Search tips
Search criteria

Results 1-25 (1443811)

Clipboard (0)

Related Articles

1.  Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Data for 10,159 Cases from 12 Studies 
PLoS Medicine  2010;7(5):e1000279.
Paul Pharoah and colleagues evaluate the prognostic significance of immunohistochemical subtype classification in more than 10,000 breast cancer cases with early disease, and examine the influence of a patient's survival time on the prediction of future survival.
Immunohistochemical markers are often used to classify breast cancer into subtypes that are biologically distinct and behave differently. The aim of this study was to estimate mortality for patients with the major subtypes of breast cancer as classified using five immunohistochemical markers, to investigate patterns of mortality over time, and to test for heterogeneity by subtype.
Methods and Findings
We pooled data from more than 10,000 cases of invasive breast cancer from 12 studies that had collected information on hormone receptor status, human epidermal growth factor receptor-2 (HER2) status, and at least one basal marker (cytokeratin [CK]5/6 or epidermal growth factor receptor [EGFR]) together with survival time data. Tumours were classified as luminal and nonluminal tumours according to hormone receptor expression. These two groups were further subdivided according to expression of HER2, and finally, the luminal and nonluminal HER2-negative tumours were categorised according to expression of basal markers. Changes in mortality rates over time differed by subtype. In women with luminal HER2-negative subtypes, mortality rates were constant over time, whereas mortality rates associated with the luminal HER2-positive and nonluminal subtypes tended to peak within 5 y of diagnosis and then decline over time. In the first 5 y after diagnosis the nonluminal tumours were associated with a poorer prognosis, but over longer follow-up times the prognosis was poorer in the luminal subtypes, with the worst prognosis at 15 y being in the luminal HER2-positive tumours. Basal marker expression distinguished the HER2-negative luminal and nonluminal tumours into different subtypes. These patterns were independent of any systemic adjuvant therapy.
The six subtypes of breast cancer defined by expression of five markers show distinct behaviours with important differences in short term and long term prognosis. Application of these markers in the clinical setting could have the potential to improve the targeting of adjuvant chemotherapy to those most likely to benefit. The different patterns of mortality over time also suggest important biological differences between the subtypes that may result in differences in response to specific therapies, and that stratification of breast cancers by clinically relevant subtypes in clinical trials is urgently required.
Please see later in the article for the Editors' Summary
Editors' Summary
Each year, more than one million women discover they have breast cancer. Breast cancer begins when cells in the breast's milk-producing glands or in the tubes (ducts) that take milk to the nipples acquire genetic changes that allow them to divide uncontrollably and to move around the body (metastasize). The uncontrolled cell division leads to the formation of a lump that can be detected by mammography (a breast X-ray) or by manual breast examination. Breast cancer is treated by surgical removal of the lump or, if the cancer has started to spread, by removal of the whole breast (mastectomy). Surgery is usually followed by radiotherapy or chemotherapy. These “adjuvant” therapies are designed to kill any remaining cancer cells but can make women very ill. Generally speaking, the outlook (prognosis) for women with breast cancer is good. In the United States, for example, nearly 90% of affected women are still alive five years after their diagnosis.
Why Was This Study Done?
Because there are several types of cells in the milk ducts and glands, there are several subtypes of breast cancer. Luminal tumors, for example, begin in the cells that line the ducts and glands and usually grow slowly; basal-type tumors arise in deeper layers of the ducts and glands and tend to grow quickly. Clinicians need to distinguish between different breast cancer subtypes so that they can give women a realistic prognosis and can give adjuvant treatments to those women who are most likely to benefit. One way to distinguish between different subtypes is to stain breast cancer samples using antibodies (immune system proteins) that recognize particular proteins (antigens). This “immunohistochemical” approach can identify several breast cancer subtypes but its prognostic value and the best way to classify breast tumors remains unclear. In this study, the researchers investigate the survival over time of women with six major subtypes of breast cancer classified using five immunohistochemical markers: the estrogen receptor and the progesterone receptor (two hormone receptors expressed by luminal cells), the human epidermal growth factors receptor-2 (HER2, a protein marker used to select specific adjuvant therapies), and CK5/6 and EGFR (proteins expressed by basal cells).
What Did the Researchers Do and Find?
The researchers pooled data on survival time and on the expression of the five immunohistochemical markers from more than 10,000 cases of breast cancer from 12 studies. They then divided the tumors into six subtypes on the basis of their marker expression: luminal (hormone receptor-positive), HER2-positive tumors; luminal, HER2-negative, basal marker-positive tumors; luminal, HER2-negative, basal marker-negative tumors; nonluminal (hormone receptor-negative), HER2-positive tumors; nonluminal, HER2-negative, basal marker-positive tumors; and nonluminal, HER2-negative, basal marker-negative tumors. In the first five years after diagnosis, women with nonluminal tumor subtypes had the worst prognosis but at 15 years after diagnosis, women with luminal HER2-positive tumors had the worst prognosis. Furthermore, death rates (the percentage of affected women dying each year) differed by subtype over time. Thus, women with the two luminal HER2-negative subtypes were as likely to die soon after diagnosis as at later times whereas the death rates associated with nonluminal subtypes peaked within five years of diagnosis and then declined.
What Do These Findings Mean?
These and other findings indicate that the six subtypes of breast cancer defined by the expression of five immunohistochemical markers have distinct biological characteristics that are associated with important differences in short-term and long-term outcomes. Because different laboratories measured the immunohistochemical markers using different methods, it is possible that some of the tumors included in this study were misclassified. However, the finding of clear differences in the behavior of the immunochemically classified subtypes suggests that the use of the five markers for tumor classification might be robust enough for routine clinical practice. The application of these markers in the clinical setting, suggest the researchers, could improve the targeting of adjuvant therapies to those women most likely to benefit. Furthermore, note the researchers, these findings strongly suggest that subtype-specific responses should be evaluated in future clinical trials of treatments for breast cancer.
Additional Information
Please access these Web sites via the online version of this summary at
This study is further discussed in a PLoS Medicine Perspective by Stefan Ambs
The US National Cancer Institute provides detailed information for patients and health professionals on all aspects of breast cancer (in English and Spanish)
The American Cancer Society has a detailed guide to breast cancer, which includes information on the immunochemical classification of breast cancer subtypes
The UK charities MacMillan Cancer Support and Cancer Research UK also provide detailed information about breast cancer
The MedlinePlus Encyclopedia provides information for patients about breast cancer; Medline Plus provides links to many other breast cancer resources (in English and Spanish)
PMCID: PMC2876119  PMID: 20520800
2.  HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer 
Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial.
HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro.
Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, P <0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, P <0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (P = 0.004), but not in HER2-positive/ESR1-negative tumors.
Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group.
Introduction The human epidermal growth factor receptor 2 (HER2) is the prototype of a predictive biomarker for targeted treatment [1-8]. International initiatives have established the combination of immunohistochemistry (IHC) and in situ hybridization as the current gold standard [9,10]. As an additional approach determination of HER2 mRNA expression is technically feasible in formalin-fixed paraffin-embedded (FFPE) tissue [11-13]. Crosstalk between the estrogen receptor (ER) and the HER2 pathway has been suggested based on cell culture and animal models [14]. Consequently, the 2011 St Gallen panel has pointed out that HER2-positive tumors should be divided into two groups based on expression of the ER [15].
A retrospective analysis of the National Surgical Adjuvant Breast and Bowel Project (NSABP) B31 study has suggested that mRNA levels of HER2 and ESR1 might be relevant for the degree of benefit from adjuvant trastuzumab. By subpopulation treatment effect pattern plot (STEPP) analysis in ER-positive tumors, benefit from trastuzumab was shown to be restricted to those with higher levels of HER2 mRNA (S Paik, personal communication, results summarized in [15]).
In our study we evaluated this hypothesis in the neoadjuvant setting in a cohort of 217 patients from the neoadjuvant GeparQuattro trial [5]. All patients had been HER2- positive by local pathology assessment and had received 24 to 36 weeks of neoadjuvant trastuzumab plus an anthracycline/taxane-based chemotherapy. For central evaluation we used three different methods, HER2 IHC, and HER2 silver in situ hybridization (SISH), as well as measurement of HER2 mRNA by quantitative real-time (qRT)-PCR [11].
