Search tips
Search criteria

Results 1-25 (597326)

Clipboard (0)

Related Articles

1.  Effect of High-Dose or Split-Dose Artesunate on Parasite Clearance in Artemisinin-Resistant Falciparum Malaria 
New treatment strategies are needed for artemisinin-resistant falciparum malaria. This randomized trial shows that neither increasing nor splitting the standard once-daily artesunate dose reverses the markedly reduced parasite clearance rate in patients with artemisinin-resistant falciparum malaria.
Background. The emergence of Plasmodium falciparum resistance to artemisinins on the Cambodian and Myanmar-Thai borders poses severe threats to malaria control. We investigated whether increasing or splitting the dose of the short-half-life drug artesunate improves parasite clearance in falciparum malaria in the 2 regions.
Methods. In Pailin, western Cambodia (from 2008 to 2010), and Wang Pha, northwestern Thailand (2009–2010), patients with uncomplicated falciparum malaria were randomized to oral artesunate 6 mg/kg/d as a once-daily or twice-daily dose for 7 days, or artesunate 8 mg/kg/d as a once-daily or twice-daily dose for 3 days, followed by mefloquine. Parasite clearance and recrudescence for up to 63 days of follow-up were assessed.
Results. A total of 159 patients were enrolled. Overall median (interquartile range [IQR]) parasitemia half-life (half-life) was 6.03 (4.89–7.28) hours in Pailin versus 3.42 (2.20–4.85) hours in Wang Pha (P = .0001). Splitting or increasing the artesunate dose did not shorten half-life in either site. Pharmacokinetic profiles of artesunate and dihydroartemisinin were similar between sites and did not correlate with half-life. Recrudescent infections occurred in 4 of 79 patients in Pailin and 5 of 80 in Wang Pha and was not different between treatment arms (P = .68).
Conclusions. Increasing the artesunate treatment dose up to 8 mg/kg/d or splitting the dose does not improve parasite clearance in either artemisinin resistant or more sensitive infections with P. falciparum.
Clinical Trials Registration. ISRCTN15351875.
PMCID: PMC3563392  PMID: 23175556
artemisinins; drug resistance; Plasmodium falciparum; neutropenia; reticulocytopenia
2.  A randomized trial of artemether-lumefantrine versus mefloquine-artesunate for the treatment of uncomplicated multi-drug resistant Plasmodium falciparum on the western border of Thailand 
Malaria Journal  2005;4:46.
The use of antimalarial drug combinations with artemisinin derivatives is recommended to overcome drug resistance in Plasmodium falciparum. The fixed combination of oral artemether-lumefantrine, an artemisinin combination therapy (ACT) is highly effective and well tolerated. It is the only registered fixed combination containing an artemisinin. The trial presented here was conducted to monitor the efficacy of the six-dose regimen of artemether-lumefantrine (ALN) in an area of multi-drug resistance, along the Thai-Myanmar border.
The trial was an open-label, two-arm, randomized study comparing artemether-lumefantrine and mefloquine-artesunate for the treatment of uncomplicated falciparum malaria with 42 days of follow up. Parasite genotyping by polymerase chain reaction (PCR) was used to distinguish recrudescent from newly acquired P. falciparum infections. The PCR adjusted cure rates were evaluated by survival analysis.
In 2001–2002 a total of 490 patients with slide confirmed uncomplicated P. falciparum malaria were randomly assigned to receive artemether-lumefantrine (n = 245) or artesunate and mefloquine (n = 245) and were followed for 42 days. All patients had rapid initial clinical and parasitological responses. In both groups, the PCR adjusted cure rates by day 42 were high: 98.8% (95% CI 96.4, 99.6%) for artemether-lumefantrine and 96.3% (95% CI 93.1, 98.0%) for artesunate-mefloquine. Both regimens were very well tolerated with no serious adverse events observed attributable to either combination.
Overall, this study confirms that these two artemisinin-based combinations remain highly effective and result in equivalent therapeutic responses in the treatment of highly drug-resistant falciparum malaria.
PMCID: PMC1261533  PMID: 16179089
3.  Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia 
Malaria Journal  2009;8:11.
The combination of artesunate and mefloquine was introduced as the national first-line treatment for Plasmodium falciparum malaria in Cambodia in 2000. However, recent clinical trials performed at the Thai-Cambodian border have pointed to the declining efficacy of both artesunate-mefloquine and artemether-lumefantrine. Since pfmdr1 modulates susceptibility to mefloquine and artemisinin derivatives, the aim of this study was to assess the link between pfmdr1 copy number, in vitro susceptibility to individual drugs and treatment failure to combination therapy.
