treated with ESC than those in rats treated with CCl4 alone. ESC significantly reduced CCl4-induced hepatic apoptosis in rats.
PMCID: PMC3131608  PMID: 21747724
esculetin; carbon tetrachloride; apoptosis
13.  Emodin protects rat liver from CCl4-induced fibrogenesis via inhibition of hepatic stellate cells activation 
AIM: To investigate the role of emodin in protecting the liver against fibrogenesis caused by carbon tetrachloride (CCl4) in rats and to further explore the underlying mechanisms.
METHODS: Rat models of experimental hepatic fibrosis were established by injection with CCl4; the treated rats received emodin via oral administration at a dosage of 20 mg/kg twice a week at the same time. Rats injected with olive oil served as a normal group. Histopathological changes were observed by hematoxylin and eosin staining. The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and hepatic hydroxyproline content were assayed by biochemical analyses. The mRNA and protein relevant to hepatic stellate cell (HSC) activation in the liver were assessed using real-time reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, western blotting and enzyme-linked immunosorbent assay.
RESULTS: The degree of hepatic fibrosis increased markedly in the CCl4 group compared to the normal group (P < 0.01), and decreased markedly in the emodin group compared to the CCl4 group according to METAVIR scale (P < 0.01) compared with those in the normal control group (51.02 ± 10.64 IU/L and 132.28 ± 18.14 IU/L). The activities of serum ALT and AST were significantly higher in rats injected with CCl4 (289.25 ± 68.84 IU/L and 423.89 ± 35.67 IU/L, both P < 0.05). The activities of serum ALT and AST were significantly reduced by administration of emodin (176.34 ± 47.29 IU/L and 226.1 ± 44.52 IU/L, both P < 0.05). Compared with the normal controls (54.53 ± 13.46 mg/g), hepatic hydroxyproline content was significantly higher in rats injected with CCl4 (120.27 ± 28.47 mg/g, P < 0.05). Hepatic hydroxyproline content was significantly reduced in the rats treated with emodin at 20 mg/kg (71.25 ± 17.02 mg/g, P < 0.05). Emodin significantly protected the liver from injury by reducing serum AST and ALT activities and reducing hepatic hydroxyproline content. The mRNA levels of transforming growth factor-β1 (TGF-β1), Smad4 and α-SMA in liver tissues were significantly down-regulated in SD rats that received emodin treatment. Furthermore, significant down-regulation of serum TGF-β1 protein levels and protein expression of Smad4 and α-SMA in liver tissues was also observed in the rats. Emodin inhibited HSC activation by reducing the abundance of TGF-β1 and Smad4.
CONCLUSION: Emodin protects the rat liver from CCl4-induced fibrogenesis by inhibiting HSC activation. Emodin might be a therapeutic antifibrotic agent for the treatment of hepatic fibrosis.
PMCID: PMC2761551  PMID: 19824107
Emodin; Hepatic fibrosis; Transforming growth factor-β1; Smad4; Hepatic stellate cell; α-smooth muscle actin
14.  Hepatoprotective effect of commercial herbal extracts on carbon tetrachloride-induced liver damage in Wistar rats 
Pharmacognosy Research  2013;5(3):150-156.
Various hepatoprotective herbal products from plants are available in Mexico, where up to 85% of patients with liver disease use some form of complementary and alternative medicine. However, only few studies have reported on the biological evaluation of these products.
Using a model of carbon tetrachloride (CCl4)-induced hepatotoxicity in rats, we evaluated the effects of commercial herbal extracts used most commonly in the metropolitan area of Monterrey, Mexico.
Materials and Methods:
The commercial products were identified through surveys in public areas. The effect of these products given with or without CCl4 in rats was evaluated by measuring the serum concentrations of aspartate amino transferase (AST) and alanine amino transferase (ALT), and histopathological analysis. Legalon® was used as the standard drug.
