PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1089510)

Clipboard (0)
None

Related Articles

1.  A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks 
The ISME Journal  2013;7(5):1003-1015.
Ticks transmit a variety of viral, bacterial and protozoal pathogens, which are often zoonotic. The aim of this study was to identify diverse tick microbiomes, which may contain as-yet unidentified pathogens, using a metagenomic approach. DNA prepared from bacteria/archaea-enriched fractions obtained from seven tick species, namely Amblyomma testudinarium, Amblyomma variegatum, Haemaphysalis formosensis, Haemaphysalis longicornis, Ixodes ovatus, Ixodes persulcatus and Ixodes ricinus, was subjected to pyrosequencing after whole-genome amplification. The resulting sequence reads were phylotyped using a Batch Learning Self-Organizing Map (BLSOM) program, which allowed phylogenetic estimation based on similarity of oligonucleotide frequencies, and functional annotation by BLASTX similarity searches. In addition to bacteria previously associated with human/animal diseases, such as Anaplasma, Bartonella, Borrelia, Ehrlichia, Francisella and Rickettsia, BLSOM analysis detected microorganisms belonging to the phylum Chlamydiae in some tick species. This was confirmed by pan-Chlamydia PCR and sequencing analysis. Gene sequences associated with bacterial pathogenesis were also identified, some of which were suspected to originate from horizontal gene transfer. These efforts to construct a database of tick microbes may lead to the ability to predict emerging tick-borne diseases. Furthermore, a comprehensive understanding of tick microbiomes will be useful for understanding tick biology, including vector competency and interactions with pathogens and symbionts.
doi:10.1038/ismej.2012.171
PMCID: PMC3635243  PMID: 23303373
BLSOMs; emerging diseases; metagenomics; microbiomes; symbionts; ticks
2.  Dissemination of Spotted Fever Rickettsia Agents in Europe by Migrating Birds 
PLoS ONE  2010;5(1):e8572.
Migratory birds are known to play a role as long-distance vectors for many microorganisms. To investigate whether this is true of rickettsial agents as well, we characterized tick infestation and gathered ticks from 13,260 migratory passerine birds in Sweden. A total of 1127 Ixodes spp. ticks were removed from these birds and the extracted DNA from 957 of them was available for analyses. The DNA was assayed for detection of Rickettsia spp. using real-time PCR, followed by DNA sequencing for species identification. Rickettsia spp. organisms were detected in 108 (11.3%) of the ticks. Rickettsia helvetica, a spotted fever rickettsia associated with human infections, was predominant among the PCR-positive samples. In 9 (0.8%) of the ticks, the partial sequences of 17kDa and ompB genes showed the greatest similarity to Rickettsia monacensis, an etiologic agent of Mediterranean spotted fever-like illness, previously described in southern Europe as well as to the Rickettsia sp.IrITA3 strain. For 15 (1.4%) of the ticks, the 17kDa, ompB, gltA and ompA genes showed the greatest similarity to Rickettsia sp. strain Davousti, Rickettsia japonica and Rickettsia heilongjiangensis, all closely phylogenetically related, the former previously found in Amblyomma tholloni ticks in Africa and previously not detected in Ixodes spp. ticks. The infestation prevalence of ticks infected with rickettsial organisms was four times higher among ground foraging birds than among other bird species, but the two groups were equally competent in transmitting Rickettsia species. The birds did not seem to serve as reservoir hosts for Rickettsia spp., but in one case it seems likely that the bird was rickettsiemic and that the ticks had acquired the bacteria from the blood of the bird. In conclusion, migratory passerine birds host epidemiologically important vector ticks and Rickettsia species and contribute to the geographic distribution of spotted fever rickettsial agents and their diseases.
doi:10.1371/journal.pone.0008572
PMCID: PMC2797135  PMID: 20052286
3.  Microbial Population Analysis of the Salivary Glands of Ticks; A Possible Strategy for the Surveillance of Bacterial Pathogens 
PLoS ONE  2014;9(8):e103961.
Ticks are one of the most important blood-sucking vectors for infectious microorganisms in humans and animals. When feeding they inject saliva, containing microbes, into the host to facilitate the uptake of blood. An understanding of the microbial populations within their salivary glands would provide a valuable insight when evaluating the vectorial capacity of ticks. Three tick species (Ixodes ovatus, I. persulcatus and Haemaphysalis flava) were collected in Shizuoka Prefecture of Japan between 2008 and 2011. Each tick was dissected and the salivary glands removed. Bacterial communities in each salivary gland were characterized by 16S amplicon pyrosequencing using a 454 GS-Junior Next Generation Sequencer. The Ribosomal Database Project (RDP) Classifier was used to classify sequence reads at the genus level. The composition of the microbial populations of each tick species were assessed by principal component analysis (PCA) using the Metagenomics RAST (MG-RAST) metagenomic analysis tool. Rickettsia-specific PCR was used for the characterization of rickettsial species. Almost full length of 16S rDNA was amplified in order to characterize unclassified bacterial sequences obtained in I. persulcatus female samples. The numbers of bacterial genera identified for the tick species were 71 (I. ovatus), 127 (I. persulcatus) and 59 (H. flava). Eighteen bacterial genera were commonly detected in all tick species. The predominant bacterial genus observed in all tick species was Coxiella. Spiroplasma was detected in Ixodes, and not in H. flava. PCA revealed that microbial populations in tick salivary glands were different between tick species, indicating that host specificities may play an important role in determining the microbial complement. Four female I. persulcatus samples contained a high abundance of several sequences belonging to Alphaproteobacteria symbionts. This study revealed the microbial populations within the salivary glands of three species of ticks, and the results will contribute to the knowledge and prediction of emerging tick-borne diseases.
doi:10.1371/journal.pone.0103961
PMCID: PMC4121176  PMID: 25089898
4.  Rickettsia monacensis sp. nov., a Spotted Fever Group Rickettsia, from Ticks (Ixodes ricinus) Collected in a European City Park 
We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/MunichT) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.
doi:10.1128/AEM.68.9.4559-4566.2002
PMCID: PMC124077  PMID: 12200314
5.  Spotted fever group rickettsiae in Dermacentor reticulatus and Haemaphysalis punctata ticks in the UK 
Parasites & Vectors  2013;6:212.
