Search tips
Search criteria

Results 1-25 (1294281)

Clipboard (0)

Related Articles

1.  An RGS4-Mediated Phenotypic Switch of Bronchial Smooth Muscle Cells Promotes Fixed Airway Obstruction in Asthma 
PLoS ONE  2012;7(1):e28504.
In severe asthma, bronchodilator- and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of G-protein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma. Cell proliferation assays, agonist-induced calcium mobilization and bronchoconstriction were determined in cultured human ASM cells and in human precision cut lung slices. Using gain- and loss-of-function approaches, the precise role of RGS proteins was determined in stimulating human ASM proliferation and inhibiting bronchoconstriction. RGS4 expression was restricted to a subpopulation of ASM and was specifically upregulated by mitogens, which induced a hyperproliferative and hypocontractile ASM phenotype similar to that observed in recalcitrant asthma. RGS4 expression was markedly increased in bronchial smooth muscle of patients with severe asthma, and expression correlated significantly with reduced pulmonary function. Whereas RGS4 inhibited G protein-coupled receptor (GPCR)-mediated bronchoconstriction, unexpectedly RGS4 was required for PDGF-induced proliferation and sustained activation of PI3K, a mitogenic signaling molecule that regulates ASM proliferation. These studies indicate that increased RGS4 expression promotes a phenotypic switch of ASM, evoking irreversible airway obstruction in subjects with severe asthma.
PMCID: PMC3257220  PMID: 22253691
2.  Comparison of gel contraction mediated by airway smooth muscle cells from patients with and without asthma 
Thorax  2007;62(10):848-854.
Exaggerated bronchial constriction is the most significant and life threatening response of patients with asthma to inhaled stimuli. However, few studies have investigated the contractility of airway smooth muscle (ASM) from these patients. The purpose of this study was to establish a method to measure contraction of ASM cells by embedding them into a collagen gel, and to compare the contraction between subjects with and without asthma.
Gel contraction to histamine was examined in floating gels containing cultured ASM cells from subjects with and without asthma following overnight incubation while unattached (method 1) or attached (method 2) to casting plates. Smooth muscle myosin light chain kinase protein levels were also examined.
Collagen gels containing ASM cells reduced in size when stimulated with histamine in a concentration‐dependent manner and reached a maximum at a mean (SE) of 15.7 (1.2) min. This gel contraction was decreased by inhibitors for phospholipase C (U73122), myosin light chain kinase (ML‐7) and Rho kinase (Y27632). When comparing the two patient groups, the maximal decreased area of gels containing ASM cells from patients with asthma was 19 (2)% (n = 8) using method 1 and 22 (3)% (n = 6) using method 2, both of which were greater than that of cells from patients without asthma: 13 (2)% (n = 9, p = 0.05) and 10 (4)% (n = 5, p = 0.024), respectively. Smooth muscle myosin light chain kinase levels were not different between the two groups.
The increased contraction of asthmatic ASM cells may be responsible for exaggerated bronchial constriction in asthma.
PMCID: PMC2094259  PMID: 17412779
3.  Extra-Cellular Matrix Proteins Induce Matrix Metalloproteinase-1 (MMP-1) Activity and Increase Airway Smooth Muscle Contraction in Asthma 
PLoS ONE  2014;9(2):e90565.
Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM) deposition. Matrix metalloproteinase-1 (MMP-1) is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM) and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction. Collagen-I and tenascin-C induced MMP-1 protein expression, which for tenascin-C, was greater in asthma derived ASM cells. Tenascin-C induced MMP-1 expression was dependent on ERK1/2, JNK and p38 MAPK activation and attenuated by function blocking antibodies against the β1 and β3 integrin subunits. Tenascin-C and MMP-1 were not expressed in normal airways but co-localised in the ASM bundles and reticular basement membrane of patients with asthma. Further, ECM from asthma derived ASM cells stimulated MMP-1 expression to a greater degree than ECM from normal ASM. Bradykinin induced contraction of ASM cells seeded in 3D collagen gels was reduced by the MMP inhibitor ilomastat and by siRNA knockdown of MMP-1. In summary, the induction of MMP-1 in ASM cells by tenascin-C occurs in part via integrin mediated MAPK signalling. MMP-1 and tenascin-C are co-localised in the smooth muscle bundles of patients with asthma where this interaction may contribute to enhanced airway contraction. Our findings suggest that ECM changes in airway remodelling via MMP-1 could contribute to an environment promoting greater airway narrowing in response to broncho-constrictor stimuli and worsening asthma symptoms.
PMCID: PMC3938782  PMID: 24587395
4.  β2-Agonist Induced cAMP Is Decreased in Asthmatic Airway Smooth Muscle Due to Increased PDE4D 
PLoS ONE  2011;6(5):e20000.
Background and Objective
Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known.
To characterize the potential defect in β-agonist induced cAMP in ASM derived from asthmatic in comparison to non-asthmatic subjects and to investigate its mechanism.
We examined β2-adrenergic (β2AR) receptor expression and basal β-agonist and forskolin (direct activator of adenylyl cyclase) stimulated cAMP production in asthmatic cultured ASM (n = 15) and non-asthmatic ASM (n = 22). Based on these results, PDE activity, PDE4D expression and cell proliferation were determined.
