PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (991603)

Clipboard (0)
None

Related Articles

1.  Variable Lipoprotein Genes of Mycoplasma agalactiae Are Activated In Vivo by Promoter Addition via Site-Specific DNA Inversions  
Infection and Immunity  2003;71(7):3821-3830.
Mycoplasma agalactiae, the etiological agent of contagious agalactia of small ruminants, has a family of related genes (avg genes) which encode surface lipoprotein antigens that undergo phase variation. A series of 13 M. agalactiae clonal isolates, obtained from one chronically infected animal over a period of 7 months, were found to undergo major rearrangement events within the avg genomic locus. We show that these rearrangements regulate the phase-variable expression of individual avg genes. Northern blot analysis and reverse transcription-PCR showed that only one avg gene is transcribed, while the other avg genes are transcriptionally silent. Sequence analysis and primer extension experiments with two M. agalactiae clonal isolates showed that a specific 182-bp avg 5′ upstream region (avg-B2) that is present as a single chromosomal copy serves as an active promoter and exhibits a high level of homology with the vsp promoter of the bovine pathogen Mycoplasma bovis. PCR analysis showed that each avg gene is associated with the avg-B2 promoter in a subpopulation of cells that is present in each subclone. Multiple sequence-specific sites for DNA recombination (vis-like), which are presumably recognized by site-specific recombinase, were identified within the conserved avg 5′ upstream regions of all avg genes and were found to be identical to the recombination sites of the M. bovis vsp locus. In addition, a gene encoding a member of the integrase family of tyrosine site-specific recombinases was identified adjacent to the variable avg locus. The molecular genetic basis for avg phase-variable expression appears to be mediated by site-specific DNA inversions occurring in vivo that allow activation of a silent avg gene by promoter addition. A model for the control of avg genes is proposed.
doi:10.1128/IAI.71.7.3821-3830.2003
PMCID: PMC162021  PMID: 12819065
2.  Epitope Mapping of Immunogenic and Adhesive Structures in Repetitive Domains of Mycoplasma bovis Variable Surface Lipoproteins 
Infection and Immunity  2000;68(2):680-687.
The family of variable surface lipoproteins (Vsps) of the bovine pathogen Mycoplasma bovis includes some of the most immunogenic antigens of this microorganism. Vsps were shown to undergo high-frequency phase and size variations and to possess extensive reiterated coding sequences extending from the N-terminal end to the C-terminal end of the Vsp molecule. In the present study, mapping experiments were conducted to detect regions with immunogenicity and/or adhesion sites in repetitive domains of four Vsp antigens of M. bovis, VspA, VspB, VspE, and VspF. In enzyme-linked immunosorbent assay experiments, sera obtained from naturally infected cattle showed antibodies to different repeating peptide units of the Vsps, particularly to units RA1, RA2, RA4.1, RB2.1, RE1, and RF1, all of which were found to contain immunodominant epitopes of three to seven amino acids. Competitive adherence trials revealed that a number of oligopeptides derived from various repeating units of VspA, VspB, VspE, and VspF partially inhibited cytoadhesion of M. bovis PG45 to embryonic bovine lung cells. Consequently, putative adherence sites were identified in the same repeating units (RA1, RA2, RA4.1, RB2.1, RE1, and RF1) and in RF2. The positions and lengths of the antigenic determinants were mostly identical to those of adhesion-mediating sites in all short repeating units, whereas in the considerably longer RF1 unit (84 amino acid residues), there was only one case of identity among four immunogenic epitopes and six adherence sites. The identification of epitopes and adhesive structures in repetitive domains of Vsp molecules is consistent with the highly immunogenic nature observed for several members of the Vsp family and suggests a possible function for these Vsp molecules as complex adherence-mediating regions in pathogenesis.
PMCID: PMC97192  PMID: 10639433
3.  A family of phase- and size-variant membrane surface lipoprotein antigens (Vsps) of Mycoplasma bovis. 
Infection and Immunity  1994;62(11):5075-5084.
A set of strain- and size-variant highly immunogenic membrane surface protein antigens of Mycoplasma bovis, which has been identified by a monoclonal antibody, is shown in this report to make up a family of antigenically and structurally related lipid-modified proteins, designated Vsps (variable surface proteins). By systematic analysis of several isogenic clonal lineages of the type strain PG45, three members of this family have been identified, VspA, VspB, and VspC, each of which was shown to undergo independent high-frequency changes in size as well as noncoordinate phase variation between ON and OFF expression states. The monoclonal antibody-defined epitope common to VspA, VspB, and VspC was accessible on the cell surface in most, but not all, of the clonal populations analyzed and was present on a C-terminal limit tryptic fragment of each Vsp variant that was released from the membrane surface. VspA and VspC were distinguished from VspB by their selective detection with colloidal gold and by their distinctive reaction with a polyclonal antibody against M. bovis D490. VspA, VspB, and VspC were further distinguishable from one another by their characteristic patterns of degradation at carboxypeptidase Y pause sites. While these Vsp-specific structural fingerprints with an irregular periodic spacing were constant for similarly sized variants of a defined Vsp product, they showed distinct differences among variants differing in size. This variability included gain or loss of individual bands within distinct subsets of bands, as well as shifts of the entire banding patterns up- or downwards, indicating that insertions or deletions underlying Vsp size variation can occur at various locations either within the C-terminal domain or within other regions of these proteins. This was similarly confirmed by comparative epitope mapping analysis of tryptic cleavage products generated from different Vsp size variants. The Vsp family of M. bovis described in this study represents a newly discovered system of surface antigenic variation in mycoplasmas displaying features which closely resemble but are also different from the characteristics reported for the Vlp (variable lipoprotein) system of M. hyorhinis. The isogenic lineages established here provide key populations for subsequent analysis of corresponding genes to further elucidate Vsp structure and variation, which may have important relevance for a better understanding of the pathogenicity of this agent.