Background
Spotted fever group (SFG) rickettsiae have recently been identified for the first time in UK ticks. This included the findings of Rickettsia helvetica in Ixodes ricinus and Rickettsia raoultii in Dermacentor reticulatus. This paper further investigates the occurrence of SFG rickettsiae in additional geographically distinct populations of D. reticulatus, and for the first time, investigates the occurrence of SFG rickettsiae in UK populations of Haemaphysalis punctata ticks.
Methods
Questing D. reticulatus and H. punctata were collected at a number of sites in England and Wales. DNA from questing ticks was extracted by alkaline lysis and detection of rickettsiae DNA was performed, in addition to detection of A. phagocytophilum, N. mikurensis, C. burnetii and B. burgdorferi sensu lato.
Results
This paper builds on previous findings to include the detection of spotted fever Rickettsia which showed the highest homology to Rickettsia massiliae in Haemaphysalis punctata, as well as R. helvetica in D. reticulatus. The occurrence of SFG rickettsiae in D. reticulatus in the UK appears to be confined only to Welsh and Essex populations, with no evidence so far from Devon. Similarly, the occurrence of SFG rickettsiae in H. punctata appears confined to one of two farms known to be infested with this tick in North Kent, with no evidence so far from the Sussex populations. Anaplasma phagocytophilum, Neoehrlichia mikurensis, Coxiella burnetii and Borrelia burgdorferi sensu lato DNA was not detected in any of the ticks.
Conclusion
These two tick species are highly restricted in their distribution in England and Wales, but where they do occur they can be abundant. Following detection of these SFG rickettsiae in additional UK tick species, as well as I. ricinus, research should now be directed towards clarifying firstly the geographic distribution of SFG rickettsiae in UK ticks, and secondly to assess the prevalence rates in ticks, wild and domesticated animals and humans to identify the drivers for disease transmission and their public health significance.
doi:10.1186/1756-3305-6-212
PMCID: PMC3725166  PMID: 23870197
Haemaphysalis; Rickettsia massiliae; UK; Dermacentor; Rickettsiae; Ticks
6.  Ticks and associated pathogens collected from dogs and cats in Belgium 
Parasites & Vectors  2013;6:183.
Background
Although Ixodes spp. are the most common ticks in North-Western Europe, recent reports indicated an expanding geographical distribution of Dermacentor reticulatus in Western Europe. Recently, the establishment of a D. reticulatus population in Belgium was described. D. reticulatus is an important vector of canine and equine babesiosis and can transmit several Rickettsia species, Coxiella burnetii and tick-borne encephalitis virus (TBEV), whilst Ixodes spp. are vectors of pathogens causing babesiosis, borreliosis, anaplasmosis, rickettsiosis and TBEV.
Methods
A survey was conducted in 2008-2009 to investigate the presence of different tick species and associated pathogens on dogs and cats in Belgium. Ticks were collected from dogs and cats in 75 veterinary practices, selected by stratified randomization. All collected ticks were morphologically determined and analysed for the presence of Babesia spp., Borrelia spp., Anaplasma phagocytophilum and Rickettsia DNA.
Results
In total 2373 ticks were collected from 647 dogs and 506 cats. Ixodes ricinus (76.4%) and I. hexagonus (22.6%) were the predominant species. Rhipicephalus sanguineus (0.3%) and D. reticulatus (0.8%) were found in low numbers on dogs only. All dogs infested with R. sanguineus had a recent travel history, but D. reticulatus were collected from a dog without a history of travelling abroad. Of the collected Ixodes ticks, 19.5% were positive for A. phagocytophilum and 10.1% for Borrelia spp. (B. afzelii, B. garinii, B. burgdorferi s.s., B. lusitaniae, B. valaisiana and B. spielmanii). Rickettsia helvetica was found in 14.1% of Ixodes ticks. All Dermacentor ticks were negative for all the investigated pathogens, but one R. sanguineus tick was positive for Rickettsia massiliae.
Conclusion
D. reticulatus was confirmed to be present as an indigenous parasite in Belgium. B. lusitaniae and R. helvetica were detected in ticks in Belgium for the first time.
doi:10.1186/1756-3305-6-183
PMCID: PMC3688525  PMID: 23777784
Ticks; Dermacentor reticulatus; Dogs; Cats; Belgium; Borrelia; Anaplasma; Rickettsia
7.  SNP-based real-time pyrosequencing as a sensitive and specific tool for identification and differentiation of Rickettsia species in Ixodes ricinus ticks 
BMC Infectious Diseases  2012;12:261.
Background
Rickettsioses are caused by pathogenic species of the genus Rickettsia and play an important role as emerging diseases. The bacteria are transmitted to mammal hosts including humans by arthropod vectors. Since detection, especially in tick vectors, is usually based on PCR with genus-specific primers to include different occurring Rickettsia species, subsequent species identification is mainly achieved by Sanger sequencing. In the present study a real-time pyrosequencing approach was established with the objective to differentiate between species occurring in German Ixodes ticks, which are R. helvetica, R. monacensis, R. massiliae, and R. felis. Tick material from a quantitative real-time PCR (qPCR) based study on Rickettsia-infections in I. ricinus allowed direct comparison of both sequencing techniques, Sanger and real-time pyrosequencing.
