PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1748933)

Clipboard (0)
None

Related Articles

1.  Risk Prediction for Breast, Endometrial, and Ovarian Cancer in White Women Aged 50 y or Older: Derivation and Validation from Population-Based Cohort Studies 
PLoS Medicine  2013;10(7):e1001492.
Ruth Pfeiffer and colleagues describe models to calculate absolute risks for breast, endometrial, and ovarian cancers for white, non-Hispanic women over 50 years old using easily obtainable risk factors.
Please see later in the article for the Editors' Summary
Background
Breast, endometrial, and ovarian cancers share some hormonal and epidemiologic risk factors. While several models predict absolute risk of breast cancer, there are few models for ovarian cancer in the general population, and none for endometrial cancer.
Methods and Findings
Using data on white, non-Hispanic women aged 50+ y from two large population-based cohorts (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial [PLCO] and the National Institutes of Health–AARP Diet and Health Study [NIH-AARP]), we estimated relative and attributable risks and combined them with age-specific US-population incidence and competing mortality rates. All models included parity. The breast cancer model additionally included estrogen and progestin menopausal hormone therapy (MHT) use, other MHT use, age at first live birth, menopausal status, age at menopause, family history of breast or ovarian cancer, benign breast disease/biopsies, alcohol consumption, and body mass index (BMI); the endometrial model included menopausal status, age at menopause, BMI, smoking, oral contraceptive use, MHT use, and an interaction term between BMI and MHT use; the ovarian model included oral contraceptive use, MHT use, and family history or breast or ovarian cancer. In independent validation data (Nurses' Health Study cohort) the breast and ovarian cancer models were well calibrated; expected to observed cancer ratios were 1.00 (95% confidence interval [CI]: 0.96–1.04) for breast cancer and 1.08 (95% CI: 0.97–1.19) for ovarian cancer. The number of endometrial cancers was significantly overestimated, expected/observed = 1.20 (95% CI: 1.11–1.29). The areas under the receiver operating characteristic curves (AUCs; discriminatory power) were 0.58 (95% CI: 0.57–0.59), 0.59 (95% CI: 0.56–0.63), and 0.68 (95% CI: 0.66–0.70) for the breast, ovarian, and endometrial models, respectively.
Conclusions
These models predict absolute risks for breast, endometrial, and ovarian cancers from easily obtainable risk factors and may assist in clinical decision-making. Limitations are the modest discriminatory ability of the breast and ovarian models and that these models may not generalize to women of other races.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In 2008, just three types of cancer accounted for 10% of global cancer-related deaths. That year, about 460,000 women died from breast cancer (the most frequently diagnosed cancer among women and the fifth most common cause of cancer-related death). Another 140,000 women died from ovarian cancer, and 74,000 died from endometrial (womb) cancer (the 14th and 20th most common causes of cancer-related death, respectively). Although these three cancers originate in different tissues, they nevertheless share many risk factors. For example, current age, age at menarche (first period), and parity (the number of children a woman has had) are all strongly associated with breast, ovarian, and endometrial cancer risk. Because these cancers share many hormonal and epidemiological risk factors, a woman with a high breast cancer risk is also likely to have an above-average risk of developing ovarian or endometrial cancer.
Why Was This Study Done?
Several statistical models (for example, the Breast Cancer Risk Assessment Tool) have been developed that estimate a woman's absolute risk (probability) of developing breast cancer over the next few years or over her lifetime. Absolute risk prediction models are useful in the design of cancer prevention trials and can also help women make informed decisions about cancer prevention and treatment options. For example, a woman at high risk of breast cancer might decide to take tamoxifen for breast cancer prevention, but ideally she needs to know her absolute endometrial cancer risk before doing so because tamoxifen increases the risk of this cancer. Similarly, knowledge of her ovarian cancer risk might influence a woman's decision regarding prophylactic removal of her ovaries to reduce her breast cancer risk. There are few absolute risk prediction models for ovarian cancer, and none for endometrial cancer, so here the researchers develop models to predict the risk of these cancers and of breast cancer.
What Did the Researchers Do and Find?
Absolute risk prediction models are constructed by combining estimates for risk factors from cohorts with population-based incidence rates from cancer registries. Models are validated in an independent cohort by testing their ability to identify people with the disease in an independent cohort and their ability to predict the observed numbers of incident cases. The researchers used data on white, non-Hispanic women aged 50 years or older that were collected during two large prospective US cohort studies of cancer screening and of diet and health, and US cancer incidence and mortality rates provided by the Surveillance, Epidemiology, and End Results Program to build their models. The models all included parity as a risk factor, as well as other factors. The model for endometrial cancer, for example, also included menopausal status, age at menopause, body mass index (an indicator of the amount of body fat), oral contraceptive use, menopausal hormone therapy use, and an interaction term between menopausal hormone therapy use and body mass index. Individual women's risk for endometrial cancer calculated using this model ranged from 1.22% to 17.8% over the next 20 years depending on their exposure to various risk factors. Validation of the models using data from the US Nurses' Health Study indicated that the endometrial cancer model overestimated the risk of endometrial cancer but that the breast and ovarian cancer models were well calibrated—the predicted and observed risks for these cancers in the validation cohort agreed closely. Finally, the discriminatory power of the models (a measure of how well a model separates people who have a disease from people who do not have the disease) was modest for the breast and ovarian cancer models but somewhat better for the endometrial cancer model.
What Do These Findings Mean?
These findings show that breast, ovarian, and endometrial cancer can all be predicted using information on known risk factors for these cancers that is easily obtainable. Because these models were constructed and validated using data from white, non-Hispanic women aged 50 years or older, they may not accurately predict absolute risk for these cancers for women of other races or ethnicities. Moreover, the modest discriminatory power of the breast and ovarian cancer models means they cannot be used to decide which women should be routinely screened for these cancers. Importantly, however, these well-calibrated models should provide realistic information about an individual's risk of developing breast, ovarian, or endometrial cancer that can be used in clinical decision-making and that may assist in the identification of potential participants for research studies.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001492.
This study is further discussed in a PLOS Medicine Perspective by Lars Holmberg and Andrew Vickers
The US National Cancer Institute provides comprehensive information about cancer (in English and Spanish), including detailed information about breast cancer, ovarian cancer, and endometrial cancer;
Information on the Breast Cancer Risk Assessment Tool, the Surveillance, Epidemiology, and End Results Program, and on the prospective cohort study of screening and the diet and health study that provided the data used to build the models is also available on the NCI site
Cancer Research UK, a not-for-profit organization, provides information about cancer, including detailed information on breast cancer, ovarian cancer, and endometrial cancer
The UK National Health Service Choices website has information and personal stories about breast cancer, ovarian cancer, and endometrial cancer; the not-for-profit organization Healthtalkonline also provides personal stories about dealing with breast cancer and ovarian cancer
doi:10.1371/journal.pmed.1001492
PMCID: PMC3728034  PMID: 23935463
2.  Birth Size and Breast Cancer Risk: Re-analysis of Individual Participant Data from 32 Studies 
PLoS Medicine  2008;5(9):e193.
Background
Birth size, perhaps a proxy for prenatal environment, might be a correlate of subsequent breast cancer risk, but findings from epidemiological studies have been inconsistent. We re-analysed individual participant data from published and unpublished studies to obtain more precise estimates of the magnitude and shape of the birth size–breast cancer association.
Methods and Findings
Studies were identified through computer-assisted and manual searches, and personal communication with investigators. Individual participant data from 32 studies, comprising 22,058 breast cancer cases, were obtained. Random effect models were used, if appropriate, to combine study-specific estimates of effect. Birth weight was positively associated with breast cancer risk in studies based on birth records (pooled relative risk [RR] per one standard deviation [SD] [= 0.5 kg] increment in birth weight: 1.06; 95% confidence interval [CI] 1.02–1.09) and parental recall when the participants were children (1.02; 95% CI 0.99–1.05), but not in those based on adult self-reports, or maternal recall during the woman's adulthood (0.98; 95% CI 0.95–1.01) (p for heterogeneity between data sources = 0.003). Relative to women who weighed 3.000–3.499 kg, the risk was 0.96 (CI 0.80–1.16) in those who weighed < 2.500 kg, and 1.12 (95% CI 1.00–1.25) in those who weighed ≥ 4.000 kg (p for linear trend = 0.001) in birth record data. Birth length and head circumference from birth records were also positively associated with breast cancer risk (pooled RR per one SD increment: 1.06 [95% CI 1.03–1.10] and 1.09 [95% CI 1.03–1.15], respectively). Simultaneous adjustment for these three birth size variables showed that length was the strongest independent predictor of risk. The birth size effects did not appear to be confounded or mediated by established breast cancer risk factors and were not modified by age or menopausal status. The cumulative incidence of breast cancer per 100 women by age 80 y in the study populations was estimated to be 10.0, 10.0, 10.4, and 11.5 in those who were, respectively, in the bottom, second, third, and top fourths of the birth length distribution.
Conclusions
This pooled analysis of individual participant data is consistent with birth size, and in particular birth length, being an independent correlate of breast cancer risk in adulthood.
Editors' Summary
Background.
Last year, more than one million women discovered that they had breast cancer. In the US, nearly 200,000 women will face the same diagnosis this year and 40,000 will die because of breast cancer. Put another way, about one in eight US women will have breast cancer during her lifetime. Like all cancers, breast cancer begins when cells acquire genetic changes that allow them to divide uncontrollably and to move around the body (metastasize). This uncontrolled division leads to the formation of a lump that can be detected by mammography (a breast X-ray) or by manual examination of the breasts. Breast cancer is treated by surgical removal of the lump or, if the cancer has started to spread, by removal of the whole breast (mastectomy). Surgery is usually followed by radiotherapy, chemotherapy, and other treatments designed to kill any remaining cancer cells. Unlike some cancers, the outlook for women with breast cancer is good. In the US, for example, nearly 90% of affected women are still alive five years after their diagnosis.
Why Was This Study Done?
Scientists have identified several factors that increase a woman's risk of developing breast cancer by comparing the characteristics of populations of women with and without breast cancer. Well-established risk factors include increasing age, not having children, and having a late menopause, but another potential risk factor for breast cancer is birth size. A baby's weight, length, and head circumference at birth (three related measures of birth size) depend on the levels of hormones (including estrogen, a hormone that often affects breast cancer growth) and other biological factors to which the baby is exposed during pregnancy—its prenatal environment. The idea that prenatal environment might also affect breast cancer risk in later life was first proposed in 1990, but the findings of studies that have tried to investigate this possibility have been inconsistent. Here, the researchers re-analyze individual participant data from a large number of studies into women's health conducted in Europe, Northern America, and China to get more precise information about the association between birth size and breast cancer risk.
What Did the Researchers Do and Find?
The researchers identified 32 published and unpublished studies that had collected information on birth size and on the occurrence of breast cancer. They then obtained the individual participant data from these studies, which involved more than 22,000 women who had developed breast cancer and more than 600,000 women who had not. Their analyses of these data show that birth weight was positively associated with breast cancer risk in those studies where this measurement was recorded at birth or based on parental recall during the study participant's childhood (but not in those studies in which birth weight was self-reported or maternally recalled during the participant's adulthood). For example, women with recorded birth weights of more than 4 kg or more had a 12% higher chance of developing breast cancer than women who weighed 3–3.5 kg at birth. Birth length and head circumference were also positively associated with breast cancer risk, but birth length was the strongest single predictor of risk. Finally, the amount by which birth size affected breast cancer risk was not affected by allowing for other established risk factors.
What Do These Findings Mean?
These findings provide strong evidence that birth size—in particular, birth length—is a marker of a woman's breast cancer risk in adulthood although the mechanisms underlying this association are unclear. The researchers note that the observed effect of birth size on breast cancer risk is of a similar magnitude to that of other more established risk factors and estimate that 5% of all breast cancers in developed countries could be caused by a high birth size. Because practically all the studies included in this pooled analysis were done in developed countries, these findings may not hold for developing countries. Further investigations into how the prenatal environment may affect breast cancer risk might identify new ways to prevent this increasingly common cancer.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050193.
