Search tips
Search criteria

Results 1-25 (1231673)

Clipboard (0)

Related Articles

1.  Acute-phase serum amyloid A production by rheumatoid arthritis synovial tissue 
Arthritis Research  2000;2(2):142-144.
Acute-phase serum amyloid A (A-SAA) is a major component of the acute-phase response. A sustained acute-phase response in rheumatoid arthritis (RA) is associated with increased joint damage. A-SAA mRNA expression was confirmed in all samples obtained from patients with RA, but not in normal synovium. A-SAA mRNA expression was also demonstrated in cultured RA synoviocytes. A-SAA protein was identified in the supernatants of primary synoviocyte cultures, and its expression colocalized with sites of macrophage accumulation and with some vascular endothelial cells. It is concluded that A-SAA is produced by inflamed RA synovial tissue. The known association between the acute-phase response and progressive joint damage may be the direct result of synovial A-SAA-induced effects on cartilage degradation.
Serum amyloid A (SAA) is the circulating precursor of amyloid A protein, the fibrillar component of amyloid deposits. In humans, four SAA genes have been described. Two genes (SAA1 and SAA2) encode A-SAA and are coordinately induced in response to inflammation. SAA1 and SAA2 are 95% homologous in both coding and noncoding regions. SAA3 is a pseudogene. SAA4 encodes constitutive SAA and is minimally inducible. A-SAA increases dramatically during acute inflammation and may reach levels that are 1000-fold greater than normal. A-SAA is mainly synthesized in the liver, but extrahepatic production has been demonstrated in many species, including humans. A-SAA mRNA is expressed in RA synoviocytes and in monocyte/macrophage cell lines such as THP-1 cells, in endothelial cells and in smooth muscle cells of atherosclerotic lesions. A-SAA has also been localized to a wide range of histologically normal tissues, including breast, stomach, intestine, pancreas, kidney, lung, tonsil, thyroid, pituitary, placenta, skin and brain.
To identify the cell types that produce A-SAA mRNA and protein, and their location in RA synovium.
Materials and methods:
Rheumatoid synovial tissue was obtained from eight patients undergoing arthroscopic biopsy and at joint replacement surgery. Total RNA was analyzed by reverse transcription (RT) polymerase chain reaction (PCR) for A-SAA mRNA. PCR products generated were confirmed by Southern blot analysis using human A-SAA cDNA. Localization of A-SAA production was examined by immunohistochemistry using a rabbit antihuman A-SAA polyclonal antibody. PrimaryRA synoviocytes were cultured to examine endogenous A-SAA mRNA expression and protein production.
A-SAA mRNA expression was detected using RT-PCR in all eight synovial tissue samples studied. Figure 1 demonstrates RT-PCR products generated using synovial tissue from three representative RA patients. Analysis of RA synovial tissue revealed differences in A-SAA mRNA levels between individual RA patients.
In order to identify the cells that expressed A-SAA mRNA in RA synovial tissue, we analyzed primary human synoviocytes (n = 2). RT-PCR analysis revealed A-SAA mRNA expression in primary RA synoviocytes (n = 2; Fig. 2). The endogenous A-SAA mRNA levels detected in individual primary RA synoviocytes varied between patients. These findings are consistent with A-SAA expression in RA synovial tissue (Fig. 1). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels were relatively similar in the RA synoviocytes examined (Fig. 2). A-SAA protein in the supernatants of primary synoviocyte cultures from four RA patients was measured using ELISA. Mean values of a control and four RA samples were 77.85, 162.5, 249.8, 321.5 and 339.04 μg/l A-SAA, respectively, confirming the production of A-SAA protein by the primary RA synoviocytes. Immunohistochemical analysis was performed to localize sites of A-SAA production in RA synovial tissue. Positive staining was present in both the lining and sublining layers of all eight RA tissues examined (Fig. 3a). Staining was intense and most prominent in the cells closest to the surface of the synovial lining layer. Positively stained cells were evident in the perivascular areas of the sublining layer. In serial sections stained with anti-CD68 monoclonal antibody, positive staining of macrophages appeared to colocalize with A-SAA-positive cells (Fig. 3b). Immunohistochemical studies of cultured primary RA synoviocytes confirmed specific cytoplasmic A-SAA expression in these cells. The specificity of the staining was confirmed by the absence of staining found on serial sections and synoviocyte cells treated with IgG (Fig. 3c).
This study demonstrates that A-SAA mRNA is expressed in several cell populations infiltrating RA synovial tissue. A-SAA mRNA expression was observed in all eight unseparated RA tissue samples studied. A-SAA mRNA expression and protein production was demonstrated in primary cultures of purified RA synoviocytes. Using immunohistochemical techniques, A-SAA protein appeared to colocalize with both lining layer and sublining layer synoviocytes, macrophages and some endothelial cells. The detection of A-SAA protein in culture media supernatants harvested from unstimulated synoviocytes confirms endogenous A-SAA production, and is consistent with A-SAA mRNA expression and translation by the same cells. Moreover, the demonstration of A-SAA protein in RA synovial tissue, RA cultured synoviocytes, macrophages and endothelial cells is consistent with previous studies that demonstrated A-SAA production by a variety of human cell populations.
The RA synovial lining layer is composed of activated macrophages and fibroblast-like synoviocytes. The macrophage is the predominant cell type and it has been shown to accumulate preferentially in the surface of the lining layer and in the perivascular areas of the sublining layer. Nevertheless, our observations strongly suggest that A-SAA is produced not only by synoviocytes, but also by synovial tissue macrophage populations. Local A-SAA protein production by vascular endothelial cells was detected in some, but not all, of the tissues examined. The reason for the variability in vascular A-SAA staining is unknown, but may be due to differences in endothelial cell activation, events related to angiogenesis or the intensity of local inflammation.
The value of measuring serum A-SAA levels as a reliable surrogate marker of inflammation has been demonstrated for several diseases including RA, juvenile chronic arthritis, psoriatic arthropathy, ankylosing spondylitis, Behçet's disease, reactive arthritis and Crohn's disease. It has been suggested that serum A-SAA levels may represent the most sensitive measurement of the acute-phase reaction. In RA, A-SAA levels provide the strongest correlations with clinical measurements of disease activity, and changes in serum levels best reflect the clinical course.
A number of biologic activities have been described for A-SAA, including several that are relevant to the understanding of inflammatory and tissue-degrading mechanisms in human arthritis. A-SAA induces migration, adhesion and tissue infiltration of circulating monocytes and polymorphonuclear leukocytes. In addition, human A-SAA can induce interleukin-1β, interleukin-1 receptor antagonist and soluble type II tumour necrosis factor receptor production by a monocyte cell line. Moreover, A-SAA can stimulate the production of cartilage-degrading proteases by both human and rabbit synoviocytes. The effects of A-SAA on protease production are interesting, because in RA a sustained acute-phase reaction has been strongly associated with progressive joint damage. The known association between the acute-phase response and progressive joint damage may be the direct result of synovial A-SAA-induced effects on cartilage degradation.