The most commonly used herbal products were Hepatisan® capsules, Boldo capsules, Hepavida® capsules, Boldo infusion, and milk thistle herbal supplement (80% silymarin). None of the products tested was hepatotoxic according to transaminase and histological analyses. AST and ALT activities were significantly lower in the Hepavida+CCl4-treated group as compared with the CCl4-only group. AST and ALT activities in the silymarin, Hepatisan, and Boldo tea groups were similar to those in the CCl4 group. The CCl4 group displayed submassive confluent necrosis and mixed inflammatory infiltration. Both the Hepatisan+CCl4 and Boldo tea+CCl4 groups exhibited ballooning degeneration, inflammatory infiltration, and lytic necrosis. The silymarin+CCl4 group exhibited microvesicular steatosis. The Hepavida+CCl4- and Legalon+CCL4-treated groups had lower percentages of necrotic cells as compared with the CCl4-treated group; this treatment was hepatoprotective against necrosis.
Only Hepavida had a hepatoprotective effect.
PMCID: PMC3719254  PMID: 23900881
Alanine transferase; aspartate transferase; hepatoprotection; liver injury; natural products
15.  Effects of White Radish (Raphanus sativus) Enzyme Extract on Hepatotoxicity 
Toxicological Research  2012;28(3):165-172.
Raphanus sativus (Cruciferaceae), commonly known as radish is widely available throughout the world. From antiquity it has been used in folk medicine as a natural drug against many toxicants. The present study was designed to evaluate the hepatoprotective activity of radish (Raphanus sativus) enzyme extract (REE) in vitro and in vivo test. The IC50 values of REE in human liver derived HepG2 cells was over 5,000 μg/ml in tested maximum concentration. The effect of REE to protect tacrine-induced cytotoxicity in HepG2 cells was evaluated by MTT assay. REE showed their hepatoprotective activities on tacrineinduced cytotoxicity and the EC50 value was 1,250 μg/ml. Silymarin, an antihepatotoxic agent used as a positive control exhibited 59.7% hepatoprotective activitiy at 100 μg/ml. Moreover, we tested the effect of REE on carbon tetrachloride (CCl4)-induced liver toxicity in rats. REE at dose of 50 and 100 mg/kg and silymarin at dose of 50 mg/kg were orally administered to CCl4-treated rats. The results showed that REE and silymarin significantly reduced the elevated levels of serum enzyme markers induced by CCl4. The biochemical data were supported by evaluation with liver histopathology. These findings suggest that REE, can significantly diminish hepatic damage by toxic agent such as tacrine or CCl4.
PMCID: PMC3834419  PMID: 24278606
Raphanus sativus; Radish; Enzyme extract; Tacrine; CCl4; Hepatoprotection
16.  Eleusine indica L. possesses antioxidant activity and precludes carbon tetrachloride (CCl4)-mediated oxidative hepatic damage in rats 
The purpose of this study was to evaluate the ability of aqueous extract of Eleusineindica to protect against carbon tetrachloride (CCl4)-induced hepatic injury in rats.
The antioxidant activity of E. indica was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. The total phenolic content of E. indica was also determined. Biochemical parameters [e.g. alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), glutathione (GSH), catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and quinone reductase] were used to evaluate hepatic damage in animals pretreated with E. indica and intoxicated with CCl4. CCl4-mediated hepatic damage was also evaluated by histopathologically.
E. indica extract was able to reduce the stable DPPH level in a dose-dependent manner. The half maximal inhibitory concentration (IC50) value was 2350 μg/ml. Total phenolic content was found to be 14.9 ± 0.002 mg/g total phenolic expressed as gallic acid equivalent per gram of extract. Groups pretreated with E. indica showed significantly increased activity of antioxidant enzymes compared to the CCl4-intoxicated group (p < 0.05). The increased levels of serum ALT and AST were significantly prevented by E. indica pretreatment (p < 0.05). The extent of MDA formation due to lipid peroxidation was significantly reduced (p < 0.05), and reduced GSH was significantly increased in a dose-dependently manner (p < 0.05) in the E. indica-pretreated groups as compared to the CCl4-intoxicated group. The protective effect of E. indica was further evident through decreased histopathological alterations in the liver.
The results of our study indicate that the hepatoprotective effects of E. indica might be ascribable to its antioxidant and free radical scavenging property.