Methods
A sequence stretch of rickettsial citrate synthase (gltA) gene was identified to contain divergent single nucleotide polymorphism (SNP) sites suitable for Rickettsia species differentiation. Positive control plasmids inserting the respective target sequence of each Rickettsia species of interest were constructed for initial establishment of the real-time pyrosequencing approach using Qiagen’s PSQ 96MA Pyrosequencing System operating in a 96-well format. The approach included an initial amplification reaction followed by the actual pyrosequencing, which is traceable by pyrograms in real-time. Afterwards, real-time pyrosequencing was applied to 263 Ixodes tick samples already detected Rickettsia-positive in previous qPCR experiments.
Results
Establishment of real-time pyrosequencing using positive control plasmids resulted in accurate detection of all SNPs in all included Rickettsia species. The method was then applied to 263 Rickettsia-positive Ixodes ricinus samples, of which 153 (58.2%) could be identified for their species (151 R. helvetica and 2 R. monacensis) by previous custom Sanger sequencing. Real-time pyrosequencing identified all Sanger-determined ticks as well as 35 previously undifferentiated ticks resulting in a total number of 188 (71.5%) identified samples. Pyrosequencing sensitivity was found to be strongly dependent on gltA copy numbers in the reaction setup. Whereas less than 101 copies in the initial amplification reaction resulted in identification of 15.1% of the samples only, the percentage increased to 54.2% at 101-102 copies, to 95.6% at >102-103 copies and reached 100% samples identified for their Rickettsia species if more than 103 copies were present in the template.
Conclusions
The established real-time pyrosequencing approach represents a reliable method for detection and differentiation of Rickettsia spp. present in I. ricinus diagnostic material and prevalence studies. Furthermore, the method proved to be faster, more cost-effective as well as more sensitive than custom Sanger sequencing with simultaneous high specificity.
doi:10.1186/1471-2334-12-261
PMCID: PMC3532327  PMID: 23075233
Rickettsia helvetica; Rickettsia monacensis; Rickettsia massiliae; Rickettsia felis; Ixodes ricinus; Diagnostic; Sequencing
8.  Pathogens in ticks collected from dogs in Berlin/Brandenburg, Germany 
Parasites & Vectors  2014;7(1):535.
Background
Tick-borne diseases are a major health risk for humans and dogs. In addition to collection and analysis of questing ticks, analysis of host-associated ticks for the presence of pathogens is a valuable method to gain insight into transmission patterns of tick-borne diseases.
Methods
Ticks were collected from dogs living in the Berlin/Brandenburg area. The three tick species Ixodes ricinus, Ixodes hexagonus and Dermacentor reticulatus were examined for the presence of Babesia spp., Borrelia spp., Rickettsia spp. and Anaplasmataceae. Conventional PCR followed by sequencing was used for pathogen detection and characterization.
Results
Babesia spp. were found in 2.5% and 3% of I. ricinus and I. hexagonus, respectively. Sequencing revealed the presence of Babesia microti, Babesia capreoli and Babesia venatorum. D. reticulatus were free of Babesia canis. Rickettsia spp. were detected in 61% of I. ricinus, 44% of I. hexagonus and 39% of D. reticulatus. Specifically detected were Rickettsia raoulti in D. reticulatus and I. hexagonus, Rickettsia helvetica in I. ricinus and I. hexagonus and Rickettsia monacensis in I. hexagonus. Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis have been reported previously in I. ricinus (6.5% and 4.3%, respectively) and I. hexagonus (3.9% and 5.9%). Borrelia spp. were found in 11.6% of I. ricinus and 11.2% of I. hexagonus. Subsequent genospecies analysis revealed Borrelia afzelii, Borrelia garinii, Borrelia burgdorferi sensu stricto and Borrelia miyamotoi. Simultanous presence of more than one pathogen was found in 20% of I. ricinus and in 59% of I. hexagonus whereas the total frequency of any pathogen was 65% in I. ricinus, 59% in I. hexagonus and 64% in D. reticulatus. Ticks in which A. phagocytophilum was detected had a significantly increased risk of also containing Rickettsia. Ticks harbouring a pathogen had significantly higher scutal indices than ticks without presence of any pathogen.
Conclusions
Frequencies of potential human or canine pathogens in ticks were considerable and DNA of all four groups of pathogens was detected. Differences in scutal indices might suggest that pathogens are frequently taken up by ticks when feeding on dogs in Berlin/Brandenburg.
Electronic supplementary material
The online version of this article (doi:10.1186/s13071-014-0535-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s13071-014-0535-1
PMCID: PMC4262381  PMID: 25441762
Canine vector-borne diseases; Borrelia; Babesia; Rickettsia; Anaplasma; Candidatus neoehrlichia mikurensis
9.  Characterization of a spotted fever group Rickettsia from Ixodes ricinus ticks in Sweden. 
Journal of Clinical Microbiology  1997;35(1):243-247.
A spotted fever group rickettsia isolated from the common tick, Ixodes ricinus, was genetically characterized by PCR and genomic sequencing. This study was performed with nymphal and adult ticks collected in southern and central Sweden. I. ricinus is the only North European tick species of medical importance which is regularly collected from humans. No species of the genus Rickettsia has previously been found in Scandinavian ticks, nor has any case of domestic rickettsial infection in humans or animals been reported. According to the nucleotide sequencing, the present Rickettsia sp. belongs to the spotted fever group of rickettsiae. Ticks are the most common arthropod reservoirs and vectors of the rickettsiae of this group. Among 748 ticks investigated, 13 (1.7%) were positive for a Rickettsia sp. Borrelia burgdorferi was detected in 52 (7%) of the ticks, a prevalence similar to or somewhat lower than that previously been recorded in other Swedish studies. There was no evidence of ehrlichial or chlamydial DNA in these ticks. The Rickettsia sp. was further characterized by 16S ribosomal DNA (rDNA) sequencing and restriction fragment length polymorphism (RFLP). The 16S rDNA sequencing resulted in a sequence identical to that described for Rickettsia helvetica, but the pattern obtained with RFLP of the citrate synthetase gene diverged from previously known patterns. The rickettsial agent of one tick which was positive by PCR was confirmed by transmission electron microscopy. The morphology of this rickettsia was similar to that of the spotted fever and typhus group rickettsiae. This represents the first documented isolate of a Rickettsia sp. from Swedish ticks.