The primary objective of this analysis was to investigate if pathological complete response (pCR) rate in HER2-positive breast cancer would depend on the level of HER2 mRNA expression, with a separate analysis for HR-positive and -negative tumors. Central evaluation of the HER2 status showed that 27% of the tumors with HER2 overexpression by local pathology were HER2-negative. This enabled us to compare response rates in patients with HER2-positive and -negative tumors as a secondary objective.
PMCID: PMC3672694  PMID: 23391338
3.  Identification of biology-based breast cancer types with distinct predictive and prognostic features: role of steroid hormone and HER2 receptor expression in patients treated with neoadjuvant anthracycline/taxane-based chemotherapy 
Reliable predictive and prognostic markers for routine diagnostic purposes are needed for breast cancer patients treated with neoadjuvant chemotherapy. We evaluated protein biomarkers in a cohort of 116 participants of the GeparDuo study on anthracycline/taxane-based neoadjuvant chemotherapy for operable breast cancer to test for associations with pathological complete response (pCR) and disease-free survival (DFS). Particularly, we evaluated if interactions between hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) expression might lead to a different clinical behavior of HR+/HER2+ co-expressing and HR+/HER2- tumors and whether subgroups of triple negative tumors might be identified by the help of Ki67 labeling index, cytokeratin 5/6 (CK5/6), as well as cyclooxygenase-2 (COX-2), and Y-box binding protein 1 (YB-1) expression.
Expression analysis was performed using immunohistochemistry and silver-enhanced in situ hybridization on tissue microarrays (TMAs) of pretherapeutic core biopsies.
pCR rates were significantly different between the biology-based tumor types (P = 0.044) with HR+/HER2+ and HR-/HER2- tumors having higher pCR rates than HR+/HER2- tumors. Ki67 labeling index, confirmed as significant predictor of pCR in the whole cohort (P = 0.001), identified HR-/HER- (triple negative) carcinomas with a higher chance for a pCR (P = 0.006). Biology-based tumor type (P = 0.046 for HR+/HER2+ vs. HR+/HER2-), Ki67 labeling index (P = 0.028), and treatment arm (P = 0.036) were independent predictors of pCR in a multivariate model. DFS was different in the biology-based tumor types (P < 0.0001) with HR+/HER2- and HR+/HER2+ tumors having the best prognosis and HR-/HER2+ tumors showing the worst outcome. Biology-based tumor type was an independent prognostic factor for DFS in multivariate analysis (P < 0.001).
Our data demonstrate that a biology-based breast cancer classification using estrogen receptor (ER), progesterone receptor (PgR), and HER2 bears independent predictive and prognostic potential. The HR+/HER2+ co-expressing carcinomas emerged as a group of tumors with a good response rate to neoadjuvant chemotherapy and a favorable prognosis. HR+/HER2- tumors had a good prognosis irrespective of a pCR, whereas patients with HR-/HER- and HR-/HER+ tumors, especially if they had not achieved a pCR, had an unfavorable prognosis and are in need of additional treatment options.
Trial registration identifier: NCT00793377
PMCID: PMC2790846  PMID: 19758440
4.  Exquisite Sensitivity of TP53 Mutant and Basal Breast Cancers to a Dose-Dense Epirubicin−Cyclophosphamide Regimen 
PLoS Medicine  2007;4(3):e90.
In breast cancers, only a minority of patients fully benefit from the different chemotherapy regimens currently in use. Identification of markers that could predict the response to a particular regimen would thus be critically important for patient care. In cell lines or animal models, tumor protein p53 (TP53) plays a critical role in modulating the response to genotoxic drugs. TP53 is activated in response to DNA damage and triggers either apoptosis or cell-cycle arrest, which have opposite effects on cell fate. Yet, studies linking TP53 status and chemotherapy response have so far failed to unambiguously establish this paradigm in patients. Breast cancers with a TP53 mutation were repeatedly shown to have a poor outcome, but whether this reflects poor response to treatment or greater intrinsic aggressiveness of the tumor is unknown.
Methods and Findings
In this study we analyzed 80 noninflammatory breast cancers treated by frontline (neoadjuvant) chemotherapy. Tumor diagnoses were performed on pretreatment biopsies, and the patients then received six cycles of a dose-dense regimen of 75 mg/m2 epirubicin and 1,200 mg/m2 cyclophosphamide, given every 14 days. After completion of chemotherapy, all patients underwent mastectomies, thus allowing for a reliable assessment of chemotherapy response. The pretreatment biopsy samples were used to determine the TP53 status through a highly efficient yeast functional assay and to perform RNA profiling. All 15 complete responses occurred among the 28 TP53-mutant tumors. Furthermore, among the TP53-mutant tumors, nine out of ten of the highly aggressive basal subtypes (defined by basal cytokeratin [KRT] immunohistochemical staining) experienced complete pathological responses, and only TP53 status and basal subtype were independent predictors of a complete response. Expression analysis identified many mutant TP53-associated genes, including CDC20, TTK, CDKN2A, and the stem cell gene PROM1, but failed to identify a transcriptional profile associated with complete responses among TP53 mutant tumors. In patients with unresponsive tumors, mutant TP53 status predicted significantly shorter overall survival. The 15 patients with responsive TP53-mutant tumors, however, had a favorable outcome, suggesting that this chemotherapy regimen can overcome the poor prognosis generally associated with mutant TP53 status.
This study demonstrates that, in noninflammatory breast cancers, TP53 status is a key predictive factor for response to this dose-dense epirubicin–cyclophosphamide regimen and further suggests that the basal subtype is exquisitely sensitive to this association. Given the well-established predictive value of complete responses for long-term survival and the poor prognosis of basal and TP53-mutant tumors treated with other regimens, this chemotherapy could be particularly suited for breast cancer patients with a mutant TP53, particularly those with basal features.
Hugues de The and colleagues report thatTP53 status is a predictive factor for responsiveness in breast cancers to a dose-dense epirubicin-cyclophosphamide chemotherapy regimen, and suggests that this regimen might be well suited for patientsTP53 mutant tumors.
Editors' Summary
One woman in eight will develop breast cancer during her life. As with other cancers, breast cancer arises when cells accumulate genetic changes (mutations) that allow them to grow uncontrollably and to move around the body. These altered cells are called malignant cells. The normal human breast contains several types of cell, any of which can become malignant. In addition, there is more than one route to malignancy—different sets of genes can be mutated. As a result, breast cancer is a heterogeneous disease that cannot be cured with a single type of treatment. Ideally, oncologists would like to know before they start treating a patient which therapeutic approach is going to be successful for that individual. Recently, researchers have begun to identify molecular changes that might eventually allow oncologists to make such rational treatment decisions. For example, laboratory studies in cell lines or animals indicate that the status of a gene called TP53 determines the chemotherapy agents (drugs that preferentially kill rapidly dividing cancer cells) to which cells respond. p53, the protein encoded by TP53, is a tumor suppressor. That is, in normal cells it prevents unregulated growth by controlling the expression of proteins involved in cell division and cell death. Consequently, p53 is often inactivated during cancer development.
Why Was This Study Done?
Although laboratory studies have linked TP53 status to chemotherapy responses, little is known about this relationship in human breast cancers. The clinical studies that have investigated whether TP53 status affects chemotherapy responses have generally found that patients whose tumors contain mutant TP53 have a poorer response to therapy and/or a shorter survival time than those whose tumors contain normal TP53. In this study, the researchers have asked whether TP53 status affects tumor responses to a dose-intense chemotherapy regimen (frequent, high doses of drugs) given to women with advanced noninflammatory breast cancer before surgery. This type of treatment is called neoadjuvant chemotherapy and is used to shrink tumors before surgery.
What Did the Researchers Do and Find?
The researchers collected breast tumor samples from 80 women before starting six fortnightly cycles of chemotherapy with epirubicin and cyclophosphamide. After this, each woman had her affected breast removed and examined to see whether the chemotherapy had killed the tumor cells. The researchers determined which original tumor samples contained mutated TP53 and used a technique called microarray expression profiling to document gene expression patterns in them. Overall, 28 tumors contained mutated TP53. Strikingly, all 15 tumors that responded completely to neoadjuvant chemotherapy (no tumor cells detectable in the breast tissue after chemotherapy) contained mutated TP53. Nine of these responsive tumors were basal-cell–like breast tumors, a particularly aggressive type of breast cancer; only one basal-cell–like, TP53-mutated tumor did not respond to chemotherapy. Patients whose tumors were unresponsive to the neoadjuvant chemotherapy but contained mutated TP53 tended to die sooner than those whose tumors contained normal TP53 or those with chemotherapy-responsive TP53-mutated tumors. Finally, expression profiling identified changes in the expression of many p53-regulated genes, but did not identify an expression profile in the TP53-mutated tumors unique to those that responded to chemotherapy.