PMCID: PMC3390565  PMID: 22207570
E. indica; Antioxidant activity; Hepatoprotective effects; Oxidative stress; Carbon tetrachloride
17.  Evaluation of Hepatoprotective Effect of Leaves of Cassia sophera Linn. 
In the present study, the hepatoprotective activity of ethanolic extracts of Cassia sophera Linn. leaves was evaluated against carbon-tetrachloride- (CCl4-) induced hepatic damage in rats. The extracts at doses of 200 and 400 mg/kg were administered orally once daily. The hepatoprotection was assessed in terms of reduction in histological damage, changes in serum enzymes, serum glutamate oxaloacetate transaminase (AST), serum glutamate pyruvate transaminase (ALT), serum alkaline phosphatase (ALP), total bilirubin, and total protein levels. The substantially elevated serum enzymatic levels of AST, ALT, ALP, and total bilirubin were restored towards the normalization significantly by the extracts. The decreased serum total protein level was significantly normalized. Silymarin was used as standard reference and exhibited significant hepatoprotective activity against carbon tetrachloride-induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that Cassia sophera leaves have potent hepatoprotective action against carbon tetrachloride-induced hepatic damage in rats. This study suggests that possible activity may be due to the presence of flavonoids in the extracts.
PMCID: PMC3368335  PMID: 22690244
18.  Red Sea Suberea mollis Sponge Extract Protects against CCl4-Induced Acute Liver Injury in Rats via an Antioxidant Mechanism 
Recent studies have demonstrated that marine sponges and their active constituents exhibited several potential medical applications. This study aimed to evaluate the possible hepatoprotective role as well as the antioxidant effect of the Red Sea Suberea mollis sponge extract (SMSE) on carbon tetrachloride- (CCl4-) induced acute liver injury in rats. In vitro antioxidant activity of SMSE was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay. Rats were orally administered three different concentrations (100, 200, and 400 mg/kg) of SMSE and silymarin (100 mg/kg) along with CCl4 (1 mL/kg, i.p., every 72 hr) for 14 days. Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin were measured. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were also measured. Liver specimens were histopathologically examined. SMSE showed strong scavenging activity against free radicals in DPPH assay. SMSE significantly reduced liver enzyme activities. Moreover, SMSE significantly reduced hepatic MDA formation. In addition, SMSE restored GSH, NO, SOD, GPx, and CAT. The histopathological results confirmed these findings. The results of this study suggested a potent protective effect of the SMSE against CCl4-induced hepatic injury. This may be due to its antioxidant and radical scavenging activity.
PMCID: PMC4157001  PMID: 25214875
19.  Protective Effects of Garlic and Silymarin on NDEA-Induced Rats Hepatotoxicity 
Background ­— The present study was conducted to investigate the chemopreventive effects of garlic extract and silymarin on N-nitrosodiethylamine (NDEA) and carbon tetrachloride (CCl4)-induced hepatotoxicity in male albino rats. Methods and Results — Animals were pretreated with garlic, silymarin or both for one week prior to the injection of NDEA. Then animals received a single injection of NDEA followed by weekly subcutaneous injections of CCl4 for 6 weeks. Oral administration was then continued along with the injection of CCl4 for the duration of the experiment. Serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), hepatic lipid peroxidation (LPO), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione-S-transferase (GST) and glutathione reductase (GSR) were measured. Injection of NDEA induced a significant elevation in serum AST, ALT and ALP. In the liver, NDEA increased oxidative stress through the increase in LPO and decrease in SOD, and GSH-dependent enzymes. Although administration of garlic or silymarin significantly reduced the liver toxicity, combined administration was more effective in preventing the development of hepatotoxicity. Conclusion — These novel findings suggest that silymarin and garlic have a synergistic effect, and could be used as hepatoprotective agents against hepatotoxicity.
PMCID: PMC2737715  PMID: 19742242
Hepatotoxicity; NDEA; Garlic; Silymarin; liver enzymes; oxidative stress; rats.
20.  Preliminary phytochemical, acute oral toxicity and antihepatotoxic study of roots of Paeonia officinalis Linn. 
To carry out a preliminary phytochemical, acute oral toxicity and antihepatotoxic study of the roots of Paeonia officinalis (P. officinalis) L.