In the presence of IBMX, a pan PDE inhibitor, asthmatic ASM had ∼50% lower cAMP production in response to isoproterenol, albuterol, formoterol, and forskolin compared to non-asthmatic ASM. However when PDE4 was specifically inhibited, cAMP production by the agonists and forskolin was normalized in asthmatic ASM. We then measured the amount and activity of PDE4, and found ∼2-fold greater expression and activity in asthmatic ASM compared to non-asthmatic ASM. Furthermore, inhibition of PDE4 reduced asthmatic ASM proliferation but not that of non-asthmatic ASM.
Decreased β-agonist induced cAMP in ASM from asthmatics results from enhanced degradation due to increased PDE4D expression. Clinical manifestations of this dysregulation would be suboptimal β-agonist-mediated bronchodilation and possibly reduced control over increasing ASM mass. These phenotypes appear to be “hard-wired” into ASM from asthmatics, as they do not require an inflammatory environment in culture to be observed.
PMCID: PMC3096656  PMID: 21611147
5.  127 Eosinophils Enhance Airway Smooth Muscle Cell Proliferation Via the Release of Cysteinyl Leukotrines 
The World Allergy Organization Journal  2012;5(Suppl 2):S59-S60.
Asthma is a chronic inflammatory disorder of the lung airways that is associated with airway remodeling and hyperresponsiveness. Its is well documented that the smooth muscle mass in asthmatic airways is increased due to hypertrophy and hyperplasia of the ASM cells. Moreover, eosinophils have been proposed in different studies to play a major role in airway remodeling. Here, we hypothesized that eosinophils modulate the airways through enhancing ASM cell proliferation. The aim of this study is to examine the effect of eosinophils on ASM cell proliferation using eosinophils isolated from asthmatic and normal control subjects.
Eosinophils were isolated from peripheral blood of 6 mild asthmatics and 6 normal control subjects. ASM cells were incubated with eosinophils or eosinophil membranes and ASM proliferation was estimated using thymidine incorporation. The mRNA expression of extracellular matrix (ECM) in ASM cells was measured using quantitative real-time PCR. The effect of eosinophil-derived proliferative cytokines on ASM cells was determined using neutralizing antibodies. The role of eosinophil derived Cysteinyl Leukotrienes in enhancing ASM was also investigated.
Co-culture with eosinophils significantly increased ASM cell proliferation. However, there was no significant difference in ASM proliferation following incubation with eosinophils from asthmatic versus normal control subjects. Co-culture with eosinophil membranes had no effect on ASM proliferation. Moreover, there was no significant change in the mRNA expression of ECM proteins in ASM cells following co-culture with eosinophils when compared with medium alone. Interestingly, blocking the activity of cysteinyl Leukotries using antagonists inhibited eosinophil-derived ASM proliferation.
Eosinophils enhances the proliferation of ASM cells. This role of eosinophil does not seem to depend on ASM derived ECM proteins nor on Eosinophil derived TGF-β or TNF-α. Eosinophil seems to induce ASM proliferation via the secretion of Cysteinyl Leukotrienes.
PMCID: PMC3513122
6.  Mast cell migration to Th2 stimulated airway smooth muscle from asthmatics 
Thorax  2006;61(8):657-662.
Mast cell microlocalisation within the airway smooth muscle (ASM) bundle is an important determinant of the asthmatic phenotype. We hypothesised that mast cells migrate towards ASM in response to ASM derived chemokines.
Primary ASM cultures from subjects with and without asthma were stimulated with interleukin (IL)‐1β, IL‐4, and IL‐13 alone and in combination. Mast cell chemotaxis towards these ASM supernatants was investigated, and the chemotaxins mediating migration by using specific blocking antibodies for stem cell factor (SCF) and the chemokine receptors CCR3, CXCR1, 3 and 4 as well as the Gi inhibitor pertussis toxin and the tyrosine kinase inhibitor genistein were defined. The concentrations of CCL11, CXCL8, CXCL10, TGF‐β, and SCF in the supernatants were measured and the effect of non‐asthmatic ASM supernatants on the mast cell chemotactic activity of asthmatic ASM was examined.
Human lung mast cells and HMC‐1 cells migrated towards Th2 stimulated ASM from asthmatics but not non‐asthmatics. Mast cell migration was mediated through the combined activation of CCR3 and CXCR1. CCL11 and CXCL8 expression by ASM increased markedly after stimulation, but was similar in those with and without asthma. ASM supernatants from non‐asthmatics inhibited mast cell migration towards the asthmatic ASM supernatant.
Th2 stimulated ASM from asthmatics is chemotactic for mast cells. Non‐asthmatic ASM releases a mediator or mediators that inhibit mast cell migration towards stimulated asthmatic ASM. Specifically targeting mast cell migration into the ASM bundle may provide a novel treatment for asthma.
PMCID: PMC2104682  PMID: 16601090
mast cells; chemokine receptors; chemokines; airway smooth muscle; asthma
7.  CCL2 release by airway smooth muscle is increased in asthma and promotes fibrocyte migration 
Allergy  2014;69(9):1189-1197.
Asthma is characterized by variable airflow obstruction, airway inflammation, airway hyper-responsiveness and airway remodelling. Airway smooth muscle (ASM) hyperplasia is a feature of airway remodelling and contributes to bronchial wall thickening. We sought to investigate the expression levels of chemokines in primary cultures of ASM cells from asthmatics vs healthy controls and to assess whether differentially expressed chemokines (i) promote fibrocyte (FC) migration towards ASM and (ii) are increased in blood from subjects with asthma and in sputum samples from those asthmatics with bronchial wall thickening.