Blood samples were collected from P. falciparum-infected patients enrolled in two in vivo efficacy studies in north-western Cambodia: 135 patients were treated with artemether-lumefantrine (AL group) in Sampovloun in 2002 and 2003, and 140 patients with artesunate-mefloquine (AM group) in Sampovloun and Veal Veng in 2003 and 2004. At enrollment, the in vitro IC50 was tested and the strains were genotyped for pfmdr1 copy number by real-time PCR.
The pfmdr1 copy number was analysed for 115 isolates in the AM group, and for 109 isolates in the AL group. Parasites with increased pfmdr1 copy number had significantly reduced in vitro susceptibility to mefloquine, lumefantrine and artesunate. There was no association between pfmdr1 polymorphisms and in vitro susceptibilities. In the patients treated with AM, the mean pfmdr1copy number was lower in subjects with adequate clinical and parasitological response compared to those who experienced late treatment failure (n = 112, p < 0.001). This was not observed in the patients treated with AL (n = 96, p = 0.364). The presence of three or more copies of pfmdr1 were associated with recrudescence in artesunate-mefloquine treated patients (hazard ratio (HR) = 7.80 [95%CI: 2.09–29.10], N = 115), p = 0.002) but not with recrudescence in artemether-lumefantrine treated patients (HR = 1.03 [95%CI: 0.24–4.44], N = 109, p = 0.969).
This study shows that pfmdr1 copy number is a molecular marker of AM treatment failure in falciparum malaria on the Thai-Cambodian border. However, while it is associated with increased IC50 for lumefantrine, pfmdr1 copy number is not associated with AL treatment failure in the area, suggesting involvement of other molecular mechanisms in AL treatment failures in Cambodia.
PMCID: PMC2627910  PMID: 19138391
4.  Declining in efficacy of a three-day combination regimen of mefloquine-artesunate in a multi-drug resistance area along the Thai-Myanmar border 
Malaria Journal  2010;9:273.
Declining in clinical efficacy of artesunate-mefloquine combination has been documented in areas along the eastern border (Thai-Cambodian) of Thailand. In the present study, the clinical efficacy of the three-day combination regimen of artesunate-mefloquine as first-line treatment for acute uncomplicated falciparum malaria in Thailand was monitored in an area along the western border (Thai-Myanmar) of the country.
A total of 150 Burmese patients (85 males and 65 females) aged between 16 and 50 years who were attending the Mae Tao clinic, Mae-Sot, Tak Province, and presenting with symptomatic acute uncomplicated Plasmodium falciparum malaria were included into the study. Patients were treated initially (day 0) with 4 mg/kg body weight artesunate and 15 mg/kg body weight mefloquine. The dose regimen on day 2 was 4 mg/kg body weight artesunate and 10 mg/kg body weight mefloquine. On day 3, artesunate at the dose of 4 mg/kg body weight was given with 0.6 mg/kg body weight primaquine. Whole blood mefloquine and plasma artesunate and dihydroartemisinin (active plasma metabolite of artesunate) concentrations following treatment were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LCMS), respectively.
Thirty-four cases had recrudescence during days 7 and 42. Five and 5 cases, respectively had reinfection with P. falciparum and reappearance of Plasmodium vivax in their peripheral blood during follow-up. The Kaplan-Meier estimate of the 42-and 28-day efficacy rates of this combination regimen were 72.58% (95% CI: 63.20-79.07%) and 83.06 (95% CI 76.14-94.40%), respectively. Parasite clearance time (PCT) and fever clearance time (FCT) were significantly prolonged in patients with treatment failure compared with those with sensitive response [median (95% CI) values for PCT 32.0 (20.0-48.0) vs 24.0 (14.0-32.0) hr and FCT 30.0 (22.0-42.0) vs 26.0 (18.0-36.0) hr; p < 0.005]. Whole blood mefloquine concentrations on days 1, 7 and 14 in patients with sensitive and recrudescence response were comparable. Although plasma concentration of dihydroartemisinin at 1 hour of treatment was significantly lower in patients with recrudescence compared with sensitive response [mean (95% CI) 456 (215-875) vs 525 (452-599) ng/ml; p < 0.001], the proportion of patients with recrudescence who had relatively low (compared with the lower limit of 95% CI defined in the sensitive group) was significantly smaller than that of the sensitive group.