In contrast to noninflamed synovium, A-SAA mRNA expression was identified in all RA tissues examined. A-SAA appeared to be produced by synovial tissue synoviocytes, macrophages and endothelial cells. The observation of A-SAA mRNA expression in cultured RA synoviocytes and human RA synovial tissue confirms and extends recently published findings that demonstrated A-SAA mRNA expression in stimulated RA synoviocytes, but not in unstimulated RA synoviocytes.
PMCID: PMC17807  PMID: 11062604
acute-phase response; rheumatoid arthritis; serum amyloid A; synovial tissue
2.  C-Reactive Protein and Serum Amyloid A Overexpression in Lung Tissues of Chronic Obstructive Pulmonary Disease Patients: A Case-Control Study 
Background. Although researchers have consistently demonstrated systemic inflammation in chronic obstructive pulmonary disease (COPD), its origin is yet unknown. We aimed to compare the lung bronchial and parenchymal tissues as potential sources of major acute-phase reactants in COPD patients and resistant smokers.
Methods. Consecutive patients undergoing elective surgery for suspected primary lung cancer were considered for the study. Patients were categorized as COPD or resistant smokers according to their spirometric results. Lung parenchyma and bronchus sections distant from the primary lesion were obtained. C-reactive protein (CRP) and serum amyloid A (SAA1, SAA2 and SAA4) gene expressions were evaluated by RT-PCR. Protein levels were evaluated in paraffin embedded lung tissues by immunohistochemistry and in serum samples by nephelometry.
Results. Our study included 85 patients with COPD and 87 resistant smokers. In bronchial and parenchymal tissues, both CRP and SAA were overexpressed in COPD patients. In the bronchus, CRP, SAA1, SAA2, and SA4 gene expressions in COPD patients were 1.89-fold, 4.36-fold, 3.65-fold, and 3.9-fold the control values, respectively. In the parenchyma, CRP, SAA1, and SAA2 gene expressions were 2.41-, 1.97-, and 1.76-fold the control values, respectively. Immunohistochemistry showed an over-stained pattern of these markers on endovascular cells of COPD patients. There was no correlation with serum protein concentration.
Conclusions. These results indicate an overexpression of CRP and SAA in both bronchial and parenchymal tissue in COPD, which differs between both locations, indicating tissue/cell type specificity. The endothelial cells might play a role in the production of theses markers.
PMCID: PMC3691791  PMID: 23801879
COPD; C-reactive protein; Serum Amyloid A; gene expression; immunohistochemistry.
3.  Differential expression of C-Reactive protein and Serum amyloid A in different cell types in the lung tissue of chronic obstructive pulmonary disease patients 
Chronic systemic inflammatory syndrome has been implicated in the pathobiology of extrapulmonary manifestations of chronic obstructive pulmonary disease (COPD). We aimed to investigate which cell types within lung tissue are responsible for expressing major acute-phase reactants in COPD patients and disease-free (“resistant”) smokers.
An observational case–control study was performed to investigate three different cell types in surgical lung samples of COPD patients and resistant smokers via expression of the C-reactive protein (CRP) and serum amyloid A (SAA1, SAA2 and SAA4) genes. Epithelial cells, macrophages and fibroblasts from the lung parenchyma were separated by magnetic microbeads (CD326, CD14 and anti-fibroblast), and gene expression was evaluated by RT-PCR.
The sample consisted of 74 subjects, including 40 COPD patients and 34 smokers without disease. All three cell types were capable of synthesizing these biomarkers to some extent. In fibroblasts, gene expression analysis of the studied biomarkers demonstrated increased SAA2 and decreased SAA1 in patients with COPD. In epithelial cells, there was a marked increase in CRP, which was not observed in fibroblasts or macrophages. In macrophages, however, gene expression of these markers was decreased in COPD patients compared to controls.
These results provide novel information regarding the gene expression of CRP and SAA in different cell types in the lung parenchyma. This study revealed differences in the expression of these markers according to cell type and disease status and contributes to the identification of cell types that are responsible for the secretion of these molecules.
PMCID: PMC4051146  PMID: 24884805
Chronic obstructive pulmonary disease; Chronic systemic inflammatory syndrome; Acute-phase reactants; C-reactive protein; Serum amyloid A
4.  Relative serum amyloid A (SAA) values: the influence of SAA1 genotypes and corticosteroid treatment in Japanese patients with rheumatoid arthritis 
Annals of the Rheumatic Diseases  2001;60(2):124-127.
OBJECTIVES—(1) To determine whether serum concentration of serum amyloid A (SAA) protein is influenced by the SAA1 allele in Japanese patients with rheumatoid arthritis (RA) as previously shown in a healthy control group; and (2) to analyse what factors, based on such an allelic bias, influence the relative SAA values of those patients.
METHODS—SAA and C reactive protein (CRP) concentrations together with SAA1 genotypes were determined in 316 Japanese patients with RA. The relative SAA values were evaluated as an SAA/CRP ratio.
RESULTS—Comparison of the three SAA1 homozygote groups showed that the SAA/CRP ratio was highest in the 1.5/1.5 group (mean 9.0, p<0.01 v the other two homozygote groups) followed by the 1.3/1.3 group (mean 7.2, NS v the 1.1/1.1 group) and the 1.1/1.1 group (mean 4.0). The SAA/CRP ratio was significantly higher in patients receiving corticosteroids regardless of the presence of allele 1.5. No clear differences in the ratio between patients with or without amyloidosis were found.
CONCLUSION—The SAA1.5 allele and corticosteroid treatment had a positive influence on SAA concentrations in serum. These findings are important when evaluating SAA concentration in inflammatory diseases and when considering the cause or treatment of amyloidosis.

PMCID: PMC1753473  PMID: 11156544
5.  Inflammatory markers in chronic obstructive pulmonary disease patients with different α1 antitrypsin genotypes 
Archives of Medical Science : AMS  2012;8(6):1053-1058.
Chronic obstructive pulmonary disease (COPD) has been recently defined as a systemic pulmonary inflammatory disease, and congenital α1 antitrypsin deficiency is one of the well-established genetic risk factors for chronic obstructive pulmonary disease. The aim of our study was to evaluate the possible associations of α1 antitrypsin with inflammatory markers – CRP, sCD14, TNF-α, sTNFR-1, and sTNFR-2 – in patients with COPD with different α1 antitrypsin genotypes.