This study is further discussed in a PLoS Medicine Perspective by Trichopoulos and Lagiou
The US National Cancer Institute provides detailed information for patients and health professionals on all aspects of breast cancer, including information on risk factors for breast cancer (in English and Spanish)
The MedlinePlus Encyclopedia provides information for patients about breast cancer; Medline Plus also provides links to many other breast cancer resources (in English and Spanish)
The UK charity Cancerbackup also provides detailed information about breast cancer
Cancer Research UK is the UK's leading charity dedicated to cancer research
doi:10.1371/journal.pmed.0050193
PMCID: PMC2553821  PMID: 18828667
3.  Polymorphic repeat in AIB1 does not alter breast cancer risk 
Breast Cancer Research : BCR  2000;2(5):378-385.
We assessed the association between a glutamine repeat polymorphism in AIB1 and breast cancer risk in a case-control study (464 cases, 624 controls) nested within the Nurses' Health Study cohort. We observed no association between AIB1 genotype and breast cancer incidence, or specific tumor characteristics. These findings suggest that AIB1 repeat genotype does not influence postmenopausal breast cancer risk among Caucasian women in the general population.
Introduction:
A causal association between endogenous and exogenous estrogens and breast cancer has been established. Steroid hormones regulate the expression of proteins that are involved in breast cell proliferation and development after binding to their respective steroid hormone receptors. Coactivator and corepressor proteins have recently been identified that interact with steroid hormone receptors and modulate transcriptional activation [1]. AIB1 (amplified in breast 1) is a member of the steroid receptor coactivator (SRC) family that interacts with estrogen receptor (ER)α in a ligand-dependent manner, and increases estrogen-dependent transcription [2]. Amplification and overexpression of AIB1 has been observed in breast and ovarian cancer cell lines and in breast tumors [2,3]. A polymorphic stretch of glutamine amino acids, with unknown biologic function, has recently been described in the carboxyl-terminal region of AIB1 [4]. Among women with germline BRCA1 mutations, significant positive associations were observed between AIB1 alleles with 26 or fewer glutamine repeats and breast cancer risk [5]
Aim:
To establish whether AIB1 repeat alleles are associated with breast cancer risk and specific tumor characteristics among Caucasian women.
Patients and methods:
We evaluated associations prospectively between AIB1 alleles and breast cancer risk in the Nurses' Health Study using a nested case-control design. The Nurses' Health Study was initiated in 1976, when 121 700 US-registered nurses between the ages of 30 and 55 years returned an initial questionnaire reporting medical histories and baseline health-related exposures. Between 1989 and 1990 blood samples were collected from 32 826 women. Eligible cases in this study consisted of women with pathologically confirmed incident breast cancer from the subcohort who gave a blood specimen. Cases with a diagnosis anytime after blood collection up to June 1, 1994, with no previously diagnosed cancer except for nonmelanoma skin cancer were included. Controls were randomly selected participants who gave a blood sample and were free of diagnosed cancer (except nonmelanoma skin cancer) up to and including the interval in which the cases were diagnosed, and were matched to cases on year of birth, menopausal status, postmenopausal hormone use, and time of day, month and fasting status at blood sampling. The nested case-control study consisted of 464 incident breast cancer cases and 624 matched controls. The protocol was approved by the Committee on Human Subjects, Brigham and Womens' Hospital, Boston, Massachusetts USA. Information regarding breast cancer risk factors was obtained from the 1976 baseline questionnaire, subsequent biennial questionnaires, and a questionnaire that was completed at the time of blood sampling. Histopathologic characteristics, such as stage, tumor size and ER and progesterone receptor (PR) status, were ascertained from medical records when available and used in case subgroup analyses.
AIB1 repeat alleles were determined by automated fluorescence-based fragment detection from polymerase chain reaction (PCR)-amplified DNA extracted from peripheral blood lymphocytes. Fluorescent 5' -labeled primers were utilized for PCR amplification, and glutamine repeat number discrimination was performed using the ABI Prism 377 DNA Sequencer (Perkin-Elmer, Foster City, CA, USA). Genotyping was performed by laboratory personnel who were blinded to case-control status, and blinded quality control samples were inserted to validate genotyping identification procedures (n = 110); concordance for the blinded samples was 100%. Methods regarding plasma hormone assays have previously been reported [6]. Conditional and unconditional logistic regression models, including terms for the matching variables and other potential confounders, were used to assess the association of AIB1 alleles and breast cancer characterized by histologic subtype, stage of disease, and ER and PR status. We also evaluated whether breast cancer risk associated with AIB1 genotype differed within strata of established breast cancer risk factors, and whether repeat length in AIB1 indirectly influenced plasma hormone levels.
Results:
The case-control comparisons of established breast cancer risk factors among these women have previously been reported [7], and are generally consistent with expectation. The mean age of the women was 58.3 (standard deviation [SD] 7.1) years, ranging from 43 to 69 years at blood sampling. There were 188 premenopausal and 810 postmenopausal women, with mean ages of 48.1 (SD 2.8) years and 61.4 (SD 5.0) years, respectively, at blood sampling. Women in this study were primarily white; Asians, African-Americans and Hispanics comprised less than 1% of cases or controls.
The distribution of AIB1 glutamine repeat alleles and AIB1 genotypes for cases and controls are presented in Table 1. Women with AIB1 alleles of 26 glutamine repeats or fewer were not at increased risk for breast cancer (odds ratio [OR] 1.01, 95% confidence interval [CI] 0.75-1.36; Table 2). Results were also similar by menopausal status and in analyses additionally adjusting for established breast cancer risk factors. Among premenopausal women, the OR for women with at least one allele with 26 glutamine repeats or fewer was 0.82 (95% Cl 0.37-1.81), and among postmenopausal women the OR was 1.09 (95% Cl 0.78-1.52; Table 2). We did not observe evidence of a positive association between shorter repeat length and advanced breast cancer, defined as women with breast cancer having one or more involved nodes (OR 1.07, 95% Cl 0.64-1.78), or with cancers with a hormone-dependent phenotype (ER-positive: OR 1.16, 95% Cl 0.81-1.65; Table 3). No associations were observed among women who had one or more alleles with 26 glutamine repeats or fewer, with or without a family history of breast cancer (family history: OR 1.09; 95% Cl 0.46-2.58; no family history: OR 0.94; 95% Cl 0.68-1.31; test for interaction P = 0.65). We also did not observe associations with breast cancer risk to be modified by other established breast cancer risk factors. Among postmenopausal controls not using postmenopausal hormones, geometric least-squared mean plasma levels of estrone sulfate and estrone were similar among carriers and noncarriers of AIB1 alleles with 26 glutamine repeats or fewer (both differences: ≤ +3.5%; P >0.50). Mean levels of estradiol were slightly, but nonsignificantly elevated among carriers of alleles with 26 glutamine repeats or fewer (+11.6%; P = 0.08).
Discussion:
In this population-based nested case-control study, women with at most 26 repeating glutamine codons (CAG/CAA) within the carboxyl terminus of AIB1 were not at increased risk for breast cancer. We did not observe shorter repeat alleles to be positively associated with breast cancer grouped by histologic subtype, stage of disease, or by ER and PR status. These data suggest that AIB1 repeat length is not a strong independent risk factor for postmenopausal breast cancer, and does not modify the clinical presentation of the tumor among Caucasian women in the general population.
PMCID: PMC13920  PMID: 11056690
AIB1 polymorphism; breast cancer; genetic susceptibility; molecular epidemiology
4.  Ovarian Cancer and Body Size: Individual Participant Meta-Analysis Including 25,157 Women with Ovarian Cancer from 47 Epidemiological Studies 
PLoS Medicine  2012;9(4):e1001200.
A reanalysis of published and unpublished data from epidemiological studies examines the association between height, body mass index, and the risk of developing ovarian cancer.
Background
Only about half the studies that have collected information on the relevance of women's height and body mass index to their risk of developing ovarian cancer have published their results, and findings are inconsistent. Here, we bring together the worldwide evidence, published and unpublished, and describe these relationships.
Methods and Findings
Individual data on 25,157 women with ovarian cancer and 81,311 women without ovarian cancer from 47 epidemiological studies were collected, checked, and analysed centrally. Adjusted relative risks of ovarian cancer were calculated, by height and by body mass index.
Ovarian cancer risk increased significantly with height and with body mass index, except in studies using hospital controls. For other study designs, the relative risk of ovarian cancer per 5 cm increase in height was 1.07 (95% confidence interval [CI], 1.05–1.09; p<0.001); this relationship did not vary significantly by women's age, year of birth, education, age at menarche, parity, menopausal status, smoking, alcohol consumption, having had a hysterectomy, having first degree relatives with ovarian or breast cancer, use of oral contraceptives, or use of menopausal hormone therapy. For body mass index, there was significant heterogeneity (p<0.001) in the findings between ever-users and never-users of menopausal hormone therapy, but not by the 11 other factors listed above. The relative risk for ovarian cancer per 5 kg/m2 increase in body mass index was 1.10 (95% CI, 1.07–1.13; p<0.001) in never-users and 0.95 (95% CI, 0.92–0.99; p = 0.02) in ever-users of hormone therapy.
Conclusions
Ovarian cancer is associated with height and, among never-users of hormone therapy, with body mass index. In high-income countries, both height and body mass index have been increasing in birth cohorts now developing the disease. If all other relevant factors had remained constant, then these increases in height and weight would be associated with a 3% increase in ovarian cancer incidence per decade.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Cancer of the ovaries, usually referred to as ovarian cancer, is the fifth leading cause of cancer death in women, and, unfortunately, symptoms (such as abdominal pain and swelling) usually occur late in the disease process; fewer than one-third of ovarian cancers are detected before they have spread outside of the ovaries. There is no definitive evidence that screening reduces mortality from ovarian cancer, and given the poor prognosis of advanced ovarian cancer, there has been much research over recent years to increase understanding of this serious condition. There are recognized risk factors that increase the chance of developing ovarian cancer, such as increasing age, having fewer children, not having used oral contraceptives, and use of menopausal hormone therapy. Age and oral contraceptive use have by far the biggest impact on ovarian cancer risk.
Why Was This Study Done?
To date, there is no definitive information about the relevance of women's height, weight, and body mass index to their subsequent risk of developing ovarian cancer. There have been roughly 50 epidemiological studies of ovarian cancer, but only about half of these studies have published results on the association between body size and ovarian cancer risk, and so far, these findings have been inconsistent. Therefore, the researchers—an international collaboration of researchers studying ovarian cancer—re-analyzed the available epidemiological evidence to investigate the relationship between ovarian cancer risk and adult height, weight, and body mass index, and to examine the consistency of the findings across study designs.
What Did the Researchers Do and Find?
After an extensive literature search, the researchers identified 47 eligible studies that collected individual data on women's reproductive history, use of hormonal therapies, height, weight, and/or body mass index, and in which the principal investigators of each study accepted the invitation from the researchers to be involved in the re-analysis. The researchers combined data from the different studies. To ensure that women in one study were only directly compared with controls (similar women without ovarian cancer) in the same study, all analyses were routinely stratified by study, center within study, age, parity, use of oral contraceptives, use of hormonal therapy for menopause, and menopausal status or hysterectomy.
The 47 studies were conducted in 14 countries and comprised a total of 25,157 women with ovarian cancer (mostly from Europe and North America) and 81,311 women without ovarian cancer. The researchers found a significant increase in relative risk (1.07) of ovarian cancer per 5 cm increase in height. Furthermore, this risk did not vary depending on other studied factors—age, year of birth, education, age at menarche, parity, menopausal status, smoking, alcohol consumption, having had a hysterectomy, having first degree relatives with ovarian or breast cancer, use of oral contraceptives, or use of menopausal hormone therapy. However, the researchers found that for body mass index, the risks depended on whether women had ever taken menopausal hormone therapy: the relative risk for ovarian cancer per 5 kg/m2 increase in body mass index was 1.10 in women who had never taken menopausal hormone therapy but was only 0.95 in women who had previously taken menopausal hormone therapy.
What Do These Findings Mean?
These findings suggest that increasing height can be considered as a risk factor for ovarian cancer and that in women who have never taken menopausal hormone therapy, increased body mass index can be considered an additional risk factor. These findings have public health implications, especially in high-income countries, because the average height of women has increased by about 1 cm per decade and average body mass index has increased by about 1 kg/m2 per decade. The findings suggest an associated increase in ovarian cancer incidence of 3% per decade if all other factors relevant for ovarian cancer remain constant.
Additional Information
Please access these web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001200.