Although pharmacokinetic (ethnic-related) factors including resistance of P. falciparum to mefloquine contribute to some treatment failure following treatment with a three-day combination regimen of artesunate-mefloquine, results suggest that artesunate resistance may be emerging at the Thai-Myanmar border.
PMCID: PMC2959072  PMID: 20929590
5.  Pharmacokinetics and Pharmacodynamics of Oral Artesunate Monotherapy in Patients with Uncomplicated Plasmodium falciparum Malaria in Western Cambodia 
Antimicrobial Agents and Chemotherapy  2012;56(11):5484-5493.
Artemisinin-resistant malaria along the Thailand-Cambodian border is an important public health concern, yet mechanisms of drug action and their contributions to the development of resistance are poorly understood. The pharmacokinetics and pharmacodynamics of oral artesunate monotherapy were explored in a dose-ranging trial in an area of emerging artesunate resistance in western Cambodia. We enrolled 143 evaluable subjects with uncomplicated Plasmodium falciparum malaria in an open label study of directly observed artesunate monotherapy at 3 dose levels (2, 4, and 6 mg/kg of body weight/day) for 7 days at Tasanh Health Center, Tasanh, Cambodia. Clinical outcomes were similar among the 3 groups. Wide variability in artesunate and dihydroartemisinin concentrations in plasma was observed. No significant dose-effect or concentration-effect relationships between pharmacokinetic (PK) and parasite clearance parameters were observed, though baseline parasitemia was modestly correlated with increased parasite clearance times. The overall parasite clearance times were prolonged compared with the clearance times in a previous study at this site in 2006 to 2007, but this did not persist when the evaluation was limited to subjects with a comparable artesunate dose (4 mg/kg/day) and baseline parasitemia from the two studies. Reduced plasma drug levels with higher presentation parasitemias, previously hypothesized to result from partitioning into infected red blood cells, was not observed in this population with uncomplicated malaria. Neither in vitro parasite susceptibility nor plasma drug concentrations appeared to have a direct relationship with the pharmacodynamic (PD) effects of oral artesunate on malaria parasites. While direct concentration-effect relationships were not found, it remains possible that a population PK modeling approach that allows modeling of greater dose separation might discern more-subtle relationships.
PMCID: PMC3486599  PMID: 22869581
6.  Efficacy and tolerability of four antimalarial combinations in the treatment of uncomplicated Plasmodium falciparum malaria in Senegal 
Malaria Journal  2007;6:80.
In view of the high level of chloroquine resistance in many countries, WHO has recommended the use of combination therapy with artemisinin derivatives in the treatment of uncomplicated malaria due to Plasmodium falciparum. Four antimalarial drug combinations, artesunate plus amodiaquine (Arsucam®), artesunate plus mefloquine (Artequin®), artemether plus lumefantrine (Coartem®; four doses and six doses), and amodiaquine plus sulphadoxine-pyrimethamine, were studied in five health districts in Senegal.
This is a descriptive, analytical, open, randomized study to evaluate the efficacy and tolerability of these four antimalarial combinations in the treatment of uncomplicated falciparum malaria using the 2002 WHO protocol.
All drug combinations demonstrated good efficacy. On day 28, all combinations resulted in an excellent clinical and parasitological response rate of 100% after correction for PCR results, except for the four-dose artemether-lumefantrine regimen (96.4%). Follow-up of approximately 10% of each treatment group on day 42 demonstrated an efficacy of 100%.
The combinations were well tolerated clinically and biologically. No unexpected side-effect was observed and all side-effects disappeared at the end of treatment. No serious side-effect requiring premature termination of treatment was observed.
The four combinations are effective and well-tolerated.
PMCID: PMC1919387  PMID: 17570848
To determine the efficacy, safety and tolerability of an alternative short-course, artemisinin-based combination therapy for acute uncomplicated Plasmodium falciparum malaria, we compared Artequick®–a fixed-dosed combination of artemisinin (80 mg), piperaquine (400 mg), and primaquine (4 mg), per tablet–with a standard regimen of artesunate-mefloquine. A total of 130 patients were randomly assigned to treatment with an orally administered, once-daily, 3-day regimen of either Artequick® (Group A: 3.2 mg/kg/day of artemisinin, 16 mg/kg/day of piperaquine, and 0.16 mg/kg/day of primaquine) or artesunate-mefloquine (Group B: artesunate, 4 mg/kg/day, with mefloquine, 8 mg/kg/day). Patients receiving each regimen had a rapid clinical and parasitological response. All treatments were well tolerated, and no serious adverse effects occurred. No significant differences were found in fever- and parasite-clearance times between the two study groups. The 28-day cure rates were similarly high, at 98.5% and 100%, in groups A and B, respectively. We conclude that Artequick® was as effective and well tolerated as artesunate-mefloquine and could be used as an alternative treatment for multidrug-resistant Plasmodium falciparum malaria in Southeast Asia.
