PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (962973)

Clipboard (0)
None

Related Articles

1.  Amyotrophic Lateral Sclerosis–Frontotemporal Lobar Dementia in 3 Families With p.Ala382Thr TARDBP Mutations 
Archives of neurology  2010;67(8):1002-1009.
Background
TAR DNA-binding protein 43, encoded by the TARDBP gene, has been identified as the major pathological protein of frontotemporal lobar dementia (FTLD) with or without amyotrophic lateral sclerosis (ALS) and sporadic ALS. Subsequently, mutations in the TARDBP gene have been detected in 2% to 3% of patients with ALS (both familial and sporadic ALS). However, to our knowledge, there is only 1 description of 2 patients with FTLD and TARDBP gene mutations who later developed motor neuron disease.
Objective
To describe cognitive abnormalities in 3 Italian families with familial ALS and TARDBP gene mutations.
Design, Setting, and Participants
Genetic, neuropsychological, and neuroimaging analyses in 36 patients with familial non–superoxide dismutase 1 gene (SOD1) ALS and 280 healthy controls.
Main Outcome Measure
We identified 3 index cases of familial ALS carrying the p.Ala382Thr missense mutation of the TARDBP gene and with clinical, neuroimaging, and neuropsychological features of FTLD.
Results
The p.Ala382Thr missense mutation of the TARDBP gene was absent in the 280 controls. It was present in all affected members of the 3 families for whom DNA was available. All affected members of the 3 families developed FTLD after the onset of ALS, confirmed by neuropsychological testing and hypometabolism in frontal associative areas assessed with fludeoxyglucose F 18 positron emission tomography and computed tomography.
Conclusions
Three apparently unrelated families with familial ALS carrying the p.Ala382Thr TARDBP missense mutation developed FTLD. In these families, FTLD co-segregates with ALS. Patients with ALS carrying TARDBP mutations may develop FTLD.
doi:10.1001/archneurol.2010.173
PMCID: PMC3535689  PMID: 20697052
2.  The p.A382T TARDBP gene mutation in Sardinian patients affected by Parkinson’s disease and other degenerative parkinsonisms 
Neurogenetics  2013;14(2):161-166.
Background
Based on our previous finding of the p.A382T founder mutation in ALS patients with concomitant parkinsonism in the Sardinian population, we hypothesized that the same variant may underlie PD and/or other forms of degenerative parkinsonism on this Mediterranean island.
Design
We screened a cohort of 611 patients with PD (544 cases) and other forms of degenerative parkinsonism (67 cases), and 604 unrelated controls for the c.1144G>A (p.A382T) missense mutation of the TARDBP gene.
Results
The p.A382T mutation was identified in 9 patients with parkinsonism. Of these, 5 (0.9% of PD patients) presented a typical PD (2 with familiar forms), while 4 patients (6.0% of all other forms of parkinsonism) presented a peculiar clinical presentation quite different from classical atypical parkinsonism with an overlap of extrapyramidal-pyramidal-cognitive clinical signs. The mutation was found in 8 Sardinian controls (1.3%) consistent with a founder mutation in the island population.
Conclusions
Our findings suggest that the clinical presentation of the p.A382T TARDBP gene mutation may include forms of parkinsonism in which the extrapyramidal signs are the crucial core of the disease at onset. These forms can present PSP or CBD-like clinical signs, with bulbar and/or extrabulbar pyramidal signs and cognitive impairment. No evidence of association has been found between TARDBP gene mutation and typical PD.
doi:10.1007/s10048-013-0360-2
PMCID: PMC3661017  PMID: 23546887
TARDBP gene mutation; degenerative parkinsonism; TDP-43 Proteinopathies; Sardinia
3.  Broadening the phenotype of TARDBP mutations: the TARDBP Ala382Thr mutation and Parkinson’s disease in Sardinia 
Neurogenetics  2011;12(3):203-209.
Mutations in the TARDBP gene are a cause of autosomal dominant amyotrophic lateral sclerosis (ALS) and of frontotemporal lobar degeneration (FTLD), but they have not been found so far in patients with Parkinson’s disease (PD). A founder TARDBP mutation (p.Ala382Thr) was recently identified as the cause of ~30% of ALS cases in Sardinia, a Mediterranean genetic isolate. We studied 327 consecutive Sardinian patients with clinically diagnosed PD (88 familial, 239 sporadic) and 578 Sardinian controls. One family with FTLD and parkinsonism was also included. The p.Ala382Thr heterozygous mutation was detected in eight unrelated PD patients (2.5%). The three patients from the FTLD/parkinsonism family also carried this mutation. Within the control group, there were three heterozygous mutation carriers. During follow-up, one of these individuals developed motoneuron disease and another, a rapidly progressive dementia; the third remains healthy at the age of 79 but two close relatives developed motoneuron disease and dementia. The eight PD patients carrying the p.Ala382Thr mutation had all sporadic disease presentation. Their average onset age was 70.0 years (SD 9.4, range 51–79), which is later but not significantly different from that of the patients who did not carry this mutation. In conclusion, we expand the clinical spectrum associated with TARDBP mutations to FTLD with parkinsonism without motoneuron disease and to clinically definite PD. The TDP-43 protein might be directly involved in a broader neurodegenerative spectrum, including not only motoneuron disease and FTLD but also PD.