Images
PMCID: PMC303228  PMID: 7927790
4.  Characterization of a Multigene Family Undergoing High-Frequency DNA Rearrangements and Coding for Abundant Variable Surface Proteins in Mycoplasma agalactiae 
Infection and Immunity  2000;68(8):4539-4548.
A family of abundant surface proteins (Vpmas [variable proteins of Mycoplasma agalactiae]) undergoing phase variation in M. agalactiae has been characterized using monoclonal antibodies and specific polyclonal sera. Two expressed members of 39 kDa (Vpma39) and 34 kDa (Vpma34), which varied in expression between clones of a lineage, shared a common amino-terminal sequence but were immunologically distinct. An amino-terminal oligonucleotide probe identified multiple vpma genes which were clustered within a 14-kb ClaI genomic fragment. Rearrangements were found to have occurred within the vpma locus between clones which correlated with changes in their Vpma phenotype. Two neighboring vpma genes were cloned and sequenced from one M. agalactiae clonal variant expressing Vpma39. The two genes, vpmaX and vpmaY, were orientated divergently and shared highly homologous 5′ untranslated regions, 25-amino-acid (aa) lipoprotein leader sequences, and amino-terminal sequences. The vpmaY gene coded for 346 aa and 84% of the open reading frame, comprised of 1.5 units of a large repeat of 186 aa. Although the sequence for an entire second vpmaY repeat was present, it was prematurely terminated by insertion of two nucleotides. The vpmaX gene encoded 221 aa and possessed 102 aa of the 186-aa repeat of vpmaY. Many of the features in common between the vpma genes were also found to be shared by the vsp genes of M. bovis, which also undergo DNA rearrangements concomitant with phenotypic changes. Since M. bovis is the closest phylogenetic relative to M. agalactiae, the vpma and vsp gene families most probably represent homologous systems.
PMCID: PMC98368  PMID: 10899853
5.  The vsp Locus of Mycoplasma bovis: Gene Organization and Structural Features 
Journal of Bacteriology  1999;181(18):5734-5741.
Major lipoprotein antigens, known as variable membrane surface lipoproteins (Vsps), on the surface of the bovine pathogen Mycoplasma bovis were shown to spontaneously undergo noncoordinate phase variation between ON and OFF expression states. The high rate of Vsp phenotypic switching was also shown to be linked with DNA rearrangements that occur at high frequency in the M. bovis chromosome (I. Lysnyansky, R. Rosengarten, and D. Yogev, J. Bacteriol. 178:5395–5401, 1996). In the present study, 13 single-copy vsp genes organized in a chromosomal cluster were identified and characterized. All vsp genes encode highly conserved N-terminal domains for membrane insertion and lipoprotein processing but divergent mature Vsp proteins. About 80% of each vsp coding region is composed of reiterated coding sequences that create a periodic polypeptide structure. Eighteen distinct repetitive domains of different lengths and amino acid sequences are distributed within the products of the various vsp genes that are subject to size variation due to spontaneous insertions or deletions of these periodic units. Some of these repeats were found to be present in only one Vsp family member, whereas other repeats recurred at variable locations in several Vsps. Each vsp gene is also 5′ linked to a highly homologous upstream region composed of two internal cassettes. The findings that rearrangement events are associated with Vsp phenotypic switching and that multiple regions of high sequence similarity are present upstream of the vsp genes and within the vsp coding regions suggest that modulation of the Vsp antigenic repertoire is determined by recombination processes that occur at a high frequency within the vsp locus of M. bovis.
PMCID: PMC94094  PMID: 10482515
6.  Intrachromosomal Recombination within the vsp Locus of Mycoplasma bovis Generates a Chimeric Variable Surface Lipoprotein Antigen 
Infection and Immunity  2001;69(6):3703-3712.
A family of 13 related but divergent vsp genes was recently found in the chromosome of the bovine pathogen Mycoplasma bovis. The vsp genomic locus was shown to undergo high-frequency rearrangements and to mediate phenotypic switching of variable lipoprotein antigens (Vsps) on the mycoplasma cell surface. Here we report that the vsp gene repertoire is subject to changes. Genetic analysis of M. bovis clonal isolates displaying distinct Vsp phenotypes showed that an intergenic recombination event between two closely related members of the vsp gene family, the formerly expressed vspA gene and the vspO gene, led to the formation of a new chimeric and functional vsp gene, vspC. The 5′ end of the recombination event was identified within the highly conserved vsp-upstream region, while the 3′ end was localized within the first repetitive domain (RA1) present in both vspA and vspO structural genes. As a result, the vspC gene is an embodiment of the following domains: an N-terminus-encoding region linked to the highly conserved vsp-upstream region provided by the vspO gene; and a C-terminus-encoding region and the more distal and divergent vsp-upstream region acquired from the vspA gene. The generation of chimeric genes encoding surface antigens may provide an important element of genetic variation and an additional source of antigenic diversification within the mycoplasma population.
doi:10.1128/IAI.69.6.3703-3712.2001
PMCID: PMC98374  PMID: 11349034
7.  Development of a Sensitive and Specific Enzyme-Linked Immunosorbent Assay Based on Recombinant Antigens for Rapid Detection of Antibodies against Mycoplasma agalactiae in Sheep▿ †  
Clinical and Vaccine Immunology  2007;14(4):420-425.