PMCID: PMC3129605  PMID: 18567436
8.  In vivo susceptibility of Plasmodium falciparum to artesunate in Binh Phuoc Province, Vietnam 
Malaria Journal  2012;11:355.
By 2009, there were worrying signs from western Cambodia that parasitological responses to artesunate-containing treatment regimens for uncomplicated Plasmodium falciparum malaria were slower than elsewhere which suggested the emergence of artemisinin resistance. Vietnam shares a long land border with Cambodia with a large number of migrants crossing it on a daily basis. Therefore, there is an urgent need to investigate whether there is any evidence of a change in the parasitological response to the artemisinin derivatives in Vietnam.
From August 2010 to May 2011, a randomized controlled clinical trial in uncomplicated falciparum malaria was conducted to compare two doses of artesunate (AS) (2mg/kg/day versus 4 mg/kg/day for three days) followed by dihydroartemisinin-piperaquine (DHA-PPQ) and a control arm of DHA-PPQ. The goal was characterization of the current efficacy of artesunate in southern Vietnam. The primary endpoint of this study was the parasite clearance half-life; secondary endpoints included the parasite reduction ratios at 24 and 48 hours and the parasite clearance time.
166 patients were recruited into the study. The median parasite clearance half-lives were 3.54 (AS 2mg/kg), 2.72 (AS 4mg/kg), and 2.98 hours (DHA-PPQ) (p=0.19). The median parasite-reduction ratio at 24 hours was 48 in the AS 2mg/kg group compared with 212 and 113 in the other two groups, respectively (p=0.02). The proportions of patients with a parasite clearance time of >72 hours for AS 2mg/kg, AS 4mg/kg and DHA-PPQ were 27%, 27%, and 22%, respectively. Early treatment failure occurred in two (4%) and late clinical failure occurred in one (2%) of the 55 patients in the AS 2mg/kg group, as compared with none in the other two study arms. The PCR-corrected adequate clinical and parasitological response (APCR) rates in the three groups were 94%, 100%, and 100% (p=0.04).
This study demonstrated faster P. falciparum parasite clearance in southern Vietnam than in western Cambodia but slower clearance in comparison with historical data from Vietnam. Further studies to determine whether this represents the emergence of artemisinin resistance in this area are needed. Currently, the therapeutic response to DHA-PPQ remains satisfactory in southern Vietnam.
Trial registration
PMCID: PMC3504531  PMID: 23101492
Plasmodium falciparum; Artesunate; Parasite clearance half-life; Parasite reduction ratio; Parasite clearance of >72 hours
9.  Failure of artesunate-mefloquine combination therapy for uncomplicated Plasmodium falciparum malaria in southern Cambodia 
Malaria Journal  2009;8:10.
Resistance to anti-malarial drugs hampers control efforts and increases the risk of morbidity and mortality from malaria. The efficacy of standard therapies for uncomplicated Plasmodium falciparum and Plasmodium vivax malaria was assessed in Chumkiri, Kampot Province, Cambodia.
One hundred fifty-one subjects with uncomplicated falciparum malaria received directly observed therapy with 12 mg/kg artesunate (over three days) and 25 mg/kg mefloquine, up to a maximum dose of 600 mg artesunate/1,000 mg mefloquine. One hundred nine subjects with uncomplicated vivax malaria received a total of 25 mg/kg chloroquine, up to a maximum dose of 1,500 mg, over three days. Subjects were followed for 42 days or until recurrent parasitaemia was observed. For P. falciparum infected subjects, PCR genotyping of msp1, msp2, and glurp was used to distinguish treatment failures from new infections. Treatment failure rates at days 28 and 42 were analyzed using both per protocol and Kaplan-Meier survival analysis. Real Time PCR was used to measure the copy number of the pfmdr1 gene and standard 48-hour isotopic hypoxanthine incorporation assays were used to measure IC50 for anti-malarial drugs.