The following organizations give more information on ovarian cancer which may be of use to patients: MedicineNet, the US National Cancer Institute, Ovarian Cancer National Alliance, Macmillan Cancer Support
doi:10.1371/journal.pmed.1001200
PMCID: PMC3317899  PMID: 22606070
5.  Mammographic breast density and breast cancer risk: interactions of percent density, absolute dense and non-dense areas with breast cancer risk factors 
Purpose
We investigated if associations of breast density and breast cancer differ according to the level of other known breast cancer risk factors, including body mass index (BMI), age at menarche, parity, age at first child’s birth, age at menopause, alcohol consumption, a family history of breast cancer, a history of benign breast disease, and physical activity.
Methods
This study included 1,044 postmenopausal incident breast cancer cases diagnosed within the Nurses’ Health Study cohort and 1,794 matched controls. Percent breast density, absolute dense and non-dense areas were measured from digitized film images with computerized techniques. Information on breast cancer risk factors was obtained prospectively from biennial questionnaires.
Results
Percent breast density was more strongly associated with breast cancer risk in current postmenopausal hormone users (≥50% vs.10%: OR=5.34, 95% CI: 3.36–8.49) as compared to women with past (OR=2.69, 95% CI: 1.32–5.49) or no hormone history (OR=2.57, 95% CI: 1.18–5.60, p-interaction=0.03). Non-dense area was inversely associated with breast cancer risk in parous women, but not in women without children (p-interaction=0.03). Associations of density with breast cancer risk did not differ by the levels of BMI, age at menarche, parity, age at first child’s birth, age at menopause, alcohol consumption, a family history of breast cancer, a history of benign breast disease, and physical activity.
Conclusions
: Women with dense breasts, who currently use menopausal hormone therapy are at a particularly high risk of breast cancer. Most breast cancer risk factors do not modify the association between mammographic breast density and breast cancer risk.
doi:10.1007/s10549-015-3286-6
PMCID: PMC4372799  PMID: 25677739
breast density; breast cancer risk; risk factors; parity; menopausal hormone use; interactions
6.  Distribution of Breast Density in Iranian Women and its Association with Breast Cancer Risk Factors 
Background:
Breast cancer is one of the most common cancers and the first-leading cause of cancer deaths among women in the world. Indeed, breast cancer is ranked as the first malignancy among Iranian women. Breast density, defined as the percentage of fibro glandular breast tissue in mammographic images, is one of the known risk factors for breast cancer. According to American college of radiology-Breast Imaging Reporting and Data System (ACR-BIRADS), mammographic density is divided into four categories. Studies have shown that increased breast density is associated with significant increase in breast cancer risk. Therefore, it is assumed that breast density should be associated with other breast cancer risk factors.
Objectives:
The aim of this study was to assess the epidemiologic distribution of breast density of the patients in a referral center in Iran, and to evaluate the association of high breast density and breast cancer risk factors and other factors that may possibly affect the mammographic density according to previous studies.
Patients and Methods:
In an analytical cross-sectional study, 728 of those who had referred to Imam Khomeini Imaging Center either for diagnostic or screening purposes, participated in the study, after filling out the informed consent form, the survey questionnaire based survey assessing breast cancer risk factors affecting the breast density and related demographic features, was conducted. SPSS 11.5 software and chi-square, t-test and logistic regression tests were used to analyze the data.
Results:
Most of patients (75%) in categories 2 and 3 of mammographic density had a breast density of 51.9%, however, this amount was less (49.2%) in screening mammograms, while in diagnosing group it was more (51.6%). The Findings showed an increase in age, body mass index (BMI), duration of breast feeding, and also to be menopause e, unemployed and married, younger than 29 years old at first delivery, having children up to 8 and smoking are associated with less breast density. Diagnostic mammograms and symptomatic patients showed denser breasts. But density had no association with oral contraceptives pill (OCP) consumption or hormone replacement therapy or calcium and/or vitamin D consumption, age at menarche and menopause, menstruation cycle phase and family history of breast cancer. Age at the first delivery, menopausal status and parity were independently associated with breast density.
Conclusions:
Density distribution and risk factors prevalence is different among symptomatic patients and the diagnostic mammograms of the screened persons, hence such information should be considered in the patient managements. In order to consider the effect of marriage and parity on decreasing the breast density, basic consultations should be performed. Smokers and obese women may falsely show low breast density while they may be in high-risk group. In this study no specific phase of menstrual cycle is suggested for mammographic examinations.
doi:10.5812/ircmj.16615
PMCID: PMC3955513  PMID: 24693398
Breast Neoplasms; Mammography; Mass Screening
7.  Associations of reproductive time events and intervals with breast cancer risk: a report from the Shanghai Breast Cancer Study 
While there is clear evidence for an association between later age at first live birth and increased breast cancer risk, associations of other reproductive timings are less clear. As breast tissues undergo major structural and cellular changes during pregnancy, we examined associations between reproductive time events and intervals with breast cancer risk among parous women from the population-based Shanghai Breast Cancer Study (SBCS). Unconditional logistic regression was used to evaluate associations with breast cancer risk for 3,269 cases and 3,341 controls. In addition to later age at first live birth, later ages at first pregnancy and last pregnancy were significantly associated with increased breast cancer risk (P-trend=0.002, 0.015, 0.008, respectively); longer intervals from menarche to first or last live birth were also associated with increased risks (P-trend<0.001, = 0.018, respectively). Analyses stratified by menopausal status and estrogen receptor (ER) / progesterone receptor (PR) status revealed that associations for later age at first pregnancy or live birth and longer intervals from menarche to first or last live birth occurred among pre-menopausal women and ER+/PR+ breast cancers, whereas the association for later age at last pregnancy occurred among postmenopausal women and ER+/PR- or ER-/PR+ breast cancers. Due to high correlation with other reproductive variables, models did not include adjustment for age at first live birth; when included, significance of all associations was attenuated. These findings suggest while reproductive time events and intervals play an important role in breast cancer etiology, contributions may differ by menopausal status and hormone receptor status of breast cancers.
doi:10.1002/ijc.28644
PMCID: PMC4591050  PMID: 24323821
reproductive; breast cancer risk; case-control study
8.  Personalizing Aspirin Use for Targeted Breast Cancer Chemoprevention Among Postmenopausal Women 
Mayo Clinic proceedings  2015;91(1):71-80.
Objective
To better understand the potential risk/benefit ratio for targeted chemoprevention, we evaluated the association of aspirin and other NSAIDs with incidence of postmenopausal breast cancer for risk subgroups defined by selected non-modifiable or difficult-to-modify breast cancer risk factors.
Patients and Methods
Postmenopausal women with no history of cancer on July 1, 1992 (N=26,580) were prospectively followed through December 31, 2005 for breast cancer incidence (N=1581). Risk subgroups were defined on family history of breast cancer, age at menarche, age at menopause, parity/age at first live birth, history of benign breast disease, and body mass index (BMI). Hazard ratios (HRs) and 95% confidence intervals (CIs) adjusted for other breast cancer risk factors were estimated using Cox models.
Results
Aspirin use was associated with a lower incidence of breast cancer for women with family history of breast cancer (HR=0.62 for 6+ per week vs. never use; 95%CI 0.41-0.93) and personal history of benign breast disease (HR=0.69; 95%CI 0.50-0.95), but not for women in higher risk subgroups for age at menarche, age at menopause, parity/age at first live birth or BMI. In contrast, inverse associations with aspirin use were observed in all lower risk subgroups. NSAID use had no association with breast cancer incidence.
Conclusion
Based on their increased risk of breast cancer, postmenopausal women with a family history of breast cancer or a history of benign breast disease could potentially be targeted for aspirin chemoprevention studies. Future studies are needed to confirm these findings.
doi:10.1016/j.mayocp.2015.10.018
PMCID: PMC4807132  PMID: 26678006
9.  DEAR1 Is a Dominant Regulator of Acinar Morphogenesis and an Independent Predictor of Local Recurrence-Free Survival in Early-Onset Breast Cancer 
PLoS Medicine  2009;6(5):e1000068.
Ann Killary and colleagues describe a new gene that is genetically altered in breast tumors, and that may provide a new breast cancer prognostic marker.
Background
Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium–associated RING Chromosome 1), a novel gene encoding a member of the TRIM (tripartite motif) subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer.
Methods and Findings
Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH) in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS), an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD) were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D) basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs) recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young female breast cancer patients with a 20-year follow-up indicated that in early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER−, PR−, HER-2−) of breast cancers with poor prognosis.
Conclusions
Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for stratification of early-onset disease.
Editors' Summary
Background
Each year, more than one million women discover that they have breast cancer. This type of cancer begins when cells in the breast that line the milk-producing glands or the tubes that take the milk to the nipples (glandular and ductal epithelial cells, respectively) acquire genetic changes that allow them to grow uncontrollably and to move around the body (metastasize). The uncontrolled division leads to the formation of a lump that can be detected by mammography (a breast X-ray) or by manual breast examination. Breast cancer is treated by surgical removal of the lump or, if the cancer has started to spread, by removal of the whole breast (mastectomy). Surgery is usually followed by radiotherapy or chemotherapy. These “adjuvant” therapies are designed to kill any remaining cancer cells but can make patients very ill. Generally speaking, the outlook for women with breast cancer is good. In the US, for example, nearly 90% of affected women are still alive five years after their diagnosis.
Why Was This Study Done?
Although breast cancer is usually diagnosed in women in their 50s or 60s, some women develop breast cancer much earlier. In these women, the disease is often very aggressive. Compared to older women, young women with breast cancer have a lower overall survival rate and their cancer is more likely to recur locally or to metastasize. It would be useful to be able to recognize those younger women at the greatest risk of cancer recurrence so that they could be offered intensive surveillance and adjuvant therapy; those women at a lower risk could have gentler treatments. To achieve this type of “stratification,” the genetic changes that underlie breast cancer in young women need to be identified. In this study, the researchers discover a gene that is genetically altered (by mutations or deletion) in early-onset breast cancer and then investigate whether its expression can predict outcomes in women with this disease.
What Did the Researchers Do and Find?
The researchers used “suppression subtractive hybridization” to identify a new gene in a region of human Chromosome 1 where loss of heterozygosity (LOH; a genetic alteration associated with cancer development) frequently occurs. They called the gene DEAR1 (ductal epithelium-associated RING Chromosome 1) to indicate that it is expressed in ductal and glandular epithelial cells and encodes a “RING finger” protein (specifically, a subtype called a TRIM protein; RING finger proteins such as BRCA1 and BRCA2 have been implicated in early cancer development and in a large fraction of inherited breast cancers). DEAR1 expression was reduced or lost in several ductal carcinomas in situ (a local abnormality that can develop into breast cancer) and advanced breast cancers, the researchers report. Furthermore, many breast tumors carried DEAR1 missense mutations (genetic changes that interfere with the normal function of the DEAR1 protein) or had lost both copies of DEAR1 (the human genome contains two copies of most genes). To determine the function of DEAR1, the researchers replaced a normal copy of DEAR1 into a breast cancer cell that had a mutation in DEAR1. They then examined the growth of these genetically manipulated cells in special three-dimensional cultures. The breast cancer cells without DEAR1 grew rapidly without an organized structure while the breast cancer cells containing the introduced copy of DEAR1 formed structures that resembled normal breast acini (sac-like structures that secrete milk). In normal human mammary epithelial cells, the researchers silenced DEAR1 expression and also showed that without DEAR1, the normal mammary cells lost their ability to form proper acini. Finally, the researchers report that DEAR1 expression (detected “immunohistochemically”) was frequently lost in women who had had early-onset breast cancer and that the loss of DEAR1 expression correlated with reduced local recurrence-free survival, a strong family history of breast cancer and with a breast cancer subtype that has a poor outcome.
What Do These Findings Mean?
These findings indicate that genetic alteration and loss of expression of DEAR1 are common in breast cancer. Although laboratory experiments may not necessarily reflect what happens in people, the results from the three-dimensional culture of breast epithelial cells suggest that DEAR1 may regulate the normal acinar structure of the breast. Consequently, loss of DEAR1 expression could be an early event in breast cancer development. Most importantly, the correlation between DEAR1 expression and both local recurrence in early-onset breast cancer and a breast cancer subtype with a poor outcome suggests that it might be possible to use DEAR1 expression to identify women with early-onset breast cancer who have an increased risk of local recurrence so that they get the most appropriate treatment for their cancer.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000068.