doi:10.1007/s10048-011-0288-3
PMCID: PMC3158341  PMID: 21667065
Parkinson’s disease; Frontotemporal lobar degeneration; Amyotrophic lateral sclerosis; Sardinia; TARDBP; Mutation
4.  FUS and TARDBP but Not SOD1 Interact in Genetic Models of Amyotrophic Lateral Sclerosis 
PLoS Genetics  2011;7(8):e1002214.
Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS–related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS–related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.
Author Summary
Mutations in the SOD1, TARDBP, and FUS genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). However, possible interactions between these ALS–causative genetic mutations have not been examined. Here we expressed each of three human FUS mutations (R521H, R521C, and S57Δ) in zebrafish embryos, with or without knocking down the zebrafish homolog Fus, and observed a motor phenotype consisting of significant behavioral (touch-evoked escape response) and cellular (shortened axonal projections from motor neurons) deficits due to loss of function for the R521H and R521C mutations and/or toxic gain of function solely for the R521H mutation. Wild-type FUS could rescue the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP is upstream of FUS in this pathway responsible for motor neuron disorder. Furthermore, neither TARDBP nor FUS were able to modify and/or rescue the motor phenotype caused by mutant SOD1, and likewise SOD1 failed to rescue the phenotype of zebrafish expressing mutant TARDBP or FUS. Our results indicate that TARDBP acts upstream of FUS in a pathogenic pathway that is distinct from that of SOD1.
doi:10.1371/journal.pgen.1002214
PMCID: PMC3150442  PMID: 21829392
5.  Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72 
Brain  2012;135(3):784-793.
A large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72, a gene located on chromosome 9p21, has been recently reported to be responsible for ∼40% of familial amyotrophic lateral sclerosis cases of European ancestry. The aim of the current article was to describe the phenotype of amyotrophic lateral sclerosis cases carrying the expansion by providing a detailed clinical description of affected cases from representative multi-generational kindreds, and by analysing the age of onset, gender ratio and survival in a large cohort of patients with familial amyotrophic lateral sclerosis. We collected DNA and analysed phenotype data for 141 index Italian familial amyotrophic lateral sclerosis cases (21 of Sardinian ancestry) and 41 German index familial amyotrophic lateral sclerosis cases. Pathogenic repeat expansions were detected in 45 (37.5%) patients from mainland Italy, 12 (57.1%) patients of Sardinian ancestry and nine (22.0%) of the 41 German index familial amyotrophic lateral sclerosis cases. The disease was maternally transmitted in 27 (49.1%) pedigrees and paternally transmitted in 28 (50.9%) pedigrees (P = non-significant). On average, children developed disease 7.0 years earlier than their parents [children: 55.8 years (standard deviation 7.9), parents: 62.8 (standard deviation 10.9); P = 0.003]. Parental phenotype influenced the type of clinical symptoms manifested by the child: of the 13 cases where the affected parent had an amyotrophic lateral sclerosis–frontotemporal dementia or frontotemporal dementia, the affected child also developed amyotrophic lateral sclerosis–frontotemporal dementia in nine cases. When compared with patients carrying mutations of other amyotrophic lateral sclerosis-related genes, those with C9ORF72 expansion had commonly a bulbar onset (42.2% compared with 25.0% among non-C9ORF72 expansion cases, P = 0.03) and cognitive impairment (46.7% compared with 9.1% among non-C9ORF72 expansion cases, P = 0.0001). Median survival from symptom onset among cases carrying C9ORF72 repeat expansion was 3.2 years lower than that of patients carrying TARDBP mutations (5.0 years; 95% confidence interval: 3.6–7.2) and longer than those with FUS mutations (1.9 years; 95% confidence interval: 1.7–2.1). We conclude that C9ORF72 hexanucleotide repeat expansions were the most frequent mutation in our large cohort of patients with familial amyotrophic lateral sclerosis of Italian, Sardinian and German ancestry. Together with mutation of SOD1, TARDBP and FUS, mutations of C9ORF72 account for ∼60% of familial amyotrophic lateral sclerosis in Italy. Patients with C9ORF72 hexanucleotide repeat expansions present some phenotypic differences compared with patients with mutations of other genes or with unknown mutations, namely a high incidence of bulbar-onset disease and comorbidity with frontotemporal dementia. Their pedigrees typically display a high frequency of cases with pure frontotemporal dementia, widening the concept of familial amyotrophic lateral sclerosis.
doi:10.1093/brain/awr366
PMCID: PMC3286333  PMID: 22366794
amyotrophic lateral sclerosis; familial ALS, C9ORF72 gene; phenotype–genotype correlation
6.  Oligoclonal bands in the cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated mutations 
Journal of neurology  2012;260(1):85-92.