Material and methods
Serum biomarkers from patients (n = 355) with COPD, defined according to the GOLD criteria, were analyzed using commercial ELISA kits; α1 antitrypsin concentrations were determined by nephelometry, and α1 antitrypsin phenotyping was carried out by means of isoelectric focusing.
No significant differences in CRP, TNF-α, sTNFR-1, sTNFR-2, and sCD14 levels were found comparing COPD patients with different genotypes. In patients without α1 antitrypsin deficiency (PI*MM), a significant negative correlation between lung function (FEV1) and serum α1 antitrypsin (r = –0.522, p = 0.03) and CRP concentration (r = –0.590, p = 0.011) was detected. The level of α1 antitrypsin positively correlated with: a) CRP concentration (r = 0.671, p = 0.005), b) sCD14 (r = 0.510, p = 0.008) and c) sTNFR-1 (r = 0.567, p = 0.007).
In patients without α1 antitrypsin deficiency, the positive association of α1 antitrypsin concentration with CRP, sCD14, and sTNFR-1 and the negative association with FEV1 show the importance of α1 antitrypsin as a marker of systemic inflammation.
PMCID: PMC3542496  PMID: 23319981
chronic obstructive pulmonary disease; α1 antitrypsin; inflammatory markers
6.  Elevated C-reactive protein levels are associated with postoperative events in patients undergoing lower extremity vein bypass surgery 
Journal of vascular surgery  2006;45(1):2-9.
Inflammatory markers such as high-sensitivity C-reactive protein (hsCRP) are associated with an increased risk of cardiovascular events and with the severity of peripheral arterial disease. The effects of inflammation on the development of vein graft disease remain speculative. We hypothesized that high levels of inflammatory markers would identify patients at increased risk for adverse events (graft failure, major cardiovascular events) after lower extremity bypass surgery.
Patients (n = 91) scheduled to undergo lower extremity bypass using autogenous vein were enrolled into a prospective study at two institutions. Exclusion criteria included the presence of major infection. A baseline plasma sample was obtained on the morning of lower extremity bypass. Biomarkers for inflammation included hsCRP, fibrinogen, and serum amyloid A (SAA). Values between patients with and without critical limb ischemia were compared. Proportions of events among dichotomized populations (upper limit of normal of each laboratory assay) were compared by log-rank test.
Of the patients undergoing lower extremity bypass, 69% were men, 53% were diabetic, 81% were smokers, and their mean ankle-brachial index was 0.51 ± 0.19. The indication for lower extremity bypass was critical limb ischemia in 55%. There were no perioperative deaths and two early graft occlusions. During a mean follow-up of 342 days (range, 36–694 days) there were four deaths, 27 graft-related events, and 10 other cardiovascular events. No relationships were found between events and demographics, comorbidities, baseline ankle-brachial index, or statin use. High-sensitivity CRP (P = .005), fibrinogen (P < .001), and SAA (P = .0001) levels were associated with critical limb ischemia at presentation. Among patients with an elevated hsCRP (>5 mg/L) immediately before surgery, major postoperative vascular events occurred in 60% (21/35), compared with a 32% (18/56) rate in those with a baseline CRP <5 mg/L (P = .004, log-rank test). On multivariable analysis, only elevated hsCRP correlated with adverse graft-related or cardiovascular events (P = .018).
The inflammatory biomarkers of hsCRP, fibrinogen, and SAA correlate with peripheral arterial disease severity at presentation in patients undergoing lower extremity bypass. Patients with elevated hsCRP are at increased risk for postoperative vascular events, most of which are related to the vein graft. These findings suggest a potential relationship between inflammation and outcomes after lower extremity vein bypass surgery.
PMCID: PMC3488442  PMID: 17123769
7.  Increased concentrations of Serum amyloid A in dogs with sepsis caused by pyometra 
BMC Veterinary Research  2014;10(1):273.
Sepsis is a serious and potentially life-threatening condition and early diagnosis and appropriate treatment is crucial for survival. Pyometra is one of the most common diseases in intact female dogs. The disease often leads to sepsis (systemic inflammatory response syndrome, SIRS, caused by infection). Diagnostic markers for detecting sepsis are gaining increasing interest in veterinary medicine. Acute phase proteins (APPs) such as C-reactive protein (CRP) are useful for detecting systemic inflammation in dogs. Serum amyloid A (SAA) is another major APP in dogs that is not yet as widely used. Albumin is regarded as a negative APP and has earlier been evaluated for prediction of prognosis in septic dogs. The aim of the present study was to determine SAA, CRP and albumin concentrations in dogs with sepsis and pyometra and to evaluate whether these inflammatory markers are associated with length of postoperative hospitalization.
Thirty-one surgically treated bitches with pyometra were included, whereof 23 septic (SIRS-positive) and eight non-septic (SIRS-negative). Albumin concentrations were analyzed by routine automated methods. SAA and CRP analyses were performed with previously validated commercially available assays (ELISA and immunoturbidimetric).
Mean (±SE) serum concentrations of SAA were significantly higher in septic (130.8 ± 8.0 mg/L) compared to non-septic bitches (88.5 ± 12.5 mg/L). Using a cut-off value for SAA of 109.07 mg/L (n = 31 bitches), the sensitivity and specificity for detecting sepsis was 74% and 50%, respectively. Serum albumin concentrations were not significantly different in septic compared to non-septic bitches (mean ± SE, 25 ± 1 g/L and 26 ± 1 g/L, respectively). CRP concentrations were also not significantly different in septic (mean ± SE 225.6 ± 16.0 mg/L) compared to non-septic bitches (mean ± SE, 176.0 ± 27.1 mg/L). None of these inflammatory markers were associated with the outcome as measured by length of hospitalization.
SAA concentrations were increased in dogs with sepsis induced by pyometra and may be useful as an adjunctive diagnostic marker for sepsis. To evaluate the full potential of SAA as a marker for sepsis also in other diseases, further studies are warranted.
PMCID: PMC4247870  PMID: 25430894
SAA; CRP; SIRS; Bitch; Acute phase protein
8.  Acute-Phase Serum Amyloid A: An Inflammatory Adipokine and Potential Link between Obesity and Its Metabolic Complications 
PLoS Medicine  2006;3(6):e287.
Obesity is associated with low-grade chronic inflammation, and serum markers of inflammation are independent risk factors for cardiovascular disease (CVD). However, the molecular and cellular mechanisms that link obesity to chronic inflammation and CVD are poorly understood.