This study is further discussed in a PLoS Medicine Perspective by Senthil Muthuswamy
The US National Cancer Institute provides detailed information for patients and health professionals on all aspects of breast cancer, including information on genetic alterations in breast cancer (in English and Spanish)
The MedlinePlus Encyclopedia provides information for patients about breast cancer; MedlinePlus also provides links to many other breast cancer resources (in English and Spanish)
The UK charities Cancerbackup (now merged with MacMillan Cancer Support) and Cancer Research UK also provide detailed information about breast cancer
doi:10.1371/journal.pmed.1000068
PMCID: PMC2673042  PMID: 19536326
10.  Cancer Screening with Digital Mammography for Women at Average Risk for Breast Cancer, Magnetic Resonance Imaging (MRI) for Women at High Risk 
Executive Summary
Objective
The purpose of this review is to determine the effectiveness of 2 separate modalities, digital mammography (DM) and magnetic resonance imaging (MRI), relative to film mammography (FM), in the screening of women asymptomatic for breast cancer. A third analysis assesses the effectiveness and safety of the combination of MRI plus mammography (MRI plus FM) in screening of women at high risk. An economic analysis was also conducted.
Research Questions
How does the sensitivity and specificity of DM compare to FM?
How does the sensitivity and specificity of MRI compare to FM?
How do the recall rates compare among these screening modalities, and what effect might this have on radiation exposure? What are the risks associated with radiation exposure?
How does the sensitivity and specificity of the combination of MRI plus FM compare to either MRI or FM alone?
What are the economic considerations?
Clinical Need
The effectiveness of FM with respect to breast cancer mortality in the screening of asymptomatic average- risk women over the age of 50 has been established. However, based on a Medical Advisory Secretariat review completed in March 2006, screening is not recommended for women between the ages of 40 and 49 years. Guidelines published by the Canadian Task Force on Preventive Care recommend mammography screening every 1 to 2 years for women aged 50 years and over, hence, the inclusion of such women in organized breast cancer screening programs. In addition to the uncertainty of the effectiveness of mammography screening from the age of 40 years, there is concern over the risks associated with mammographic screening for the 10 years between the ages of 40 and 49 years.
The lack of effectiveness of mammography screening starting at the age of 40 years (with respect to breast cancer mortality) is based on the assumption that the ability to detect cancer decreases with increased breast tissue density. As breast density is highest in the premenopausal years (approximately 23% of postmenopausal and 53% of premenopausal women having at least 50% of the breast occupied by high density), mammography screening is not promoted in Canada nor in many other countries for women under the age of 50 at average risk for breast cancer. It is important to note, however, that screening of premenopausal women (i.e., younger than 50 years of age) at high risk for breast cancer by virtue of a family history of cancer or a known genetic predisposition (e.g., having tested positive for the breast cancer genes BRCA1 and/or BRCA2) is appropriate. Thus, this review will assess the effectiveness of breast cancer screening with modalities other than film mammography, specifically DM and MRI, for both pre/perimenopausal and postmenopausal age groups.
International estimates of the epidemiology of breast cancer show that the incidence of breast cancer is increasing for all ages combined whereas mortality is decreasing, though at a slower rate. The observed decreases in mortality rates may be attributable to screening, in addition to advances in breast cancer therapy over time. Decreases in mortality attributable to screening may be a result of the earlier detection and treatment of invasive cancers, in addition to the increased detection of ductal carcinoma in situ (DCIS), of which certain subpathologies are less lethal. Evidence from the Surveillance, Epidemiology and End Results (better known as SEER) cancer registry in the United States, indicates that the age-adjusted incidence of DCIS has increased almost 10-fold over a 20 year period, from 2.7 to 25 per 100,000.
There is a 4-fold lower incidence of breast cancer in the 40 to 49 year age group than in the 50 to 69 year age group (approximately 140 per 100,000 versus 500 per 100,000 women, respectively). The sensitivity of FM is also lower among younger women (approximately 75%) than for women aged over 50 years (approximately 85%). Specificity is approximately 80% for younger women versus 90% for women over 50 years. The increased density of breast tissue in younger women is likely responsible for the decreased accuracy of FM.
Treatment options for breast cancer vary with the stage of disease (based on tumor size, involvement of surrounding tissue, and number of affected axillary lymph nodes) and its pathology, and may include a combination of surgery, chemotherapy and/or radiotherapy. Surgery is the first-line intervention for biopsy-confirmed tumors. The subsequent use of radiation, chemotherapy or hormonal treatments is dependent on the histopathologic characteristics of the tumor and the type of surgery. There is controversy regarding the optimal treatment of DCIS, which is considered a noninvasive tumour.
Women at high risk for breast cancer are defined as genetic carriers of the more commonly known breast cancer genes (BRCA1, BRCA2 TP53), first degree relatives of carriers, women with varying degrees of high risk family histories, and/or women with greater than 20% lifetime risk for breast cancer based on existing risk models. Genetic carriers for this disease, primarily women with BRCA1 or BRCA2 mutations, have a lifetime probability of approximately 85% of developing breast cancer. Preventive options for these women include surgical interventions such as prophylactic mastectomy and/or oophorectomy, i.e., removal of the breasts and/or ovaries. Therefore, it is important to evaluate the benefits and risks of different screening modalities, to identify additional options for these women.
This Medical Advisory Secretariat review is the second of 2 parts on breast cancer screening, and concentrates on the evaluation of both DM and MRI relative to FM, the standard of care. Part I of this review (March 2006) addressed the effectiveness of screening mammography in 40 to 49 year old average-risk women. The overall objective of the present review is to determine the optimal screening modality based on the evidence.
Evidence Review Strategy
The Medical Advisory Secretariat followed its standard procedures and searched the following electronic databases: Ovid MEDLINE, EMBASE, Ovid MEDLINE In-Process & Other Non-Indexed Citations, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews and The International Network of Agencies for Health Technology Assessment database. The subject headings and keywords searched included breast cancer, breast neoplasms, mass screening, digital mammography, magnetic resonance imaging. The detailed search strategies can be viewed in Appendix 1.
Included in this review are articles specific to screening and do not include evidence on diagnostic mammography. The search was further restricted to English-language articles published between January 1996 and April 2006. Excluded were case reports, comments, editorials, nonsystematic reviews, and letters.
Digital Mammography: In total, 224 articles specific to DM screening were identified. These were examined against the inclusion/exclusion criteria described below, resulting in the selection and review of 5 health technology assessments (HTAs) (plus 1 update) and 4 articles specific to screening with DM.
Magnetic Resonance Imaging: In total, 193 articles specific to MRI were identified. These were examined against the inclusion/exclusion criteria described below, resulting in the selection and review of 2 HTAs and 7 articles specific to screening with MRI.
The evaluation of the addition of FM to MRI in the screening of women at high risk for breast cancer was also conducted within the context of standard search procedures of the Medical Advisory Secretariat. as outlined above. The subject headings and keywords searched included the concepts of breast cancer, magnetic resonance imaging, mass screening, and high risk/predisposition to breast cancer. The search was further restricted to English-language articles published between September 2007 and January 15, 2010. Case reports, comments, editorials, nonsystematic reviews, and letters were not excluded.
MRI plus mammography: In total, 243 articles specific to MRI plus FM screening were identified. These were examined against the inclusion/exclusion criteria described below, resulting in the selection and review of 2 previous HTAs, and 1 systematic review of 11 paired design studies.
Inclusion Criteria
English-language articles, and English or French-language HTAs published from January 1996 to April 2006, inclusive.
Articles specific to screening of women with no personal history of breast cancer.
Studies in which DM or MRI were compared with FM, and where the specific outcomes of interest were reported.
Randomized controlled trials (RCTs) or paired studies only for assessment of DM.
Prospective, paired studies only for assessment of MRI.
Exclusion Criteria
Studies in which outcomes were not specific to those of interest in this report.
Studies in which women had been previously diagnosed with breast cancer.
Studies in which the intervention (DM or MRI) was not compared with FM.
Studies assessing DM with a sample size of less than 500.
Intervention
Digital mammography.
Magnetic resonance imaging.
Comparator
Screening with film mammography.
Outcomes of Interest
Breast cancer mortality (although no studies were found with such long follow-up).
Sensitivity.
Specificity.
Recall rates.
Summary of Findings
Digital Mammography
There is moderate quality evidence that DM is significantly more sensitive than FM in the screening of asymptomatic women aged less than 50 years, those who are premenopausal or perimenopausal, and those with heterogeneously or extremely dense breast tissue (regardless of age).
It is not known what effect these differences in sensitivity will have on the more important effectiveness outcome measure of breast cancer mortality, as there was no evidence of such an assessment.
Other factors have been set out to promote DM, for example, issues of recall rates and reading and examination times. Our analysis did not show that recall rates were necessarily improved in DM, though examination times were lower than for FM. Other factors including storage and retrieval of screens were not the subject of this analysis.
Magnetic Resonance Imaging
There is moderate quality evidence that the sensitivity of MRI is significantly higher than that of FM in the screening of women at high risk for breast cancer based on genetic or familial factors, regardless of age.
Radiation Risk Review
Cancer Care Ontario conducted a review of the evidence on radiation risk in screening with mammography women at high risk for breast cancer. From this review of recent literature and risk assessment that considered the potential impact of screening mammography in cohorts of women who start screening at an earlier age or who are at increased risk of developing breast cancer due to genetic susceptibility, the following conclusions can be drawn:
For women over 50 years of age, the benefits of mammography greatly outweigh the risk of radiation-induced breast cancer irrespective of the level of a woman’s inherent breast cancer risk.
Annual mammography for women aged 30 – 39 years who carry a breast cancer susceptibility gene or who have a strong family breast cancer history (defined as a first degree relative diagnosed in their thirties) has a favourable benefit:risk ratio. Mammography is estimated to detect 16 to 18 breast cancer cases for every one induced by radiation (Table 1). Initiation of screening at age 35 for this same group would increase the benefit:risk ratio to an even more favourable level of 34-50 cases detected for each one potentially induced.
Mammography for women under 30 years of age has an unfavourable benefit:risk ratio due to the challenges of detecting cancer in younger breasts, the aggressiveness of cancers at this age, the potential for radiation susceptibility at younger ages and a greater cumulative radiation exposure.
Mammography when used in combination with MRI for women who carry a strong breast cancer susceptibility (e.g., BRCA1/2 carriers), which if begun at age 35 and continued for 35 years, may confer greatly improved benefit:risk ratios which were estimated to be about 220 to one.
While there is considerable uncertainty in the risk of radiation-induced breast cancer, the risk expressed in published studies is almost certainly conservative as the radiation dose absorbed by women receiving mammography recently has been substantially reduced by newer technology.
A CCO update of the mammography radiation risk literature for 2008 and 2009 gave rise to one article by Barrington de Gonzales et al. published in 2009 (Barrington de Gonzales et al., 2009, JNCI, vol. 101: 205-209). This article focuses on estimating the risk of radiation-induced breast cancer for mammographic screening of young women at high risk for breast cancer (with BRCA gene mutations). Based on an assumption of a 15% to 25% or less reduction in mortality from mammography in these high risk women, the authors conclude that such a reduction is not substantially greater than the risk of radiation-induced breast cancer mortality when screening before the age of 34 years. That is, there would be no net benefit from annual mammographic screening of BRCA mutation carriers at ages 25-29 years; the net benefit would be zero or small if screening occurs in 30-34 year olds, and there would be some net benefit at age 35 years or older.
The Addition of Mammography to Magnetic Resonance Imaging
The effects of the addition of FM to MRI screening of high risk women was also assessed, with inclusion and exclusion criteria as follows:
Inclusion Criteria
English-language articles and English or French-language HTAs published from September 2007 to January 15, 2010.
Articles specific to screening of women at high risk for breast cancer, regardless of the definition of high risk.
Studies in which accuracy data for the combination of MRI plus FM are available to be compared to that of MRI and FM alone.
RCTs or prospective, paired studies only.
Studies in which women were previously diagnosed with breast cancer were also included.
Exclusion Criteria
Studies in which outcomes were not specific to those of interest in this report.
Studies in which there was insufficient data on the accuracy of MRI plus FM.
Intervention
Both MRI and FM.
Comparators
Screening with MRI alone and FM alone.
Outcomes of Interest
Sensitivity.
Specificity.
Summary of Findings
Magnetic Resonance Imaging Plus Mammography
Moderate GRADE Level Evidence that the sensitivity of MRI plus mammography is significantly higher than that of MRI or FM alone, although the specificity remains either unchanged or decreases in the screening of women at high risk for breast cancer based on genetic/familial factors, regardless of age.