In amyotrophic lateral sclerosis (ALS) cerebrospinal fluid (CSF) analysis is usually performed to exclude inflammatory processes of the central nervous system. Although in a small subset of patients an intrathecal synthesis of IgG is detectable, usually there is no clear explanation for this evidence. This study investigates the occurrence of oligoclonal bands (OCBs) in the CSF of a large series of ALS patients, attempting a correlation with genotype data. CSF was collected from 259 ALS patients. CSF parameters were measured according to standard procedures, and detection of OCBs performed by isoelectric focusing. The patients were screened for mutations in SOD1, FUS, TARDBP, ANG, OPTN, and C9ORF72. We observed the presence of OCBs in the CSF of 9/259 ALS patients (3.5 %), and of disease-associated mutations in 12 cases. OCBs were significantly more frequent in mutation carriers compared to the remaining cohort (3/12 vs 6/247; p < 0.01). Among patients with OCBs, two patients had the TARDBP p.A382T mutation (one of which in homozygous state), and one the ANG p.P-4S variant. Both patients carrying the p.A382T mutation had an atypical phenotype, one of them manifesting signs suggestive of a cerebellar involvement, and the other presenting neuroradiological findings suggestive of an inflammatory disorder of the central nervous system. Our results suggest that ALS patients with OCBs may harbor mutations in disease-causing genes. We speculate that mutations in both TARDBP and ANG genes may disrupt the blood–brain barrier (BBB), promoting local immune responses and neuroinflammation. The role of mutant TARDBP and ANG genes on BBB integrity of ALS patients warrants further investigation.
doi:10.1007/s00415-012-6589-0
PMCID: PMC4196642  PMID: 22752089
ALS; Genetics; Neuroimmunology; CSF; Motor neuron disease
7.  TDP-43 Is Not a Common Cause of Sporadic Amyotrophic Lateral Sclerosis 
PLoS ONE  2008;3(6):e2450.
Background
TAR DNA binding protein, encoded by TARDBP, was shown to be a central component of ubiquitin-positive, tau-negative inclusions in frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). Recently, mutations in TARDBP have been linked to familial and sporadic ALS.
Methodology/Principal Findings
To further examine the frequency of mutations in TARDBP in sporadic ALS, 279 ALS cases and 806 neurologically normal control individuals of European descent were screened for sequence variants, copy number variants, genetic and haplotype association with disease. An additional 173 African samples from the Human Gene Diversity Panel were sequenced as this population had the highest likelihood of finding changes. No mutations were found in the ALS cases. Several genetic variants were identified in controls, which were considered as non-pathogenic changes. Furthermore, pathogenic structural variants were not observed in the cases and there was no genetic or haplotype association with disease status across the TARDBP locus.
Conclusions
Our data indicate that genetic variation in TARDBP is not a common cause of sporadic ALS in North American.
doi:10.1371/journal.pone.0002450
PMCID: PMC2408729  PMID: 18545701
8.  Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis 
PLoS Genetics  2008;4(9):e1000193.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43–positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the ∼25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.
Author Summary
The abnormal accumulation of disease proteins in neuronal cells of the brain is a characteristic feature of many neurodegenerative diseases. Rare mutations in the genes that encode the accumulating proteins have been identified in these disorders and are crucial for the development of cell and animal models used to study neurodegeneration. Recently, the TAR DNA-binding protein 43 (TDP-43) was identified as the disease accumulating protein in patients with frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U) and in amyotrophic lateral sclerosis (ALS). TDP-43 was also found in the brains of 20–30% of patients with Alzheimer's disease (AD). Here, we evaluated whether mutations in TDP-43 cause disease in a cohort of 296 patients presenting with FTLD, ALS or AD. We identified three missense mutations in three out of 92 familial ALS patients (3.3%), and no mutations in AD or FTLD patients. All the identified mutations clustered in exon 6, which codes for a highly conserved region in the C-terminal part of the TDP-43 protein, which is known to be involved in the interaction of TDP-43 with other proteins. We conclude that mutations in TDP-43 are a rare cause of familial ALS, but so far are not found in other neurodegenerative diseases.
doi:10.1371/journal.pgen.1000193
PMCID: PMC2527686  PMID: 18802454
9.  Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing 
Journal of Medical Genetics  2013;50(11):776-783.
Background
Over 100 genes have been implicated in the aetiology of amyotrophic lateral sclerosis (ALS). A detailed understanding of their independent and cumulative contributions to disease burden may help guide various clinical and research efforts.
Methods
Using targeted high-throughput sequencing, we characterised the variation of 10 Mendelian and 23 low penetrance/tentative ALS genes within a population-based cohort of 444 Irish ALS cases (50 fALS, 394 sALS) and 311 age-matched and geographically matched controls.