We developed a new recombinant enzyme-linked immunosorbent assay (rELISA) for serodiagnosis of contagious agalactia (CA), a disease caused by Mycoplasma agalactiae in sheep and goats. The assay is based on two M. agalactiae surface proteins, namely, P80 and P55. Identification of these immunodominant and common antigens was accomplished by examining the antibody response elicited in sheep during experimental infection and comparing it to the protein expression profiles of 75 M. agalactiae field strains. Our rELISA was tested with 343 sera, collected from sheep with a laboratory-confirmed diagnosis of CA (n = 223) and from healthy animals (n = 120). All sera had previously been tested by Western blotting (WB) for reactivity against M. agalactiae. In addition, our rELISA was compared with a commercial routine ELISA based on inactivated antigens (CHEKiT). Among the 223 samples that were WB positive for M. agalactiae, 209 (93.7%) tested positive for rP80-P55 with our ELISA, whereas only 164 (73.8%) tested positive with the CHEKiT ELISA. Among the 120 samples tested that were WB negative for M. agalactiae, 96.7% were confirmed as negative with our rELISA, while only 75.8% were confirmed as negative with the CHEKiT ELISA. A comparison of the results with receiver operating characteristic curves indicated that the differences observed between our rELISA and the CHEKiT ELISA are statistically significant. The use of recombinant peptides instead of inactivated antigens could significantly improve the discrimination of positive and negative animals, bringing significant advantages in controlling the import/export of live animals and helping in eradication of this economically detrimental disease.
doi:10.1128/CVI.00439-06
PMCID: PMC1865618  PMID: 17287317
8.  Phenotypic switching of variable surface lipoproteins in Mycoplasma bovis involves high-frequency chromosomal rearrangements. 
Journal of Bacteriology  1996;178(18):5395-5401.
Mycoplasma bovis, an important pathogen of cattle, was recently shown to possess a family of phase- and size-variable membrane surface lipoprotein antigens (Vsps). These proteins spontaneously undergo noncoordinate phase variation between ON and OFF expression states, generating surface antigenic variation. In the present study, we show that the spontaneously high rate of Vsp phenotypic switching involves DNA rearrangements that occur at high frequency in the M. bovis chromosome. A 1.5-kb HindIII genomic fragment carrying the vspA gene from M. bovis PG45 was cloned and sequenced. The deduced VspA amino acid sequence revealed that 80% of the VspA molecule is composed of reiterated intragenic coding sequences, creating a periodic polypeptide structure. Four distinct internal regions of repetitive sequences in the form of in-tandem blocks extending from the N-terminal to the C-terminal portion of the Vsp product were identified. Southern blot analysis of phenotypically switched isogenic lineages representing ON or OFF phase states of Vsp products suggested that changes in the Vsp expression profile were associated with detectable changes at the DNA level. By using a synthetic oligonucleotide representing a sequence complementary to the repetitive vspA gene region as a probe, we could identify the vspA-bearing restriction fragment undergoing high-frequency reversible rearrangements during oscillating phase transition of vspA. The 1.5-kb HindIII fragment carrying the vspA gene (on state) rearranged and produced a 2.3-kb HindIII fragment (OFF state) and vice versa. Two newly discovered vsp genes (vspE and vspF) were localized on two HindIII fragments flanking the vsp gene upstream and downstream. Southern blot hybridization with vspE- and vspF-specific oligonucleotides as probes against genomic DNA of VspA phase variants showed that the organization and size of the fragments adjacent to the vspA gene remained unchanged during VspA ON-OFF switching. The mechanisms regulating the vsp genes are yet unknown; our findings suggest that a recombinative mechanism possibly involving DNA inversions, DNA insertion, or mobile genetic elements may play a role in generating the observed high-frequency DNA rearrangements.
PMCID: PMC178356  PMID: 8808927
9.  Development of a Recombinant Antigen for Antibody-Based Diagnosis of Mycoplasma bovis Infection in Cattle 
Mycoplasma bovis induces various clinical manifestations in cattle, such as mastitis, arthritis, and pneumonia. We have evaluated the immunoreactivity of three variable surface proteins (Vsps) of M. bovis, namely VspA, VspB, and VspC, with sera collected from herds with mycoplasmosis or from cattle experimentally infected with M. bovis. Western blot analysis revealed that the Vsps are the predominant antigens recognized by the host humoral response during M. bovis infection. The immunoreactivity of VspA, VspB, and VspC with host antibodies was independent of the clinical manifestations, the geographical origin of the M. bovis isolates, the mode of infection, and the animal’s history. Moreover, the results showed that Vsp-specific host antibodies can be detected about 10 days after experimental infection and for up to several months. The full-length or truncated versions of the VspA product were overexpressed in Escherichia coli as fusion proteins (FP-VspA). Recombinant products showed strong immunoreactivity with the Vsp-specific monoclonal antibodies 1A1 and 1E5, with the corresponding epitopes localized at the VspA N-terminal and C-terminal ends, respectively. Anti-M. bovis sera of cattle naturally or experimentally infected also strongly recognized the full-length FP-VspA. The seroreactivity of sera collected from cattle between 6 and 10 days after experimental infection was weaker with truncated versions of VspA lacking the 1E5 epitope than with the full-length VspA or the truncated versions lacking the 1A1 epitope. Overall, the results indicate that the Vsps, despite their inter- and intraclonal variability, may be applied as target antigens in serodiagnostic assays for epidemiological studies.
PMCID: PMC95789  PMID: 10548577
10.  Characterization and Analysis of a Stable Serotype-Associated Membrane Protein (P30) of Mycoplasma agalactiae 
Journal of Clinical Microbiology  2001;39(8):2814-2822.