Chemokine concentrations released by primary ASM were measured by MesoScale Discovery platform. The chemokine most highly expressed by ASM from asthmatics compared with healthy controls was confirmed by ELISA, and expression of its cognate chemokine receptor by FCs was examined by immunofluorescence and flow cytometry. The role of this chemokine in FC migration towards ASM was investigated by chemotaxis assays.
Chemokine (C-C motif) ligand 2 (CCL2) levels were increased in primary ASM supernatants from asthmatics compared with healthy controls. CCR2 was expressed on FCs. Fibrocytes migrated towards recombinant CCL2 and ASM supernatants. These effects were inhibited by CCL2 neutralization. CCL2 levels were increased in blood from asthmatics compared with healthy controls, and sputum CCL2 was increased in asthmatics with bronchial wall thickening.
Airway smooth muscle-derived CCL2 mediates FC migration and potentially contributes to the development of ASM hyperplasia in asthma.
PMCID: PMC4215601  PMID: 24931417
airway smooth muscle; asthma; chemokine (C-C motif) ligand 2; chemotaxis; fibrocyte
8.  Endogenous laminin is required for human airway smooth muscle cell maturation 
Respiratory Research  2006;7(1):117.
Airway smooth muscle (ASM) contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM) components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells.
Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured.
Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP) significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype.
While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the first time that endogenously expressed laminin is required for ASM maturation to the contractile phenotype. As endogenously expressed laminin chains α2, β1 and γ1 are uniquely increased during myocyte maturation, these laminin chains may be key in this process. Thus, human ASM maturation appears to involve regulated endogenous expression of a select set of laminin chains that are essential for accumulation of contractile phenotype myocytes.
PMCID: PMC1586013  PMID: 16968549
9.  Airway Smooth Muscle Hypercontractility in Asthma 
Journal of Allergy  2013;2013:185971.
In recent years, asthma has been defined primarily as an inflammatory disorder with emphasis on inflammation being the principle underlying pathophysiological characteristic driving airway obstruction and remodelling. Morphological abnormalities of asthmatic airway smooth muscle (ASM), the primary structure responsible for airway obstruction seen in asthma, have long been described, but surprisingly, until recently, relatively small number of studies investigated whether asthmatic ASM was also fundamentally different in its functional properties. Evidence from recent studies done on single ASM cells and on ASM-impregnated gel cultures have shown that asthmatic ASM is intrinsically hypercontractile. Several elements of the ASM contraction apparatus in asthmatics and in animal models of asthma have been found to be different from nonasthmatics. These differences include some regulatory contractile proteins and also some components of both the calcium-dependent and calcium-independent contraction signalling pathways. Furthermore, oxidative stress was also found to be heightened in asthmatic ASM and contributes to hypercontractility. Understanding the abnormalities and mechanisms driving asthmatic ASM hypercontractility provides a great potential for the development of new targeted drugs, other than the conventional current anti-inflammatory and bronchodilator therapies, to address the desperate unmet need especially in patients with severe and persistent asthma.
PMCID: PMC3613096  PMID: 23577039
10.  Autocrine interaction between IL-5 and IL-1β mediates altered responsiveness of atopic asthmatic sensitized airway smooth muscle 
Journal of Clinical Investigation  1999;104(5):657-667.
T-helper type 2 (Th2) cytokines have been implicated in the pathogenesis of the pulmonary inflammatory response and altered bronchial responsiveness in allergic asthma. To elucidate the mechanism of Th2-dependent mediation of altered airway responsiveness in the atopic asthmatic state, the expression and actions of specific cytokines were examined in isolated rabbit and human airway smooth muscle (ASM) tissues and cultured cells passively sensitized with sera from atopic asthmatic patients or nonatopic/nonasthmatic (control) subjects. Relative to control tissues, the atopic asthmatic sensitized ASM exhibited significantly enhanced maximal isometric contractility to acetylcholine and attenuated relaxation responses to isoproterenol. These proasthmatic changes in agonist responsiveness were ablated by pretreating the atopic sensitized tissues with either an IL-5 receptor blocking antibody (IL-5ra) or the human recombinant IL-1 receptor antagonist (IL-1ra), whereas an IL-4 neutralizing antibody had no effect. Moreover, relative to controls, atopic asthmatic sensitized ASM cells demonstrated an initial, early (after 3 hours of incubation) increased mRNA expression and protein release of IL-5. This was followed (after 6 hours of incubation) by an enhanced mRNA expression and release of IL-1β protein, an effect that was inhibited in sensitized cells pretreated with IL-5ra. Extended studies demonstrated that naive ASM exposed to exogenously administered IL-5 exhibited an induced upregulated mRNA expression and protein release of IL-1β associated with proasthmatic-like changes in ASM constrictor and relaxant responsiveness, and that these effects were ablated in tissues pretreated with IL-1ra. Taken together, these observations provide new evidence that (a) the Th2 cytokine IL-5 and the pleiotropic proinflammatory cytokine IL-1β are endogenously released by atopic asthmatic sensitized ASM and mechanistically interact to mediate the proasthmatic perturbations in ASM responsiveness; and (b) the nature of this interaction is given by an initial endogenous release of IL-5, which then acts to induce the autologous release of IL-1β by the sensitized ASM itself, resulting in its autocrine manifestation of the proasthmatic phenotype.