PMCID: PMC229547  PMID: 8968916
10.  Prevalence of Rickettsiales in ticks removed from the skin of outdoor workers in North Carolina 
Parasites & Vectors  2014;7(1):607.
Background
Tick-transmitted rickettsial diseases, such as ehrlichiosis and spotted fever rickettsiosis, are significant sources of morbidity and mortality in the southern United States. Because of their exposure in tick-infested woodlands, outdoor workers experience an increased risk of infection with tick-borne pathogens. As part of a double blind randomized-controlled field trial of the effectiveness of permethrin-treated clothing in preventing tick bites, we identified tick species removed from the skin of outdoor workers in North Carolina and tested the ticks for Rickettsiales pathogens.
Methods
Ticks submitted by study participants from April-September 2011 and 2012 were identified to species and life stage, and preliminarily screened for the genus Rickettsia by nested PCR targeting the 17-kDa protein gene. Rickettsia were further identified to species by PCR amplification of 23S-5S intergenic spacer (IGS) fragments combined with reverse line blot hybridization with species-specific probes and through cloning and nucleotide sequence analysis of 23S-5S amplicons. Ticks were examined for Ehrlichia and Anaplasma by nested PCR directed at the gltA, antigen-expressing gene containing a variable number of tandem repeats, 16S rRNA, and groESL genes.
Results
The lone star tick (Amblyomma americanum) accounted for 95.0 and 92.9% of ticks submitted in 2011 (n = 423) and 2012 (n = 451), respectively. Specimens of American dog tick (Dermacentor variabilis), Gulf Coast tick (Amblyomma maculatum) and black-legged tick (Ixodes scapularis) were also identified. In both years of our study, 60.9% of ticks tested positive for 17-kDa. “Candidatus Rickettsia amblyommii”, identified in all four tick species, accounted for 90.2% (416/461) of the 23S-5S-positive samples and 52.9% (416/787) of all samples tested. Nucleotide sequence analysis of Rickettsia-specific 23S-5S IGS, ompA and gltA gene fragments indicated that ticks, principally A. americanum, contained novel species of Rickettsia. Other Rickettsiales, including Ehrlichia ewingii, E. chaffeensis, Ehrlichia sp. (Panola Mountain), and Anaplasma phagocytophilum, were infrequently identified, principally in A. americanum.
Conclusions
We conclude that in North Carolina, the most common rickettsial exposure is to R. amblyommii carried by A. americanum. Other Rickettsiales bacteria, including novel species of Rickettsia, were less frequently detected in A. americanum but are relevant to public health nevertheless.
Electronic supplementary material
The online version of this article (doi:10.1186/s13071-014-0607-2) contains supplementary material, which is available to authorized users.
doi:10.1186/s13071-014-0607-2
PMCID: PMC4301950  PMID: 25533148
Ticks; Rickettsiales pathogens; Rickettsia; Ehrlichia; Reverse line blot hybridization
11.  Detection of spotted fever group Rickettsiae in ticks from Zhejiang Province, China 
Tick species distribution and prevalence of spotted fever group Rickettsiae (SFGR) in ticks were investigated in Zhejiang Province, China in 2010 and 2011. PCR was used to detect SFGR and positive amplicons were sequenced, compared to published sequences and phylogenic analysis was performed using MEGA 4.0. A total of 292 adult ticks of ten species were captured and 7.5 % (22/292) of the ticks were PCR-positive for SFG Rickettsia. The PCR-positive rates were 5.5 % (6/110) for Haemaphysalis longicornis, 3.6 % (1/28) for Amblyomma testudinarium and 16 % (15/94) for Ixodes sinensis, respectively. Phylogenetic analyses of gltA genes detected in ticks indicated that there are two dominating groups of SFGR. Sequences of group one were closely related to Rickettsia monacensis, whereas sequences of group two were closest related to Rickettsia heilongjiangensis and Rickettsia japonica, which are human pathogens. Our findings underline the importance of these ticks in public health surveillance in Zhejiang Province, China.
doi:10.1007/s10493-015-9880-9
PMCID: PMC4322220  PMID: 25633265
Spotted fever group Rickettsiae; Public health; Rickettsia monacensis; Rickettsia heilongjiangensis; Rickettsia japonica; Ticks
12.  Spotted Fever Group Rickettsiae in Ticks, Morocco  
Emerging Infectious Diseases  2008;14(7):1067-1073.
Identified rickettsiae were 4 pathogens, 2 suspected pathogens, and 1 incompletely described species.
A total of 370 ticks, encompassing 7 species from 4 genera, were collected during 2002–2006 from domestic animals and vegetation in the Taza region of northeastern Morocco. Rickettsial DNA was identified in 101 ticks (27%) by sequencing PCR products of fragments of the citrate synthase and outer membrane protein genes of Rickettsia spp. Seven rickettsiae of the spotted fever group were identified, including 4 pathogens: R. aeschlimannii in Hyalomma marginatum marginatum, R. massiliae in Rhipicephalus sanguineus, R. slovaca in Dermacentor marginatus, and R. monacensis in Ixodes ricinus. Two suspected pathogens were also detected (R. raoultii in D. marginatus and R. helvetica in I. ricinus). An incompletely described Rickettsia sp. was detected in Haemaphysalis spp. ticks.
doi:10.3201/eid1407.070096
PMCID: PMC2600325  PMID: 18598627
Ticks; Morocco; rickettsia; spotted fever; research
13.  Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species 
Parasites & Vectors  2009;2:41.
Background
Hard ticks have been identified as important vectors of rickettsiae causing the spotted fever syndrome. Tick-borne rickettsiae are considered to be emerging, but only limited data are available about their presence in Western Europe, their natural life cycle and their reservoir hosts. Ixodes ricinus, the most prevalent tick species, were collected and tested from different vegetation types and from potential reservoir hosts. In one biotope area, the annual and seasonal variability of rickettsiae infections of the different tick stages were determined for 9 years.