The gene for a 30-kDa immunodominant antigen, P30, of Mycoplasma agalactiae was cloned from type strain PG2 and expressed in Escherichia coli. P30 is encoded on a monocistronic operon determined by two −10 boxes and a possible −35 region constituting the potential promoter, and a transcription termination site. The gene for the 266-amino-acid protein is preceded by a polypurine-rich region designed as the consensus sequence for a ribosome-binding site. Analysis of the amino acid sequence of P30 revealed the presence of a recognition site for a prokaryotic signal peptidase II at amino acid (aa) 24, indicating that P30 is a transmembrane protein. Moreover, Triton X-114 phase partitioning of M. agalactiae PG2 total antigen revealed that P30 is strongly hydrophobic and hence a possible membrane component. Immunoblot analysis using the monospecific polyclonal anti-P30-His serum indicated that P30 is specific to M. agalactiae. Furthermore, PCR amplification with specific primers for p30 and Southern blot analysis revealed the presence of the gene in all M. agalactiae strains tested and its absence in the other mycoplasma species. Among 27 strains of M. agalactiae studied, 20 strains belonging to the common serotypes A to D, including PG2, expressed P30 or part of it as detected by the monospecific polyclonal anti-P30 antibodies. The other seven strains belonging to the rarely isolated serotypes E to H were negative for P30. The p30 gene was sequenced in 15 strains of M. agalactiae, 10 of which expressed P30 or at least part of it and 5 of which did not express P30. The negative strains carried mutations in both −10 boxes of the promoters. These mutations seem to be responsible for the lack of P30 expression in these strains. Analysis of sera from sheep that were experimentally infected with M. agalactiae revealed that P30 induced a strong and persistent immune response which was still very high two months after infection. In contrast, currently used enzyme-linked immunosorbent assay serology gave only low titers.
doi:10.1128/JCM.39.8.2814-2822.2001
PMCID: PMC88244  PMID: 11473997
11.  Homologue of Macrophage-Activating Lipoprotein in Mycoplasma gallisepticum Is Not Essential for Growth and Pathogenicity in Tracheal Organ Cultures 
Journal of Bacteriology  2003;185(8):2538-2547.
While the genomes of a number of Mycoplasma species have been fully determined, there has been limited characterization of which genes are essential. The surface protein (p47) identified by monoclonal antibody B3 is the basis for an enzyme-linked immunosorbent assay for serological detection of Mycoplasma gallisepticum infection and appears to be constitutively expressed. Its gene was cloned, and the DNA sequence was determined. Subsequent analysis of the p47 amino acid sequence and searches of DNA databases found homologous gene sequences in the genomes of M. pneumoniae and M. genitalium and identity with a gene family in Ureaplasma urealyticum and genes in M. agalactiae and M. fermentans. The proteins encoded by these genes were found to belong to a family of basic membrane proteins (BMP) that are found in a wide range of bacteria, including a number of pathogens. Several of the BMP family members, including p47, contain selective lipoprotein-associated motifs that are found in macrophage-activating lipoprotein 404 of M. fermentans and lipoprotein P48 of M. agalactiae. The p47 gene was predicted to encode a 59-kDa peptide, but affinity-purified p47 had a molecular mass of approximately 47 kDa, as determined by polyacrylamide gel analysis. Analysis of native and recombinant p47 by mass peptide fingerprinting revealed the absence of the carboxyl end of the protein encoded by the p47 gene in native p47, which would account for the difference seen in the predicted and measured molecular weights and indicated posttranslational cleavage of the lipoprotein at its carboxyl end. A DNA construct containing the p47 gene interrupted by the gene encoding tetracycline resistance was used to transform M. gallisepticum cells. A tetracycline-resistant mycoplasma clone, P2, contained the construct inserted within the genomic p47 gene, with crossovers occurring between 73 bp upstream and 304 bp downstream of the inserted tetracycline resistance gene. The absence of p47 protein in clone P2 was determined by the lack of reactivity with rabbit anti-p47 sera or monoclonal antibody B3 in Western blots of whole-cell proteins. There was no difference between the p47− mutant and wild-type M. gallisepticum in pathogenicity in chicken tracheal organ cultures. Thus, p47, although homologous to genes that occur in many prokaryotes, is not essential for growth in vitro or for attachment and the initial stages of pathogenesis in chickens.
doi:10.1128/JB.185.8.2538-2547.2003
PMCID: PMC152605  PMID: 12670978
12.  Juxtaposition of an Active Promoter to vsp Genes via Site-Specific DNA Inversions Generates Antigenic Variation in Mycoplasma bovis 
Journal of Bacteriology  2001;183(19):5698-5708.
Mycoplasma bovis, the most important etiological agent of bovine mycoplasmosis, undergoes extensive antigenic variation of major and highly immunogenic surface lipoprotein antigens (Vsps). A family of 13 related but divergent vsp genes, which occur as single chromosomal copies, was recently found in the chromosome of M. bovis. In the present study, the molecular mechanism mediating the high-frequency phase variation of two Vsps (VspA and VspC) as representatives of the Vsp family was investigated. Analysis of clonal isolates exhibiting phase transitions of VspA or of VspC (i.e., ON→OFF→ON) has shown that DNA inversions occur during Vsp phase variation. The upstream region of each vsp gene contains two sequence cassettes. The first (cassette no. 1), a 71-bp region upstream of the ATG initiation codon, exhibits 98% homology among all vsp genes, while the second (cassette no. 2), upstream of cassette no. 1, ranges in size from 50 to 180 bp and is more divergent. Examination of the ends of the inverted fragments during VspA or VspC phase variation revealed that in both cases, a change in the organization of vsp upstream cassettes involving three vsp genes had occurred. Primer extension and Northern blot analysis have shown that a specific cassette no. 2, designated A2, is an active promoter and that juxtaposition of this regulatory element to a silent vsp gene by DNA inversions allows transcription initiation of the recipient gene. Further genetic analysis revealed that phase variation of VspA or of VspC involves two site-specific DNA inversions occurring between inverted copies of a specific 35-bp sequence present within the conserved cassette no. 1. A model for the control of Vsp phase variation is proposed.
doi:10.1128/JB.183.19.5698-5708.2001
PMCID: PMC95462  PMID: 11544233
13.  Mycoplasma agalactiae MAG_5040 is a Mg2+-Dependent, Sugar-Nonspecific SNase Recognised by the Host Humoral Response during Natural Infection 
PLoS ONE  2013;8(2):e57775.