What Do These Findings Mean?
These findings indicate that noninflammatory breast tumors containing mutant TP53—in particular, basal-cell–like tumors—are very sensitive to dose-dense epirubicin and cyclophosphamide chemotherapy. Intensive regimens of this type have rarely been used in previous studies, which might explain the apparent contradiction between these results and the generally poor response to chemotherapy of TP53-mutated breast tumors. More tumors now need to be examined to confirm the association between complete response, TP53 status and basal-cell–like tumors. In addition, although complete tumor responses generally predict good overall survival, longer survival studies than those reported here are needed to show that the tumor response to this particular neoadjuvant chemotherapy regimen translates into improved overall survival. If the present results can be confirmed and extended, dose-dense neoadjuvant chemotherapy with epirubicin and cyclophosphamide could considerably improve the outlook for patients with aggressive TP53-mutant, basal-cell–like breast tumors.
Additional Information.
Please access these Web sites via the online version of this summary at
The US National Cancer Institute provides patient and physician information on breast cancer and general information on understanding cancer
Cancer Research UK offers patient information on cancer and breast cancer
The MedlinePlus encyclopedia has pages on breast cancer
Emory University's CancerQuest discusses the biology of cancer, including the role of tumor suppressor proteins
Wikipedia has pages on p53 (note that Wikipedia is a free online encyclopedia that anyone can edit)
PMCID: PMC1831731  PMID: 17388661
5.  XeNA: Capecitabine Plus Docetaxel, With or Without Trastuzumab, as Preoperative Therapy for Early Breast Cancer 
Combinations of capecitabine and a taxane are highly active in metastatic breast cancer, and synergy between capecitabine and docetaxel has also been demonstrated. Such combinations potentially would provide a promising non–anthracycline-based alternative for patients with early breast cancer. Non-anthracycline preoperative regimens are a particularly interesting proposition in human epidermal growth factor receptor 2 (HER2)-positive breast cancer, as they offer less cardiotoxicity and thus can be used concomitantly with preoperative trastuzumab therapy. Capecitabine plus docetaxel (XT) and trastuzumab with XT (HXT) are promising non-anthracycline regimens for the preoperative treatment of women with HER2-negative and HER2-positive breast cancer, respectively. The Xeloda in Neoadjuvant (XeNA) trial, an open-label, multicenter, phase II study, independently assesses the efficacy of preoperative XT in HER2-negative and HXT in HER2-positive breast cancer. A particularly important feature of the XeNA study is the use of pathologic complete response (pCR) plus near pCR (npCR) as the primary endpoint. pCR is associated with long-term survival, and although it is valuable as a surrogate marker, pCR has some limitations. Measurement of residual breast cancer burden (RCB) has been proposed as a more practical alternative to predict survival after preoperative chemotherapy. The combination of RCB-0 and RCB-I (npCR) expands the subset of patients shown to benefit from preoperative chemotherapy, and achievement of pCR or npCR is associated with long disease-free survival. In XeNA, the sum of pCR and npCR will facilitate correlative studies designed to identify patients most likely to benefit from XT and HXT and may expedite the clinical evaluation of these novel preoperative regimens.
PMCID: PMC2581822  PMID: 19002271
Pathologic complete response; Breast-conserving surgery; Taxane; Anthracycline-induced cardiotoxicity
6.  Comparison of neoadjuvant adriamycin and docetaxel versus adriamycin, cyclophosphamide followed by paclitaxel in patients with operable breast cancer 
Neoadjuvant chemotherapy is the standard treatment for patients with locally advanced breast cancer and is increasingly considered for patients with operable disease. Recently, as many clinical trials have demonstrated favorable outcomes of anthracycline-taxane based regimen, this approach has been widely used in the neoadjuvant setting.
We compared women who received adriamycine and docetaxel (AD) with adriamycin, cyclophosphamide followed by paclitaxel (AC-T) as neoadjuvant chemotherapy. The AD group was scheduled for six cycles of AD (50 mg/m2 and 75 mg/m2, respectively) at a 3-week interval. The AC-T group was scheduled for four cycles of adriamycin and cyclophosphamide (50 mg/m2 and 500 mg/m2, respectively) followed by four cycles of paclitaxel (175 mg/m2) at a 3-week interval.
The responses of chemotherapy were equivalent (overall response rate [AD, 75.7% vs. AC-T, 80.9%; P = 0.566], pathologic complete response [pCR] rate [breast and axilla: AD, 10.8% vs. AC-T, 12.8%; P = 1.000; breast only: AD, 18.9% vs. AC-T, 14.9%, P = 0.623], breast conserving surgery rate [P = 0.487], and breast conserving surgery conversion rate [P = 0.562]). The pCR rate in the breast was higher in the human epidermal growth factor receptor 2 (HER2) positive cases (HER2 positive 33.3% vs. negative 10%, P = 0.002). Although nonhematologic toxicities were comparable, hematologic toxicities were more severe in the AD group. Most women in the AD group suffered from grade 3/4 neutropenia (P < 0.001) and neutropenic fever (P < 0.001).
Tumor responses were not different in various variables between the two groups. However, AC-T was a more tolerable regimen than AD in patients with breast cancer receiving neoadjuvant chemotherapy.
PMCID: PMC3699689  PMID: 23833754
Breast neoplasms; Neoadjuvant therapy
7.  Receptor-Defined Subtypes of Breast Cancer in Indigenous Populations in Africa: A Systematic Review and Meta-Analysis 
PLoS Medicine  2014;11(9):e1001720.
In a systematic review and meta-analysis, Isabel dos Santos Silva and colleagues estimate the prevalence of receptor-defined subtypes of breast cancer in North Africa and sub-Saharan Africa.
Please see later in the article for the Editors' Summary
Breast cancer is the most common female cancer in Africa. Receptor-defined subtypes are a major determinant of treatment options and disease outcomes but there is considerable uncertainty regarding the frequency of poor prognosis estrogen receptor (ER) negative subtypes in Africa. We systematically reviewed publications reporting on the frequency of breast cancer receptor-defined subtypes in indigenous populations in Africa.
Methods and Findings
Medline, Embase, and Global Health were searched for studies published between 1st January 1980 and 15th April 2014. Reported proportions of ER positive (ER+), progesterone receptor positive (PR+), and human epidermal growth factor receptor-2 positive (HER2+) disease were extracted and 95% CI calculated. Random effects meta-analyses were used to pool estimates. Fifty-four studies from North Africa (n = 12,284 women with breast cancer) and 26 from sub-Saharan Africa (n = 4,737) were eligible. There was marked between-study heterogeneity in the ER+ estimates in both regions (I2>90%), with the majority reporting proportions between 0.40 and 0.80 in North Africa and between 0.20 and 0.70 in sub-Saharan Africa. Similarly, large between-study heterogeneity was observed for PR+ and HER2+ estimates (I2>80%, in all instances). Meta-regression analyses showed that the proportion of ER+ disease was 10% (4%–17%) lower for studies based on archived tumor blocks rather than prospectively collected specimens, and 9% (2%–17%) lower for those with ≥40% versus those with <40% grade 3 tumors. For prospectively collected samples, the pooled proportions for ER+ and triple negative tumors were 0.59 (0.56–0.62) and 0.21 (0.17–0.25), respectively, regardless of region. Limitations of the study include the lack of standardized procedures across the various studies; the low methodological quality of many studies in terms of the representativeness of their case series and the quality of the procedures for collection, fixation, and receptor testing; and the possibility that women with breast cancer may have contributed to more than one study.
The published data from the more appropriate prospectively measured specimens are consistent with the majority of breast cancers in Africa being ER+. As no single subtype dominates in the continent availability of receptor testing should be a priority, especially for young women with early stage disease where appropriate receptor-specific treatment modalities offer the greatest potential for reducing years of life lost.