Results
The DNA of the human pathogen R. conorii as well as R. helvetica, R. sp. IRS and R. bellii-like were found. Unexpectedly, the DNA of the highly pathogenic R. typhi and R. prowazekii and 4 other uncharacterized Rickettsia spp. related to the typhus group were also detected in I. ricinus. The presence of R. helvetica in fleas isolated from small rodents supported our hypothesis that cross-infection can occur under natural conditions, since R. typhi/prowazekii and R. helvetica as well as their vectors share rodents as reservoir hosts. In one biotope, the infection rate with R. helvetica was ~66% for 9 years, and was comparable between larvae, nymphs, and adults. Larvae caught by flagging generally have not yet taken a blood meal from a vertebrate host. The simplest explanation for the comparable prevalence of R. helvetica between the defined tick stages is, that R. helvetica is vertically transmitted through the next generation with high efficiency. The DNA of R. helvetica was also present in whole blood from mice, deer and wild boar.
Conclusion
Besides R. helvetica, unexpected rickettsiae are found in I. ricinus ticks. We propose that I. ricinus is a major reservoir host for R. helvetica, and that vertebrate hosts play important roles in the further geographical dispersion of rickettsiae.
doi:10.1186/1756-3305-2-41
PMCID: PMC2743653  PMID: 19732416
14.  Detection of Rickettsia japonica in Haemaphysalis longicornis ticks by restriction fragment length polymorphism of PCR product. 
Journal of Clinical Microbiology  1995;33(4):824-828.
PCR was applied to the detection of Rickettsia japonica, the causative agent of Oriental spotted fever (OSF), in ticks collected at two sites of the Muroto area on Shikoku Island, a major area in Japan where OSF is endemic. Primer pair Rr190.70p and Rr190.602n of the R. rickettsii 190-kDa antigen gene sequence of Regnery and others (R.L. Regnery, C.L. Spruill, and B.D. Plikaytis, J. Bacteriol. 173:1576-1589, 1991) primed the DNA extracted from Haemaphysalis longicornis ticks but not those extracted from Haemaphysalis formosensis, Haemaphysalis flava, Haemaphysalis hystricis, or Amblyomma testudinarium ticks. Digestion of the amplification product with the restriction endonucleases PstI and AluI produced the restriction fragment length polymorphism pattern specific to R. japonica. The HindIII and MspI digests gave restriction fragment length polymorphism patterns identical to those of the PCR product from R. japonica DNA. Hemolymph preparations of H. longicornis ticks were demonstrated to contain rod-shaped organisms that were detected by immunofluorescence with the monoclonal antibody specific to R. japonica species. The primer pair did not amplify the DNA of a laboratory colony of H. longicornis ticks originally collected at an area where OSF is not endemic. Our results provided evidence that H. longicornis ticks might be an arthropod reservoir for R. japonica and a vector of OSF.
PMCID: PMC228049  PMID: 7790445
15.  Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus) 
Ticks and tick-borne diseases  2013;4(3):10.1016/j.ttbdis.2012.12.002.
There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one Am. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and Bo. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens.
doi:10.1016/j.ttbdis.2012.12.002
PMCID: PMC3886713  PMID: 23415850
16.  Phylogenetic Placement of Rickettsiae from the Ticks Amblyomma americanum and Ixodes scapularis† 
Journal of Clinical Microbiology  1998;36(5):1305-1317.
A rickettsial isolate (isolate MOAa) belonging to the spotted fever group (SFG) was obtained from the lone star tick Amblyomma americanum. We used PCR to characterize the genes for the rickettsial outer membrane proteins rOmpA and rOmpB. We sequenced the PCR products (domains I of both the rompA gene and the rompB gene) of MOAa and WB-8-2, another rickettsial isolate from A. americanum. To place MOAa and WB-8-2 and two other nonpathogenic isolates (Rickettsia rickettsii Hlp2 and Rickettsia montana M5/6) with respect to their putative sister species, we included them in a phylogenetic analysis of 9 Rickettsia species and 10 Rickettsia strains. Our phylogenetic results implied three evolutionary lineages of SFG rickettsiae and that WB-8-2 and MOAa were most closely related to R. montana. New World isolates were not the most closely related to each other (they did not form a clade). Rather, our results supported four independent origins (introductions) of rickettsiae into North America from different Old World regions. The results of our phylogenetic analysis did not support the hypothesis of a stable coevolution of rickettsiae and their tick hosts. Finally, we examined the rompA gene of a nonpathogenic rickettsial symbiont isolated from the tick Ixodes scapularis. In a phylogenetic analysis, the symbiont was placed as the sister to R. montana and its isolates. The relationship of this symbiont to R. montana raised questions as to the potential origin of pathogenic SFG rickettsiae from nonpathogenic tick symbionts, or vice versa.
PMCID: PMC104819  PMID: 9574696
17.  Factors influencing in vitro infectivity and growth of Rickettsia peacockii (Rickettsiales: Rickettsiaceae), an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni (Acari, Ixodidae) 
Journal of invertebrate pathology  2005;90(3):177-186.