In this study the enzymatic activity of Mycoplasma agalactiae MAG_5040, a magnesium-dependent nuclease homologue to the staphylococcal SNase was characterized and its antigenicity during natural infections was established. A UGA corrected version of MAG_5040, lacking the region encoding the signal peptide, was expressed in Escherichia coli as a GST fusion protein. Recombinant GST-MAG_5040 exhibits nuclease activity similar to typical sugar-nonspecific endo- and exonucleases, with DNA as the preferred substrate and optimal activity in the presence of 20 mM MgCl2 at temperatures ranging from 37 to 45°C. According to in silico analyses, the position of the gene encoding MAG_5040 is consistently located upstream an ABC transporter, in most sequenced mycoplasmas belonging to the Mycoplasma hominis group. In M. agalactiae, MAG_5040 is transcribed in a polycistronic RNA together with the ABC transporter components and with MAG_5030, which is predicted to be a sugar solute binding protein by 3D modeling and homology search. In a natural model of sheep and goats infection, anti-MAG_5040 antibodies were detected up to 9 months post infection. Taking into account its enzymatic activity, MAG_5040 could play a key role in Mycoplasma agalactiae survival into the host, contributing to host pathogenicity. The identification of MAG_5040 opens new perspectives for the development of suitable tools for the control of contagious agalactia in small ruminants.
doi:10.1371/journal.pone.0057775
PMCID: PMC3585158  PMID: 23469065
14.  Xer1-Mediated Site-Specific DNA Inversions and Excisions in Mycoplasma agalactiae▿ ‡  
Journal of Bacteriology  2010;192(17):4462-4473.
Surface antigen variation in Mycoplasma agalactiae, the etiologic agent of contagious agalactia in sheep and goats, is governed by site-specific recombination within the vpma multigene locus encoding the Vpma family of variable surface lipoproteins. This high-frequency Vpma phase switching was previously shown to be mediated by a Xer1 recombinase encoded adjacent to the vpma locus. In this study, it was demonstrated in Escherichia coli that the Xer1 recombinase is responsible for catalyzing vpma gene inversions between recombination sites (RS) located in the 5′-untranslated region (UTR) in all six vpma genes, causing cleavage and strand exchange within a 21-bp conserved region that serves as a recognition sequence. It was further shown that the outcome of the site-specific recombination event depends on the orientation of the two vpma RS, as direct or inverted repeats. While recombination between inverted vpma RS led to inversions, recombination between direct repeat vpma RS led to excisions. Using a newly developed excision assay based on the lacZ reporter system, we were able to successfully demonstrate under native conditions that such Xer1-mediated excisions can indeed also occur in the M. agalactiae type strain PG2, whereas they were not observed in the control xer1-disrupted VpmaY phase-locked mutant (PLMY), which lacks Xer1 recombinase. Unless there are specific regulatory mechanisms preventing such excisions, this might be the cost that the pathogen has to render at the population level for maintaining this high-frequency phase variation machinery.
doi:10.1128/JB.01537-09
PMCID: PMC2937384  PMID: 20562305
15.  Genome-Scale Analysis of Mycoplasma agalactiae Loci Involved in Interaction with Host Cells 
PLoS ONE  2011;6(9):e25291.
Mycoplasma agalactiae is an important pathogen of small ruminants, in which it causes contagious agalactia. It belongs to a large group of “minimal bacteria” with a small genome and reduced metabolic capacities that are dependent on their host for nutrients. Mycoplasma survival thus relies on intimate contact with host cells, but little is known about the factors involved in these interactions or in the more general infectious process. To address this issue, an assay based on goat epithelial and fibroblastic cells was used to screen a M. agalactiae knockout mutant library. Mutants with reduced growth capacities in cell culture were selected and 62 genomic loci were identified as contributing to this phenotype. As expected for minimal bacteria, “transport and metabolism” was the functional category most commonly implicated in this phenotype, but 50% of the selected mutants were disrupted in coding sequences (CDSs) with unknown functions, with surface lipoproteins being most commonly represented in this category. Since mycoplasmas lack a cell wall, lipoproteins are likely to be important in interactions with the host. A few intergenic regions were also identified that may act as regulatory sequences under co-culture conditions. Interestingly, some mutants mapped to gene clusters that are highly conserved across mycoplasma species but located in different positions. One of these clusters was found in a transcriptionally active region of the M. agalactiae chromosome, downstream of a cryptic promoter. A possible scenario for the evolution of these loci is discussed. Finally, several CDSs identified here are conserved in other important pathogenic mycoplasmas, and some were involved in horizontal gene transfer with phylogenetically distant species. These results provide a basis for further deciphering functions mediating mycoplasma-host interactions.
doi:10.1371/journal.pone.0025291
PMCID: PMC3179502  PMID: 21966487
16.  A surface epitope undergoing high-frequency phase variation is shared by Mycoplasma gallisepticum and Mycoplasma bovis. 
Infection and Immunity  1994;62(11):4962-4968.
We have recently reported that three distinct size- and phase-variable surface lipoproteins (Vsps) of the bovine pathogen Mycoplasma bovis possess a common epitope recognized by monoclonal antibody 1E5. In the present study, we show that this epitope is also present on a size-variant protein (PvpA) of the avian pathogen Mycoplasma gallisepticum. Application of monoclonal antibody 1E5 in Western immunoblot analysis of Triton X-114 phase-fractionated proteins and in colony immunoblots, as well as in trypsin and carboxypeptidase digestion experiments, has demonstrated that (i) PvpA is an integral membrane protein with a free C terminus, (ii) the shared epitope is surface exposed, and (iii) PvpA is subjected to high-frequency phase variation in expression. By using serum antibodies from M. gallisepticum-infected chickens, we were able to demonstrate the immunogenic nature of PvpA and identify three additional highly immunogenic Triton X-114 phase proteins (p67, p72, and p75) also undergoing high-frequency phase variation spontaneously and independently. Metabolic labeling experiments with [14C]palmitate and [14C]oleate revealed that PvpA, in contrast to p67, p72, and p75, is not lipid modified. Southern blot hybridization with restriction fragments carrying the pvpA gene of M. gallisepticum or the vspA gene of M. bovis against digested genomic DNA of the two Mycoplasma species indicated the absence of genetic relatedness between the pvpA and vspA genes. The apparent complexity of the antigenic variation phenomenon in M. gallisepticum is discussed.