Methods and Findings
Acute-phase serum amyloid A (A-SAA) mRNA levels, and A-SAA adipose secretion and serum levels were measured in obese and nonobese individuals, obese participants who underwent weight-loss, and persons treated with the insulin sensitizer rosiglitazone. Inflammation-eliciting activity of A-SAA was investigated in human adipose stromal vascular cells, coronary vascular endothelial cells and a murine monocyte cell line. We demonstrate that A-SAA was highly and selectively expressed in human adipocytes. Moreover, A-SAA mRNA levels and A-SAA secretion from adipose tissue were significantly correlated with body mass index ( r = 0.47; p = 0.028 and r = 0.80; p = 0.0002, respectively). Serum A-SAA levels decreased significantly after weight loss in obese participants ( p = 0.006), as well as in those treated with rosiglitazone ( p = 0.033). The magnitude of the improvement in insulin sensitivity after weight loss was significantly correlated with decreases in serum A-SAA ( r = −0.74; p = 0.034). SAA treatment of vascular endothelial cells and monocytes markedly increased the production of inflammatory cytokines, e.g., interleukin (IL)-6, IL-8, tumor necrosis factor alpha, and monocyte chemoattractant protein-1. In addition, SAA increased basal lipolysis in adipose tissue culture by 47%.
A-SAA is a proinflammatory and lipolytic adipokine in humans. The increased expression of A-SAA by adipocytes in obesity suggests that it may play a critical role in local and systemic inflammation and free fatty acid production and could be a direct link between obesity and its comorbidities, such as insulin resistance and atherosclerosis. Accordingly, improvements in systemic inflammation and insulin resistance with weight loss and rosiglitazone therapy may in part be mediated by decreases in adipocyte A-SAA production.
Editors' Summary
Obesity often alters an individual's overall metabolism, which in turn leads to complications like diabetes, high blood pressure, and an increased risk of cardiovascular disease (disease of the heart and blood vessels, such as stroke or heart attacks). Having established a strong link between inflammation and cardiovascular disease, scientists now think that obesity might cause persistent low-level inflammation, and that this is the reason for the cardiovascular problems seen in many obese people. By better understanding the links between obesity, inflammation, and cardiovascular disease, the hope is that scientists may be able to find medications that can be given to obese people to reduce their risk of heart attacks and strokes.
Why Was This Study Done?
Previous research had suggested that a substance in the blood called A-SAA, which is raised by inflammation, might be a “missing link” between inflammation and cardiovascular disease, since an individual's baseline level of A-SAA is associated with the risk for cardiovascular disease (in other words, the higher the A-SAA, the higher the risk of cardiovascular disease). In the new study, researchers wanted to know whether the reason that obese people have a higher risk of cardiovascular disease is because they have higher blood levels of A-SAA.
What Did the Researchers Do and Find?
They found that obese people had higher levels of A-SAA in their blood. A-SAA appears to be produced in fat cells (or adipocytes) and then released into the blood. Obese people have higher numbers of fat cells, which could by itself account for the higher blood levels of A-SAA, but the researchers also found that the average fat cell from an obese individual produces and secretes higher levels of A-SAA than fat cells from lean individuals. When the researchers studied people who underwent weight loss, they found that A-SAA levels fell in response to weight loss, and this was associated with improvements in their metabolism. They then studied obese individuals who received the diabetes drug rosiglitazone (which is known to reduce inflammation). They found that even though these individuals did not lose weight, their A-SAA levels dropped as their metabolism improved. Trying to get at the mechanisms by which A-SAA might cause inflammation and diabetes, the researchers found that exposure to A-SAA can stimulate the activation of proinflammation molecules in a number of different cells, including blood vessel cells. It can also stimulate cells to break down fat stores and release fats, which could lead to metabolic complications and ultimately contribute to diabetes.
What Do These Findings Mean?
Together with similar results from other studies, the findings here suggest that A-SAA could promote inflammation, and that elevated levels of A-SAA in obese individuals could contribute to the chronic low-level inflammatory state that puts them at higher risk for cardiovascular complications. The authors speculate that drugs that reduce the blood levels of A-SAA might be useful as treatments for obese patients (to lower their risk of heart attacks and strokes). However, as they acknowledge, additional studies are needed to establish that A-SAA is indeed a causal link between obesity and inflammation and whether it plays a major role before it could be considered a promising drug target.
Additional Information.
Please access these Web sites via the online version of this summary at
• MedlinePlus pages on obesity and cardiovascular disease
• US Centers for Disease Control and Prevention pages on obesity and cardiovascular disease
• Wikipedia pages on obesity and cardiovascular disease (note: Wikipedia is a free Internet encyclopedia that anyone can edit)
Higher levels of Acute-phase serum amyloid A (A-SAA), a proinflammatory adipokine, in obese individuals may contribute to the chronic low-level inflammatory state that puts them at higher risk for cardiovascular complications.
PMCID: PMC1472697  PMID: 16737350
9.  Serum Matrix Metalloproteinase-3 in Comparison with Acute Phase Proteins as a Marker of Disease Activity and Radiographic Damage in Early Rheumatoid Arthritis 
Mediators of Inflammation  2013;2013:183653.
Matrix metalloproteinase-3 (MMP-3) is involved in the immunopathogenesis of rheumatoid arthritis (RA), but little is known about its relationship to genetic susceptibility and biomarkers of disease activity, especially acute phase reactants in early RA. MMP-3 was measured by ELISA in serum samples of 128 disease-modifying, drug-naïve patients and analysed in relation to shared epitope genotype, a range of circulating chemokines/cytokines, acute phase reactants, autoantibodies, cartilage oligomeric protein (COMP), and the simplified disease activity index (SDAI). MMP-3 was elevated >1.86 ng/ml in 56.25% of patients (P < 0.0001), correlated with several biomarkers, notably IL-8, IL-6, IFN γ, VEGF and COMP (r values = 0.22–0.33, P < 0.014–0.0001) and with CRP and SAA levels (r = 0.40 and 0.41, resp., P < 0.0000) and SDAI (r = 0.29, P < 0.0001), but not with erosions or nodulosis. However, the correlations of CRP and SAA with SDAI were stronger (respective values of 0.63 and 0.54, P < 0.001 for both). COMP correlated with smoking, RF, and MMP-3. MMP-3 is significantly associated with disease activity, inflammatory mediators and cartilage breakdown, making it a potential biomarker of disease severity, but seemingly less useful than CRP and SAA as a biomarker of disease activity in early RA.
PMCID: PMC3649689  PMID: 23690656
10.  Acute phase response of serum amyloid A protein and C reactive protein to the common cold and influenza. 
Journal of Clinical Pathology  1985;38(3):312-316.