Rickettsia peacockii, a spotted fever group rickettsia, is a transovarially transmitted endosymbiont of Rocky Mountain wood ticks, Dermacentor andersoni. This rickettsia, formerly known as the East Side Agent and restricted to female ticks, was detected in a chronically infected embryonic cell line, DAE100, from D. andersoni. We examined infectivity, ability to induce cytopathic effect (CPE) and host cell specificity of R. peacockii using cultured arthropod and mammalian cells. Aposymbiotic DAE100 cells were obtained using oxytetracycline or incubation at 37 °C. Uninfected DAE100 sublines grew faster than the parent line, indicating R. peacockii regulation of host cell growth. Nevertheless, DAE100 cellular defenses exerted partial control over R. peacockii growth. Rickettsiae existed free in the cytosol of DAE100 cells or within autophagolysosomes. Exocytosed rickettsiae accumulated in the medium and were occasionally contained within host membranes. R. peacockii multiplied in other cell lines from the hard ticks D. andersoni, Dermacentor albipictus, Ixodes scapularis, and Ixodes ricinus; the soft tick Carios capensis; and the lepidopteran Trichoplusia ni. Lines from the tick Amblyomma americanum, the mosquito Aedes albopictus, and two mammalian cell lines were non-permissive to R. peacockii. High cell densities facilitated rickettsial spread within permissive cell cultures, and an inoculum of one infected to nine uninfected cells resulted in the greatest yield of infected tick cells. Cell-free R. peacockii also were infectious for tick cells and centrifugation onto cell layers enhanced infectivity approximately 100-fold. The ability of R. peacockii to cause mild CPE suggests that its pathogenicity is not completely muted. An analysis of R. peacockii–cell interactions in comparison to pathogenic rickettsiae will provide insights into host cell colonization mechanisms.
doi:10.1016/j.jip.2005.09.001
PMCID: PMC1625098  PMID: 16288906
Rickettsia peacockii; East Side Agent; Dermacentor andersoni; Cultivation; Rocky Mountain wood tick; Endosymbiont; Rickettsia; Host cell range
18.  Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area 
Parasites & Vectors  2014;7:318.
Background
A few billion birds migrate annually between their breeding grounds in Europe and their wintering grounds in Africa. Many bird species are tick-infested, and as a result of their innate migratory behavior, they contribute significantly to the geographic distribution of pathogens, including spotted fever rickettsiae. The aim of the present study was to characterize, in samples from two consecutive years, the potential role of migrant birds captured in Europe as disseminators of Rickettsia-infected ticks.
Methods
Ticks were collected from a total of 14,789 birds during their seasonal migration northwards in spring 2009 and 2010 at bird observatories on two Mediterranean islands: Capri and Antikythira. All ticks were subjected to RNA extraction followed by cDNA synthesis and individually assayed with a real-time PCR targeting the citrate synthase (gltA) gene. For species identification of Rickettsia, multiple genes were sequenced.
Results
Three hundred and ninety-eight (2.7%) of all captured birds were tick-infested; some birds carried more than one tick. A total number of 734 ticks were analysed of which 353 ± 1 (48%) were Rickettsia-positive; 96% were infected with Rickettsia aeschlimannii and 4% with Rickettsia africae or unidentified Rickettsia species. The predominant tick taxon, Hyalomma marginatum sensu lato constituted 90% (n = 658) of the ticks collected. The remaining ticks were Ixodes frontalis, Amblyomma sp., Haemaphysalis sp., Rhipicephalus sp. and unidentified ixodids. Most ticks were nymphs (66%) followed by larvae (27%) and adult female ticks (0.5%). The majority (65%) of ticks was engorged and nearly all ticks contained visible blood.
Conclusions
Migratory birds appear to have a great impact on the dissemination of Rickettsia-infected ticks, some of which may originate from distant locations. The potential ecological, medical and veterinary implications of such Rickettsia infections need further examination.
doi:10.1186/1756-3305-7-318
PMCID: PMC4230250  PMID: 25011617
Migratory birds; Spotted fever Rickettsia; Rickettsia aeschlimannii; Rickettsia africae; Transmission; Tick; Hyalomma marginatum; Hyalomma rufipes; Ixodes frontalis
19.  Tick-Borne Rickettsioses, Neglected Emerging Diseases in Rural Senegal 
Background
Rickettsioses are one of the most important causes of systemic febrile illness among travelers from developed countries, but little is known about their incidence in indigenous populations, especially in West Africa.
Methodology/Principal Findings
Overall seroprevalence evaluated by immunofluorescence using six rickettsial antigens (spotted fever and typhus group) in rural populations of two villages of the Sine-Saloum region of Senegal was found to be 21.4% and 51% for spotted fever group rickettsiae for Dielmo and Ndiop villages, respectively. We investigated the role of tick-borne rickettsiae as the cause of acute non-malarial febrile diseases in the same villages. The incidence of rickettsial DNA in 204 blood samples from 134 (62M and 72F) febrile patients negative for malaria was studied. DNA extracted from whole blood was tested by two qPCR systems. Rickettsial DNA was found in nine patients, eight with Rickettsia felis (separately reported). For the first time in West Africa, Rickettsia conorii was diagnosed in one patient. We also tested 2,767 Ixodid ticks collected in two regions of Senegal (Niakhar and Sine-Saloum) from domestic animals (cows, sheep, goats, donkeys and horses) by qPCR and identified five different pathogenic rickettsiae. We found the following: Rickettsia aeschlimannii in Hyalomma marginatum rufipes (51.3% and 44.8% in Niakhar and Sine-Saloum region, respectively), in Hyalomma truncatum (6% and 6.8%) and in Rhipicephalus evertsi evertsi (0.5%, only in Niakhar); R. c. conorii in Rh. e. evertsi (0.4%, only in Sine-Saloum); Rickettsia massiliae in Rhipicephalus guilhoni (22.4%, only in Niakhar); Rickettsia sibirica mongolitimonae in Hyalomma truncatum (13.5%, only in Sine-Saloum); and Rickettsia africae in Rhipicephalus evertsi evertsi (0.7% and 0.4% in Niakhar and Sine-Saloum region, respectively) as well as in Rhipicephalus annulatus (20%, only in Sine-Saloum). We isolated two rickettsial strains from H. truncatum: R. s. mongolitimonae and R. aeschlimannii.
Conclusions/Significance
We believe that together with our previous data on the high prevalence of R. africae in Amblyomma ticks and R. felis infection in patients, the presented results on the distribution of pathogenic rickettsiae in ticks and the first R. conorii case in West Africa show that the rural population of Senegal is at risk for other tick-borne rickettsioses, which are significant causes of febrile disease in this area.