Images
PMCID: PMC303213  PMID: 7523302
17.  Mycoplasma agalactiae p40 Gene, a Novel Marker for Diagnosis of Contagious Agalactia in Sheep by Real-Time PCR: Assessment of Analytical Performance and In-House Validation Using Naturally Contaminated Milk Samples▿ † 
Journal of Clinical Microbiology  2008;47(2):445-450.
We evaluated the capacity of the Mycoplasma agalactiae p40 gene as a diagnostic marker for contagious agalactia in sheep by quantitative real-time PCR. The p40 gene encodes an immunodominant adhesin that plays a key role in cytoadhesion of M. agalactiae. The assay was 100% specific, with an analytical sensitivity of 1 genome equivalent (GE), a quantification that is highly linear (R2 > 0.992) and efficient (PCR efficiency, >0.992) over a 6-log dynamic range, down to 10 GE. We evaluated the capacity of the assay to detect Mycoplasma agalactiae in 797 milk samples (373 raw sheep milk samples from refrigerated tanks of different farms and 424 milk samples from individual sheep of a flock positive for M. agalactiae). In parallel, we also tested the samples by using microbiological isolation coupled with microscopy identification and by a PCR method recommended by the World Organization for Animal Health. While our assay was able to detect 57 (15.28%) positive samples of the 373 milk samples from different farms, identification by microbiological isolation coupled with microscopy detected only 36 (9.65%) samples, and the conventional PCR detected 31 (8.31%) samples. These findings showed that our assay based on the p40 gene is more specific and sensitive for the detection of M. agalactiae in actual natural samples and, thus, can be a promising alternative tool for diagnosis and epidemiological studies of M. agalactiae infection.
doi:10.1128/JCM.01442-08
PMCID: PMC2643663  PMID: 19020058
18.  Critical Role of Dispensable Genes in Mycoplasma agalactiae Interaction with Mammalian Cells▿  
Infection and Immunity  2010;78(4):1542-1551.
Mycoplasmas are minimal bacteria whose genomes barely exceed the smallest amount of information required to sustain autonomous life. Despite this apparent simplicity, several mycoplasmas are successful pathogens of humans and animals, in which they establish intimate interactions with epithelial cells at mucosal surfaces. To identify biological functions mediating mycoplasma interactions with mammalian cells, we produced a library of transposon knockout mutants in the ruminant pathogen Mycoplasma agalactiae and used this library to identify mutants displaying a growth-deficient pheonotype in cell culture. M. agalactiae mutants displaying a 3-fold reduction in CFU titers to nearly complete extinction in coculture with HeLa cells were identified. Mapping of transposon insertion sites revealed 18 genomic regions putatively involved in the interaction of M. agalactiae with HeLa cells. Several of these regions encode proteins with features of membrane lipoproteins and/or were involved in horizontal gene transfer with phylogenetically distant pathogenic mycoplasmas of ruminants. Two mutants with the most extreme phenotype carry a transposon in a genomic region designated the NIF locus which encodes homologues of SufS and SufU, two proteins presumably involved in [Fe-S] cluster biosynthesis in Gram-positive bacteria. Complementation studies confirmed the conditional essentiality of the NIF locus, which was found to be critical for proliferation in the presence of HeLa cells and several other mammalian cell lines but dispensable for axenic growth. While our results raised questions regarding essential functions in mycoplasmas, they also provide a means for studying the role of mycoplasmas as minimal pathogens.
doi:10.1128/IAI.01195-09
PMCID: PMC2849427  PMID: 20123713
19.  Characterization of P40, a Cytadhesin of Mycoplasma agalactiae  
Infection and Immunity  2002;70(10):5612-5621.
An immunodominant protein, P40, of Mycoplasma agalactiae was analyzed genetically and functionally. The gene encoding P40 was cloned from type strain PG2, sequenced, submitted to point mutagenesis in order to convert mycoplasma-specific TGATrp codon to the universal TGGTrp codon, and subsequently expressed in Escherichia coli. Nucleotide sequence-derived amino acid sequence comparisons revealed a similarity of P40 to the adhesin P50 of Mycoplasma hominis and to protein P89 of Spiroplasma citri, which is expected to be involved in adhesion. The amino acid sequence of P40 revealed a recognition site for a signal peptidase and strong antigenic and hydrophilic motifs in the C-terminal domain. Triton X-114 phase partitioning confirmed that P40 is a membrane protein. Fab fragments of antibodies directed against recombinant purified P40 significantly inhibited adherence of M. agalactiae strains PG2 to lamb joint synovial cells LSM 192. Sera taken sequentially from sheep infected with PG2 revealed that P40 induced a strong and persistent immune response that gave strong signals on immunoblots containing recombinant P40 even 3 months after infection. The gene encoding P40 was present in a single copy in all of the 26 field strains of M. agalactiae analyzed and was not detected in closely related mycoplasma species. P40 was expressed as a protein with an apparent molecular mass of 37 kDa on sodium dodecyl sulfate-acrylamide gels by all M. agalactiae strains except for serotype C strains, which showed nonsense mutations in their p40 genes.
doi:10.1128/IAI.70.10.5612-5621.2002
PMCID: PMC128363  PMID: 12228289
20.  Phase-locked mutants of Mycoplasma agalactiae: defining the molecular switch of high-frequency Vpma antigenic variation 
Molecular Microbiology  2008;67(6):1196-1210.