Preliminary phytochemical investigation was done as per standard procedures. Acute oral toxicity study was conducted as per OECD 425 guidelines. The antihepatotoxic activity of aqueous extract of root of P. officinalis was evaluated against carbon tetrachloride (CCl4) induced hepatic damage in rats. Aqueous extract of P. officinalis at the dose levels of 100 and 200 mg/kg body weight was administered daily for 14 d in experimental animals. Liver injury was induced chemically, by CCl4 administration (1 mL/kg i.p.). The hepatoprotective activity was assessed using various biochemical parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum alkaline phosphatase (SALP), total bilirubin and total protein (TP) along with histopathological studies.
Phytochemical screening revealed that the roots of P. officinalis contain alkaloids, tannins, saponins, glycosides, carbohydrates, flavonoids, terpenes, steroids and proteins. The aqueous extract did not cause any mortality up to 2 000 mg/kg. In rats that had received the root extract at the dose of 100 and 200 mg/kg, the substantially elevated AST, ALT, SALP, total bilirubin levels were significantly lowered, respectively, in a dose dependent manner, along with CCl4 while TP levels were elevated in these groups. Histopathology revealed regeneration of the livers in extract treated groups while Silymarin treated rats were almost normal.
The aqueous extract of P. officinalis is safe and possesses antihepatotoxic potential.
PMCID: PMC3609391  PMID: 23570019
Paeonia officinalis; Antihepatotoxic; Liver; Peony
21.  Effect of Ribavirin Alone or Combined with Silymarin on Carbon Tetrachloride Induced Hepatic Damage in Rats 
Drug Target Insights  2007;2:19-27.
The effect of the antiviral agent ribavirin given alone or in combination with silymarin on the development of liver injury induced in rats with carbon tetrachloride (CCl4; 2.8 ml/kg followed by 1.4 ml/kg after one week) was studied. Ribavirin at three dose levels (30, 60 or 90 mg/kg), silymarin (25 mg/kg) or combination of ribavirin (60 mg/kg) and silymarin (25 mg/kg) was administered once daily orally for 14 days, starting at time of administration of CCl4. The administration of ribavirin decreased the elevations in serum alanine aminotransferase (ALT) by 78.5, 82.1, 75.1%, aspartate aminotransferase (AST) 47.5, 37.4, 38.8%, and alkaline phosphatase (ALP) by 23.4, 16, 21.6%, respectively and also pre-vented the development of hepatic necrosis caused by CCl4. In comparison, the elevated serum ALT, AST and ALP levels decreased to 43.3%, 46%, and 37.5% of controls, respectively by silymarin. When silymarin was combined with ribavirin, the serum activities of AST and ALP were further decreased, indicating a beneficial additive effect. Morphometric analysis indicated significant reduction in the area of necrosis and fibrosis on ribavirin treatment and this was further reduced after the addition of silymarin. Metabolic pertuberations caused by CCl4 as reflected in a decrease in intracellular protein content in hepatocytes were improved by ribavirin monotherapy and to higher extent by combined silymarin and ribavirin therapy. Proliferating cell nuclear antigen was reduced in nuclei of hepatocytes by ribavirin montherapy or the combination of ribavirin and silymarin compared with CCl4-control group. The study demonstrates that ribavirin treatment in the model of CCl4-induced liver injury results in less liver damage. Results also indicate that the combined application of ribavirin and sily-marin is likely to be a useful additive in reducing liver injury.
PMCID: PMC3155230  PMID: 21901059
Ribavirin; silymarin; carbon tetrachloride; liver injury; rat
22.  Filtrate of fermented mycelia from Antrodia camphorata reduces liver fibrosis induced by carbon tetrachloride in rats 
AIM: To investigate the effects of filtrate of fermented mycelia from Antrodia camphorata (FMAC) on liver fibrosis induced by carbon tetrachloride (CCl4) in rats.