Results
Known or potential high-penetrance ALS variants were identified within 17.1% of patients (38% of fALS, 14.5% of sALS). 12.8% carried variants of Mendelian disease genes (C9orf72 8.78%; SETX 2.48%; ALS2 1.58%; FUS 0.45%; TARDBP 0.45%; OPTN 0.23%; VCP 0.23%. ANG, SOD1, VAPB 0%), 4.7% carried variants of low penetrance/tentative ALS genes and 9.7% (30% of fALS, 7.1% of sALS) carried previously described ALS variants (C9orf72 8.78%; FUS 0.45%; TARDBP 0.45%). 1.6% of patients carried multiple known/potential disease variants, including all identified carriers of an established ALS variant (p<0.01); TARDBP:c.859G>A(p.[G287S]) (n=2/2 sALS). Comparison of our results with those from studies of other European populations revealed significant differences in the spectrum of disease variation (p=1.7×10−4).
Conclusions
Up to 17% of Irish ALS cases may carry high-penetrance variants within the investigated genes. However, the precise nature of genetic susceptibility differs significantly from that reported within other European populations. Certain variants may not cause disease in isolation and concomitant analysis of disease genes may prove highly important.
doi:10.1136/jmedgenet-2013-101795
PMCID: PMC3812897  PMID: 23881933
Genetic Epidemiology; Motor Neurone Disease
10.  Association between novel TARDBP mutations and Chinese patients with amyotrophic lateral sclerosis 
BMC Medical Genetics  2010;11:8.
Background
TARDBP mutations have been reported in patients with amyotrophic lateral sclerosis (ALS) in different populations except Chinese. The present aim is to investigate the association between TARDBP mutations and Chinese patients with ALS.
Methods
71 SALS patients and 5 FALS families with non-SOD1 mutations were screened for TARDBP mutations via direct sequencing.
Results
A novel heterozygous variation, Ser292Asn (875G>A), was identified in the proband and 4 asymptomatic relatives including the children of the dead patient from a FALS family. Thus the dead patient, the proband's brother, was speculated to carry Ser292Asn though his sample was unavailable to the detection. This variation was not found in 200 unrelated control subjects. A homology search of the TDP-43 protein in different species demonstrated that it was highly conserved. Also, it was predicted to be deleterious to protein function with SIFT-calculated probabilities of 0.00. Therefore, Ser292Asn is predicted to be a pathogenic mutation. In addition, we have found two silent mutations (Gly40Gly and Ala366Ala) and one novel polymorphism (239-18t>c).
Conclusions
The present data have extended the spectrum of TARDBP mutations and polymorphisms, and supported the pathological role of TDP-43 in Chinese ALS patients.
doi:10.1186/1471-2350-11-8
PMCID: PMC2821387  PMID: 20082726
11.  Two German Kindreds with Familial Amyotrophic Lateral Sclerosis due to TARDBP Mutations 
Archives of neurology  2008;65(9):1185-1189.
Background:
Abnormal neuronal inclusions composed of the TAR DNA binding protein 43 (TDP-43) are the characteristic neuropathological lesions in sporadic and familial forms of amyotrophic lateral sclerosis (ALS). This makes TARDBP, the gene encoding for TDP-43, an interesting candidate gene for genetic screening in ALS.
Objective:
To investigate the presence and frequency of TARDBP mutations in ALS.
Design:
Genetic analysis
Participants:
One hundred thirty-four patiens with sporadic ALS, 31 patients with familial non-SOD1-ALS, and 400 healthy control subjects.
Results:
We identified two missense mutations in TARDBP (G348C and the novel N352S) in two small kindreds with a hereditary form of ALS with early spinal onset resulting in fatal respiratory insufficiency without clinical relevant bulbar symptoms or signs of cognitive impairment. The mutations located in the C-terminus of TDP-43 were absent in 400 Caucasian control individuals. The novel identified N352S mutation is predicted to increase TDP-43 phosphorylation while the G348C mutation might interfere with normal TDP-43 function by forming intermolecular disulfide bridges.
Conclusion:
Mutations in TARDBP are a rare cause of familial non-SOD1-ALS. The identification of TARDBP mutations provides strong evidence for a direct link between TDP-43 dysfunction and neurodegeneration in ALS.
doi:10.1001/archneur.65.9.1185
PMCID: PMC2742976  PMID: 18779421
TDP-43; ALS; TARDBP
12.  Tardbpl splicing rescues motor neuron and axonal development in a mutant tardbp zebrafish 
Human Molecular Genetics  2013;22(12):2376-2386.