PMCID: PMC408541  PMID: 10487780
11.  MicroRNA-708 regulates CD38 expression through signaling pathways JNK MAP kinase and PTEN/AKT in human airway smooth muscle cells 
Respiratory Research  2014;15(1):107.
The cell-surface protein CD38 mediates airway smooth muscle (ASM) contractility by generating cyclic ADP-ribose, a calcium-mobilizing molecule. In human ASM cells, TNF-α augments CD38 expression transcriptionally by NF-κB and AP-1 activation and involving MAPK and PI3K signaling. CD38−/− mice develop attenuated airway hyperresponsiveness following allergen or cytokine challenge. The post-transcriptional regulation of CD38 expression in ASM is relatively less understood. In ASM, microRNAs (miRNAs) regulate inflammation, contractility, and hyperproliferation. The 3’ Untranslated Region (3’UTR) of CD38 has multiple miRNA binding sites, including a site for miR-708. MiR-708 is known to regulate PI3K/AKT signaling and hyperproliferation of other cell types. We investigated miR-708 expression, its regulation of CD38 expression and the underlying mechanisms involved in such regulation in human ASM cells.
Growth-arrested human ASM cells from asthmatic and non-asthmatic donors were used. MiRNA and mRNA expression were measured by quantitative real-time PCR. CD38 enzymatic activity was measured by a reverse cyclase assay. Total and phosphorylated MAPKs and PI3K/AKT as well as enzymes that regulate their activation were determined by Western blot analysis of cell lysates following miRNA transfection and TNF-α stimulation. Dual luciferase reporter assays were performed to determine whether miR-708 binds directly to CD38 3’UTR to alter gene expression.
Using target prediction algorithms, we identified several miRNAs with potential CD38 3’UTR target sites and determined miR-708 as a potential candidate for regulation of CD38 expression based on its expression and regulation by TNF-α. TNF-α caused a decrease in miR-708 expression in cells from non-asthmatics while it increased its expression in cells from asthmatics. Dual luciferase reporter assays in NIH-3 T3 cells revealed regulation of expression by direct binding of miR-708 to CD38 3’UTR. In ASM cells, miR-708 decreased CD38 expression by decreasing phosphorylation of JNK MAPK and AKT. These effects were associated with increased expression of MKP-1, a MAP kinase phosphatase and PTEN, a phosphatase that terminates PI3 kinase signaling.
In human ASM cells, TNF-α-induced CD38 expression is regulated by miR-708 directly binding to 3’UTR and indirectly by regulating JNK MAPK and PI3K/AKT signaling and has the potential to control airway inflammation, ASM contractility and proliferation.
PMCID: PMC4156970  PMID: 25175907
MicroRNA; MiR-708; Airway smooth muscle cells; MAP kinase; PI3 kinase; PTEN; AKT; CD38
12.  Transforming Growth Factor–β–Induced Differentiation of Airway Smooth Muscle Cells Is Inhibited by Fibroblast Growth Factor–2 
In asthma, basic fibroblast growth factor (FGF-2) plays an important (patho)physiological role. This study examines the effects of FGF-2 on the transforming growth factor–β (TGF-β)–stimulated differentiation of airway smooth muscle (ASM) cells in vitro. The differentiation of human ASM cells after incubation with TGF-β (100 pM) and/or FGF-2 (300 pM) for 48 hours was assessed by increases in contractile protein expression, actin-cytoskeleton reorganization, enhancements in cell stiffness, and collagen remodeling. FGF-2 inhibited TGF-β–stimulated increases in transgelin (SM22) and calponin gene expression (n = 15, P < 0.01) in an extracellular signal-regulated kinase 1/2 (ERK1/2) signal transduction–dependent manner. The abundance of ordered α–smooth muscle actin (α-SMA) filaments formed in the presence of TGF-β were also reduced by FGF-2, as was the ratio of F-actin to G-actin (n = 8, P < 0.01). Furthermore, FGF-2 attenuated TGF-β–stimulated increases in ASM cell stiffness and the ASM-mediated contraction of lattices, composed of collagen fibrils (n = 5, P < 0.01). However, the TGF-β–stimulated production of IL-6 was not influenced by FGF-2 (n = 4, P > 0.05), suggesting that FGF-2 antagonism is selective for the regulation of ASM cell contractile protein expression, organization, and function. Another mitogen, thrombin (0.3 U ml−1), exerted no effect on TGF-β–regulated contractile protein expression (n = 8, P > 0.05), α-SMA organization, or the ratio of F-actin to G-actin (n = 4, P > 0.05), suggesting that the inhibitory effect of FGF-2 is dissociated from its mitogenic actions. The addition of FGF-2, 24 hours after TGF-β treatment, still reduced contractile protein expression, even when the TGF-β–receptor kinase inhibitor, SB431542 (10 μM), was added 1 hour before FGF-2. We conclude that the ASM cell differentiation promoted by TGF-β is antagonized by FGF-2. A better understanding of the mechanism of action for FGF-2 is necessary to develop a strategy for therapeutic exploitation in the treatment of asthma.
PMCID: PMC3604085  PMID: 23239497
airway wall remodeling; α–smooth muscle actin; asthma; cytoskeleton; transgelin
13.  The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle 
Respiratory Research  2013;14(1):89.
Dopamine signaling is mediated by Gs protein-coupled “D1-like” receptors (D1 and D5) and Gi-coupled “D2-like” receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling.