These studies include women at high risk defined as BRCA1/2 or TP53 carriers, first degree relatives of carriers, women with varying degrees of high risk family histories, and/or >20% lifetime risk based on existing risk models. This definition of high risk accounts for approximately 2% of the female adult population in Ontario.
PMCID: PMC3377503  PMID: 23074406
11.  A descriptive study of variables associated with obtaining nipple aspirate fluid in a cohort of non-lactating women 
BMC Women's Health  2006;6:15.
Background
The search for biologic endpoints and biomarkers in the study of breast cancer risk assessment and risk reduction strategies has led to an interest in obtaining cytologic information and other biomarkers from nipple aspirate fluid (NAF).
Methods
This descriptive study examined factors associated with an increased ability to obtain NAF in a cohort of 3043 women between the ages of 15 and 89 years of age. The majority of women were between the ages of 30–49 (N = 1529/50.2%). Variables examined in relation to obtaining fluid include: age, marital status, age at menarche, menopausal status, a history of pregnancy, a history of breast-feeding, estrogen use, oral contraceptive use, endocrine disorders and tranquilizer use.
Results
On average, women from whom breast fluid was obtained were younger than women from whom breast fluid was attempted but not obtained (mean = 41.9 years versus 46.5 years, p < 0.0001). In unadjusted and age-adjusted comparisons, being married, a history of pregnancy, younger age at menarche (12 years of age or younger), tranquilizer use, oral contraceptive pill (OCP) use and endocrine problems were associated with an increased ability to obtain breast fluid. Post-menopausal status and exogenous estrogen use were associated with a decreased ability to obtain breast fluid. After age-adjustment, oral contraceptive use was no longer significantly associated with an increased ability to obtain fluid and post-menopausal status was no longer associated with a decreased ability to obtain breast fluid. After multivariate adjustment, age, being married, a history of pregnancy, tranquilizer use and a history of endocrine problems remained positively associated with the ability to obtain breast fluid. In addition, menopausal women who took estrogen were less likely to yield fluid than premenopausal women.
Conclusion
Four variables (being married, history of pregnancy, tranquilizer use and endocrine disorders) remained positively associated with the ability to obtain NAF in all analyses. A younger age was consistently associated with a greater ability to obtain NAF in this and other studies.
doi:10.1186/1472-6874-6-15
PMCID: PMC1626446  PMID: 17044938
12.  Association between Melanocytic Nevi and Risk of Breast Diseases: The French E3N Prospective Cohort 
PLoS Medicine  2014;11(6):e1001660.
Using data from the French E3N prospective cohort, Marina Kvaskoff and colleagues examine the association between number of cutaneous nevi and the risk for breast cancer.
Please see later in the article for the Editors' Summary
Background
While melanocytic nevi have been associated with genetic factors and childhood sun exposure, several observations also suggest a potential hormonal influence on nevi. To test the hypothesis that nevi are associated with breast tumor risk, we explored the relationships between number of nevi and benign and malignant breast disease risk.
Methods and Findings
We prospectively analyzed data from E3N, a cohort of French women aged 40–65 y at inclusion in 1990. Number of nevi was collected at inclusion. Hazard ratios (HRs) for breast cancer and 95% confidence intervals (CIs) were calculated using Cox proportional hazards regression models. Associations of number of nevi with personal history of benign breast disease (BBD) and family history of breast cancer were estimated using logistic regression. Over the period 15 June 1990–15 June 2008, 5,956 incident breast cancer cases (including 5,245 invasive tumors) were ascertained among 89,902 women. In models adjusted for age, education, and known breast cancer risk factors, women with “very many” nevi had a significantly higher breast cancer risk (HR = 1.13, 95% CI = 1.01–1.27 versus “none”; ptrend = 0.04), although significance was lost after adjustment for personal history of BBD or family history of breast cancer. The 10-y absolute risk of invasive breast cancer increased from 3,749 per 100,000 women without nevi to 4,124 (95% CI = 3,674–4,649) per 100,000 women with “very many” nevi. The association was restricted to premenopausal women (HR = 1.40, ptrend = 0.01), even after full adjustment (HR = 1.34, ptrend = 0.03; phomogeneity = 0.04), but did not differ according to breast cancer type or hormone receptor status. In addition, we observed significantly positive dose–response relationships between number of nevi and history of biopsy-confirmed BBD (n = 5,169; ptrend<0.0001) and family history of breast cancer in first-degree relatives (n = 7,472; ptrend = 0.0003). The main limitations of our study include self-report of number of nevi using a qualitative scale, and self-reported history of biopsied BBD.
Conclusions
Our findings suggest associations between number of nevi and the risk of premenopausal breast cancer, BBD, and family history of breast cancer. More research is warranted to elucidate these relationships and to understand their underlying mechanisms.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In 2012, nearly 1.7 million women worldwide discovered they had breast cancer, and about half a million women died from the disease. Breast cancer begins when cells in the breast acquire genetic changes that allow them to divide uncontrollably and to move around the body (metastasize). Uncontrolled cell division leads to the formation of a lump that can be detected by mammography (a breast X-ray) or by manual breast examination. Breast cancer is treated by surgical removal of the lump, or, if the cancer has started to spread, by removal of the whole breast (mastectomy). Surgery is usually followed by radiotherapy or chemotherapy to kill any remaining cancer cells. Because the female sex hormones estrogen and progesterone stimulate the growth of some tumors, drugs that block hormone receptors are also used to treat receptor-positive breast cancer. Nowadays, the prognosis (outlook) for women with breast cancer is good, and in developed countries, nearly 90% of affected women are still alive five years after diagnosis.
Why Was This Study Done?
Several hormone-related factors affect a woman's chances of developing breast cancer. For example, women who have no children or who have them late in life have a higher breast cancer risk than women who have several children when they are young because pregnancy alters sex hormone levels. Interestingly, the development of moles (nevi)—dark skin blemishes that are risk factors for the development of melanoma, a type of skin cancer—may also be affected by estrogen and progesterone. Thus, the number of nevi might be a marker of blood hormone levels and might predict breast cancer risk. In this prospective cohort study, the researchers test this hypothesis by investigating the association between how many moles a woman has and her breast cancer risk. A prospective cohort study enrolls a group (cohort) of people, determines their baseline characteristics, and follows them over time to see which characteristics are associated with the development of specific diseases.
What Did the Researchers Do and Find?
In 1990, the E3N prospective cohort study enrolled nearly 100,000 French women (mainly school teachers) aged 40–65 years to investigate cancer risk factors. The women completed a baseline questionnaire about their lifestyle and medical history, and regular follow-up questionnaires that asked about cancer occurrence. In the initial questionnaire, the women indicated whether they had no, a few, many, or very many moles. Between 1990 and 2008, nearly 6,000 women in the cohort developed breast cancer. Using statistical methods to calculate hazard ratios (an “HR” compares how often a particular event happens in two groups with different characteristics; an HR greater than one indicates that a specific characteristic is associated with an increased risk of the event), the researchers report that women with “very many” nevi had a significantly higher breast cancer risk (a higher risk that was unlikely to have occurred by chance) than women with no nevi. Specifically, the age-adjusted HR for breast cancer among women with “very many” nevi compared to women with no nevi was 1.17. After adjustment for a personal history of benign (noncancerous) breast disease and a family history of breast cancer (two established risk factors for breast cancer), the association between nevi and breast cancer risk among the whole cohort became nonsignificant. Notably, however, the association among only premenopausal women remained significant after full adjustment (HR = 1.34), which corresponded to an increase in ten-year absolute risk of invasive breast cancer from 2,515 per 100,000 women with no nevi to 3,370 per 100,000 women with “very many” nevi.
What Do These Findings Mean?
These findings suggest that among premenopausal women there is a modest association between nevi number and breast cancer risk. This noncausal relationship may indicate that nevi and breast diseases are affected in similar ways by hormones or share common genetic factors, but the accuracy of these findings may be limited by aspects of the study design. For example, self-report of nevi numbers using a qualitative scale may have introduced some inaccuracies into the estimates of the association between nevi number and breast cancer risk. Most importantly, these findings are insufficient to support the use of nevi counts in breast cancer screening or diagnosis. Rather, together with the findings reported by Zhang et al. in an independent PLOS Medicine Research Article, they suggest that further studies into the biological mechanisms underlying the relationship between nevi and breast cancer and the association itself should be undertaken.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001660.
This study is further discussed in a PLOS Medicine Perspective by Fuhrman and Cardenas
An independent PLOS Medicine Research Article by Zhang et al. also investigates the relationship between nevi number and breast cancer risk
The US National Cancer Institute provides comprehensive information about cancer (in English and Spanish), including detailed information for patients and professionals about breast cancer; it also has a fact sheet on moles
Cancer Research UK, a not-for profit organization, provides information about cancer, including detailed information on breast cancer
The UK National Health Service Choices website has information and personal stories about breast cancer; the not-for profit organization Healthtalkonline also provides personal stories about dealing with breast cancer
More information about the E3N prospective cohort study is available; detailed information is available in French
doi:10.1371/journal.pmed.1001660
PMCID: PMC4051602  PMID: 24915306
13.  Smoking and high-risk mammographic parenchymal patterns: a case-control study 
Breast Cancer Research  1999;2(1):59-63.
Current smoking was strongly and inversely associated with high-risk patterns, after adjustment for concomitant risk factors. Relative to never smokers, current smokers were significantly less likely to have a high-risk pattern. Similar results were obtained when the analysis was confined to postmenopausal women. Past smoking was not related to the mammographic parenchymal patterns. The overall effect in postmenopausal women lost its significance when adjusted for other risk factors for P2/DY patterns that were found to be significant in the present study, although the results are still strongly suggestive. The present data indicate that adjustment for current smoking status is important when evaluating the relationship between mammographic parenchymal pattern and breast cancer risk. They also indicate that smoking is a prominent potential confounder when analyzing effects of other risk factors such as obesity-related variables. It appears that parenchymal patterns may act as an informative biomarker of the effect of cigarette smoking on breast cancer risk.
Introduction:
Overall, epidemiological studies [1,2,3,4] have reported no substantial association between cigarette smoking and the risk of breast cancer. Some studies [5,6,7] reported a significant increase of breast cancer risk among smokers. In recent studies that addressed the association between breast cancer and cigarette smoking, however, there was some suggestion of a decreased risk [8,9,10], especially among current smokers, ranging from approximately 10 to 30% [9,10]. Brunet et al [11] reported that smoking might reduce the risk of breast cancer by 44% in carriers of BRCA1 or BRCA2 gene mutations. Wolfe [12] described four different mammographic patterns created by variations in the relative amounts of fat, epithelial and connective tissue in the breast, designated N1, P1, P2 and DY. Women with either P2 or DY pattern are considered at greater risk for breast cancer than those with N1 or P1 pattern [12,13,14,15]. There are no published studies that assessed the relationship between smoking and mammographic parenchymal patterns.
Aims:
To evaluate whether mammographic parenchymal patterns as classified by Wolfe, which have been positively associated with breast cancer risk, are affected by smoking. In this case-control study, nested within the European Prospective Investigation on Cancer in Norfolk (EPIC-Norfolk) cohort [16], the association between smoking habits and mammographic parenchymal patterns are examined. The full results will be published elsewhere.
Methods:
Study subjects were members of the EPIC cohort in Norwich who also attended the prevalence screening round at the Norwich Breast Screening Centre between November 1989 and December 1997, and were free of breast cancer at that screening. Cases were defined as women with a P2/DY Wolfe's mammographic parenchymal pattern on the prevalence screen mammograms. A total of 203 women with P2/DY patterns were identified as cases and were individually matched by date of birth (within 1 year) and date of prevalence screening (within 3 months) with 203 women with N1/P1 patterns who served as control individuals.
Two views, the mediolateral and craniocaudal mammograms, of both breasts were independently reviewed by two of the authors (ES and RW) to determine the Wolfe mammographic parenchymal pattern.
Considerable information on health and lifestyle factors was available from the EPIC Health and Lifestyle Questionnaire [16]. In the present study we examined the subjects' personal history of benign breast diseases, menstrual and reproductive factors, oral contraception and hormone replacement therapy, smoking, and anthropometric information such as body mass index and waist:hip ratio.
Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated by conditional logistic regression [17], and were adjusted for possible confounding factors.
Results:
The characteristics of the cases and controls are presented in Table 1. Cases were leaner than controls. A larger percentage of cases were nulliparous, premenopausal, current hormone replacement therapy users, had a personal history of benign breast diseases, and had had a hysterectomy. A larger proportion of controls had more than three births and were current smokers.
Table 2 shows the unadjusted and adjusted OR estimates for Wolfe's high-risk mammographic parenchymal patterns and smoking in the total study population and in postmenopausal women separately. Current smoking was strongly and inversely associated with high-risk patterns, after adjustment for concomitant risk factors. Relative to never smokers, current smokers were significantly less likely to have a high-risk pattern (OR 0.37, 95% CI 0.14-0.94). Similar results were obtained when the analysis was confined to postmenopausal women. Past smoking was not related to mammographic parenchymal patterns. The overall effect in postmenopausal women lost its significance when adjusted for other risk factors for P2/DY patterns that were found to be significant in the present study, although the results were still strongly suggestive. There was no interaction between cigarette smoking and body mass index.
Discussion:
In the present study we found a strong inverse relationship between current smoking and high-risk mammographic parenchymal patterns of breast tissue as classified by Wolfe [12]. These findings are not completely unprecedented; Greendale et al [18] found a reduced risk of breast density in association with smoking, although the magnitude of the reduction was unclear. The present findings suggest that this reduction is large.
Recent studies [9,10] have suggested that breast cancer risk may be reduced among current smokers. In a multicentre Italian case-control study, Braga et al [10] found that, relative to nonsmokers, current smokers had a reduced risk of breast cancer (OR 0.84, 95% CI 0.7-1.0). These findings were recently supported by Gammon et al [9], who reported that breast cancer risk in younger women (younger than 45 years) may be reduced among current smokers who began smoking at an early age (OR 0.59, 95% CI 0.41-0.85 for age 15 years or younger) and among long-term smokers (OR 0.70, 95% CI 0.52-0.94 for those who had smoked for 21 years or more).
The possible protective effect of smoking might be due to its anti-oestrogenic effect [1,2,19]. Recently there has been renewed interest in the potential effect of smoking on breast cancer risk, and whether individuals may respond differently on the basis of differences in metabolism of bioproducts of smoking [20,21]. Different relationships between smoking and breast cancer risk have been suggested that are dependent on the rapid or slow status of acetylators of aromatic amines [20,21]. More recent studies [22,23], however, do not support these findings.
The present study design minimized the opportunity for bias to influence the findings. Because subjects were unaware of their own case-control status, the possibility of recall bias in reporting smoking status was minimized. Systematic error in the assessment of mammograms was avoided because reading was done without knowledge of the risk factor data. Furthermore, the associations observed are unlikely to be explained by the confounding effect of other known breast cancer risk factors, because we adjusted for these in the analysis. We did not have information on passive smoking status, however, which has recently been reported to be a possible confounder [5,6,21,24].
The present data indicate that adjustment for current smoking status is important when evaluating the relationship between mammographic parenchymal pattern and breast cancer risk. They also indicate smoking as a prominent potential confounder when analyzing effects of other risk factors such as obesity-related variables. It seems that parenchymal patterns may act as an informative biomarker of the effect of cigarette smoking on breast cancer risk.
PMCID: PMC13911  PMID: 11056684
mammography; screening; smoking; Wolfe's parenchymal patterns
14.  Lifetime and 5 years risk of breast cancer and attributable risk factor according to Gail model in Iranian women 
Introduction:
Breast cancer is the most commonly diagnosed cancers in women worldwide and in Iran. It is expected to account for 29% of all new cancers in women at 2015. This study aimed to assess the 5 years and lifetime risk of breast cancer according to Gail model, and to evaluate the effect of other additional risk factors on the Gail risk.
Materials and Methods:
A cross sectional study conducted on 296 women aged more than 34-year-old in Qom, Center of Iran. Breast Cancer Risk Assessment Tool calculated the Gail risk for each subject. Data were analyzed by paired t-test, independent t-test, and analysis of variance in bivariate approach to evaluate the effect of each factor on Gail risk. Multiple linear regression models with stepwise method were used to predict the effect of each variable on the Gail risk.
Results:
The mean age of the participants was 47.8 ± 8.8-year-old and 47% have Fars ethnicity. The 5 years and lifetime risk was 0.37 ± 0.18 and 4.48 ± 0.925%, respectively. It was lower than the average risk in same race and age women (P < 0.001). Being single, positive family history of breast cancer, positive history of biopsy, and radiotherapy as well as using nonhormonal contraceptives were related to higher lifetime risk (P < 0.05). Moreover, a significant direct correlation observed between lifetime risk and body mass index, age of first live birth, and menarche age. While an inversely correlation observed between lifetimes risk of breast cancer and total month of breast feeding duration and age.
Conclusion:
Based on our results, the 5 years and lifetime risk of breast cancer according to Gail model was lower than the same race and age. Moreover, by comparison with national epidemiologic indicators about morbidity and mortality of breast cancer, it seems that the Gail model overestimate the risk of breast cancer in Iranian women.
doi:10.4103/0975-7406.160020
PMCID: PMC4517323  PMID: 26229355
Breast cancer; Gail model; Iran; malignancy; predictor; risk factors
15.  Hormonal and reproductive risk factors associated with breast cancer in Isfahan patients 
Background:
Breast cancer is the most prevalent type of cancer among Iranian females; it is noteworthy that the condition of this type of cancer among Iranian women does not significantly differ from what has been reported from other countries. Considering the importance of this issue, identification of the backgrounds factors and risk factors of the breast cancer risk are highly needed. Therefore, the present study is aimed to compare the risk factors of resident patients of Isfahan province, Iran, with accredited risk factors by other countries and also identify the importance of each factor in the incidence of cancer.
Materials and Methods:
The present work is a case-control study, which was conducted in 2011. In order to conduct the study, 216 women who had been clinically identified with breast cancer were selected from Seiedo-Shohada Hospital, Isfahan, Iran, as the case group. Moreover, 41 healthy women who were the relatives of the selected patients (i.e., sisters and aunts) were selected as the control group. The data and information of the patients from 1999 to 2010 were collected from either assessing the database system of the center for breast cancer research or interviewing the patients through phone. To analyze the data, multiple logistic regression method was applied.
Results:
The range of age among selected individuals in this study was from 20-75 years old. The determinant factors for odds of breast cancer included in the applied multiple logistic regression model were the use of oral contraceptive pills (OCPs) (odds ratio [OR] =0.18, 95% confidence interval [CI] = 0.04-0.75) as the protective factor, hormone replacement therapy (OR = 10.2, 95% CI = 1.18-88.89) and menopause at old age (OR = 1.26, 95% CI = 1.11-2.12) as the risk factors. Furthermore, there was not seen any significant relationship between age, vocation, and marital status with odds of breast cancer in multiple model.
Conclusion:
Based on the results, use of OCPs as protective factor, hormone replacement therapy, and menopause at old age are identified as the risk factors in developing breast cancer among women. Influencing and modifiable factors should be considered very important in society based interventions and preventive interventions planning.
doi:10.4103/2277-9531.134818
PMCID: PMC4113994  PMID: 25077162
Breast cancer; case-control; hormone; Isfahan; reproductive; risk factors
16.  Alcohol intake over the life course and breast cancer survival in Western New York Exposures and Breast Cancer (WEB) study: Quantity and intensity of intake 
Alcohol intake is a risk factor for breast cancer, but the association between alcohol and mortality among breast cancer survivors is poorly understood. We examined the association between alcohol intake from all sources, assessed by cognitive lifetime drinking history, and all-cause and breast cancer mortality among women with breast cancer (N=1097) who participated in a population-based case-control study. Vital status was ascertained through 2006 using the National Death Index. Using Cox Proportional Hazards models, we computed hazard ratios for all-cause and breast cancer mortality in association with alcohol intake. We examined lifetime volume and intensity (drinks per drinking day) of alcohol consumption as well as drinking status during various life periods. Analyses were stratified by menopausal status. After adjustment for total intake, postmenopausal women with consumption of four or more drinks per drinking day over their lifetimes were nearly three times more likely to die from any cause compared to abstainers (HR2.94, 95%CI 1.31,6.62). There was a similar but non-significant association with breast cancer mortality (HR2.68, 95%CI 0.94,7.67). Postmenopausal women who drank one drink or fewer per drinking day between menarche and first birth had a significantly decreased hazard of all-cause (HR0.54, 95%CI 0.31,0.95) and breast cancer mortality (HR0.27, 95%CI 0.09,0.77). Premenopausal breast cancer survival was not associated with drinking intensity. We observed no associations between drinking status or total volume of alcohol intake and breast cancer or all-cause mortality. High-intensity alcohol consumption may be associated with decreased survival in postmenopausal women with breast cancer. Low-intensity alcohol consumption between menarche and first birth may be inversely associated with all-cause and breast cancer mortality; this period may be critical for development of and survival from breast cancer. Intensity of alcohol intake may be a more important factor than absolute volume of intake on survival in women with breast cancer.
doi:10.1007/s10549-013-2533-y
PMCID: PMC3667502  PMID: 23605086
breast cancer; alcohol; survival; population-based study
17.  A case-control study on risk factors of breast cancer in China 
Introduction
To screen the risk factors associated with breast cancer among Chinese women in order to evaluate the individual risk of developing breast cancer among women in China.
Material and methods
A case-control study on 416 breast cancer patients and 1156 matched controls was conducted in 14 hospitals in 8 provinces of China in 2008. Controls were age- and region-matched to the cases. Clinicians conducted in-person interviews with the subjects to collect information on demographics and suspected risk factors for breast cancer that are known worldwide. Conditional logistic regression was used to derive odds ratios (OR) and 95% confidence intervals (CI) for the associations between risk factors and breast cancer.
Results
Compared with matched controls, women with breast cancer were significantly more likely to have higher body mass index (BMI, OR = 4.07, 95% CI: 2.98-5.55), history of benign breast disease (BBD) biopsy (OR = 1.68, 95% CI: 1.19-2.38), older age of menarche (AOM) (OR = 1.41, 95% CI: 1.07-1.87), stress anticipation (SA), for grade 1-4, OR = 2.15, 95% CI: 1.26-3.66; for grade 5-9, OR = 3.48, 95% CI: 2.03-5.95) and menopause (OR = 2.22, 95% CI: 1.50-3.282) at the level of p < 0.05. Family history of breast cancer (FHBC) in first-degree relatives (OR = 1.66, 95% CI: 0.77-3.59) and use of oral contraceptives (OC) (OR = 1.59, 95% CI: 0.83-3.05) were associated with an increased risk of breast cancer at the level of p < 0.20.
Conclusions
Our results showed that BMI, history of BBD biopsy, older AOM, SA and menopause were associated with increased risk of breast cancer among Chinese women. The findings derived from the study provided some suggestions for population-based prevention and control of breast cancer in China.
doi:10.5114/aoms.2012.28558
PMCID: PMC3361043  PMID: 22662004
breast cancer; risk factors; case-control study
18.  The BARD1 Cys557Ser Variant and Breast Cancer Risk in Iceland 
PLoS Medicine  2006;3(7):e217.
Background
Most, if not all, of the cellular functions of the BRCA1 protein are mediated through heterodimeric complexes composed of BRCA1 and a related protein, BARD1. Some breast-cancer-associated BRCA1 missense mutations disrupt the function of the BRCA1/BARD1 complex. It is therefore pertinent to determine whether variants of BARD1 confer susceptibility to breast cancer. Recently, a missense BARD1 variant, Cys557Ser, was reported to be at increased frequencies in breast cancer families. We investigated the role of the BARD1 Cys557Ser variant in a population-based cohort of 1,090 Icelandic patients with invasive breast cancer and 703 controls. We then used a computerized genealogy of the Icelandic population to study the relationships between the Cys557Ser variant and familial clustering of breast cancer.