Mutations in the transactive response DNA binding protein-43 (TARDBP/TDP-43) gene, which regulates transcription and splicing, causes a familial form of amyotrophic lateral sclerosis (ALS). Here, we characterize and report the first tardbp mutation in zebrafish, which introduces a premature stop codon (Y220X), eliminating expression of the Tardbp protein. Another TARDBP ortholog, tardbpl, in zebrafish is shown to encode a Tardbp-like protein which is truncated compared with Tardbp itself and lacks part of the C-terminal glycine-rich domain (GRD). Here, we show that tardbp mutation leads to the generation of a novel tardbpl splice form (tardbpl-FL) capable of making a full-length Tardbp protein (Tardbpl-FL), which compensates for the loss of Tardbp. This finding provides a novel in vivo model to study TDP-43-mediated splicing regulation. Additionally, we show that elimination of both zebrafish TARDBP orthologs results in a severe motor phenotype with shortened motor axons, locomotion defects and death at around 10 days post fertilization. The Tardbp/Tardbpl knockout model generated in this study provides an excellent in vivo system to study the role of the functional loss of Tardbp and its involvement in ALS pathogenesis.
doi:10.1093/hmg/ddt082
PMCID: PMC3658164  PMID: 23427147
13.  Mutational Analysis of TARDBP in Neurodegenerative Diseases 
Neurobiology of aging  2009;32(11):2096-2099.
Neurodegenerative diseases are often characterized by the presence of aggregates of misfolded proteins. TDP-43 is a major component of these aggregates in Amyotrophic Lateral Sclerosis (ALS), but has also been observed in Alzheimer's (AD) and Parkinson's Diseases (PD). In addition, mutations in the TARDBP gene, encoding TDP-43, have been found to be a significant cause of familial ALS (FALS). All mutations, except for one, have been found in exon 6. To confirm this observation in ALS and to investigate whether TARDBP may play a role in the pathogenesis of AD and PD, we screened for mutations in exon 6 of the TARDBP gene in three cohorts composed of 376 AD, 463 PD (18% familial PD) and 376 ALS patients (50% FALS). We found mutations in ∼7% of FALS and ∼0.5% of sporadic ALS (SALS) patients, including two novel mutations, p.N352T and p.G384R. In contrast, we did not find TARDBP mutations in our cohort of AD and PD patients. These results suggest that mutations in TARDBP are not a significant cause of AD and PD.
doi:10.1016/j.neurobiolaging.2009.11.018
PMCID: PMC2889148  PMID: 20031275
14.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis 
Lancet neurology  2008;7(5):409-416.
SUMMARY
BACKGROUND
TDP-43 is a major component of the ubiquitinated inclusions that characterise amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions (FTLD-U). TDP-43 is an RNA-binding and DNA-binding protein that has many functions and is encoded by the TAR DNA-binding protein gene (TARDBP) on chromosome 1. Our aim was to investigate whether TARDBP is a candidate disease gene for familial ALS that is not associated with mutations in superoxide dismutase 1 (SOD1).
METHODS
TARDBP was sequenced in 259 patients with ALS, FTLD, or both. We used TaqMan-based SNP genotyping to screen for the identifi ed variants in control groups matched to two kindreds of patients for age and ethnic origin. Additional clinical, genetic, and pathological assessments were made in these two families.
FINDINGS
We identified two variants, p.Gly290Ala and p.Gly298Ser, in TARDBP in two familial ALS kindreds and we observed TDP-43 neuropathology in the CNS tissue available from one family. The variants are considered pathogenic mutations because they co-segregate with disease in both families, are absent in ethnically-matched controls, and are associated with TDP-43 neuropathology in several family members.
INTERPRETATION
The p.Gly290Ala and p.Gly298Ser mutations are located in the glycine-rich domain that regulates gene expression and mediates protein-protein interactions; in particular TDP-43 binds to heterogeneous ribonucleoproteins (hnRNPs) via this domain. We postulate that due to the varied and important cellular functions of TDP-43, these mutations may cause neurodegeneration through both gains and losses of function. The finding of TARDBP mutations implicates TDP-43 as an active mediator of neurodegeneration in a novel class of disorders, TDP-43 proteinopathies, a class of disorder that includes ALS and FTLD-U.
doi:10.1016/S1474-4422(08)70071-1
PMCID: PMC3546119  PMID: 18396105
15.  Absence of Mutations in Exon 6 of the TARDBP Gene in 207 Chinese Patients with Sporadic Amyotrohic Lateral Sclerosis 
PLoS ONE  2013;8(7):e68106.
Mutations in the TARDBP gene, which encodes the Tar DNA binding protein, have been shown to causes of both familial amyotrophic lateral sclerosis (FALS) and sporadic ALS (SALS). Recently, several novel TARDBP exon 6 mutants have been reported in patients with ALS in Europe and America but not in Asia. To further examine the spectrum and frequency of TARDBP exon 6 mutations, we investigated their frequency in ethnic Chinese patients with sporadic ALS. TARDBP exon 6 was screened by direct sequencing in 207 non-SOD1 SALS patients and 230 unrelated healthy controls but no mutations were identified. Our data indicate that exon 6 mutations in TARDBP are not a common cause of SALS in Han Chinese population from Southern Mainland China.
doi:10.1371/journal.pone.0068106
PMCID: PMC3706600  PMID: 23874513
16.  Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis 
Human Molecular Genetics  2009;18(R2):R156-R162.
Amyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease that affects ∼2/100 000 individuals each year worldwide. Patients with ALS suffer from rapidly progressive degeneration of motor neurons ultimately leading to death. The major pathological features observed in post-mortem tissue from patients with ALS are motor neuron loss, cortical spinal tract degeneration, gliosis and cytoplasmic neuronal inclusions formed by TDP-43 or TAR DNA binding Protein with a molecular mass of 43 kDa, which are now recognized as the signature lesions of sporadic ALS. TDP-43 possesses two RNA binding domains (RBD) and a glycine-rich C terminus classifying it with other heterogeneous nuclear ribonucleoproteins known as 2XRBD-Gly proteins. A number of reports showed that a subset of patients with ALS possess mutations in the TDP-43 (TARDBP) gene. This further strengthens the hypotheses that gain of toxic function or loss of function in TDP-43 causes ALS. Currently, 29 different TARDBP missense mutations have been reported in 51 unrelated sporadic or familial ALS cases and two cases of ALS plus concomitant frontotemporal lobar degeneration with a remarkable concentration of mutations in the C-terminal glycine-rich domain of TDP-43. As these mutations will most certainly be an invaluable tool for the design and implementation of ALS animal and cell models, as well as serve as a platform for exploring the pathobiology of TDP-43, here we summarize the identified pathogenic TARDBP mutations and their potential impact on our understanding of the role of TDP-43 in disease.
doi:10.1093/hmg/ddp303
PMCID: PMC2758707  PMID: 19808791
17.  Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia(e–Pub ahead of print) 
Neurology  2010;75(9):807-814.
Objective:
Amyotrophic lateral sclerosis (ALS) is a progressive paralytic disorder caused by degeneration of motor neurons. Mutations in the FUS gene were identified in patients with familial ALS (FALS) and patients with sporadic ALS (SALS) from a variety of genetic backgrounds. This work further explores the spectrum of FUS mutations in patients with FALS and patients with FALS with features of frontotemporal dementia (FALS/FTD) or parkinsonism and dementia (FALS/PD/DE).
Methods:
All exons of the FUS gene were sequenced in 476 FALS index cases negative for mutations in SOD1 and TARDBP. A total of 561–726 controls were analyzed for genetic variants observed. Clinical data from patients with FUS mutations were compared to those of patients with known SOD1 and TARDBP mutations.
Results:
We identified 17 FUS mutations in 22 FALS families, 2 FALS/FTD families, and 1 FALS/PD/DE family from diverse genetic backgrounds; 11 mutations were novel. There were 4 frameshift, 1 nonsense, and 1 possible alternate splicing mutation. Patients with FUS mutations appeared to have earlier symptom onset, a higher rate of bulbar onset, and shorter duration of symptoms than those with SOD1 mutations.
Conclusions:
FUS gene mutations are not an uncommon cause in patients with FALS from diverse genetic backgrounds, and have a prevalence of 5.6% in non-SOD1 and non-TARDBP FALS, and ∼4.79% in all FALS. The pathogenicity of some of these novel mutations awaits further studies. Patients with FUS mutations manifest earlier symptom onset, a higher rate of bulbar onset, and shorter duration of symptoms.
GLOSSARY
= amyotrophic lateral sclerosis;
= familial amyotrophic lateral sclerosis;
= familial amyotrophic lateral sclerosis with features of frontotemporal dementia;
= familial amyotrophic lateral sclerosis with features of parkinsonism and dementia;
= sporadic amyotrophic lateral sclerosis.
doi:10.1212/WNL.0b013e3181f07e0c
PMCID: PMC2938970  PMID: 20668259
18.  Extensive genetics of ALS 
Neurology  2012;79(19):1983-1989.
Objective:
To assess the frequency and clinical characteristics of patients with mutations of major amyotrophic lateral sclerosis (ALS) genes in a prospectively ascertained, population-based epidemiologic series of cases.
Methods:
The study population includes all ALS cases diagnosed in Piemonte, Italy, from January 2007 to June 2011. Mutations of SOD1, TARDBP, ANG, FUS, OPTN, and C9ORF72 have been assessed.
Results:
Out of the 475 patients included in the study, 51 (10.7%) carried a mutation of an ALS-related gene (C9ORF72, 32; SOD1, 10; TARDBP, 7; FUS, 1; OPTN, 1; ANG, none). A positive family history for ALS or frontotemporal dementia (FTD) was found in 46 (9.7%) patients. Thirty-one (67.4%) of the 46 familial cases and 20 (4.7%) of the 429 sporadic cases had a genetic mutation. According to logistic regression modeling, besides a positive family history for ALS or FTD, the chance to carry a genetic mutation was related to the presence of comorbid FTD (odds ratio 3.5; p = 0.001), and age at onset ≤54 years (odds ratio 1.79; p = 0.012).