Author Summary
Spotted fever rickettsioses are endemic diseases known since the beginning of the 21st century. They may be severe, like Rocky Mountain Spotted fever in the Americas, and are always transmitted by the tick bite. In Africa, little is known about the prevalence of these diseases; most available data is from the travelers who felt ill after coming back to Europe and USA. We have studied the distribution of bacteria causing different spotted fevers (rickettsiae) in rural Senegal, as well as the role of these bacteria in human pathology among indigenous population. We have found that up to half of tested villagers have serological evidence of contact with rickettsiae and in some cases these bacteria may be found in the blood of feverish patients. From the other side, almost all species of ticks that may be collected in the villages on domestic animals also harbor the pathogenic bacteria. In total, six different species of rickettsiae were identified in ticks. We believe that our data cast light on the problem of unexplained fevers in West Africa.
doi:10.1371/journal.pntd.0000821
PMCID: PMC2939048  PMID: 20856858
20.  Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Rapid Identification of Tick Vectors 
Journal of Clinical Microbiology  2013;51(2):522-528.
A method for rapid species identification of ticks may help clinicians predict the disease outcomes of patients with tick bites and may inform the decision as to whether to administer postexposure prophylactic antibiotic treatment. We aimed to establish a matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) spectrum database based on the analysis of the legs of six tick vectors: Amblyomma variegatum, Rhipicephalus sanguineus, Hyalomma marginatum rufipes, Ixodes ricinus, Dermacentor marginatus, and Dermacentor reticulatus. A blind test was performed on a trial set of ticks to identify specimens of each species. Subsequently, we used MALDI-TOF MS to identify ticks obtained from the wild or removed from patients. The latter tick samples were also identified by 12S ribosomal DNA (rDNA) sequencing and were tested for bacterial infections. Ticks obtained from the wild or removed from patients (R. sanguineus, I. ricinus, and D. marginatus) were accurately identified using MALDI-TOF MS, with the exception of those ticks for which no spectra were available in the database. Furthermore, one damaged specimen was correctly identified as I. ricinus, a vector of Lyme disease, using MALDI-TOF MS only. Six of the 14 ticks removed from patients were found to be infected by pathogens that included Rickettsia, Anaplasma, and Borrelia spp. MALDI-TOF MS appears to be an effective tool for the rapid identification of tick vectors that requires no previous expertise in tick identification. The benefits for clinicians include the more targeted surveillance of patients for symptoms of potentially transmitted diseases and the ability to make more informed decisions as to whether to administer postexposure prophylactic treatment.
doi:10.1128/JCM.02665-12
PMCID: PMC3553915  PMID: 23224087
21.  Prevalence of Lyme Disease Borrelia spp. in Ticks from Migratory Birds on the Japanese Mainland 
Borrelia sp. prevalence in ticks on migratory birds was surveyed in central Japan. In autumn, a total of 1,733 birds representing 40 species were examined for ticks. A total of 361 ticks were obtained from 173 birds of 15 species, and these ticks were immature Haemaphysalis flava (94.4%), Haemaphysalis longicornis, Ixodes columnae, Ixodes persulcatus, Ixodes turdus, and an unidentified Ixodes species. Of these, 27 juveniles of H. flava on Turdus pallidus, Turdus cardis, or Emberiza spodocephala, 2 juveniles of I. persulcatus on T. pallidus, and 1 female H. flava molted from a T. pallidus-derived nymph were positive for the presence of Borrelia by Barbour-Stoenner-Kelly culture passages. In spring, a total of 16 ticks obtained from 102 birds of 21 species were negative for the spirochete. Isolates from 15 ticks were characterized by 5S-23S rRNA intergenic spacer restriction fragment length polymorphism analysis; all isolates were identified as Borrelia garinii with pattern B/B′ based on the previous patterning. According to the intergenic spacer sequences, 2 of 15 isolates, strains Fi14f and Fi24f, were highly similar to B. garinii strains 935T of Korea and ChY13p of Inner Mongolia, China, respectively. These findings indicate that Lyme disease-causing B. garinii may have been introduced to Japan by migratory birds from northeastern China via Korea. Additionally, a case of transstadial transmission of B. garinii from nymph to adult H. flava suggests that the infected H. flava may transmit Borrelia to large animals.
PMCID: PMC91932  PMID: 10698761
22.  Characterization of Spotted Fever Group Rickettsiae in Flea and Tick Specimens from Northern Peru 
Journal of Clinical Microbiology  2004;42(11):4961-4967.
Evidence of spotted fever group (SFG) rickettsiae was obtained from flea pools and individual ticks collected at three sites in northwestern Peru within the focus of an outbreak of febrile disease in humans attributed, in part, to SFG rickettsia infections. Molecular identification of the etiologic agents from these samples was determined after partial sequencing of the 17-kDa common antigen gene (htrA) as well as pairwise nucleotide sequence homology with one or more of the following genes: gltA, ompA, and ompB. Amplification and sequencing of portions of the htrA and ompA genes in pooled samples (2 of 59) taken from fleas identified the pathogen Rickettsia felis. Four tick samples yielded molecular evidence of SFG rickettsiae. Fragments of the ompA (540-bp) and ompB (2,484-bp) genes were amplified from a single Amblyomma maculatum tick (tick 124) and an Ixodes boliviensis tick (tick 163). The phylogenetic relationships between the rickettsiae in these samples and other rickettsiae were determined after comparison of their ompB sequences by the neighbor-joining method. The dendrograms generated showed that the isolates exhibited close homology (97%) to R. aeschlimannii and R. rhipicephali. Significant bootstrap values supported clustering adjacent to this nodule of the SFG rickettsiae. While the agents identified in the flea and tick samples have not been linked to human cases in the area, these results demonstrate for the first time that at least two SFG rickettsia agents were circulating in northern Peru at the time of the outbreak. Furthermore, molecular analysis of sequences derived from the two separate species of hard ticks identified a possibly novel member of the SFG rickettsiae.
doi:10.1128/JCM.42.11.4961-4967.2004
PMCID: PMC525230  PMID: 15528680
23.  Investigation of tick-borne bacteria (Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Borrelia spp.) in ticks collected from Andean tapirs, cattle and vegetation from a protected area in Ecuador 
Parasites & Vectors  2015;8:46.