Please see later in the article for the Editors' Summary
Editors' Summary
Breast cancer is the commonest female tumor in Africa and death rates from the disease in some African countries are among the highest in the world. Breast cancer begins when cells in the breast acquire genetic changes that allow them to grow uncontrollably and to move around the body. When a breast lump is found (by mammography or manual examination), a few cells are collected from the lump (a biopsy) to look for abnormal cells and to test for the presence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) on the cells. The hormones estrogen and progesterone promote the growth of normal breast cells and of ER+ and PR+ breast cancer cells. HER2 also controls the growth of breast cells. The receptor status of breast cancer is a major determinant of treatment options and prognosis (likely outcome). ER+ tumors, for example, are more receptive to hormonal therapy and have a better prognosis than ER− tumors, whereas HER2+ tumors, which make large amounts of HER2, are more aggressive than HER2− tumors. Breast cancer is treated by surgically removing the lump or the whole breast (mastectomy) if the tumor has already spread, before killing any remaining cancer cells with chemotherapy or radiotherapy. In addition, ER+, PR+, and HER2+ tumors are treated with drugs that block these receptors (including tamoxifen and trastuzumab), thereby slowing breast cancer growth.
Why Was This Study Done?
ER+ tumors predominate in white women but the proportion of ER+ tumors among US-born black women is slightly lower. The frequency of different receptor-defined subtypes of breast cancer in indigenous populations in Africa is currently unclear but policy makers need this information to help them decide whether routine receptor status testing should be introduced across Africa. Because receptor status is a major determination of treatment options and outcomes, it would be more important to introduce receptor testing if all subtypes are present in breast cancers in indigenous African women and if no one subtype dominates than if most breast cancers in these women are ER+. In this systematic review (a study that uses pre-defined criteria to identify all the research on a given topic) and meta-analysis (a statistical approach that combines the results of several studies), the researchers examine the distribution of receptor-defined breast cancer subtypes in indigenous populations in Africa.
What Did the Researchers Do and Find?
The researchers identified 54 relevant studies from North Africa involving 12,284 women with breast cancer (mainly living in Egypt or Tunisia) and 26 studies from sub-Saharan Africa involving 4,737 women with breast cancer (mainly living in Nigeria or South Africa) and used the data from these studies to calculate the proportions of ER+, PR+, and HER2+ tumors (the number of receptor-positive tumors divided by the number of tumors with known receptor status) across Africa. The proportion of ER+ tumors varied markedly between studies, ranging between 0.40 and 0.80 in North Africa and between 0.20 and 0.70 in sub-Saharan Africa. Among prospectively collected samples (samples collected specifically for receptor-status testing; studies that determined the receptor status of breast cancers using stored samples reported a lower proportion of ER+ disease than studies that used prospectively collected samples), the overall pooled proportions of ER+ and triple negative tumors were 0.59 and 0.21, respectively.
What Do These Findings Mean?
Although these findings highlight the scarcity of data on hormone receptor and HER2 status in breast cancers in indigenous African populations, they provide new information about the distribution of breast cancer subtypes in Africa. Specifically, these findings suggest that although slightly more than half of breast cancers in Africa are ER+, no single subtype dominates. They also suggest that the distribution of receptor-defined breast cancer subtypes in Africa is similar to that found in Western populations. The accuracy of these findings is likely to be affected by the low methodological quality of many of the studies and the lack of standardized procedures. Thus, large well-designed studies are still needed to accurately quantify the distribution of various breast cancer subtypes across Africa. In the meantime, the current findings support the introduction of routine receptor testing across Africa, especially for young women with early stage breast cancer in whom the potential to improve survival and reduce the years of life lost by knowing the receptor status of an individual's tumor is greatest.
Additional Information
Please access these websites via the online version of this summary at
This study is further discussed in a PLOS Medicine Perspective by Sulma i Mohammed
The US National Cancer Institute (NCI) provides comprehensive information about cancer (in English and Spanish), including detailed information for patients and professionals about breast cancer including an online booklet for patients
Cancer Research UK, a not-for profit organization, provides information about cancer; its detailed information about breast cancer includes sections on tests for hormone receptors and HER2 and on treatments that target hormone receptors and treatments that target HER2 is a not-for-profit organization that provides up-to-date information about breast cancer (in English and Spanish), including information on hormone receptor status and HER2 status
The UK National Health Service Choices website has information and personal stories about breast cancer; the not-for profit organization Healthtalkonline also provides personal stories about dealing with breast cancer
PMCID: PMC4159229  PMID: 25202974
8.  Neoadjuvant Treatment in Patients with HER2-Positive Breast Cancer 
ISRN Oncology  2013;2013:362467.
Approximately 20%–25% of patients with breast cancer demonstrate amplification of the human epidermal receptor type 2 (HER2) gene, resulting in an overexpression of the HER2 receptor. This overexpression is associated with aggressive disease, relatively poor prognosis, and worse clinical outcomes. Neoadjuvant therapy is the standard treatment in patients with locally advanced, inflammatory, or inoperable primary breast cancer. It is generally used to downstage the tumors and therefore to improve surgical options including breast-conserving surgery rather than mastectomy. It has been confirmed that patients with pathological complete response (pCR) to neoadjuvant treatment have better disease-free survival (DFS) and overall survival (OS). Neoadjuvant treatment can also serve as in vivo test of sensitivity to the used therapeutic regimen. The preferred neoadjuvant approach to patients with HER2-positive breast cancer is a sequential anthracycline-taxane-based chemotherapy in combination with trastuzumab. Addition of other anti-HER2 agents has increased pCR rate up to 75% and will probably become a new therapeutic direction. In the first part of this paper, we summarize the information about HER2-positive breast cancer, the various treatment possibilities, and the results of the major neoadjuvant trials. The second part focuses on the data concerning the importance of pCR and the potential risk of cardiotoxicity associated with this treatment.
PMCID: PMC3676960  PMID: 23762609
9.  Association between Pathological Complete Response and Outcome Following Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer Patients 
Journal of Breast Cancer  2014;17(4):376-385.
We aimed to determine the rate of pathological complete response (pCR), clinicopathological factors associated with pCR, and clinical outcomes following neoadjuvant chemotherapy in locally advanced breast cancer.
Medical records of patients who had undergone neoadjuvant chemotherapy for breast cancer between January 2007 and September 2011 were retrospectively reviewed, and the pCR rates were calculated according to three sets of criteria: the National Surgical Adjuvant Breast and Bowel Project (NSABP), the MD Anderson Cancer Center (MDACC), and the German Breast Group (GBG). Tumors were classified as luminal A like, luminal B like, human epidermal growth factor receptor 2 (HER2), or triple-negative. pCR and clinical outcome, including overall survival (OS) and disease-free survival (DFS) rates were analyzed at the median follow-up of 54.2 months.
Of a total of 179 patients who had received neoadjuvant chemotherapy, 167 patients (93.3%) had locally advanced breast cancer and 12 patients (6.7%) had early-stage breast cancer. The majority of patients (152 patients, 89.4%) received anthracycline-based neoadjuvant chemotherapy. The objective clinical response rate was 61.5%, comprising clinical partial response in 5.5% and clinical complete response in 3.9% of patients. Twenty-one (11.7%), 20 (11.2%), and 17 patients (9.5%) achieved pCR according to NSABP, MDACC, and GBG definitions, respectively. pCR rates, as defined by NSABP, according to breast cancer subtype were 4.4%, 9.7%, 24.2%, and 19.2% in luminal A like, luminal B like, HER2, and triple-negative subtypes, respectively. Patients who achieved pCR had significantly better DFS (5-year DFS rates, 80% vs. 53%, p=0.030) and OS (5-year OS rates, 86% vs. 54%, p=0.042) than those who did not.
The pCR rate following neoadjuvant chemotherapy for breast cancer in Thai women attending our institution was 11.7%; pCR was more frequently observed in HER2 and triple-negative breast tumor subtypes. Patients who achieved pCR had significantly improved survival.
PMCID: PMC4278058  PMID: 25548587
Antineoplastic combined chemotherapy protocols; Breast neoplasms; Neoadjuvant therapy; Surgery; Treatment outcome
10.  Clinicopathological, therapeutic and prognostic features of the triple-negative tumors in moroccan breast cancer patients (experience of Hassan II university hospital in Fez) 
BMC Research Notes  2011;4:500.
Triple-negative breast cancer (TNBC) is defined as a group of breast carcinomas that are negative for expression of hormone receptors (ER, PR) and Her2, we can distinguish between two groups: basal-like (ER-, PR-, Her2-, cytokeratin (CK) 5/6+ and/or Her1+) and unclassified subtype (ER-, PR-, Her2-, Her1- and CK5/6-).
The aim of this study is to determine the clinicopathological, histological, therapeutic and prognostic features associated with this type of breast cancer.