Methods and Findings
The Cys557Ser allele was present at a frequency of 0.028 in patients with invasive breast cancer and 0.016 in controls (odds ratio [OR] = 1.82, 95% confidence interval [CI] 1.11–3.01, p = 0.014). The alleleic frequency was 0.037 in a high-predisposition group of cases defined by having a family history of breast cancer, early onset of breast cancer, or multiple primary breast cancers (OR = 2.41, 95% CI 1.22–4.75, p = 0.015). Carriers of the common Icelandic BRCA2 999del5 mutation were found to have their risk of breast cancer further increased if they also carried the BARD1 variant: the frequency of the BARD1 variant allele was 0.047 (OR = 3.11, 95% CI 1.16–8.40, p = 0.046) in 999del5 carriers with breast cancer. This suggests that the lifetime probability of a BARD1 Cys557Ser/BRCA2 999del5 double carrier developing breast cancer could approach certainty. Cys557Ser carriers, with or without the BRCA2 mutation, had an increased risk of subsequent primary breast tumors after the first breast cancer diagnosis compared to non-carriers. Lobular and medullary breast carcinomas were overrepresented amongst Cys557Ser carriers. We found that an excess of ancestors of contemporary carriers lived in a single county in the southeast of Iceland and that all carriers shared a SNP haplotype, which is suggestive of a founder event. Cys557Ser was found on the same SNP haplotype background in the HapMap Project CEPH sample of Utah residents.
Conclusions
Our findings suggest that BARD1 Cys557Ser is an ancient variant that confers risk of single and multiple primary breast cancers, and this risk extends to carriers of the BRCA2 999del5 mutation.
Editors' Summary
Background.
About 13% of women (one in eight women) will develop breast cancer during their lifetime, but many factors affect the likelihood of any individual woman developing this disease, for example, whether she has had children and at what age, when she started and stopped her periods, and her exposure to certain chemicals or radiation. She may also have inherited a defective gene that affects her risk of developing breast cancer. Some 5%–10% of all breast cancers are familial, or inherited. In 20% of these cases, the gene that is defective is BRCA1 or BRCA2. Inheriting a defective copy of one of these genes greatly increases a woman's risk of developing breast cancer, while researchers think that the other inherited genes that predispose to breast cancer—most of which have not been identified yet—have a much weaker effect. These are described as low-penetrance genes. Inheriting one such gene only slightly increases breast cancer risk; a woman has to inherit several to increase her lifetime risk of cancer significantly.
Why Was This Study Done?
It is important to identify these additional predisposing gene variants because they might provide insights into why breast cancer develops, how to prevent it, and how to treat it. To find low-penetrance genes, researchers do case–control association studies. They find a large group of women with breast cancer (cases) and a similar group of women without cancer (controls), and examine how often a specific gene variant occurs in the two groups. If the variant is found more often in the cases than in the controls, it might be a variant that increases a woman's risk of developing breast cancer.
What Did the Researchers Do and Find?
The researchers involved in this study recruited Icelandic women who had had breast cancer and unaffected women, and looked for a specific variant—the Cys557Ser allele—of a gene called BARD1. They chose BARD1 because the protein it encodes interacts with the protein encoded by BRCA1. Because defects in BRCA1 increase the risk of breast cancer, defects in an interacting protein might have a similar effect. In addition, the Cys557Ser allele has been implicated in breast cancer in other studies. The researchers found that the Cys557Ser allele was nearly twice as common in women with breast cancer as in control women. It was also more common (but not by much) in women who had a family history of breast cancer or who had developed breast cancer more than once. And having the Cys557Ser allele seemed to increase the already high risk of breast cancer in women who had a BRCA2 variant (known as BRCA2 999del5) that accounts for 40% of inherited breast cancer risk in Iceland.
What Do These Findings Mean?
These results indicate that inheriting the BARD1 Cys557Ser allele increases a woman's breast cancer risk but that she is unlikely to have a family history of the disease. Because carrying the Cys557Ser allele only slightly increases a woman's risk of breast cancer, for most women there is no clinical reason to test for this variant. Eventually, when all the low-penetrance genes that contribute to breast cancer risk have been identified, it might be helpful to screen women for the full set to determine whether they are at high risk of developing breast cancer. This will not happen for many years, however, since there might be tens or hundreds of these genes. For women who carry BRCA2 999del5, the situation might be different. It might be worth testing these women for the BARD1 Cys557Ser allele, the researchers explain, because the lifetime probability of developing breast cancer in women carrying both variants might approach 100%. This finding has clinical implications in terms of counseling and monitoring, as does the observation that Cys557Ser carriers have an increased risk of a second, independent breast cancer compared to non-carriers. However, all these findings need to be confirmed in other groups of patients before anyone is routinely tested for the BARD1 Cys557Ser allele.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030217.
• MedlinePlus pages about breast cancer
• Information on breast cancer from the United States National Cancer Institute
• Information on inherited breast cancer from the United States National Human Genome Research Institute
• United States National Cancer Institute information on genetic testing for BRCA1 and BRCA2 variants
• GeneTests pages on the involvement of BRCA1 and BRCA2 in hereditary breast and ovarian cancer
• Cancer Research UK's page on breast cancer statistics
In a population-based cohort of 1090 Icelandic patients, a Cys557Ser missense variant of the BARD1 gene, which interacts with BRCA1, increased the risk of single and multiple primary breast cancers.
doi:10.1371/journal.pmed.0030217
PMCID: PMC1479388  PMID: 16768547
19.  Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies 
The Lancet Oncology  2012;13(11):1141-1151.
Summary
Background
Menarche and menopause mark the onset and cessation, respectively, of ovarian activity associated with reproduction, and affect breast cancer risk. Our aim was to assess the strengths of their effects and determine whether they depend on characteristics of the tumours or the affected women.
Methods
Individual data from 117 epidemiological studies, including 118 964 women with invasive breast cancer and 306 091 without the disease, none of whom had used menopausal hormone therapy, were included in the analyses. We calculated adjusted relative risks (RRs) associated with menarche and menopause for breast cancer overall, and by tumour histology and by oestrogen receptor expression.
Findings
Breast cancer risk increased by a factor of 1·050 (95% CI 1·044–1·057; p<0·0001) for every year younger at menarche, and independently by a smaller amount (1·029, 1·025–1·032; p<0·0001), for every year older at menopause. Premenopausal women had a greater risk of breast cancer than postmenopausal women of an identical age (RR at age 45–54 years 1·43, 1·33–1·52, p<0·001). All three of these associations were attenuated by increasing adiposity among postmenopausal women, but did not vary materially by women's year of birth, ethnic origin, childbearing history, smoking, alcohol consumption, or hormonal contraceptive use. All three associations were stronger for lobular than for ductal tumours (p<0·006 for each comparison). The effect of menopause in women of an identical age and trends by age at menopause were stronger for oestrogen receptor-positive disease than for oestrogen receptor-negative disease (p<0·01 for both comparisons).
Interpretation
The effects of menarche and menopause on breast cancer risk might not be acting merely by lengthening women's total number of reproductive years. Endogenous ovarian hormones are more relevant for oestrogen receptor-positive disease than for oestrogen receptor-negative disease and for lobular than for ductal tumours.
Funding
Cancer Research UK.
doi:10.1016/S1470-2045(12)70425-4
PMCID: PMC3488186  PMID: 23084519
20.  Reproductive events and family history as risk factors for breast cancer in northern Alberta. 
Canadian Medical Association Journal  1981;124(11):1451-1457.
Reproductive events and family history as risk factors for breast cancer in northern Alberta were investigated with the use of data from a computerized population-based registry. Women aged 30 to 79 years attending diagnostic breast clinics at the Cross Cancer Institute from 1971 through 1975 constituted the two study groups; 1232 women had diagnosed breast cancer (malignant disease group) and 602 women were clinically free of all types of breast disease (control group). An increased relative risk of breast cancer was found in women with a family history of breast cancer, those who gave birth to their first term infant at age 30 years or older, those in whom more than 15 years elapsed between menarche and that birth, and those with a late natural menopause. There was a decreased risk, relative to nulliparity, in the postmenopausal women who first gave birth to a term infant 5 years or less after menarche. Artificial menopause (bilateral oophorectomy), parity and age at menarche had no apparent effect on the risk. The pattern of risk factors in northern Alberta differed from that reported for other geographic areas, including other provinces of Canada, thus emphasizing the need for local studies in the planning of screening programs.
PMCID: PMC1862345  PMID: 7237327
21.  Association of Selected Medical Conditions With Breast Cancer Risk in Korea 
Objectives
To estimate the effect of medical conditions in the population of Korea on breast cancer risk in a case-control study.
Methods
The cases were 3242 women with incident, histologically confirmed breast cancer in two major hospitals interviewed between 2001 and 2007. The controls were 1818 women each admitted to either of those two hospitals for a variety of non-neoplastic conditions. Information on each disease was obtained from a standardized questionnaire by trained personnel. Odds ratios (ORs) for each disease were derived from multiple logistic regression adjusted for age, age of menarche, pregnancy, age of first pregnancy, and family history of breast cancer.
Results
Among all of the incident breast cancer patients, pre-existing diabetes (OR, 1.33; 95% confidence interval [CI], 0.99 to 1.78), hypertension (OR, 1.46; 95% CI, 1.18 to 1.83), thyroid diseases (OR, 1.26; 95% CI, 1.00 to 1.58), and ovarian diseases (OR, 1.70; 95% CI, 1.23 to 2.35) were associated with an increased risk of breast cancer when other factors were adjusted for. In a stratified analysis by menopausal status, pre-existing hypertension (pre-menopause OR, 0.80; 95% CI, 0.48 to 1.34 vs. post-menopause OR, 1.87; 95% CI, 1.44 to 2.43; p-heterogeneity <0.01) and ovarian disease (pre-menopause OR, 4.20; 95% CI, 1.91 to 9.24 vs. post-menopause OR, 1.39; 95% CI, 1.02 to 1.91; p-heterogeneity 0.01) showed significantly different risks of breast cancer.
Conclusions
Our results suggest the possibility that medical conditions such as hypertension affect breast cancer development, and that this can differ by menopausal status. Our study also indicates a possible correlation between ovarian diseases and breast cancer risk.
doi:10.3961/jpmph.2013.46.6.346
PMCID: PMC3859856  PMID: 24349656
Breast neoplasms; Diabetes mellitus; Hypertension; Ovarian diseases; Menopause
22.  Evidence of Gene–Environment Interactions between Common Breast Cancer Susceptibility Loci and Established Environmental Risk Factors 
Nickels, Stefan | Truong, Thérèse | Hein, Rebecca | Stevens, Kristen | Buck, Katharina | Behrens, Sabine | Eilber, Ursula | Schmidt, Martina | Häberle, Lothar | Vrieling, Alina | Gaudet, Mia | Figueroa, Jonine | Schoof, Nils | Spurdle, Amanda B. | Rudolph, Anja | Fasching, Peter A. | Hopper, John L. | Makalic, Enes | Schmidt, Daniel F. | Southey, Melissa C. | Beckmann, Matthias W. | Ekici, Arif B. | Fletcher, Olivia | Gibson, Lorna | dos Santos Silva, Isabel | Peto, Julian | Humphreys, Manjeet K. | Wang, Jean | Cordina-Duverger, Emilie | Menegaux, Florence | Nordestgaard, Børge G. | Bojesen, Stig E. | Lanng, Charlotte | Anton-Culver, Hoda | Ziogas, Argyrios | Bernstein, Leslie | Clarke, Christina A. | Brenner, Hermann | Müller, Heiko | Arndt, Volker | Stegmaier, Christa | Brauch, Hiltrud | Brüning, Thomas | Harth, Volker | The GENICA Network,  | Mannermaa, Arto | Kataja, Vesa | Kosma, Veli-Matti | Hartikainen, Jaana M. | kConFab,  | Group, AOCS Management | Lambrechts, Diether | Smeets, Dominiek | Neven, Patrick | Paridaens, Robert | Flesch-Janys, Dieter | Obi, Nadia | Wang-Gohrke, Shan | Couch, Fergus J. | Olson, Janet E. | Vachon, Celine M. | Giles, Graham G. | Severi, Gianluca | Baglietto, Laura | Offit, Kenneth | John, Esther M. | Miron, Alexander | Andrulis, Irene L. | Knight, Julia A. | Glendon, Gord | Mulligan, Anna Marie | Chanock, Stephen J. | Lissowska, Jolanta | Liu, Jianjun | Cox, Angela | Cramp, Helen | Connley, Dan | Balasubramanian, Sabapathy | Dunning, Alison M. | Shah, Mitul | Trentham-Dietz, Amy | Newcomb, Polly | Titus, Linda | Egan, Kathleen | Cahoon, Elizabeth K. | Rajaraman, Preetha | Sigurdson, Alice J. | Doody, Michele M. | Guénel, Pascal | Pharoah, Paul D. P. | Schmidt, Marjanka K. | Hall, Per | Easton, Doug F. | Garcia-Closas, Montserrat | Milne, Roger L. | Chang-Claude, Jenny
PLoS Genetics  2013;9(3):e1003284.
Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity) in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene–environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4×10−6) and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1×10−4). Overall, the per-allele odds ratio (95% confidence interval) for LSP1-rs3817198 was 1.08 (1.01–1.16) in nulliparous women and ranged from 1.03 (0.96–1.10) in parous women with one birth to 1.26 (1.16–1.37) in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85–0.98) in those with an alcohol intake of <20 g/day and 1.45 (1.14–1.85) in those who drank ≥20 g/day. Additionally, interaction was found between 1p11.2-rs11249433 and ever being parous (Pinteraction = 5.3×10−5), with a per-allele OR of 1.14 (1.11–1.17) in parous women and 0.98 (0.92–1.05) in nulliparous women. These data provide first strong evidence that the risk of breast cancer associated with some common genetic variants may vary with environmental risk factors.
Author Summary
Breast cancer involves combined effects of numerous genetic, environmental, and behavioral risk factors that are unique to each individual. High risk genes, such as BRCA1 and BRCA2, account for only a small proportion of disease occurrence. Recent genome-wide research has identified more than 20 common genetic variants, which individually alter breast cancer risk very moderately. We undertook an international collaborative study to determine whether the effect of these genetic variants vary with environmental factors, such as parity, body mass index (BMI), height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, and physical activity, which are known to affect risk of developing breast cancer. Using pooled data from 24 studies of the Breast Cancer Association Consortium (BCAC), we provide first convincing evidence that the breast cancer risk associated with a genetic variant in LSP1 differs with the number of births and that the risk associated with a CASP8 variant is altered by high alcohol consumption. The effect of an additional genetic variant might also be modified by reproductive factors. This knowledge will stimulate new research towards a better understanding of breast cancer development.
doi:10.1371/journal.pgen.1003284
PMCID: PMC3609648  PMID: 23544014
23.  Breast asymmetry and predisposition to breast cancer 
Breast Cancer Research  2006;8(2):R14.
Introduction
It has been shown in our previous work that breast asymmetry is related to several of the known risk factors for breast cancer, and that patients with diagnosed breast cancer have more breast volume asymmetry, as measured from mammograms, than age-matched healthy women.
Methods
In the present study, we compared the breast asymmetry of women who were free of breast disease at time of mammography, but who had subsequently developed breast cancer, with that of age-matched healthy controls who had remained disease-free to time of the present study. The study group consisted of 252 asymptomatic women who had normal mammography, but went on to develop breast cancer. The control group were 252 age-matched healthy controls whose mammograms were also normal and who remained free of cancer during the study period. Breast volume was calculated from the cranio-caudal mammograms for each group, and the relationships between asymmetry, established risk factors and the presence or absence of breast cancer were explored.
Results
The group who went on to develop breast cancer had higher breast asymmetry than controls (absolute asymmetry odds ratio 1.50 per 100 ml, confidence interval (CI) 1.10, 2.04; relative asymmetry 1.09, CI 1.01, 1.18), increased incidence of family history of breast cancer, lower age at menarche, later menopause, later first pregnancies and a higher frequency of high risk breast parenchyma types. Conditional logistic regression analysis showed that breast asymmetry, height, family history of breast cancer, age at menarche, parenchyma type and menopausal status were significant independent predictors of breast cancer. When age at menopause was included in the model for the subgroup of post-menopausal women, absolute breast fluctuating asymmetry (FA) and relative breast FA remained significant effects.
Conclusion
Breast asymmetry was greater in healthy women who later developed breast cancer than in women who did not.
doi:10.1186/bcr1388
PMCID: PMC1557716  PMID: 16563179
24.  Menstrual and reproductive factors and risk of breast cancer in Asian-Americans. 
British Journal of Cancer  1996;73(5):680-686.
We conducted a population-based case-control study of breast cancer among Chinese-, Japanese- and Filipino-American women in Los Angeles County Metropolitan Statistical Area (MSA), San Francisco-Oakland MSA and Oahu, Hawaii. One objective of the study was to quantify breast cancer risks in relation to menstrual and reproductive histories in migrant and US-born Asian-Americans and to establish whether the gradient of risk in Asian-Americans can be explained by these factors. Using a common study design and questionnaire in the three study areas, we successfully conducted in-person interviews with 597 Asian-American women diagnosed with incident, primary breast cancer during the period 1983-87 (70% of those eligible) and 966 population-based controls (75% of those eligible). Controls were matched to cases on age, ethnicity and area of residence. In the present analysis, which included 492 cases and 768 controls, we observed a statistically non-significant 4% reduction in risk of breast cancer with each year delay in onset of menstruation. Independent of age at menarche risk of breast cancer was lower (odds ratio; OR=0.77) among women with menstrual cycles greater than 29 days. Parous Asian-American women showed a significantly lower risk of breast cancer then nulliparous women (OR=0.54). An increasing number of livebirths and a decreasing age at first livebirth were both associated with a lower risk of breast cancer, although the effect of number of livebirths was no longer significant after adjustment for age at first livebirth. Women with a pregnancy (spontaneous or induced abortions) but no livebirth had a statistically non-significant increased risk (OR=1.84), but there was no evidence that one type of abortion was particularly harmful. A positive history of breastfeeding was associated with non-significantly lower risk of breast cancer (OR=.78). There are several notable differences in the menstrual and reproductive factors between Asian-Americans in this study and published data on US whites. US-born Asian Americans had an average age at menarche of 12.12 years-no older than has been found in comparable studies of US whites, but 1.4 years earlier than Asian women who migrated to the US. Asian-American women, particularly those born in the US and those who migrated before age 36, also had a later age at first birth and fewer livebirths than US whites. A slightly higher proportion of Asian-American women breastfed, compared with US whites. The duration of breastfeeding was similar in US-born Asians and US whites, but was longer in Asian migrants, especially those who migrated at a later age. Menstrual and reproductive factors in Asian-American women are consistent with their breast cancer rates being at least as high as in US whites, and they are. However, the effects of these menstrual and reproductive factors were small and the ORs for migration variables changed only slightly after adjustment for these menstrual and reproductive factors. These results suggest that the lower rates of breast cancer in Asians must be largely as a result of other environmental/lifestyle factors.
PMCID: PMC2074339  PMID: 8605107
25.  Hip Fracture Incidence in Relation to Age, Menopausal Status, and Age at Menopause: Prospective Analysis 
PLoS Medicine  2009;6(11):e1000181.
Using data from the UK Million Women Study, Emily Banks and colleagues investigate the relationships between the incidence of hip fracture and a woman's age, menopausal status, and age at menopause.
Background
Bone mineral density is known to decrease rapidly after the menopause. There is limited evidence about the separate contributions of a woman's age, menopausal status and age at menopause to the incidence of hip fracture.
Methods and Findings
Over one million middle-aged women joined the UK Million Women Study in 1996–2001 providing information on their menopausal status, age at menopause, and other factors, which was updated, where possible, 3 y later. All women were registered with the UK National Health Service (NHS) and were routinely linked to information on cause-specific admissions to NHS hospitals. 561,609 women who had never used hormone replacement therapy and who provided complete information on menopausal variables (at baseline 25% were pre/perimenopausal and 75% postmenopausal) were followed up for a total of 3.4 million woman-years (an average 6.2 y per woman). During follow-up 1,676 (0.3%) were admitted to hospital with a first incident hip fracture. Among women aged 50–54 y the relative risk (RR) of hip fracture risk was significantly higher in postmenopausal than premenopausal women (adjusted RR 2.22, 95% confidence interval [CI] 1.22–4.04; p = 0.009); there were too few premenopausal women aged 55 y and over for valid comparisons. Among postmenopausal women, hip fracture incidence increased steeply with age (p<0.001), with rates being about seven times higher at age 70–74 y than at 50–54 y (incidence rates of 0.82 versus 0.11 per 100 women over 5 y). Among postmenopausal women of a given age there was no significant difference in hip fracture incidence between women whose menopause was due to bilateral oophorectomy compared to a natural menopause (adjusted RR 1.20, 95% CI 0.94–1.55; p = 0.15), and age at menopause had little, if any, effect on hip fracture incidence.
Conclusions
At around the time of the menopause, hip fracture incidence is about twice as high in postmenopausal than in premenopausal women, but this effect is short lived. Among postmenopausal women, age is by far the main determinant of hip fracture incidence and, for women of a given age, their age at menopause has, at most, a weak additional effect.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Anyone can break a hip but most hip fractures occur in elderly people. As people age, their bones gradually lose minerals and become less dense, which weakens the bones and makes them more susceptible to fracture. Because women lose bone density faster than men as they age and because women constitute the majority of the elderly, three-quarters of hip fractures occur in women. Hip fractures can cause long-term health problems and premature death. Thus, although surgical repair of a broken hip usually only requires a hospital stay of about a week, a quarter of elderly people who were living independently before their fracture have to stay in a nursing home for at least a year after their injury and a fifth of elderly people who break a hip die within the year. Most hip fractures are caused by falls. Regular exercise to improve strength and balance combined with review of medicines (to reduce side effects and interactions), regular eye examinations, and the removal of fall hazards from the home can help to prevent hip fractures in elderly people.
Why Was This Study Done?
Bone density decreases very rapidly in women immediately after menopause—the time when menstruation permanently stops—and then continues to decrease more slowly with age. Most women have their menopause in their early 50s but menopause can occur in younger women. Early menopause is thought to be a risk factor for osteoporosis (thinning of the bones) and fractures later in life but little is known about how menopause influences hip fracture risk as women age. In this prospective study (a type of study in which a group of people is followed for several years to see whether they develop a particular condition), the researchers investigate the incidence of hip fractures in relation to age, menopausal status, and age at menopause among the participants of the Million Women Study. This study, which recruited 1.3 million women aged 50–64 years who attended UK breast cancer screening clinics between 1996 and 2001, has been investigating how reproductive and lifestyle factors affect women's health.
What Did the Researchers Do and Find?
At enrollment and three years later, the study participants provided information about their menopausal status and other health and lifestyle factors likely to affect their fracture risk. From these data, the researchers identified more than half a million women who had never used hormone replacement therapy (which reduces fracture risk) and who had given complete information about their menopausal status. They then looked for statistical associations between the occurrence of a first hip fracture in these women over the next few years and their age, menopausal status, and age at menopause. Among women aged 50–54 years, postmenopausal women were twice as likely to have a hip fracture as premenopausal women. Among postmenopausal women, the incidence of hip fractures increased steeply with age and was seven times higher in 70–74-year olds than in 50–54-year olds. Women who had their menopause before age 45 had a slightly increased risk of hip fracture but any effect of age at menopause on the risk of hip fracture was small compared to the effect of age itself, and the slightly increased risk may have been due to other factors that could not be fully accounted for in the analysis.
What Do These Findings Mean?
These findings indicate that around the time of menopause, although hip fractures are rare, the risk of a fracture in postmenopausal women is twice that in premenopausal women. The findings also show that among postmenopausal women, age is the major determinant of hip fracture risk and that for women of a given age, their age at menopause has little effect on hip fracture risk. Women attending breast cancer screening clinics and completing questionnaires about their health may not be representative of the general population. Furthermore, these findings rely on women self-reporting their menopausal status accurately. Nevertheless, the results of this study suggest that clinicians advising women about hip fracture prevention should probably base their advice on the woman's age and on age-related factors such as frailty rather than on factors related to menopause. Clinicians can also now reassure elderly women who had an early menopause that their risk of hip fracture is unlikely to be higher than that of similar women who had a later menopause.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000181.
The American Academy of Orthopaedic Surgeons has detailed information about hip fractures
The US National Institute of Arthritis and Muscoloskeletal and Skin Diseases has an interactive feature called “Check up on your bones and provides detailed information about osteoporosis, including advice on fall prevention
The US Centers for Disease Control and Prevention has a fact sheet about hip fractures among older adults
MedlinePlus has links to resources about hip fracture, osteoporosis, and menopause (in English and Spanish)
More information on the Million Women Study is available
doi:10.1371/journal.pmed.1000181
PMCID: PMC2766835  PMID: 19901981

Results 1-25 (1748933)