Conclusions:
We have found that ∼11% of patients with ALS carry a genetic mutation, with C9ORF72 being the commonest genetic alteration. Comorbid FTD or a young age at onset are strong indicators of a possible genetic origin of the disease.
doi:10.1212/WNL.0b013e3182735d36
PMCID: PMC3484987  PMID: 23100398
19.  A Nonsense Mutation in Mouse Tardbp Affects TDP43 Alternative Splicing Activity and Causes Limb-Clasping and Body Tone Defects 
PLoS ONE  2014;9(1):e85962.
Mutations in TARDBP, encoding Tar DNA binding protein-43 (TDP43), cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Attempts to model TDP43 dysfunction in mice have used knockouts or transgenic overexpressors, which have revealed the difficulties of manipulating TDP43, whose level is tightly controlled by auto-regulation. In a complementary approach, to create useful mouse models for the dissection of TDP43 function and pathology, we have identified a nonsense mutation in the endogenous mouse Tardbp gene through screening an N-ethyl-N-nitrosourea (ENU) mutant mouse archive. The mutation is predicted to cause a Q101X truncation in TDP43. We have characterised TardbpQ101X mice to investigate this mutation in perturbing TDP43 biology at endogenous expression levels. We found the TardbpQ101X mutation is homozygous embryonic lethal, highlighting the importance of TDP43 in early development. Heterozygotes (Tardbp+/Q101X) have abnormal levels of mutant transcript, but we find no evidence of the truncated protein and mice have similar full-length TDP43 protein levels as wildtype littermates. Nevertheless, Tardbp+/Q101X mice have abnormal alternative splicing of downstream gene targets, and limb-clasp and body tone phenotypes. Thus the nonsense mutation in Tardbp causes a mild loss-of-function phenotype and behavioural assessment suggests underlying neurological abnormalities. Due to the role of TDP43 in ALS, we investigated potential interactions with another known causative gene, mutant superoxide dismutase 1 (SOD1). Tardbp+/Q101X mice were crossed with the SOD1G93Adl transgenic mouse model of ALS. Behavioural and physiological assessment did not reveal modifying effects on the progression of ALS-like symptoms in the double mutant progeny from this cross. In summary, the TardbpQ101X mutant mice are a useful tool for the dissection of TDP43 protein regulation, effects on splicing, embryonic development and neuromuscular phenotypes. These mice are freely available to the community.
doi:10.1371/journal.pone.0085962
PMCID: PMC3897576  PMID: 24465814
20.  Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis 
Acta neuropathologica  2010;119(4):409-419.
Abnormal TDP-43 aggregation is a prominent feature in the neuropathology of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Mutations in TARDBP, the gene encoding TDP-43, cause some cases of ALS. The normal function of TDP-43 remains incompletely understood. To better understand TDP-43 biology, we generated mutant mice carrying a genetrap disruption of Tardbp. Mice homozygous for loss of TDP-43 are not viable. TDP-43 deficient embryos die about day 7.5 of embryonic development thereby demonstrating that TDP-43 protein is essential for normal prenatal development and survival. However, heterozygous Tardbp mutant mice exhibit signs of motor disturbance and muscle weakness. Compared with wild type control littermates, Tardbp+/− animals have significantly decreased forelimb grip strength and display deficits in a standard inverted grid test despite no evidence of pathologic changes in motor neurons. Thus, TDP-43 is essential for viability, and mild reduction in TDP-43 function is sufficient to cause motor deficits without degeneration of motor neurons.
doi:10.1007/s00401-010-0659-0
PMCID: PMC2880609  PMID: 20198480
21.  Lack of unique neuropathology in amyotrophic lateral sclerosis associated with p.K54E angiogenin (ANG) mutation 
Aims
Five to 10% of cases of amyotrophic lateral sclerosis are familial, with the most common genetic causes being mutations in the C9ORF72, SOD1, TARDBP and FUS genes. Mutations in the angiogenin gene, ANG, have been identified in both familial and sporadic patients in several populations within Europe and North America. The aim of this study was to establish the incidence of ANG mutations in a large cohort of 517 patients from Northern England and establish the neuropathology associated with these cases.
Methods
The single exon ANG gene was amplified, sequenced and analysed for mutations. Pathological examination of brain, spinal cord and skeletal muscle included conventional histology and immunohistochemistry.
Results
Mutation screening identified a single sporadic amyotrophic lateral sclerosis case with a p.K54E mutation, which is absent from 278 neurologically normal control samples. The clinical presentation was of limb onset amyotrophic lateral sclerosis, with rapid disease progression and no evidence of cognitive impairment. Neuropathological examination established the presence of characteristic ubiquitinated and TDP-43-positive neuronal and glial inclusions, but no abnormality in the distribution of angiogenin protein.
Discussion
There is only one previous report describing the neuropathology in a single case with a p.K17I ANG mutation which highlighted the presence of eosinophilic neuronal intranuclear inclusions in the hippocampus. The absence of this feature in the present case indicates that patients with ANG mutations do not always have pathological changes distinguishable from those of sporadic amyotrophic lateral sclerosis.
doi:10.1111/nan.12007
PMCID: PMC3770927  PMID: 23228179
amyotrophic lateral sclerosis; angiogenin; glial inclusions; intranuclear inclusions; neuronal inclusions; neuropathology
22.  TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy 
Acta Neuropathologica  2009;118(5):633-645.