The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576.
Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576.
These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM.
PMCID: PMC3847358  PMID: 24004608
Dopamine; RT-PCR; Immunoblot; Gs-coupled receptor; Cyclic AMP; PKA; Epac
14.  Steroids Augment Relengthening of Contracted Airway Smooth Muscle: Potential Additional Mechanism of Benefit in Asthma 
Breathing (especially deep breathing) antagonizes development and persistence of airflow obstruction during bronchoconstrictor stimulation. Force fluctuations imposed on contracted airway smooth muscle (ASM) in vitro result in its relengthening, a phenomenon called force fluctuation-induced relengthening (FFIR). Because breathing imposes similar force fluctuations on contracted ASM within intact lungs, FFIR represents a likely mechanism by which breathing antagonizes bronchoconstriction. While this bronchoprotective effect appears to be impaired in asthma, corticosteroid treatment can restore the ability of deep breaths to reverse artificially induced bronchoconstriction in asthmatic subjects. We previously demonstrated that FFIR is physiologically regulated through the p38 MAPK signaling pathway. While the beneficial effects of corticosteroids have been attributed to suppression of airway inflammation, we hypothesized that alternatively they might exert their action directly on ASM by augmenting FFIR as a result of inhibiting p38 MAPK signaling.
We tested this possibility in the present study by measuring relengthening in contracted canine tracheal smooth muscle (TSM) strips.
Our results indicate that dexamethasone treatment significantly augmented FFIR of contracted canine TSM. Canine tracheal ASM cells treated with dexamethasone demonstrated increased MAP kinase phosphatase (MKP)-1 expression and decreased p38 MAPK activity, as reflected in reduced phosphorylation of the p38 MAPK downstream target, HSP27.
These results suggest that corticosteroids may exert part of their therapeutic effect through direct action on ASM, by decreasing p38 MAPK activity and thus increasing FFIR.
PMCID: PMC2582388  PMID: 18768574
asthma; bronchoprotection; bronchoconstriction; deep breaths; steroids; tidal breathing
15.  Inflammation of bronchial smooth muscle in allergic asthma 
Thorax  2007;62(1):8-15.
Recent observations in asthma suggest that bronchial smooth muscle is infiltrated by inflammatory cells including mast cells. Such an infiltration may contribute to airway remodelling that is partly due to an increase in smooth muscle mass. Whether muscle increase is the result of smooth muscle cell hypertrophy remains controversial and has not been studied by ultrastructural analysis. A morphometric analysis of airway smooth muscle (ASM) was undertaken in asthmatic patients using electron microscopy to examine the interactions between ASM cells and inflammatory cells.
ASM specimens were obtained from 14 asthmatic subjects and nine non‐asthmatic controls undergoing fibreoptic endoscopy. Inflammatory cell counts were assessed by immunohistochemistry, and ultrastructural parameters were measured using electron microscopy in a blinded fashion on smooth muscle cells and inflammatory cells.
ASM from asthmatic patients was infiltrated by an increased number of mast cells and lymphocytes. Smooth muscle cells and their basal lamina were thicker in asthmatic patients (9.5 (0.8) and 1.4 (0.2) μm) than in controls (6.7 (0.4) and 0.7 (0.1) μm). In asthmatics the extracellular matrix was frequently organised in large amounts between ASM cells. Myofibroblasts within smooth muscle bundles were only observed in asthmatics, some of them displaying a close contact with ASM cells.
In asthma, airway myositis is characterised by a direct interaction between ASM cells and mast cells and lymphocytes. Smooth muscle remodelling was present, including cell hypertrophy and abnormal extracellular matrix deposition moulding ASM cells.
PMCID: PMC2111285  PMID: 17189531
asthma; smooth muscle; inflammation; mast cell; myofibroblast
16.  Airway smooth muscle proliferation and survival is not modulated by mast cells 
Clinical and Experimental Allergy  2010;40(2):279-288.
Airway smooth muscle (ASM) hyperplasia and mast cell localization within the ASM bundle are important features of asthma. The cause of this increased ASM mass is uncertain and whether it is a consequence of ASM–mast cell interactions is unknown.
We sought to investigate ASM proliferation and survival in asthma and the effects of co-culture with mast cells.
Primary ASM cultures were derived from 11 subjects with asthma and 12 non-asthmatic controls. ASM cells were cultured for up to 10 days in the presence or absence of serum either alone or in co-culture with the human mast cell line-1, unstimulated human lung mast cells (HLMC) or IgE/anti-IgE-activated HLMC. Proliferation was assessed by cell counts, CFSE assay and thymidine incorporation. Apoptosis and necrosis were analysed by Annexin V/propidium iodide staining using flow cytometry and by assessment of nuclear morphology using immunofluorescence. Mast cell activation was confirmed by the measurement of histamine release.
Using a number of techniques, we found that ASM proliferation and survival was not significantly different between cells derived from subjects with or without asthma. Co-culture with mast cells did not affect the rate of proliferation or survival of ASM cells.
Our findings do not support a role for increased airway smooth proliferation and survival as the major mechanism driving ASM hyperplasia in asthma.
Cite this as: D. Kaur, F. Hollins, R. Saunders, L. Woodman, A. Sutcliffe, G. Cruse, P. Bradding and C. Brightling, Clinical & Experimental Allergy, 2010 (40) 279– 288.