C reactive protein (CRP) and serum amyloid A protein (SAA) are sensitive and rapid acute phase reactants, and their measurement for monitoring inflammatory disease and assessing the prognosis in secondary amyloidosis is gaining widespread acceptance. The changes in these proteins in eight subjects suffering from natural colds, 15 subjects with experimentally induced colds (rhinoviruses E1, 3, 9, 14, or 31), and eight with experimentally induced influenza (A/Eng/40/83) were studied. SAA concentration increased in 21 of the 23 subjects with natural or experimental rhinovirus colds (mean increase 95 mg/l); CRP concentration increased in 11 (mean increase 11 mg/l). All subjects with influenza showed pronounced increases in SAA concentrations (mean increase 642 mg/l) while six showed increases in CRP concentration (mean increase 22 mg/l). All these increases were highly significant (p less than 0.001). Asymptomatic excretors of both rhinovirus and influenza virus showed significant increases in SAA concentration (p = 0.015 for rhinovirus and p less than 0.001 for influenza virus) but not in CRP concentration. No changes in SAA or CRP values were seen in 12 volunteers after challenge with saline. These observations suggest that caution is required in the interpretation of estimations of SAA concentration and that it may be too sensitive an acute phase protein for clinical use as its concentration may be raised in both trivial and asymptomatic viral infections.
PMCID: PMC499132  PMID: 3973057
11.  Serum Amyloid A as a Useful Indicator of Disease Activity in Patients with Ankylosing Spondylitis 
Yonsei Medical Journal  2007;48(2):218-224.
To investigate whether serum amyloid A (SAA) levels are increased in patients with ankylosing spondylitis (AS) and whether its levels correlate well with AS disease activity.
Materials and Methods
Thirty-eight patients with AS and 38 age- and sex-matched control subjects were enrolled in this cross-sectional study. Their SAA levels were quantitatively measured by immunonephelometry. An established, self-administered instrument for evaluating disease activity (Bath Ankylosing Spondylitis Disease Activity Index, BASDAI) was used to measure and acute phase reactants, including erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), in patients with AS.
Patients with AS had a significantly higher mean SAA level than controls (9.52 ± 7.49 mg/L versus 2.73 ± 1.57 mg/L, p < 0.05), and the mean BASDAI score of patients with elevated SAA levels was significantly higher than that of patients with normal SAA levels (5.6 ± 1.3 versus 4.4 ± 1.5, p < 0.05). SAA levels showed significant correlations with BASDAI scores (r = 0.431, p = 0.007), ESR (r = 0.521, p = 0.001) and CRP levels (r = 0.648, p < 0.001). Additionally, the correlation between ESR and CRP levels also appeared significant (r = 0.703, p < 0.001). In those with normal ESR or CRP levels, SAA levels and BASDAI scores were elevated (p < 0.05) and showed a trend of positive correlation with one another.
Our data showed that SAA levels were increased in patients with AS and correlated well with disease activity. These findings suggest that SAA can be used as a valuable indicator of disease activity in AS.
PMCID: PMC2628111  PMID: 17461519
Ankylosing spondylitis; bath ankylosing spondylitis disease activity index; acute phase reactants
12.  Linkage of protection against amyloid fibril formation in the mouse to a single, autosomal dominant gene 
The Journal of Experimental Medicine  1995;181(6):2249-2252.
Inbred strains of mice provide a model for studies of the pathogenesis of amyloid A (AA) amyloidosis. All susceptible strains of mice described to date codominantly express two serum amyloid A (apoSAA) isoforms, apoSAA1 and apoSAA2, of which only apoSAA2 serves as a precursor for amyloid fibrils. In previous studies, we have shown that the CE/J strain, which produces a single, novel apoSAA isoform, apoSAACE/J, is amyloid resistant. In the present study amyloid- resistant CE/J females were mated with amyloid-susceptible CBA/J males to produce F1 hybrid offspring which were then backcrossed to the parental CBA/J mouse strain. Amyloid susceptibility was determined in 30 backcrossed mice 72 h after injection of murine amyloid enhancing factor and silver nitrate. ApoSAA isoforms in plasma were separated by isoelectric focusing gel electrophoresis and visualized after immunoblotting with anti-AA antiserum. Amyloid A fibrils in spleen homogenates were denatured by formic acid and AA protein was quantified by ELISA using anti-mouse apoSAA antibodies. Values < 5 apoSAA equivalent units were considered negative. 13 mice expressed an apoSAA1 and apoSAA2 doublet characteristic of CBA/J mice, whereas 17 mice, expressed the apoSAACE/J isoform codominantly with apoSAA1 and apoSAA2. The correlation of amyloid resistance to expression of the apoSAACE/J isoform was absolute (17/17 were negative; mean score 2.6 +/- 0.17 [standard error of the mean] apoSAA equivalent units) and the correlation between amyloid susceptibility and the expression of apoSAA2/apoSAA1 was also striking (12/13 were amyloid positive; mean score 47.9 +/- 9.0 [standard error of the mean] apoSAA equivalent units (P < 0.001). This is not significantly different from the 50% segregation of apoSAA phenotypes expected for linkage to a single gene. These results indicate that a single gene governs apoSAACE/J expression and thus confers protection against amyloid deposition even in the presence of apoSAA1 and apoSAA2 isoforms and show for the first time that resistance to AA amyloidosis is a dominant trait governed by a single gene.
PMCID: PMC2192067  PMID: 7760010
13.  Serum amyloid A protein in acute viral infections. 
Archives of Disease in Childhood  1993;68(2):210-214.
Concentrations of serum amyloid A protein (SAA) were measured in 254 children with viral diseases, including measles, varicella, rubella, mumps, echo-30 meningitis, chronic hepatitis B and C, and in eight with Kawasaki disease. Latex agglutination nephelometric immunoassay was used for assaying SAA. In 191 out of 195 patients (98%), SAA concentrations became markedly raised in the acute phase of the viral disease: measles (97%), varicella (100%), mumps (95%), and echo-30 meningitis (99%) with mean titres of 82.4, 80.5, 60.2, 75.2, and 101.1 micrograms/ml respectively. This increase in SAA was followed by a rapid return to normal concentrations (< 5 micrograms/ml) during convalescence. Remarkably higher concentrations of SAA (mean 1630 micrograms/ml) were detected in the acute phase of patients with Kawasaki disease, but in most of the children with chronic hepatitis B or C, the titres of SAA remained normal. There was no close correlation between SAA and serum concentrations for alpha 1-acid glycoprotein, beta 2-microglobulin, transferrin, and IgG. There was a clear correlation between SAA and C reactive protein concentrations, although SAA showed a greater incremental change than C reactive protein in the acute phase. In the acute phase of these viral diseases, 56% of the patients had raised SAA concentrations (> or = 5 micrograms/ml) with normal C reactive protein concentrations (< 5 micrograms/ml). These results indicate that SAA could be useful as an inflammatory marker in children with acute viral infections.
PMCID: PMC1029237  PMID: 8481043
14.  Elevated levels of serum amyloid A indicate poor prognosis in patients with esophageal squamous cell carcinoma 
BMC Cancer  2012;12:365.