Pathogenic mutations in the gene encoding TDP-43, TARDBP, have been reported in familial amyotrophic lateral sclerosis (FALS) and, more recently, in families with a heterogeneous clinical phenotype including both ALS and frontotemporal lobar degeneration (FTLD). In our previous study, sequencing analyses identified one variant in the 3′-untranslated region (3′-UTR) of the TARDBP gene in two affected members of one family with bvFTD and ALS and in one unrelated clinically assessed case of FALS. Since that study, brain tissue has become available and provides autopsy confirmation of FTLD-TDP in the proband and ALS in the brother of the bvFTD-ALS family and the neuropathology of those two cases is reported here. The 3′-UTR variant was not found in 982 control subjects (1,964 alleles). To determine the functional significance of this variant, we undertook quantitative gene expression analysis. Allele-specific amplification showed a significant increase of 22% (P < 0.05) in disease-specific allele expression with a twofold increase in total TARDBP mRNA. The segregation of this variant in a family with clinical bvFTD and ALS adds to the spectrum of clinical phenotypes previously associated with TARDBP variants. In summary, TARDBP variants may result in clinically and neuropathologically heterogeneous phenotypes linked by a common molecular pathology called TDP-43 proteinopathy.
doi:10.1007/s00401-009-0571-7
PMCID: PMC2783457  PMID: 19618195
Frontotemporal lobar degeneration; Frontotemporal dementia; Motor neuron disease; Amyotrophic lateral sclerosis; TDP-43; TARDBP; 3′-Untranslated region
23.  A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms and FTD 
Neurobiology of aging  2011;32(12):2327.e1-2327.e5.
We have recently published data showing that a founder mutation of the TARDBP gene (p.A382T) accounts for approximately one third of ALS cases on the Mediterranean island of Sardinia (Chiò et al, 2011). In that report, we identified 53 years-old man carrying a homozygous A382T missense mutation of the TARDBP gene with a complex neurological syndrome including ALS, parkinsonian features, motor and vocal tics, and frontotemporal dementia (FTD). Due to the uniqueness of this case, here we provide a detailed clinical description, as well as neurophysiological, neuropsychological and neuroimaging data for that case and his extended family.
doi:10.1016/j.neurobiolaging.2011.06.009
PMCID: PMC3192246  PMID: 21803454
24.  TARDBP mutations are not a frequent cause of ALS in Finnish patients 
Acta Myologica  2012;31(2):134-138.
In previous studies 1-3 % of ALS patients have TARDBP mutations as the cause of the disease. TARDBP mutations have been reported in ALS patients in different populations but so far there are no studies on the frequency of TARDBP mutations in Finnish ALS patients. A cohort of 50 Finnish patients, 44 SALS and 6 FALS patients, were included in the study. Genomic DNA was extracted from venous blood or muscle tissue and a mutation analysis of TARDBP was performed. No definitely pathogenic mutations could be identified in TARDBP in our patient cohort. However, two previously unknown variations were found: one silent mutation in exon 2 and one relatively deep intronic single nucleotide insertion in intron 5. In addition, two previously known non-pathogenic polymorphisms in intron 5 were detected. The size of our cohort is obviously not large enough to conclusively exclude TARDBP mutations as a very rare cause of ALS in Finland. However, based on our results TARDBP mutations do not appear to be a frequent cause of familial or sporadic ALS in Finland.
PMCID: PMC3476858  PMID: 23097605
Amyotrophic lateral sclerosis; mutation screening; TARDBP
25.  Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation 
Neurobiology of aging  2009;30(8):1272-1275.
Recently, fused in sarcoma/translated in liposarcoma (FUS/TLS) gene, located on chromosome 16p11.2, has been identified as a disease gene in familial amyotrophic lateral sclerosis (FALS). We have analyzed FUS/TLS in a cohort of 52 index cases from seven Italian regions with non-SOD1 and non-TARDBP FALS. We identified a heterozygous c.G1542C missense mutation in a family of northern Italian origin, and a heterozygous c.C1574T missense mutation in a family of Sicilian origin. Both variants are located in exon 15 encoding the RNA-recognition motif, and result in a substitution of an arginine with a serine in position 514 (p.R514S) and substitution of a proline with a leucine at position 525 (p.P525L) respectively. Overall, the two mutations accounted for 3.8% of 52 non-SOD1 and non-TDP43 index cases of FALS. The clinical phenotype was similar within each of the families, with a predominantly upper limb onset in the family carrying the p.R514S mutation and bulbar onset, with very young age and a rapid course in the family carrying the p.P525L mutation.
doi:10.1016/j.neurobiolaging.2009.05.001
PMCID: PMC2771748  PMID: 19450904
amyotrophic lateral sclerosis; genetics; FUS gene; family pedigrees

Results 1-25 (962973)