Background
Ixodid ticks play an important role in the transmission and ecology of infectious diseases. Information about the circulation of tick-borne bacteria in ticks is lacking in Ecuador. Our aims were to investigate the tick species that parasitize Andean tapirs and cattle, and those present in the vegetation from the buffer zone of the Antisana Ecological Reserve and Cayambe-Coca National Park (Ecuador), and to investigate the presence of tick-borne bacteria.
Methods
Tick species were identified based on morphologic and genetic criteria. Detection of tick-borne bacteria belonging to Rickettsia, Anaplasma, Ehrlichia and Borrelia genera was performed by PCRs.
Results
Our ticks included 91 Amblyomma multipunctum, 4 Amblyomma spp., 60 Rhipicephalus microplus, 5 Ixodes spp. and 1 Ixodes boliviensis. A potential Candidatus Rickettsia species closest to Rickettsia monacensis and Rickettsia tamurae (designated Rickettsia sp. 12G1) was detected in 3 R. microplus (3/57, 5.3%). In addition, Anaplasma spp., assigned at least to Anaplasma phagocytophilum (or closely related genotypes) and Anaplasma marginale, were found in 2 A. multipunctum (2/87, 2.3%) and 13 R. microplus (13/57, 22.8%).
Conclusions
This is the first description of Rickettsia sp. in ticks from Ecuador, and the analyses of sequences suggest the presence of a potential novel Rickettsia species. Ecuadorian ticks from Andear tapirs, cattle and vegetation belonging to Amblyomma and Rhipicephalus genera were infected with Anaplasmataceae. Ehrlichia spp. and Borrelia burgdorferi sensu lato were not found in any ticks.
doi:10.1186/s13071-015-0662-3
PMCID: PMC4307133  PMID: 25616567
Ticks; Amblyomma multipunctum; Amblyomma scalpturatum; Amblyomma sp.; Rhipicephalus microplus; Ixodes lasallei; Ixodes boliviensis; Ixodes sp.; Rickettsia; Anaplasma; Ehrlichia; Borrelia; Ecuador
24.  Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica 
Parasites & Vectors  2014;7:128.
Background
Birds have long been known as carriers of ticks, but data from the literature are lacking on their role as a reservoir in the epidemiology of certain tick-borne disease-causing agents. Therefore, the aim of this study was to evaluate the presence of three emerging, zoonotic tick-borne pathogens in blood samples and ticks of birds and to assess the impact of feeding location preference and migration distance of bird species on their tick infestation.
Methods
Blood samples and ticks of birds were analysed with TaqMan real-time PCRs and conventional PCR followed by sequencing.
Results
During the spring and autumn bird migrations, 128 blood samples and 140 ticks (Ixodes ricinus, Haemaphysalis concinna and a Hyalomma specimen) were collected from birds belonging to 16 species. The prevalence of tick infestation and the presence of tick species were related to the feeding and migration habits of avian hosts. Birds were shown to be bacteraemic with Rickettsia helvetica and Anaplasma phagocytophilum, but not with Candidatus Neoehrlichia mikurensis. The prevalence of rickettsiae was high (51.4%) in ticks, suggesting that some of them may have acquired their infection from their avian host.
Conclusion
Based on the present results birds are potential reservoirs of both I. ricinus transmitted zoonotic pathogens, R. helvetica and A. phagocytophilum, but their epidemiological role appears to be less important concerning the latter, at least in Central Europe.
doi:10.1186/1756-3305-7-128
PMCID: PMC3976504  PMID: 24679245
Ground feeding birds; Migratory birds; Ticks; Rickettsia helvetica; Anaplasma phagocytophilum; Candidatus Neoehrlichia mikurensis
25.  Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. 
Applied and Environmental Microbiology  1997;63(10):3926-3932.
The presence, internal distribution, and phylogenetic position of endosymbiotic bacteria from four species of specific-pathogen-free ticks were studied. These included the hard ticks Ixodes scapularis (the black-legged tick), Rhipicephalus sanguineus (the brown dog tick), and Haemaphysalis longicornis and the African soft tick Ornithodoros moubata. PCR assays for bacteria, using two sets of general primers for eubacterial 16S and 23S rRNA genes (rDNAs) and seven sets of specific primers for wolbachial, rickettsial, or Francisella genes, indicated that I. scapularis possessed symbiotic rickettsiae in the ovaries and that the other species harbored eubacteria in both the ovaries and Malpighian tubules. Phylogenetic analysis based on the sequence of 16S rDNA indicated that the symbiont of I. scapularis belonged to the alpha subgroup of proteobacteria and was closely related to the members of the genus Rickettsia. The other species had similar microorganisms in the ovaries and Malpighian tubules, which belonged to the gamma subgroup of proteobacteria, and formed a monophyletic group with the Q-fever pathogen, Coxiella burnetii. O. moubata harbored another symbiont, which formed a monophyletic group with Francisella tularensis and Wolbachia persica, the latter a symbiont previously isolated from Malpighian tubules of the soft tick Argas (Persicargas) arboreus. Thus, the symbionts of these four tick species were not related to the Wolbachia species found in insects. The two symbionts that live in the Malpighian tubules, one closely related to C. burnetii and the other closely related to F. tularensis, appear to be of ancient origin and be widely distributed in ticks.
PMCID: PMC168704  PMID: 9327557

Results 1-25 (1089510)