Increase of Serum amyloid A (SAA) level has been observed in patients with a variety of cancers. The objective of this study was to determined whether SAA level could be used as a prognostic parameter in patients with esophageal squamous cell carcinoma (ESCC).
SAA levels were measured by rate nephelometry immunoassay in 167 healthy controls and 167 ESCC patients prior to surgical resection. Statistical associations between clinicopathological observations and SAA levels were determined using the Mann–Whitney U test. The clinical value of SAA level as a prognostic parameter was evaluated using the Cox’s proportional hazards model.
SAA levels were significantly higher in patients with ESCC compared to levels in healthy controls (13.88 ± 15.19 mg/L vs. 2.26 ± 1.66 mg/L, P < 0.001). Elevation of SAA levels (≥ 8.0 mg/L) was observed in 54.5% (91/167) of patients with ESCC but not in healthy controls. SAA levels were associated with tumor size (P < 0.001), histological differentiation (P = 0.015), T classification (P < 0.001), clinical stage (P < 0.001), lymph node metastasis (P < 0.001) and distant metastasis (P < 0.001), but not with the age and gender of the patients or tumor location. Multivariate analysis revealed that patients with an elevated level of SAA (≥ 8.0 mg/L) had significantly lower 5-year survival rate than those with non-elevated SAA (< 8.0 mg/L, log-rank P < 0.0001).
An elevated level of preoperative SAA was found to associate with tumor progression and poor survival in patients with ESCC.
PMCID: PMC3492207  PMID: 22917173
Serum amyloid A; Esophageal squamous cell carcinoma; Prognosis; Biomark
15.  Expression of serum amyloid A in uterine cervical cancer 
Diagnostic Pathology  2014;9:16.
As an acute-phase protein, serum amyloid A (SAA) is expressed primarily in the liver. However, its expression in extrahepatic tissues, especially in tumor tissues, was also demonstrated recently. In our study, we investigated the expression of SAA in uterine cervical carcinomas, and our results suggested its potential as a serum biomarker.
Quantitative real-time polymerase chain reaction (RT-PCR), immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to evaluate the SAA gene and protein expression levels in the tissues and sera of patients with non-neoplastic lesions (NNLs), cervical intraepithelial neoplasia (CIN) and cervical carcinoma (CC).
Compared with NNLs, the SAA gene (SAA1 and SAA4) expression levels were significantly higher in uterine CC (mean copy numbers: 138.7 vs. 5.01, P < 0.000; and 1.8 vs. 0.079, P = 0.001, respectively) by real-time PCR. IHC revealed cytoplasmic SAA protein staining in tissues from adenocarcinoma and squamous cell carcinoma of the cervix. The median serum concentrations (μg/ml) of SAA were 6.02 in patients with NNLs and 10.98 in patients with CIN (P = 0.31). In contrast, the median serum SAA concentration was 23.7 μg/ml in uterine CC patients, which was significantly higher than the SAA concentrations of the NNL group (P = 0.002) and the CIN group (P = 0.024).
Our data suggested that SAA might be a uterine CC cell product. High SAA concentrations in the serum of CC patients may have a role in monitoring disease occurrence and could have therapeutic applications.
Virtual slides
The virtual slide(s) for this article can be found here:
PMCID: PMC3907664  PMID: 24447576
Uterine cervical carcinoma; Serum amyloid A; Tumor marker
16.  Biomarkers of inflammation are associated with colorectal cancer risk in women but are not suitable as early detection markers 
Initial studies have investigated the association between inflammation and colorectal cancer (CRC) using C-reactive protein (CRP) as a pro-inflammatory biomarker and have noted inconsistent results among women. We here report findings from a large prospective study with repeat measurements of CRP, as well as serum-amyloid A (SAA), an additional biomarker of inflammation, and risk of CRC. In the Women’s Health Initiative Observational Study, we examined associations of CRP and SAA with CRC using repeat assessments (baseline and 3-year follow-up) among 953 matched case-control pairs for CRP and 966 pairs for SAA. Multivariate-adjusted conditional-logistic regression models were used with two-sided tests of significance. Receiver operating characteristic (ROC) curve analysis assessed their utility as early detection markers. Colon cancer risk (odds ratio, OR, and 95% confidence intervals) among women in the highest quintiles of CRP or SAA compared to those in the lowest quintiles was ORcolon/CRP=1.37 (0.95-1.97, p-trend=0.04) and ORcolon/SAA=1.26 (0.88-1.80, p-trend=0.10), respectively. Women with elevated concentrations of both CRP and SAA had an increased risk of ORcolon=1.50 (1.12-2.00, p-value=0.006) compared to those with low concentrations. No positive associations were observed with rectal cancer and weaker associations for CRC overall. Temporal changes in biomarkers over 3-years did not predict risk. The area under the 6-month ROC curve for CRP+SAA was 0.62 (95%CI 0.55-0.68). Elevated inflammatory biomarkers are associated with an increased risk of CRC, mainly colon cancer. Nevertheless, changes in the biomarkers over time do not suggest that they merit consideration as early-detection markers for CRC.
PMCID: PMC3609926  PMID: 23161620
C-reactive protein (CRP); serum amyloid A (SAA); colorectal cancer; women; early detection
17.  Correlates of circulating C-reactive protein and serum amyloid A concentrations in breast cancer survivors 
Inflammatory status may be an important prognostic factor for breast cancer. Correlates of markers of inflammation in breast cancer survivors have not been thoroughly evaluated.
Using data from, the Health, Eating, Activity, and Lifestyle (HEAL) Study (a population-based, multiethnic prospective cohort study of female breast cancer patients) we evaluated the associations between circulating markers of inflammation (C-reactive protein [CRP] and serum amyloid A [SAA], measured ~31 months after diagnosis) and several demographic, lifestyle, and clinical characteristics in 741 disease-free breast cancer survivors. Analysis of variance and regression methods were used for statistical analyses of log-transformed values of CRP and SAA.
After adjusting for age, BMI, ethnicity, and study site, higher concentrations of CRP were associated with increasing concentration of SAA (p-trend<0.0001), increasing age (p-trend<0.0001), increasing BMI (p-trend<0.0001), increasing waist circumference (p-trend<0.0001), positive history of heart failure (p=0.0007), decreasing physical activity (p-trend=0.005), Hispanic ethnicity (p=0.05 vs. non-Hispanic white), and current smoking (p=0.03 vs. never smoking). Vitamin E supplementation (p=0.0005), tamoxifen use (p=0.008), and radiation treatment (compared to no chemotherapy or radiation; p=0.04) were associated with reduced CRP. Associations of CRP with clinical characteristics were not significant in the adjusted models. In a multivariate analysis, CRP showed significant associations with waist circumference, BMI, age, history of heart failure, tamoxifen use, and vitamin E supplementation (R2=0.35). Similar, yet fewer, associations were observed for SAA (R2=0.19).