PMCID: PMC2821816  PMID: 20030664
airway smooth muscle; apoptosis; asthma; mast cells; necrosis; proliferation; survival
17.  Airway smooth muscle chemokine receptor expression and function in asthma 
Clinical and Experimental Allergy  2009;39(11):1684-1692.
Chemokine receptors play an important role in cell migration and wound repair. In asthma, CCR3 and 7 are expressed by airway smooth muscle (ASM) and CCR7 has been implicated in the development of ASM hyperplasia. The expression profile of other chemokine receptors by ASM and their function needs to be further explored.
We sought to investigate ASM chemokine receptor expression and function in asthma.
ASM cells were derived from 17 subjects with asthma and 36 non-asthmatic controls. ASM chemokine receptor expression was assessed by flow cytometry and immunofluorescence. The function of chemokine receptors expressed by more than 10% of ASM cells was investigated by intracellular calcium measurements, chemotaxis, wound healing, proliferation and survival assays.
In addition to CCR3 and 7, CXCR1, 3 and 4 were highly expressed by ASM. These CXC chemokine receptors were functional with an increase in intracellular calcium following ligand activation and promotion of wound healing [CXCL10 (100 ng/mL) 34 ± 2 cells/high-powered field (hpf) vs. control 29 ± 1; P=0.03; n=8]. Spontaneous wound healing was inhibited by CXCR3 neutralizing antibody (mean difference 7 ± 3 cells/hpf; P=0.03; n=3). CXC chemokine receptor activation did not modulate ASM chemotaxis, proliferation or survival. No differences in chemokine receptor expression or function were observed between ASM cells derived from asthmatic or non-asthmatic donors.
Our findings suggest that the chemokine receptors CXCR1, 3 and 4 modulate some aspects of ASM function but their importance in asthma is uncertain.
PMCID: PMC2774481  PMID: 19735481
asthma; airway smooth muscle; chemokine receptors; wound healing
18.  Mechanisms of Induction of Airway Smooth Muscle Hyperplasia by Transforming Growth Factor-β 
Airway smooth muscle (ASM) hyperplasia is a characteristic feature of the asthmatic airway but the underlying mechanisms that induce ASM hyperplasia remain unknown. Because transforming growth factor (TGF)-β is a potent regulator of ASM cell proliferation, we determined its expression and mitogenic signaling pathways in ASM cells. We obtained ASM cells by laser capture microdissection of bronchial biopsies and found that ASM cells from asthmatic patients expressed TGF-β1 mRNA and protein to a greater extent than non-asthmatic individuals using real-time RT-PCR and immunohistochemistry, respectively. TGF-β1 stimulated the growth of non-confluent and confluent ASM cells either in the presence or absence of serum in a time- and concentration-dependent manner. The mitogenic activity of TGF-β1 on ASM cells was inhibited by selective inhibitors of TGF-β receptor-I kinase (SD-208), of phosphatidylinositol 3-kinase (PI3K, LY294002), ERK (PD98059), JNK (SP600125) and NF-κB (AS602868). On the other hand, p38 MAPK inhibitor (SB203580) augmented TGF-β1-induced proliferation. To study role of the Smads, we transduced ASM cells with an adenovirus vector expressing Smad 4, Smad 7 or negative dominant Smad3 and found no involvement of these Smads in TGF-β1-induced proliferation. Dexamethasone caused a dose-dependent inhibition in TGF-β1-induced proliferation. Our findings suggest that TGF-β1 may act in an autocrine fashion to induce ASM hyperplasia, mediated by its receptor and several kinases including PI3K, ERK and JNK, while p38 MAPK is a negative regulator. NF-κB is also involved in the TGF-β1 mitogenic signaling but Smad pathway does not appear important.
PMCID: PMC1934553  PMID: 17468136
Laser capture microdissection; TGF-β1 expression; airway smooth muscle cells; asthma; corticosteroids
19.  Regulation of TH1- and TH2-type cytokine expression and action in atopic asthmatic sensitized airway smooth muscle 
Journal of Clinical Investigation  1999;103(7):1077-1087.
CD4+ T helper (TH)1- and TH2-type cytokines reportedly play an important role in the pathobiology of asthma. Recent evidence suggests that proasthmatic changes in airway smooth muscle (ASM) responsiveness may be induced by the autocrine release of certain proinflammatory cytokines by the ASM itself. We examined whether TH1- and TH2-type cytokines are expressed by atopic asthmatic sensitized ASM and serve to autologously regulate the proasthmatic phenotype in the sensitized ASM. Expression of these cytokines and their receptors was examined in isolated rabbit and human ASM tissues and cultured cells passively sensitized with sera from atopic asthmatic patients or control subjects. Relative to controls, atopic sensitized ASM cells exhibited an early increased mRNA expression of the TH2-type cytokines, interleukin-5 (IL-5) and granulocyte–macrophage colony-stimulating factor (GM-CSF), and their receptors. This was later followed by enhanced mRNA expression of the TH1-type cytokines, IL-2, IL-12, and interferon-γ (IFN-γ), as well as their respective receptors. In experiments on isolated ASM tissue segments (a) exogenous administration of IL-2 and IFN-γ to atopic asthmatic serum–sensitized ASM ablated both their enhanced constrictor responsiveness to acetylcholine (ACh) and their attenuated relaxation responsiveness to β-adrenoceptor stimulation with isoproterenol, and (b) administration of IL-5 and GM-CSF to naive ASM induced significant increases in their contractility to ACh and impaired their relaxant responsiveness to isoproterenol. Collectively, these observations provide new evidence demonstrating that human ASM endogenously expresses both TH1- and TH2-type cytokines and their receptors, that these molecules are sequentially upregulated in the atopic asthmatic sensitized state, and that they act to downregulate and upregulate proasthmatic perturbations in ASM responsiveness, respectively.