Mycoplasma agalactiae, an important pathogen of small ruminants, exhibits antigenic diversity by switching the expression of multiple surface lipoproteins called Vpmas (Variable proteins of M. agalactiae). Although phase variation has been shown to play important roles in many host–pathogen interactions, the biological significance and the mechanism of Vpma oscillations remain largely unclear. Here, we demonstrate that all six Vpma proteins are expressed in the type strain PG2 and all undergo phase variation at an unusually high frequency. Furthermore, targeted gene disruption of the xer1 gene encoding a putative site-specific recombinase adjacent to the vpma locus was accomplished via homologous recombination using a replicon-based vector. Inactivation of xer1 abolished further Vpma switching and the ‘phase-locked’ mutants (PLMs) continued to steadily express only a single Vpma product. Complementation of the wild-type xer1 gene in PLMs restored Vpma phase variation thereby proving that Xer1 is essential for vpma inversions. The study is not only instrumental in enhancing our ability to understand the role of Vpmas in M. agalactiae infections but also provides useful molecular approaches to study potential disease factors in other ‘difficult-to-manipulate’ mycoplasmas.
doi:10.1111/j.1365-2958.2007.06103.x
PMCID: PMC2268961  PMID: 18248580
21.  Structure-Function Investigation of Vsp Serotypes of the Spirochete Borrelia hermsii 
PLoS ONE  2009;4(10):e7597.
Background
Relapsing fever (RF) spirochetes are notable for multiphasic antigenic variation of polymorphic outer membrane lipoproteins, a phenomenon responsible for immune evasion. An additional role in tissue localization is suggested by the finding that isogenic serotypes 1 (Bt1) and 2 (Bt2) of the RF spirochete Borrelia turicatae, which differ only in the Vsp they express, exhibit marked differences in clinical disease severity and tissue localization during infection.
Methodology/Principal Findings
Here we used known vsp DNA sequences encoding for B. turicatae and Borrelia hermsii Vsp proteins with variable regions and then studied whether there are differences in disease expression and tissue localization of their corresponding serotypes during mouse infection. For sequence and structural comparisons we focused exclusively on amino acid residues predicted to project away from the spirochetes surface, referred to as the Vsp dome. Disease severity and tissue localization were studied during persistent infection with individual or mixed serotypes in SCID mice. The results showed that all Vsp domes clustered into 3 main trunks, with the domes for B. turicatae Vsp1 (BtVsp1) and BtVsp2 clustering into separate ones. B. hermsii serotypes whose Vsp domes clustered with the BtVsp1 dome were less virulent but localized to the brain more. The BtVsp2 dome was the oddball among all and Bt2 was the only serotype that caused severe arthritis.
Conclusion/Significance
These findings indicate that there is significant variability in Vsp dome structure, disease severity, and tissue localization among serotypes of B. hermsii.
doi:10.1371/journal.pone.0007597
PMCID: PMC2766631  PMID: 19888463
22.  Evaluation of a Novel Chimeric B Cell Epitope-Based Vaccine against Mastitis Induced by Either Streptococcus agalactiae or Staphylococcus aureus in Mice▿ 
To construct a universal vaccine against mastitis induced by either Streptococcus agalactiae or Staphylococcus aureus, the B cell epitopes of the surface immunogenic protein (Sip) from S. agalactiae and clumping factor A (ClfA) from S. aureus were analyzed and predicted. sip-clfA, a novel chimeric B cell epitope-based gene, was obtained by overlap PCR, and then the recombinant Sip-ClfA (rSip-ClfA) was expressed and purified. rSip-ClfA and inactivated S. agalactiae and S. aureus were formulated into different vaccines with mineral oil as the adjuvant and evaluated in mouse models. The rSip-ClfA vaccination induced immunoglobulin G (IgG) titers higher than those seen in groups immunized with inactivated bacteria. Furthermore, the response to rSip-ClfA immunization was characterized as having a dominant IgG1 subtype, whereas both bacterial immunizations produced similar levels of IgG1 and IgG2a. The antiserum capacities for opsonizing adhesion and phagocytosis were significantly greater in the rSip-ClfA immunization group than in the killed-bacterium immunization groups (P < 0.05). The immunized lactating mice were challenged with either S. agalactiae or S. aureus via the intramammary route. At 24 h postinfection, the numbers of bacteria recovered from the mammary glands in the rSip-ClfA group were >5-fold lower than those in both inactivated-bacterium groups (P < 0.01). Histopathological examination of the mammary glands showed that rSip-ClfA immunization provided better protection of mammary gland tissue integrity against both S. agalactiae and S. aureus challenges. Thus, the recombinant protein rSip-ClfA would be a promising vaccine candidate against mastitis induced by either S. agalactiae or S. aureus.
doi:10.1128/CVI.00066-11
PMCID: PMC3122606  PMID: 21508165
23.  Identification of surface-exposed linear B-cell epitopes of the nonfimbrial adhesin CS31A of Escherichia coli by using overlapping peptides and antipeptide antibodies. 
Infection and Immunity  1996;64(9):3555-3564.