This study highlights important correlates of inflammatory status in breast cancer patients. Our results are consistent with those from similar studies of healthy women.
PMCID: PMC3523176  PMID: 18401703
body mass index (BMI); breast cancer; C-reactive protein (CRP); inflammation; serum amyloid A (SAA)
18.  Serum amyloid-A protein concentration in rheumatoid arthritis and its role in monitoring disease activity. 
Annals of the Rheumatic Diseases  1983;42(6):665-667.
The serum concentrations of serum amyloid-A protein (SAA), C-reactive protein (CRP), and alpha 1-acid glycoprotein (alpha 1-AGP) have been measured in 185 patients with rheumatoid arthritis. SAA and CRP concentrations correlated well (r = 0.86) both within and above the normal ranges, though SAA showed a greater incremental increase than CRP. All patients with normal SAA levels also had normal CRP and alpha 1-AGP concentrations. In contrast, in 40% of patients with normal CRP and alpha 1-AGP concentrations the SAA was raised, sometimes markedly so. The clinical and serological assessments of disease activity in these patients were not significantly different from those with concomitantly raised levels of CRP. These findings suggest that SAA is a more sensitive marker of inflammation than is CRP. The role of the measurement of SAA as a monitor for inflammatory disease activity is discussed.
PMCID: PMC1001325  PMID: 6651371
19.  Improved Diagnosis of Pancreatic Adenocarcinoma using Haptoglobin and Serum Amyloid A in a Panel Screen 
World journal of surgery  2009;33(4):716-722.
Timely and accurate diagnosis of pancreatic adenocarcinoma (PA) is hampered by the lack of effective circulating biomarkers. No single test has emerged that improves upon the commonly used biomarker, cancer antigen 19-9 (CA 19-9) to effectively discriminate PA from benign conditions. The goals of this study were to validate two acute phase proteins, haptoglobin and serum amyloid A (SAA), as biomarkers for PA and determine if the combination of haptoglobin, SAA and CA 19-9 would improve PA diagnosis over CA 19-9 alone.
Levels of haptoglobin, SAA and CA 19-9 were measured in pre-treatment sera from 75 PA patients, 32 patients with chronic pancreatitis, 42 patients with other benign pancreatic disease or biliary stricture and 150 healthy control subjects by ELISA or colorimetric binding assay. Relative levels of haptoglobin or SAA were compared between groups using ANOVA. The diagnostic accuracy of serum haptoglobin and SAA levels were investigated using receiver operating characteristics analysis. Using classification tree analysis, an algorithm was developed that used haptoglobin, SAA and CA 19-9 in a panel diagnostic screen.
Both haptoglobin and SAA were significantly elevated in sera from PA patients compared to healthy control subjects (P < 0.0001) and patients with chronic pancreatitis (P = 0.01). Haptoglobin was significantly elevated in sera from PA patients relative to patients with other benign diseases (P = 0.0015), whereas SAA fell short of significance in the same comparison (P = 0.0508). Receiver operating characteristic analysis indicated that haptoglobin (AUC = 0.792) was a better diagnostic marker than SAA (AUC = 0.691) over multiple threshold cutoffs. Using specific cutoffs that minimized overall misclassification, haptoglobin yielded a sensitivity of 82.7 % and a specificity of 71.1% and SAA yielded a sensitivity of 34.7% and 90.2% specificity when discriminating PA cases from all non-PA controls. In the same sample set, CA 19-9 yielded a sensitivity of 77.3% and a specificity of 91.1%. Combining data from haptoglobin, SAA and CA 19-9 in a panel diagnostic screen improved overall accuracy over CA 19-9 alone yielding a sensitivity of 81.3% and a specificity of 95.5%.
These data demonstrate that haptoglobin and SAA are useful in discriminating PA from benign conditions as well as healthy controls when used in a panel diagnostic screen. This study supports the use of combined biomarkers for improved accuracy in the diagnosis of PA.
PMCID: PMC2656575  PMID: 19082654
20.  Serum Amyloid A (SAA): a Novel Biomarker for Endometrial Cancer 
Cancer  2010;116(4):843-851.
We investigated the expression of Serum-Amyloid-A (SAA) in endometrial endometrioid carcinoma (EEC), and evaluated its potential as a serum biomarker.
SAA gene and protein expression levels were evaluated in EEC and normal endometrial tissues (NEC), by real time-PCR, immunohistochemistry (IHC) and flow cytometry. SAA concentration in 194 serum samples from 50 healthy-women, 42 women with benign diseases and 102 patients including 49 grade-1, 38 grade-2 and 15 grade-3 EEC was also studied by a sensitive bead-based-immunoassay.
SAA gene expression levels were significantly higher in EEC when compared to NEC (mean-copy-number by RT-PCR = 182 vs 1.9; P=0.001). IHC revealed diffuse cytoplasmic SAA protein staining in poorly differentiated EEC tissues. High intracellular levels of SAA were identified in primary EEC cell lines evaluated by flow cytometry and SAA was found to be actively secreted in vitro. SAA concentrations (μg/ml) had medians of 6.0 in normal healthy females and 6.0 in patients with benign disease (P=0.92). In contrast, SAA values in the serum of EEC patients had a median of 23.7 significantly higher than those of the healthy group (P=0.001) and benign group (P=0.001). Patients harboring G3 EEC were found to have SAA concentrations significantly higher than G1/G2 patients.
SAA is not only a liver-secreted-protein but is also an EEC-cell product. SAA is expressed and actively secreted by G3-EEC and it is present in high concentration in the serum of EEC patients. SAA may represent a novel biomarker for EEC to monitor disease recurrence and response to therapy.
PMCID: PMC2819580  PMID: 20041483
Endometrial carcinoma; Serum Amyloid A; Biomarkers; Tumor markers
21.  Maternal and Cord Blood Levels of Serum Amyloid A, C-Reactive Protein, Tumor Necrosis Factor-α, Interleukin-1β, and Interleukin-8 During and After Delivery 
Mediators of Inflammation  2005;2005(2):96-100.
C-reactive protein (CRP) and serum amyloid A (SAA) are acute-phase proteins mainly synthesized by the liver in response to some cytokines. They are potentially useful to diagnosing infection and monitoring different clinical conditions. The aim of this study was to measure SAA and CRP in maternal and cord blood during and after delivery and try to correlate these proteins with tumor necrosis factor-α , interleukin-1β, and interleukin-8. Acute-phase proteins and cytokines were measured by ELISA in 24 healthy pregnant women undergoing vaginal delivery or Cesarean section. Cord blood samples in addition to maternal blood were collected. SAA and CRP reached the maximum maternal serum levels 24 hours after delivery, while cytokines remained constant over time. SAA and CRP were significantly higher in maternal serum than in newborn's (P < .001) at the moment of delivery. SAA and CRP, regardless of the type of delivery, reproduce the common pattern observed in most inflammatory conditions. Proinflammatory cytokine serum levels do not mirror the increase in SAA and CRP levels.