METHODS: Forty Wistar rats were divided randomly into control group and model group. All model rats were given 200 mL/L CCl4 (2 mL/Kg, po) twice a week for 8 wk. Four weeks after CCl4 treatment, thirty model rats were further divided randomly into 3 subgroups: CCl4 and two FMAC subgroups. Rats in CCl4 and 2 FMAC subgroups were treated with FMAC 0, 0.5 and 1.0 g/kg, daily via gastrogavage beginning at the fifth week and the end of the eighth week. Spleen weight, blood synthetic markers (albumin and prothrombin time) and hepatic malondialdehyde (MDA) and hydroxyproline (HP) concentrations were determined. Expression of collagen I, tissue inhibitor of metalloproteinases (TIMP)-1 and transforming growth factor β1 (TGF-β1) mRNA were detected by RT-PCR. Histochemical staining of Masson’s trichrome was performed.
RESULTS: CCl4 caused liver fibrosis, featuring increased prothrombin time, hepatic MDA and HP contents, and spleen weight and decreased plasma albumin level. Compared with CCl4 subgroup, FMAC subgroup (1 g/kg) significantly decreased the prothrombin time (36.7 ± 7.2 and 25.1 ± 10.2 in CCl4 and FMAC groups, respectively, P < 0.05) and increased plasma albumin concentration (22.7 ± 1.0 and 30.7 ± 2.5 in CCl4 and FMAC groups, respectively, P  < 0.05). Spleen weight was significantly lower in rats treated with CCl4 and FMAC (1 g/kg) compared to CCl4 treated rats only (2.7 ± 0.1 and 2.4 ± 0.2 in CCl4 and FMAC groups, respectively, P  < 0.05). The amounts of hepatic MDA and HP in CCl4 ± FAMC (1 g/kg) subgroup were also lower than those in CCl4 subgroup (MDA: 3.9 ± 0.1 and 2.4 ± 0.6 in CCl4 and CCl4 + FMAC groups, respectively, P < 0.01; HP: 1730.7 ± 258.0 and 1311.5 ± 238.8 in CCl4 and CCl4 + FMAC groups, respectively, P <0.01). Histologic examinations showed that CCl4 + FMAC subgroups had thinner or less fibrotic septa than CCl4 group. RT-PCR analysis indicated that FMAC (1 g/kg) reduced mRNA levels of collagen I, TIMP-1 and TGF-β1 (collagen I: 5.63 ± 2.08 and 1.78 ± 0.48 in CCl4 and CCl4 + FMAC groups, respectively, P < 0.01; TIMP-1: 1.70 ± 0.82 and 0.34 ± 0.02 in CCl4 and CCl4 + FMAC groups, respectively, P < 0.01; TGF-β1:38.03 ± 11.9 and 4.26 ± 2.17 in CCl4 and CCl4 + FMAC groups, respectively, P < 0.01) in the CCl4-treated liver.
CONCLUSION: It demonstrates that FMAC can retard the progression of liver fibrosis induced by CCl4 in rats.
PMCID: PMC4088072  PMID: 16688827
Antrodia camphorata; Liver fibrosis; Carbon tetrachloride
23.  Hepatoprotective activity of petroleum ether, diethyl ether, and methanol extract of Scoparia dulcis L. against CCl4-induced acute liver injury in mice 
Indian Journal of Pharmacology  2009;41(3):110-114.
The present study was aimed at assessing the hepatoprotective activity of 1:1:1 petroleum ether, diethyl ether, and methanol (PDM) extract of Scoparia dulcis L. against carbon tetrachloride-induced acute liver injury in mice.
Materials and Methods:
The PDM extract (50, 200, and 800 mg/kg, p.o.) and standard, silymarin (100 mg/kg, p.o) were tested for their antihepatotoxic activity against CCl4-induced acute liver injury in mice. The hepatoprotective activity was evaluated by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total proteins in serum, glycogen, lipid peroxides, superoxide dismutase, and glutathione reductase levels in liver homogenate and by histopathological analysis of the liver tissue. In addition, the extract was also evaluated for its in vitro antioxidant activity using 1, 1-Diphenyl-2-picrylhydrazyl scavenging assay.