PMCID: PMC408262  PMID: 10194481
20.  Airway Smooth Muscle Hyperproliferation Is Regulated by MicroRNA-221 in Severe Asthma 
Increased airway smooth muscle (ASM) mass is a feature of asthmatic airways, and could result from augmented proliferation. We determined whether proliferation and IL-6 release are abnormal in ASM cells (ASMCs) from patients with severe asthma, and whether these features could be mediated by microRNA-221 and microRNA-222, through modulation of the cyclin-dependent kinase inhibitors, p21WAF1 and p27kip1. ASMCs cultured from bronchial biopsies of healthy subjects and patients with nonsevere or severe asthma were studied. Proliferation was measured by the incorporation of bromodeoxyuridine and IL-6 by ELISA. FCS and transforming growth factor (TGF)-β caused greater proliferation and IL-6 release in patients with severe compared with nonsevere asthma and normal subjects. FCS + TGF-β inhibited p21WAF1 and p27kip1 expression, and increased microRNA-221 (miR-221) expression in ASMCs from individuals with severe asthma. miR-221, and not miR-222, mimics the increased proliferation and IL-6 release induced by FCS + TGF in healthy ASM, whereas in patients with severe asthma, the inhibition of miR-221, but not miR-222, inhibited proliferation and IL-6 release. miR-221 inhibition led to the increased expression of FCS + TGF-β–induced p21WAF1 and p27kip1. Dexamethasone suppressed proliferation in healthy subjects, but not in subjects with asthma. IL-6 was less suppressible by dexamethasone in patients with nonsevere and severe asthma, compared with healthy subjects. miR-221 did not influence the effects of dexamethasone. ASM from patients with severe asthma shows greater proliferation and IL-6 release than in patients with nonsevere asthma, but both groups show corticosteroid insensitivity. miR-221 regulates p21WAF1 and p27kip1 expression levels. Furthermore, miR-221 regulates the hyperproliferation and IL-6 release of ASMCs from patients with severe asthma, but does not regulate corticosteroid insensitivity.
PMCID: PMC3930931  PMID: 23944957
microRNA; ASM; proliferation; IL-6; steroid insensitivity
21.  Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement 
CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokine-induced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1β, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Iκ-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-α induced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-α combined with IFN-γ synergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Iκ-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma.
PMCID: PMC3362261  PMID: 22387292
IFN-inducible protein 10; mRNA levels and stability; NK-κB; p38; ERK
22.  IL-17A Mediates a Selective Gene Expression Profile in Asthmatic Human Airway Smooth Muscle Cells 
Airway smooth muscle (ASM) cells are thought to contribute to the pathogenesis of allergic asthma by orchestrating and perpetuating airway inflammation and remodeling responses. In this study, we evaluated the IL-17RA signal transduction and gene expression profile in ASM cells from subjects with mild asthma and healthy individuals. Human primary ASM cells were treated with IL-17A and probed by the Affymetrix GeneChip array, and gene targets were validated by real-time quantitative RT-PCR. Genomic analysis underlined the proinflammatory nature of IL-17A, as multiple NF-κB regulatory factors and chemokines were induced in ASM cells. Transcriptional regulators consisting of primary response genes were overrepresented and displayed dynamic expression profiles. IL-17A poorly enhanced IL-1β or IL-22 gene responses in ASM cells from both subjects with mild asthma and healthy donors. Interestingly, protein modifications to the NF-κB regulatory network were not observed after IL-17A stimulation, although oscillations in IκBε expression were detected. ASM cells from subjects with mild asthma up-regulated more genes with greater overall variability in response to IL-17A than from healthy donors. Finally, in response to IL-17A, ASM cells displayed rapid activation of the extracellular signal–regulated kinase/ribosomal S6 kinase signaling pathway and increased nuclear levels of phosphorylated extracellular signal–regulated kinase. Taken together, our results suggest that IL-17A mediated modest gene expression response, which, in cooperation with the NF-κB signaling network, may regulate the gene expression profile in ASM cells.
PMCID: PMC4068909  PMID: 24393021
IL-17RA; signal transduction; gene expression; airway smooth muscle cells
23.  Expression of functional leukotriene B4 receptors on human airway smooth muscle cells 
Leukotriene B4 (LTB4) increases in induced sputum and exhaled breath condensate in people with asthma. Furthermore, the TH2-type immune response and airway hyperresponsiveness induced by ovalbumin sensitization is markedly suppressed in LTB4 receptor (BLT) 1 null mice. These studies suggest that LTB4 may contribute to asthma pathophysiology. However, the direct effects of LTB4 on human airway smooth muscle (ASM) have not been studied.
We sought to determine the expression of LTB4 receptors on human ASM and its functional role in mediating responses of human ASM cells, and the effect of LTB4 on these cells.
Immunohistochemistry, RT-PCR, Western blotting, and flow cytometry were used to determine the expression of LTB4 receptors. To determine the effect of LTB4 on human ASM cells, cell proliferation was assessed by counting cells, and chemokinesis was assessed by gold particle phagokinesis assay.