PMCID: PMC1533909  PMID: 16030392
22.  Serum amyloid A protein concentration in bone marrow transplantation for beta thalassaemia. 
Journal of Clinical Pathology  1992;45(4):348-351.
AIMS: To investigate whether serum amyloid A protein (SAA) and C-reactive protein (CRP) concentrations could be used in the management of beta thalassaemic patients undergoing bone marrow transplantation (BMT). METHODS: Serum SAA and CRP concentrations were determined in paired samples from 66 patients with beta thalassaemia before and after BMT. Serum SAA concentrations were determined by an enzyme linked immunoassay (EIA); serum CRP concentrations were determined by a nephelometric assay. RESULTS: Serum SAA concentrations before transplantation were significantly higher in the group that subsequently rejected the transplant than the group without complications. SAA concentrations increased after BMT in acute graft versus host disease (GvHD) and rejection. No significant increase in SAA or CRP was found in chronic GvHD. Increases in serum in SAA and CRP concentrations were not related to concomitant infection episodes. CONCLUSIONS: The different acute phase response in acute GvHD and rejection compared with chronic GvHD suggests that different immunopathogenic mechanisms are responsible.
PMCID: PMC495278  PMID: 1577974
23.  Multiple Inflammatory Biomarker Detection in a Prospective Cohort Study: A Cross-Validation between Well-Established Single-Biomarker Techniques and an Electrochemiluminescense-Based Multi-Array Platform 
PLoS ONE  2013;8(3):e58576.
In terms of time, effort and quality, multiplex technology is an attractive alternative for well-established single-biomarker measurements in clinical studies. However, limited data comparing these methods are available.
We measured, in a large ongoing cohort study (n = 574), by means of both a 4-plex multi-array biomarker assay developed by MesoScaleDiscovery (MSD) and single-biomarker techniques (ELISA or immunoturbidimetric assay), the following biomarkers of low-grade inflammation: C-reactive protein (CRP), serum amyloid A (SAA), soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vascular cell adhesion molecule 1 (sVCAM-1). These measures were realigned by weighted Deming regression and compared across a wide spectrum of subjects’ cardiovascular risk factors by ANOVA.
Despite that both methods ranked individuals’ levels of biomarkers very similarly (Pearson’s r all≥0.755) absolute concentrations of all biomarkers differed significantly between methods. Equations retrieved by the Deming regression enabled proper realignment of the data to overcome these differences, such that intra-class correlation coefficients were then 0.996 (CRP), 0.711 (SAA), 0.895 (sICAM-1) and 0.858 (sVCAM-1). Additionally, individual biomarkers differed across categories of glucose metabolism, weight, metabolic syndrome and smoking status to a similar extent by either method.
Multiple low-grade inflammatory biomarker data obtained by the 4-plex multi-array platform of MSD or by well-established single-biomarker methods are comparable after proper realignment of differences in absolute concentrations, and are equally associated with cardiovascular risk factors, regardless of such differences. Given its greater efficiency, the MSD platform is a potential tool for the quantification of multiple biomarkers of low-grade inflammation in large ongoing and future clinical studies.
PMCID: PMC3589355  PMID: 23472208
24.  Sputum Inflammatory Cell-Based Classification of Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease 
PLoS ONE  2013;8(5):e57678.
Patients with chronic obstructive pulmonary disease (COPD) commonly suffer from acute exacerbations (AECOPD) and display varying disease severity. However, there is no available biomarker for the classification of AECOPD. This study is aimed at investigating the sputum cellular profiles to classify patients with AECOPD.
A total of 83 patients with AECOPD and 26 healthy controls were recruited. Their demographic and clinical characteristics were recorded, and their lung function was examined. The phenotypes of sputum inflammatory cells were characterised, and the concentrations of sputum and serum amyloid-A (SAA), C-reactive protein (CRP), interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9) were measured. Based on the sputum inflammatory cell profiles, individual patients were categorized into one of the four subgroups with inflammatory eosinophilic, neutrophilic, paucigranulocytic, and mixed granulocytic AECOPD. Most AECOPD patients were reevaluated within 12–14 months after discharge.
There were 10 (12%) eosinophilic, 36 (43%) neutrophilic, 5 (6%) mixed granulocytic, and 32 (39%) paucigranulocytic AECOPD patients. The patients with mixed granulocytic or neutrophilic AECOPD had a higher BODE score, more sputum inflammatory cells, lower lung function, and longer hospital stay, accompanied by higher concentrations of sputum MMP-9, IL-6 and CRP, and serum SAA, IL-6 and CRP. Notably, 83% of patients with neutrophilic AECOPD displayed evidence of bacterial infection and many of them responded poorly to standard therapies. In addition, patients with mixed granulocytic or neutrophilic stable COPD remained at lower lung functions and higher levels of inflammation.
Patients with AECOPD display heterogeneous inflammation, and the profiles of sputum inflammatory cells may be used as valuable biomarkers for the classification of AECOPD patients.
PMCID: PMC3669375  PMID: 23741289
25.  The Acute-Phase Proteins Serum Amyloid A and C Reactive Protein in Transudates and Exudates 
Mediators of Inflammation  2006;2006(1):47297.
The distinction between exudates and transudates is very important in the patient management. Here we evaluate whether the acute-phase protein serum amyloid A (SAA), in comparison with C reactive protein (CRP) and total protein (TP), can be useful in this discrimination. CRP, SAA, and TP were determined in 36 exudate samples (27 pleural and 9 ascitic) and in 12 transudates (9 pleural and 3 ascitic). CRP, SAA, and TP were measured. SAA present in the exudate corresponded to 10% of the amount found in serum, that is, the exudate/serum ratio (E/S) was 0.10 ± 0.13. For comparison, the exudate/serum ratio for CRP and TP was 0.39 ± 0.37 and 0.68 ± 0.15, respectively. There was a strong positive correlation between serum and exudate SAA concentration (r = 0.764;p < 0.0001). The concentration of SAA in transudates was low and did not overlap with that found in exudates (0.02-0.21 versus 0.8–360.5 g/mL). SAA in pleural and ascitic exudates results mainly from leakage of the serum protein via the inflamed membrane. A comparison of the E/S ratio of SAA and CRP points SAA as a very good marker in discriminating between exudates and transudates.
PMCID: PMC1570385  PMID: 16864904

Results 1-25 (1231673)