This is a retrospective study of 366 female breast cancer patients, diagnosed between January 2007 and June 2010 at the Department of Pathology. Epidemiological, clinical, histological, therapeutic and evolutive data were analyzed. OS and DFS rates were estimated by Kaplan-Meier analysis and a log-rank test to estimate outcome.
A total of 64 women were identified as having TNBC (17.5% of all female breast cancer patients), 12.6% were basal-like, 4.9% were unclassified subtype, with a median age of 45 years. The median histological tumor diameter was 4.3 cm. TNBC were most often associated with a high grade, 49.2% grade III (53% for unclassified subtype, 47.6% for basal-like). Vascular invasion was found in 26.6% of cases (22% for unclassified subtype and 28.3% for basal-like). For the lymph node involvement: 51% had positive lymph nodes, and 22.4% had distant metastases. Neoadjuvant chemotherapy was administered to 18% patients with 26% of complete pathologic response; therefore adjuvant chemotherapy was given to 82%. 98% received anthracycline based regimen and only 30% received taxanes.
The Kaplan-Meier curves based showed the lowest survival probability at 3-years (49% of OS, and 39% of DFS).
TNBC is associated with young age, high grade tumors, advanced stage at diagnosis, difference chemo response compared to other subtypes, and shortest survival. Critical to optimal future management is accurate identification of truly triple negative disease, and adequately powered prospective TNBC trials to establish treatment efficacy and define predictive biomarkers.
PMCID: PMC3226450  PMID: 22088140
Triple negative breast cancer; Clinico-pathological; Prognostic features
11.  Local-regional control according to surrogate markers of breast cancer subtypes and response to neoadjuvant chemotherapy in breast cancer patients undergoing breast conserving therapy 
Breast cancers of different molecular subtypes have different survival rates. The goal of this study was to identify patients at high risk for local-regional recurrence according to response to neoadjuvant chemotherapy and surrogate markers of molecular subtypes in patients undergoing breast conserving therapy (BCT).
Clinicopathologic data from 595 breast cancer patients who received neoadjuvant chemotherapy and BCT from 1997 to 2005 were identified. Estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) expression determined by immunohistochemistry were used to construct the following subtypes: ER+ or PR+ and HER2- (hormone receptor (HR)+/HER2-; 52%), ER+ or PR+ and HER2+ (HR+/HER2+; 9%), ER- and PR- and HER2+ (HR-/HER2+; 7%) and ER- and PR- and HER2- (HR-/HER2-; 32%). Actuarial rates were calculated using the Kaplan-Meier method and compared using the log-rank test. Cox proportional hazards models were used for multivariate analysis (MVA).
After a median follow-up of 64 months, the five-year local-regional recurrence (LRR)-free survival rate for all patients was 93.8%. The five-year LRR-free survival rates varied by subtype: HR+/HER2- 97.0%, HR+/HER2+ 95.9%, HR-/HER2+ 86.5% and HR-/HER2- 89.5% (P = 0.001). In addition to subtype, clinical stage III disease (90% vs. 95% for I/II, P = 0.05), high nuclear grade (92% vs. 97% with low/intermediate grade, P = 0.03), presence of lymphovascular invasion (LVI) (89% vs. 95% in those without LVI, P = 0.02) and four or more positive lymph nodes on pathologic examination (87% vs. 95% with zero to three positive lymph nodes, P = 0.03) were associated with lower five-year LRR-free survival on univariate analysis. On MVA, HR-/HER2+ and HR-/HER2- subtypes and disease in four or more lymph nodes were associated with decreased LRR-free survival. A pathologic complete response (pCR) was associated with improved LRR-free survival.
Patients with HR+/HER2- and HR+/HER2+ subtypes had excellent LRR-free survival regardless of tumor response to neoadjuvant chemotherapy. Patients with HR-/HER2+ and HR-/HER2- subtypes with poor response to neoadjuvant chemotherapy had worse LRR-free survival after BCT. Additional study is needed to determine the impact of trastuzumab on local-regional control in HER2+ tumors. Our data suggest that patients with HR-/HER2- subtype tumors not achieving pCR may benefit from novel strategies to improve local-regional control.
PMCID: PMC3446346  PMID: 22621334
12.  DNA Repair Gene Patterns as Prognostic and Predictive Factors in Molecular Breast Cancer Subtypes 
The Oncologist  2013;18(10):1063-1073.
DNA repair pathways can enable tumor cells to survive DNA damage induced by chemotherapy and thus provide prognostic and/or predictive value. In this study, the authors sought to assess the differential expression, bimodal distribution, and prognostic and predictive role of DNA repair genes in individual breast cancer molecular subtypes including estrogen receptor-positive/ HER2-negative, estrogen receptor-negative/HER2-negative, and HER2-positive cancers. The predictive value of DNA repair gene expression was assessed in breast cancer patients treated with neoadjuvant taxane/anthracycline- or anthracycline-containing regimens, and gene set analyses were performed by grouping DNA repair genes according to biological pathways.
DNA repair pathways can enable tumor cells to survive DNA damage induced by chemotherapy and thus provide prognostic and/or predictive value. We evaluated Affymetrix gene expression profiles for 145 DNA repair genes in untreated breast cancer (BC) patients (n = 684) and BC patients treated with regimens containing neoadjuvant taxane/anthracycline (n = 294) or anthracycline (n = 210). We independently assessed estrogen receptor (ER)-positive/HER2-negative, HER2-positive, and ER-negative/HER2-negative subgroups for differential expression, bimodal distribution, and the prognostic and predictive value of DNA repair gene expression. Twenty-two genes were consistently overexpressed in ER-negative tumors, and five genes were overexpressed in ER-positive tumors, but no differences in expression were associated with HER2 status. In ER-positive/HER2-negative tumors, the expression of nine genes (BUB1, FANCI, MNAT1, PARP2, PCNA, POLQ, RPA3, TOP2A, and UBE2V2) was associated with poor prognosis, and the expression of one gene (ATM) was associated with good prognosis. Furthermore, the prognostic value of specific genes did not correlate with proliferation. A few genes were associated with chemotherapy response in BC subtypes and treatment-specific manner. In ER-negative/HER2-negative tumors, the MSH2, MSH6, and FAN1 (previously MTMR15) genes were associated with pathological complete response and residual invasive cancer in taxane/anthracycline-treated patients. Conversely, PMS2 expression was associated with residual invasive cancer in treatments using anthracycline as a single agent. In HER2-positive tumors, TOP2A was associated with patient response to anthracyclines but not to taxane/anthracycline regimens. In genes expressed in a bimodal fashion, RECQL4 was significantly associated with clinical outcome. In vitro studies showed that defects in RECQL4 impair homologous recombination, sensitizing BC cells to DNA-damaging agents.
PMCID: PMC3805146  PMID: 24072219
Neoadjuvant therapies; DNA repair pathways; Predictive factors; Breast cancer subtypes; DNA damaging agents
13.  Non-Pegylated Liposomal Doxorubicin-Cyclophosphamide in Sequential Regimens with Taxanes as Neoadjuvant Chemotherapy in Breast Cancer Patients 
Journal of Cancer  2014;5(6):398-405.
Purpose: Chemotherapy regimens containing anthracyclines and taxanes represent the landmark of neoadjuvant systemic therapy of breast cancer. In advanced breast cancer patients liposomal anthracyclines (LA) have shown similar efficacy and less cardiac toxicity when compared to conventional anthracyclines. We performed this retrospective analysis in order to evaluate the efficacy and tolerability of neoadjuvant regimens including LA outside of clinical trials in routine clinical practice.
Methods: Fifty operable or locally advanced, HER2 negative, breast cancer patients were retrospectively identified in 5 Italian cancer centres. Nineteen patients had received 4 cycles of non-pegylated liposomal doxorubicin (NPLD) and cyclophosphamide, followed by 4 cycles of docetaxel, every 3 weeks. In 25 patients the reverse sequence was employed, and a third subgroup of 6 patients received 4 cycles of NPLD/cyclophosphamide every 3 weeks followed by 4 cycles of weekly carboplatin and paclitaxel.