We confirmed expression of both BLT1 and BLT2 in human ASM cells in bronchial tissue and in cell culture. LTB4 markedly induced cyclin D1 expression, proliferation, and chemokinesis of human ASM cells. LTB4 also induced phosphorylation of both p42/p44 mitogen-activated protein kinase (MAPK) and downstream PI3 kinase effector, Akt1. However, we observed no induction of c-Jun N-terminal kinase or p38 MAPK. Notably, LTB4-induced migration and proliferation of ASM cells were inhibited by the BLT1 specific antagonist, U75302, and by inhibitors of p42/p44 MAPK phosphorylation (U1026), and PI3 kinase (LY294002).
These observations are the first to suggest a role for a LTB4-BLT1 signaling axis in ASM responses that may contribute to the pathogenesis of airway remodeling in asthma.
PMCID: PMC4301732  PMID: 19477492
Asthma; airway remodeling; airway smooth muscle cells; LTB4; BLT
24.  Mechanism of glucocorticoid protection of airway smooth muscle from proasthmatic effects of long-acting β2-adrenoceptor agonist exposure 
Chronic use of long-acting β2-adrenergic receptor (β2AR) agonists (LABAs), resulting in β2AR desensitization, has been associated with increased asthma morbidity. When LABAs are used in combination with inhaled glucocorticoids (GCs), however, asthma control is improved, raising the question: Do GCs inhibit the proasthmatic mechanism that mediates altered contractility in LABA-exposed airway smooth muscle (ASM)?
This study aimed to identify the potential protective role and mechanism of action of GCs in mitigating the effects of prolonged LABA exposure on ASM constrictor and relaxation responsiveness.
Cultured human ASM (HASM) cells and isolated rabbit ASM tissues were examined for induced changes in agonist-mediated cAMP accumulation, constrictor and relaxation responsiveness, and expression of specific GC-regulated molecules following 24h exposure to the LABA, salmeterol, in the absence and presence of dexamethasone (DEX).
Salmeterol-exposed ASM exhibited impaired cAMP and relaxation responses to isoproterenol and increased acetylcholine-induced contractility. These pro-asthmatic effects of prolonged LABA exposure were attributed to upregulated phosphodiesterase 4 (PDE4) activity, and ablated by pretreatment with DEX. Further studies demonstrated that: 1) DEX suppressed activation of the mitogen-activated protein kinase (MAPK), ERK1/2, which upregulates PDE4 expression in salmeterol-exposed ASM; and 2) the inhibitory actions of DEX on salmeterol-induced ERK1/2 activation and resultant PDE4-mediated changes in ASM responsiveness were prevented by gene silencing or pharmacological inhibition of DEX-induced expression of MAPK phosphatase-1 (MKP-1), an endogenous deactivator of ERK1/2 signaling.
GCs prevent the adverse proasthmatic effects of prolonged LABA exposure on airway responsiveness due to GC-induced upregulation of MKP-1, which inhibits proasthmatic ERK1/2 signaling in the LABA-exposed ASM.
PMCID: PMC2866838  PMID: 20392484
asthma; salmeterol; homologous β2-adrenergic receptor desensitization; airway smooth muscle; phosphodiesterase; ERK1/2 phosphorylation; siRNA; MAPK phosphatase-1
25.  Functional KCa3.1 channels regulate steroid insensitivity in bronchial smooth muscle cells1 
Identifying the factors responsible for relative glucocorticosteroid (GC) resistance present in patients with severe asthma and finding tools to reverse it are of paramount importance. In asthma there is in vivo evidence of GC-resistant pathways in airway smooth muscle (ASM) bundles which can be modelled in vitro by exposing cultured ASM cells to TNFα/IFNγ. This drives GC insensitivity via protein phosphatase-5 (PP5)-dependent impairment of GC receptor (GR) phosphorylation. Here, we investigated whether KCa3.1 ion channels modulate the activity of GC-resistant pathways using our ASM model of GC insensitivity. Immunohistochemical staining of endobronchial biopsies revealed that KCa3.1 channels are localized to the plasma membrane and nucleus of ASM in both healthy controls and asthmatic patients, irrespective of disease severity. Western blot assays and immunofluorescence staining confirmed the nuclear localisation of KCa3.1 channels in ASM cells. The functional importance of KCa3.1 channels in the regulation of GC-resistant chemokines induced by TNFα/IFNγ was assessed using complementary inhibitory strategies including KCa3.1 blockers (TRAM-34 and ICA-17043) or KCa3.1-specific shRNA delivered by adenoviruses. KCa3.1 channel blockade led to a significant reduction of fluticasone-resistant CX3CL1, CCL5 and CCL11 gene and protein expression. KCa3.1 channel blockade also restored fluticasone-induced GRα phosphorylation at ser211 and transactivation properties via the suppression of cytokine-induced PP5 expression. The effect of KCa3.1 blockade was evident in ASM cells from both healthy controls and asthmatic subjects. In summary KCa3.1 channels contribute to the regulation of GC-resistant inflammatory pathways in ASM cells: blocking KCa3.1 channels may enhance corticosteroid activity in severe asthma.
PMCID: PMC3753579  PMID: 23904164
Corticosteroid insensitivity; chemokines; GR phosphorylation; TNFα; transactivation; transrepression; KCa3.1; severe asthma; airway smooth muscle; transcription factors

Results 1-25 (1294281)