As a first step toward the design of an epitope vaccine, by using the nonfimbrial adhesin CS31A of Escherichia coli as a carrier, a low-resolution topological and epitope map of the CS31A subunit was developed by using solid-phase peptide synthesis and polyclonal rabbit antibodies raised against both native and denatured proteins. Peptides constituting antigenic epitopes on the major subunit (ClpG) of the multimeric CS31A antigen were identified by examining the binding of the antibodies to 249 overlapping nonapeptides covering the amino acid sequence of ClpG. With antibodies raised against denatured ClpG subunit, seven major epitope regions, corresponding to residues 10 to 18, 45 to 58, 88 to 107, 148 to 172, 187 to 196, 212 to 219, and 235 to 241, were located. Most of the epitopes were hydrophilic and were located in variable regions, residing largely in loop regions at the boundaries of secondary structural elements of ClpG. In contrast, antibodies raised against native CS31A antigen reacted only with the peptide AVNPNA (positions 179 to 184), demonstrating that this peptide was the only linear B-cell epitope of the native protein. The different immunogenic profiles of native CS31A antigen and denatured ClpG indicated that the denaturation process resulted in marked conformational changes in the protein, which could expose epitopes hidden or absent in native CS31A. To identify the surface-exposed epitopes, nine peptides covering the dominant antigenic regions of ClpG were synthesized and used to prepare site-specific antibodies. Antipeptide antibodies were tested, in a competitive enzyme-linked immunosorbent assay (ELISA), for cross-reactivity with native CS31A and denatured ClpG subunit. Four of these antipeptide antibodies bound to the native protein in an accessibility ELISA, indicating that residues 44 to 56, 174 to 190, 185 to 199, and 235 to 249 were surface exposed on CS31A. These data indicate that an immunodominant surface-exposed linear epitope was present in the region from positions 179 to 184 of ClpG in the native CS31A antigen on intact bacterial cells and suggest that the four surface-exposed epitopes constitute potential sites for insertions or substitutions with heterologous peptides.
PMCID: PMC174263  PMID: 8751899
24.  VNTR analysis reveals unexpected genetic diversity within Mycoplasma agalactiae, the main causative agent of contagious agalactia 
BMC Microbiology  2008;8:193.
Background
Mycoplasma agalactiae is the main cause of contagious agalactia, a serious disease of sheep and goats, which has major clinical and economic impacts. Previous studies of M. agalactiae have shown it to be unusually homogeneous and there are currently no available epidemiological techniques which enable a high degree of strain differentiation.
Results
We have developed variable number tandem repeat (VNTR) analysis using the sequenced genome of the M. agalactiae type strain PG2. The PG2 genome was found to be replete with tandem repeat sequences and 4 were chosen for further analysis. VNTR 5 was located within the hypothetical protein MAG6170 a predicted lipoprotein. VNTR 14 was intergenic between the hypothetical protein MAG3350 and the hypothetical protein MAG3340. VNTR 17 was intergenic between the hypothetical protein MAG4060 and the hypothetical protein MAG4070 and VNTR 19 spanned the 5' end of the pseudogene for a lipoprotein MAG4310 and the 3' end of the hypothetical lipoprotein MAG4320.
We have investigated the genetic diversity of 88 M. agalactiae isolates of wide geographic origin using VNTR analysis and compared it with pulsed field gel electrophoresis (PFGE) and random amplified polymorphic DNA (RAPD) analysis. Simpson's index of diversity was calculated to be 0.324 for PFGE and 0.574 for VNTR analysis. VNTR analysis revealed unexpected diversity within M. agalactiae with 9 different VNTR types discovered. Some correlation was found between geographical origin and the VNTR type of the isolates.
Conclusion
VNTR analysis represents a useful, rapid first-line test for use in molecular epidemiological analysis of M. agalactiae for outbreak tracing and control.
doi:10.1186/1471-2180-8-193
PMCID: PMC2585094  PMID: 18992155
25.  Identification of genes coding for B cell antigens of Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC) by using phage display 
BMC Microbiology  2009;9:215.
Background
Contagious bovine pleuropneumonia (CBPP) is a mycoplasmal disease caused by Mycoplasma mycoides subsp. mycoides SC (MmmSC). Since the disease is a serious problem that can affect cattle production in parts of Africa, there is a need for an effective and economical vaccine. Identifying which of the causative agent's proteins trigger potentially protective immune responses is an important step towards developing a subunit vaccine. Accordingly, the purpose of this study was to determine whether phage display combined with bioinformatics could be used to narrow the search for genes that code for potentially immunogenic proteins of MmmSC. Since the production of IgG2 and IgA are associated with a Th1 cellular immune response which is implicated in protection against CBPP, antigens which elicit these immunoglobulin subclasses may be useful in developing a subunit vaccine.
Results
A filamentous phage library displaying a repertoire of peptides expressed by fragments of the genome of MmmSC was constructed. It was subjected to selection using antibodies from naturally- and experimentally-infected cattle. Mycoplasmal genes were identified by matching the nucleotide sequences of DNA from immunoselected phage particles with the mycoplasmal genome. This allowed a catalogue of genes coding for the proteins that elicited an immune response to be compiled. Using this method together with computer algorithms designed to score parameters that influence surface accessibility and hence potential antigenicity, five genes (abc, gapN, glpO, lppB and ptsG) were chosen to be expressed in Escherichia coli. After appropriate site-directed mutagenesis, polypeptides representing portions of each of these proteins were tested for immunoreactivity. Of these five, polypeptides representing expression products of abc and lppB were recognised on immunoblots by sera obtained from cattle during a natural outbreak of the disease.
Conclusion
Since phage display physically couples phenotype with genotype, it was used to compile a list of sequences that code for MmmSC proteins bearing epitopes which were recognised by antibodies in the serum of infected animals. Together with the appropriate bioinformatic analyses, this approach provided several potentially useful vaccine or diagnostic leads. The phage display step empirically identified sequences by their interaction with antibodies which accordingly reduced the number of ORFs that had to be expressed for testing. This is a particular advantage when working with MmmSC since the mycoplasmal codon for tryptophan needs to be mutated to prevent it from being translated as a stop in E. coli.
doi:10.1186/1471-2180-9-215
PMCID: PMC2767359  PMID: 19818124

Results 1-25 (991603)