Results: We observed 10 pathological complete responses (pCR) (20.0%, 95%CI, 9% to 31%), and 35 (70%, 95%CI, 57.3% to 82.7%) partial responses (pPR), whereas no patients progressed onto therapy. In the small subset of triple negative tumors the pCR rate was 37.5%, and in tumors expressing ER and/or PgR it was 16.7%. A pCR rate of 26.5% was observed in tumors with high Ki-67, whereas in tumors with low Ki-67 only one (6.2%) pCR was observed (p=0.14). Treatments were well tolerated. The most common toxicities were myelosuppression and palmar-plantar erytrodysesthesia; 4 asymptomatic and transient LVEF decrease have been recorded, without any case of clinical cardiotoxicity.
Conclusions: NPLD-cyclophosphamide and taxanes sequential regimens were proven effective and well tolerated in breast cancer patients with contra-indication to conventional anthracyclines undergoing neoadjuvant chemotherapy, even outside of clinical trials in everyday clinical practice.
PMCID: PMC4026993  PMID: 24847380
Breast cancer; neoadjuvant chemotherapy; non-pegylated liposomal doxorubicin; retrospective analysis; everyday clinical practice
14.  Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer 
Breast Cancer Research : BCR  2011;13(6):R126.
Infiltration of breast tumors by tumor-infiltrating lymphocytes (TIL) has been associated with sensitivity to anthracycline-based chemotherapy. However, it is unclear whether this is true within the estrogen receptor-alpha (ER)-negative subset of breast tumors that frequently manifest high TIL levels.
The association of TIL with short-term and long-term clinical response to anthracycline-based therapy was assessed in two independent ER-negative breast cancer cohorts in which patients were categorized as TIL-high or TIL-low. We defined an eight-gene lymphocyte mRNA expression signature (including CD19, CD3D, CD48, GZMB, LCK, MS4A1, PRF1, and SELL) and used unsupervised hierarchical clustering to examine the association between TIL and short-term response to neoadjuvant chemotherapy in a previously published cohort of ER-negative tumors (n = 113). We also examined the association between TIL and long-term chemotherapeutic efficacy in a second cohort of ER-negative tumors (n = 255) with longer than 6 years of median follow-up by using tissue microarrays and immunohistochemistry (IHC) for detection of CD3, CD8, CD4, CD20, and TIA-1.
In patients with ER-negative tumors treated with neoadjuvant anthracycline-based chemotherapy, pathologic complete responses (pCRs) were achieved by 23 (74%) of 31 TIL-high patients and 25 (31%) of 80 TIL-low patients (odds ratio (OR), 6.33; 95% confidence interval (CI), 2.49 to 16.08; P < 0.0001). Multivariate logistic regression with standard clinicopathologic features demonstrated that only tumor size (P = 0.037) and TIL status (P = 0.001) were independent predictors of anthracycline response. In the second cohort, adjuvant anthracycline-based therapy was associated with increased disease-free survival (DFS) only in patients with high levels of intraepithelial CD3+ TIL (P = 0.0023). In contrast, outcomes after CMF treatment (cyclophosphamide, methotrexate, and fluorouracil) showed no association with CD3 status. In both cohorts, cytotoxic T-cells were the primary TIL subtype associated with anthracycline sensitivity. Finally, TIL significantly predicted anthracycline sensitivity for both the Her2-positive and triple-negative tumor phenotypes.
ER-negative breast cancers with high levels of TIL have heightened sensitivity to anthracycline-based chemotherapy, as assessed by the immediate response to neoadjuvant therapy and long-term outcome following adjuvant therapy. Investigations of TIL-based predictive tests to identify patients likely to benefit from anthracycline-based treatments are warranted.
PMCID: PMC3326568  PMID: 22151962
15.  Shift in cytotoxic target from estrogen receptor-positive to estrogen receptor-negative breast cancer cells by trastuzumab in combination with taxane-based chemotherapy 
Oncology Letters  2011;2(2):303-308.
Trastuzumab has shown significant clinical benefits in patients with operable and metastatic HER2-positive breast cancer. However, the biological mechanism of the additional effect of trastuzumab administered in combination with conventional chemotherapy is poorly understood. We performed a retrospective analysis of 55 patients with HER2-positive breast cancer treated with anthracycline and taxane (chemotherapy alone; CT), or trastuzumab in combination with taxane-based chemotherapy (CT+T) for neoadjuvant chemotherapy. We determined the therapeutic efficacies [clinical (CR) and pathological complete responses (pCR)] and changes in the proportion of positive cells for each biomarker pre- to post-neoadjuvant chemotherapy for each treatment regimen. Clinical-CR and quasi-pCR rates defined as the absence of invasive tumors or only a few remaining invasive tumor cells were 6.9 and 31.0% in the CT group and 46.2 and 65.4% in the CT+T group, respectively. In the CT group, the proportion of estrogen receptor (ER)-/progesterone receptor (PgR)-positive cells decreased significantly following treatment (ER, 73.5 vs. 50.9%; P=0.02). Changes in the proportion of ER-/PgR-positive cells were not noted in the CT+T group (ER, 81.9 vs. 80.3%; P=0.61), although a relatively greater decrease in the proportion of Ki-67-positive cells was found in the CT+T group than that in the CT group (−26.5 vs. −13.7%). These findings indicate that CT+T inhibits ER-negative and Ki-67-positive breast cancer cells. In conclusion, trastuzumab sensitized ER-negative proliferative cells to cytotoxic chemotherapy. This finding may indicate an additional clinical effect of trastuzumab when administered in combination with conventional chemotherapy as neoadjuvant chemotherapy for HER2-positive breast cancer.
PMCID: PMC3410577  PMID: 22866081
trastuzumab; neoadjuvant therapy; estrogen receptor
16.  Impact of Immunohistochemistry-Based Molecular Subtype on Chemosensitivity and Survival in Patients with Breast Cancer Following Neoadjuvant Chemotherapy 
Journal of Breast Cancer  2012;15(2):203-210.
Pathologic complete response (pCR) has been suggested as a surrogate prognostic indicator in breast cancer patients treated with neoadjuvant chemotherapy. We assessed whether the likelihood of pCR and survival is associated with the immunohistochemistry-based molecular subtypes.
We retrospectively analyzed the records of 276 patients with breast cancer who received neoadjuvant chemotherapy between January 2000 and January 2010. Patients were classified into four molecular subtypes based on the immunohistochemistry profiles of estrogen receptor, progesterone receptor, and HER2/neu. Logistic regression was used to analyze variables associated with pCR.
The pCR was achieved in 45 patients (16.3%). The triple negative subtype was an independent predictive factor for pCR (odds ratio, 3.21; 95% confidence interval, 1.20-8.56; p=0.020), and the ERBB-2 subtype showed a trend for higher pCR rates (odds ratio, 3.03; 95% confidence interval, 0.93-9.89; p=0.067) compared with the luminal A subtype. In 99 patients with HER2/neu-positive breast cancer, pCR rates were higher in those who received trastuzumab (31.7%) than those treated with conventional chemotherapy regimens (17.2%, p=0.023). The pCR was significantly associated with prolonged progression-free survival (p=0.008). The triple negative subgroup had shorter progression-free survival (p=0.001) and overall survival (p=0.001) than the other subgroups.
We demonstrated that the triple negative and ERBB-2 subtypes are more likely to obtain pCR when neoadjuvant chemotherapy is given, compared to the luminal A subtype. Despite the high pCR rate, the triple negative subtype showed worse survival outcomes, paradoxically, primarily due to patients who had residual disease.
PMCID: PMC3395744  PMID: 22807938
Breast neoplasms; Molecular subtypes; Neoadjuvant therapy; Pathologic complete response
17.  The Relevance of Breast Cancer Subtypes in the Outcome of Neoadjuvant Chemotherapy 
Annals of Surgical Oncology  2010;17(9):2411-2418.
Breast cancer is increasingly considered a heterogeneous disease. The aim of this study was to assess the differences between histological and receptor-based subtypes in breast-conserving surgery and pathological complete response (pCR) after neoadjuvant chemotherapy.
A consecutive series of 254 patients with operable breast cancer treated with neoadjuvant chemotherapy was analyzed. Tumors were classified according to their receptor status in estrogen receptor (ER)-positive tumors (HER2-negative), triple-negative tumors, and HER2-positive tumors. The type of surgery feasible prior to neoadjuvant chemotherapy was compared with the actual surgery performed.