The extract at the dose of 800 mg/kg, p.o., significantly prevented CCl4-induced changes in the serum and liver biochemistry (P < 0.05) and changes in liver histopathology. The above results are comparable to standard, silymarin (100 mg/kg, p.o.). In the in vitro 1, 1-diphenyl-2-picrylhydrazyl scavenging assay, the extract showed good free radical scavenging potential (IC 50 38.9 ± 1.0 μg/ml).
The results of the study indicate that the PDM extract of Scoparia dulcis L. possesses potential hepatoprotective activity, which may be attributed to its free radical scavenging potential, due to the terpenoid constituents.
PMCID: PMC2861810  PMID: 20442817
Carbon tetrachloride; hepatoprotective activity; Scoparia dulcis L.
24.  Hepatoprotective activity of Leptadenia reticulata stems against carbon tetrachloride-induced hepatotoxicity in rats 
Indian Journal of Pharmacology  2011;43(3):254-257.
To evaluate the hepatoprotective activity of ethanolic and aqueous extract of stems of Leptadenia reticulata (Retz.) Wight. and Arn. in carbon tetrachloride (CCl4)-induced hepatotoxicity in rats.
Materials and Methods:
The toxicant CCl4 was used to induce hepatotoxicity at a dose of 1.25 ml/kg as 1 : 1 mixture with olive oil. Ethanolic and aqueous extracts of L. reticulata stems were administered in the doses of 250 and 500 mg/kg/day orally for 7 days. Silymarin (50 mg/kg) was used as standard drug. The hepatoprotective effect of these extracts was evaluated by the assessment of biochemical parameters such as serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase, total bilirubin, serum protein, and histopathological studies of the liver.
Treatment of animals with ethanolic and aqueous extracts significantly reduced the liver damage and the symptoms of liver injury by restoration of architecture of liver as indicated by lower levels of serum bilirubin and protein as compared with the normal and silymarin-treated groups. Histology of the liver sections confirmed that the extracts prevented hepatic damage induced by CCl4 showing the presence of normal hepatic cords, absence of necrosis, and fatty infiltration.
The ethanolic and aqueous extracts of stems of L. reticulata showed significant hepatoprotective activity. The ethanolic extract is more potent in hepatoprotection in CCl4-indiced liver injury model as compared with aqueous extract.
PMCID: PMC3113374  PMID: 21713086
Carbon tetrachloride; hepatoprotective activity; Leptadenia reticulata; silymarin
25.  Hepatoprotective effects of Rubus coreanus miquel concentrates on liver injuries induced by carbon tetrachloride in rats 
As well-being foods pursuing healthy life are becoming popular, interest in Rubus coreanus Miquel (RCM) fruit, a type of Korean blackberry, is increasing due to its medicinal actions including protecting the liver, brightening the eyes, and alleviating diabetes. This study was carried out to evaluate the hepatoprotective effects of RCM concentrates on liver injuries induced by carbon tetrachloride (CCl4) in rats. RCM, produced in June ~ July 2008 at Chunbook, Gochang (South Korea), was finely mashed. The seeds were removed and the juices were condensed. Thirty-two Sprague-Dawley rats were divided into four groups according to treatment: normal (eight rats), CCl4, 1% RCM, and 2% RCM. Experimental diets were provided to the experimental animals for 4 weeks. We measure total cholesterol, high density lipoprotein-cholesterol (HDL-C), aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) levels. Part of the livers was isolated for histopathological evaluation, and analyzed for lipid peroxide (TBARS), superoxide dismutase (SOD) and liver proteins. The activities of serum AST, ALT, and ALP were elevated following CCl4 administration. Levels of hepatic TBARS were also significantly increased in the CCl4 groups. However, hepatic TBARS levels and the activities of serum enzymes were markedly reduced by supplementation with the RCM concentrates (P < 0.05). Hepatic SOD activity increased in the RCM concentrates group versus CCl4 groups. Histopathological examination revealed massive necrosis in the centrilobular area and degenerative changes caused by CCl4 were ameliorated by dietary supplementation with RCM concentrates. These results suggest that RCM concentrates have hepatoprotective effects and may improve the symptoms of liver injuries.
PMCID: PMC3944155  PMID: 24611104
Rubus coreanus Miquel; carbon tetrachloride; hepatoprotective effects

Results 1-25 (1415102)