The overall increase in breast-conserving surgery was 37% (73 of 198). In patients with ductal and lobular carcinomas this increase was 41% (63 of 152, 95% confidence interval [95% CI] 0.34–0.49) and 20% (7 of 35, 95% CI 0.10–0.36), respectively (P = 0.02). Half of the patients with lobular carcinoma had to undergo a secondary mastectomy because of incomplete resection margins. In ER-positive, triple-negative and HER2-positive tumors, the increase in breast-conserving surgery was 39% (42 of 109, 95% CI 0.30–0.48), 24% (11 of 45, 95% CI 0.14–0.38), and 45% (20 of 44, 95% CI 0.32–0.60) (P = 0.11). The pCR rate in ductal and lobular carcinomas was 12% (23 of 195) and 2% (1 of 42), respectively (P = 0.09). In ER-positive, triple-negative and HER2-positive tumors the pCR rates were 2% (3 of 138), 28% (16 of 57), and 18% (10 of 56), respectively. Multivariate analysis showed that the receptor-based subtype was the only significant predictor of pCR (P = 0.004).
In lobular tumors the benefit with regard to breast-conserving surgery of neoadjuvant chemotherapy is questionable. Although in ER-positive tumors the pCR rate is low, the increase in breast-conserving surgery was remarkable in ductal ER-positive tumors.
PMCID: PMC2924493  PMID: 20373039
18.  Biological characterization and selection criteria of adjuvant chemotherapy for early breast cancer: experience from the Italian observational NEMESI study 
BMC Cancer  2012;12:216.
International treatment guidelines recommend administration of adjuvant chemotherapy in early breast cancer based on clinical, prognostic and predictive parameters.
An observational study (NEMESI) was conducted in 63 Italian oncology centres in patients with early breast cancer. Age, performance status, concomitant disease, menopausal status, histology, tumor dimension (pT), axillary lymph node status (pN), grading (G), estrogen and progesterone receptor (ER and PgR), proliferative index (ki67 or MIB-1), human epidermal growth factor receptor 2 (HER2) and type of adjuvant treatment were recorded. The primary objective of the study was to define parameters influencing the decision to prescribe adjuvant chemotherapy and the type of chemotherapy.
Data for 1894 patients were available. 69.0% postmenopausal, 67.0% pT1, 22.3% pTmic/pT1a/pT1b, 61.0% pN0, 48.7% luminal A, 18.1% luminal B, 16.1% HER2 positive, 8.7% triple negative, 8.4% unknown. 57.8% received adjuvant chemotherapy: 38.1% of luminal A, 67.3% luminal B, 88.2% HER2-positive, 97.6% triple negative. Regimens administered: 9.1% CMF-like, 48.8% anthracyclines, 38.4% anthracyclines plus taxanes, 3.7% taxanes alone. Increasing pT/pN and, marginally, HER2-positive were associated with the prescription of anthracyclines plus taxanes. Suboptimal schedules (CMF-like or AC/EC or FEC-75) were prescribed in 37.3% receiving chemotherapy, even in HER2-positive and triple negative disease (36.5% and 34.0%, respectively).
This study showed an overprescription of adjuvant chemotherapy for early breast cancer, particularly referred to luminal A. pT, pN and, marginally, HER2 were the principal determinants for the choice of chemotherapy type. Suboptimal chemotherapy regimens were adopted in at least one third of HER2-positve and triple negative.
PMCID: PMC3433340  PMID: 22672524
19.  Prognostic value of Ki67 expression in HR-negative breast cancer before and after neoadjuvant chemotherapy 
Background: Immunohistochemical (IHC) expression of Ki67 has been identified as a prognostic and predictive marker in hormone receptor (HR)-positive breast cancer, however, there is little evidence of the association of Ki67 with prognosis in HR-negative patients. We aimed to assess the benefit of Ki67 assessment in HR-negative breast cancers after neoadjuvant chemotherapy (NAC). Methods: In the present study, a total of 183 HR-negative breast cancer patients with Stage II to III that treated with anthracycline and/or taxane-based neoadjuvant chemotherapy between 2004 and 2011 were retrospectively analyzed. Endocrine therapy and trastuzumab was not administered to any patients in this study. Clinical and pathological features of the patients with breast cancer were retrieved from the hospital records. Predictive factors for NAC response and survival were analyzed. Results: Of the 183 patients, 122 (66.6%) were HR- HER2+, and 61 (33.3%) were triple-negative. The clinical response rates were similar across breast cancer subtype. Patients whose tumors contained high Ki67 expression effectively responded to NAC. Ki67 labeling index was a predictive marker for pathologic complete response (pCR). Ki67 expression showed a positive correlation with HER2 status, tumor size, lymph node status, lymphovascular invasion and tumor grade. Furthermore, high Ki67 expression in post-treatment tumors was strongly correlated with poor disease-free survival (DFS), but no correlation of Ki-67 expression with overall survival (OS) was observed. Conclusions: Our results suggest that Ki67 expression in HR-negative breast cancer may improve the assessment of pathological response after NAC, and Ki67 score in residual tumor was an independent prognosticator for DFS in the HR-negative breast cancer patients.
PMCID: PMC4230098  PMID: 25400769
Breast cancer; Ki67; neoadjuvant chemotherapy; prognosis
20.  Trends and Novel Approaches in Neoadjuvant Treatment of Breast Cancer 
Breast Care  2011;6(6):427-433.
Breast cancer is the most prevalent malignant disease in women worldwide. Traditionally, surgical tumour resection was the primary step within the treatment algorithm of early stage disease; systemic therapy in order to reduce the rate of systemic recurrences followed. National Surgical Adjuvant Breast and Bowel Project (NSABP) trial B-18 found that pre- and postoperative administration of chemotherapy was equally effective. This study therefore established neoadjuvant chemotherapy as a valid treatment option, as the breast conservation rate is increased. Modern neoadjuvant regimens encompassing anthracyclines and taxanes yield pathological complete response (pCR) rates of around 20%, with higher efficacy observed in triple-negative tumours. The antibody trastuzumab is the first targeted agent established in neoadjuvant regimens for the treatment of Her2-positive breast cancer, as it raised pCR rates up to 50%. Novel approaches are aiming to increase the efficacy of neoadjuvant therapy. Inclusion of capecitabine might further increase pCR rates in selected patients, although data are not unanimous throughout the respective clinical trials. In patients harbouring BRCA-1 germline mutations, platinum derivatives are apparently promising. Novel Her2-targeted agents such as lapatinib and pertuzumab are currently under investigation in several clinical trials, while the role of bevacizumab, a monoclonal antibody inhibiting angiogenesis, awaits future clarification.
PMCID: PMC3290012  PMID: 22419895
Breast cancer; Chemotherapy; Neoadjuvant therapy; Targeted therapy
21.  Changes in aldehyde dehydrogenase-1 expression during neoadjuvant chemotherapy predict outcome in locally advanced breast cancer 
Although neoadjuvant chemotherapy (NAC) for locally advanced breast cancer can improve operability and local disease control, there is a lack of reliable biomarkers that predict response to chemotherapy or long-term survival. Since expression of aldehyde dehydrogenase-1 (ALDH1) is associated with the stem-like properties of self-renewal and innate chemoresistance in breast cancer, we asked whether expression in serial tumor samples treated with NAC could identify women more likely to benefit from this therapy.
Women with locally advanced breast cancer were randomly assigned to receive four cycles of anthracycline-based chemotherapy, followed by four cycles of taxane therapy (Arm A), or the same regimen in reverse order (Arm B). Tumor specimens were collected at baseline, after four cycles, and then at surgical resection. ALDH1 expression was determined by immunohistochemistry and correlated with tumor response using Fisher’s exact test while Kaplan-Meier method was used to calculate survival.
A hundred and nineteen women were enrolled into the study. Fifty seven (48%) were randomized to Arm A and 62 (52%) to Arm B. Most of the women (90%) had ductal carcinoma and 10% had lobular carcinoma. Of these, 26 (22%) achieved a pathological complete response (pCR) after NAC. There was no correlation between baseline ALDH1 expression and tumor grade, stage, hormone receptor, human epidermal growth factor receptor 2 (HER2) status and Ki67 index. ALDH1 negativity at baseline was significantly associated with pCR (P = 0.004). The presence of ALDH1(+) cells in the residual tumor cells in non-responding women was strongly predictive of worse overall survival (P = 0.024). Moreover, serial analysis of specimens from non-responders showed a marked increase in tumor-specific ALDH1 expression (P = 0.028). Overall, there was no survival difference according to the chemotherapy sequence. However, poorly responding tumours from women receiving docetaxel chemotherapy showed an unexpected significant increase in ALDH1 expression.
ALDH1 expression is a useful predictor of chemoresistance. The up-regulation of ALDH1 after NAC predicts poor survival in locally advanced breast cancer. Although the chemotherapy sequence had no effect on overall prognosis, our results suggest that anthracycline-based chemotherapy may be more effective at targeting ALDH1(+) breast cancer cells.
Trial registration
PMCID: PMC4053180  PMID: 24762066
22.  Distribution, clinicopathologic features and survival of breast cancer subtypes in Southern China 
Cancer Science  2012;103(9):1679-1687.
Breast cancer research and treatment by different subtypes is an inevitable trend. We investigated the clinicopathologic features and outcomes of different breast cancer subtypes in Southern China. A total of 5809 patients with invasive ductal carcinomas were identified. Immunohistochemical (IHC) markers for estrogen receptor (ER), progesterone receptor (PR), Her2/neu, and Ki-67 proliferation index were used to classify cases into five molecular subtypes. Clinicopathologic characteristics and survival rates were analyzed retrospectively. Of all patients, 31.1% were luminal A subtype, 30.4% luminal B (high Ki-67), 13.1% luminal B (Her2/neu+), 9.0% Her2/neu and 16.5% triple negative subtype. Luminal B (high Ki-67) presented primarily in premenopausal patients with the lowest average age (43.0 years). Her2/neu positive tumors were more closely associated with aggressive features including increased tumor size, positive lymph node status and lymphvascular invasion (LVI). Triple negative subtype was characterized by poorer histologic grade. Her2/neu positive cases had presented the worst 5-year disease-free survival (DFS) and overall survival (OS). Multivariate analyses of OS and DFS suggested that there were different negative prognostic factors for the five subtypes. The benefit of the cyclophosphamide, methotrexate, and 5-fluorouracil (5FU) (CMF) regimen was equal to that of anthracycline-based and Taxane-based regimens for patients with luminal A subtype and triple negative subtype, but inferior to anthracycline-based and Taxane-based regimens for those with two luminal B subtypes and Her2/neu subtype. The prognostic significance of traditional markers may differ among subtypes. This study revealed the distinct clinicopathologic characteristics, systemic therapy benefits, prognostic factors and survival rate among different breast cancer subtypes.
PMCID: PMC3466418  PMID: 22625227
23.  The Predictive Value of Serum HER2/neu for Response to Anthracycline-Based and Trastuzumab-Based Neoadjuvant Chemotherapy 
Journal of Breast Cancer  2012;15(2):189-196.
Little information exists about the possible influence of serum HER2/neu on response to chemotherapy. We propose that the assessment of serum HER2/neu in a pretreatment serum sample may be useful in predicting response to neoadjuvant chemotherapy.
All breast cancer patients were tested by immunohistochemical stain and fluorescent in situ hybridization for HER2/neu before treatment. Serum HER2/neu was twice measured by chemiluminescence immunoassay (ADVIA Centaur System) before neoadjuvant chemotherapy and before operation. The cut-off value was 10.2 mg/mL, according to the previous study. Pathologic complete response (pCR) was considered as no residual tumor or remnant ductal carcinoma in situ; partial response (PR) was a less than 50% decrease in maximal diameter in pathologic tumor size. The measurements for the changes of serum HER2/neu were defined as pretreatment HER2/neu-preoperation HER2/neu. We compared the change of serum HER2/neu between that from before chemotherapy and that after chemotherapy, the pathologic complete response and partial response, and the trastuzumab group and anthracycline group.
Serum HER2/neu was decreased after neoadjuvant chemotherapy. The mean of serum HER2/neu in prechemotherapy was 15.4±9.0 ng/mL, and that of postchemotherapy was 10.5±2.0 ng/mL (p=0.04). Pathologic response was correlated with the change of serum HER2/neu (PR, 11.7±2.2 ng/mL vs. pCR, 23.7±13.1 ng/mL; p=0.01). In the trastuzumab group, pCR was marginally correlated with the change of serum HER2/neu (PR, 0.8±0.84 ng/mL vs. pCR, 21.1±13.2 ng/mL; p=0.08).
Serum HER2/neu levels during treatment were associated with pathologic response in patients receiving neoadjuvant chemotherapy, particularly, in a trastuzumab-based regimen. The change of serum HER2/neu levels may serve in monitoring neoadjuvant therapy in HER2/neu-overexpressed breast cancer.
PMCID: PMC3395742  PMID: 22807936
Breast neoplasms; HER2/neu; Trastuzumab
24.  Chemotherapy Response Assay Test and Prognosis for Breast Cancer Patients Who Have Undergone Anthracycline- and Taxane-Based Chemotherapy 
Journal of Breast Cancer  2011;14(4):283-288.
A chemotherapy response assay test is performed to evaluate the degree of tumor growth inhibition by a chemotherapeutic agent. Several studies have been done on its usefulness; however, to the best of our knowledge, only a few studies concerning the relationship between chemotherapy response assay test results and breast cancer patients' prognoses have been conducted. Thus, we performed this study to analyze this relationship.
Among breast cancer patients who underwent curative surgery and neoadjuvant or adjuvant chemotherapy between August 2004 and December 2009, 102 were enrolled in this study. Chemotherapeutic regimens for patients were doxorubicin plus taxane or doxorubicin plus cyclophosphamide followed by taxane. We divided these patients into two groups (sensitive group [n=19] and resistant group [n=83]) and analyzed the relationship between chemosensitivity results and patient prognosis.
The sensitive group was associated with poor disease-free survival (DFS) (p=0.003) and overall survival (OS) (p<0.001). No significant differences were observed in tumor histology (p=0.548), tumor size (p=0.479), number of metastatic lymph nodes (p=0.326), histologic grade (p=0.077), or nuclear grade (p=0.216) between the two groups. However, in respect to molecular subtype, the HER2-positive type and triple negative breast cancer were more frequently observed in the sensitive group (p=0.001). In a univariate and multivariate analysis for DFS, doxorubicin sensitivity was significantly associated with a poor prognosis (p<0.05).
Better chemosensitivity results are associated with a poor prognosis in breast cancer patients who have undergone anthracycline- and taxane-based chemotherapy, however, examination of additional cases and the use of a longer study period are needed.
PMCID: PMC3268924  PMID: 22323914
Breast neoplasms; Doxorubicin; Prognosis; Sensitivity
25.  Breast Cancer Subtypes and Response to Docetaxel in Node-Positive Breast Cancer: Use of an Immunohistochemical Definition in the BCIRG 001 Trial 
Journal of Clinical Oncology  2009;27(8):1168-1176.
To investigate the prognostic and predictive significance of subtyping node-positive early breast cancer by immunohistochemistry in a clinical trial of a docetaxel-containing regimen.
Pathologic data from a central laboratory were available for 1,350 patients (91%) from the BCIRG 001 trial of docetaxel, doxorubicin, and cyclophosphamide (TAC) versus fluorouracil, doxorubicin, and cyclophosphamide (FAC) for operable node-positive breast cancer. Patients were classified by tumor characteristics as (1) triple negative (estrogen receptor [ER]–negative, progesterone receptor [PR]–negative, HER2/neu [HER2]–negative), (2) HER2 (HER2-positive, ER-negative, PR-negative), (3) luminal B (ER-positive and/or PR-positive and either HER2-positive and/or Ki67high), and (4) luminal A (ER-positive and/or PR-positive and not HER2-positive or Ki67high), and assessed for prognostic significance and response to adjuvant chemotherapy.
Patients were subdivided into triple negative (14.5%), HER2 (8.5%), luminal B (61.1%), and luminal A (15.9%). Three-year disease-free survival (DFS) rates (P values with luminal B as referent) were 67% (P < .0001), 68% (P = .0008), 82% (referent luminal B), and 91% (P = .0027), respectively, with hazard ratios of 2.22, 2.12, and 0.46. Improved 3-year DFS with TAC was found in the luminal B group (P = .025) and a combined ER-positive/HER2-negative group treated with tamoxifen (P = .041), with a marginal trend in the triple negatives (P = .051) and HER2 (P = .068) subtypes. No DFS advantage was seen in the luminal A population.
A simple immunopanel can divide breast cancers into biologic subtypes with strong prognostic effects. TAC significantly complements endocrine therapy in patients with luminal B subtype and, in the absence of targeted therapy, is effective in the triple-negative population.
PMCID: PMC2667821  PMID: 19204205

Results 1-25 (1443811)