Among P. falciparum infected subjects, 47.0% were still parasitemic on day 2 and 11.3% on day 3. The PCR corrected treatment failure rates determined by survival analysis at 28 and 42 days were 13.1% and 18.8%, respectively. Treatment failure was associated with increased pfmdr1 copy number, higher initial parasitaemia, higher mefloquine IC50, and longer time to parasite clearance. One P. falciparum isolate, from a treatment failure, had markedly elevated IC50 for both mefloquine (130 nM) and artesunate (6.7 nM). Among P. vivax infected subjects, 42.1% suffered recurrent P. vivax parasitaemia. None acquired new P. falciparum infection.
The results suggest that artesunate-mefloquine combination therapy is beginning to fail in southern Cambodia and that resistance is not confined to the provinces at the Thai-Cambodian border. It is unclear whether the treatment failures are due solely to mefloquine resistance or to artesunate resistance as well. The findings of delayed clearance times and elevated artesunate IC50 suggest that artesunate resistance may be emerging on a background of mefloquine resistance.
PMCID: PMC2628668  PMID: 19138388
10.  Safety and Efficacy of Dihydroartemisinin-Piperaquine in Falciparum Malaria: A Prospective Multi-Centre Individual Patient Data Analysis 
PLoS ONE  2009;4(7):e6358.
The fixed dose antimalarial combination of dihydroartemisinin-piperaquine (DP) is a promising new artemisinin-based combination therapy (ACT). We present an individual patient data analysis of efficacy and tolerability in acute uncomplicated falciparum malaria, from seven published randomized clinical trials conducted in Africa and South East Asia using a predefined in-vivo protocol. Comparator drugs were mefloquine-artesunate (MAS3) in Thailand, Myanmar, Laos and Cambodia; artemether-lumefantrine in Uganda; and amodiaquine+sulfadoxine-pyrimethamine and artesunate+amodiaquine in Rwanda.
Methods and Findings
In total 3,547 patients were enrolled: 1,814 patients (32% children under five years) received DP and 1,733 received a comparator antimalarial at 12 different sites and were followed for 28–63 days. There was no significant heterogeneity between trials. DP was well tolerated with 1.7% early vomiting. There were less adverse events with DP in children and adults compared to MAS3 except for diarrhea; ORs (95%CI) 2.74 (2.13 to 3.51) and 3.11 (2.31 to 4.18), respectively. DP treatment resulted in a rapid clearance of fever and parasitaemia. The PCR genotype corrected efficacy at Day 28 of DP assessed by survival analysis was 98.7% (95%CI 97.6–99.8). DP was superior to the comparator drugs in protecting against both P.falciparum recurrence and recrudescence (P = 0.001, weighted by site). There was no difference between DP and MAS3 in treating P. vivax co-infections and in suppressing the first relapse (median interval to P. vivax recurrence: 6 weeks). Children under 5 y were at higher risk of recurrence for both infections. The proportion of patients developing gametocytaemia (P = 0.002, weighted by site) and the subsequent gametocyte carriage rates were higher with DP (11/1000 person gametocyte week, PGW) than MAS3 (6/1000 PGW, P = 0.001, weighted by site).
DP proved a safe, well tolerated, and highly effective treatment of P.falciparum malaria in Asia and Africa, but the effect on gametocyte carriage was inferior to that of MAS3.
PMCID: PMC2716525  PMID: 19649267
11.  Pharmacokinetics of Mefloquine Combined with Artesunate in Children with Acute Falciparum Malaria 
Combining artemisinin or a derivative with mefloquine increases cure rates in falciparum malaria patients, reduces transmission, and may slow the development of resistance. The combination of artesunate, given for 3 days, and mefloquine is now the treatment of choice for uncomplicated multidrug-resistant falciparum malaria acquired on the western or eastern borders of Thailand. To optimize mefloquine administration in this combination, a prospective study of mefloquine pharmacokinetics was conducted with 120 children (4 to 15 years old) with acute uncomplicated falciparum malaria, who were divided into four age- and sex-matched groups. The patients all received artesunate (4 mg/kg of body weight/day orally for 3 days and mefloquine as either (i) a single dose (25 mg/kg) on day 2 with food, (ii) a split dose (15 mg/kg on day 2 and 10 mg/kg on day 3) with food, (iii) a single dose (25 mg/kg) on day 0 without food, or (iv) a single dose (25 mg/kg) on day 2 without food. Delaying administration of mefloquine until day 2 was associated with a mean (95% confidence interval) increase in estimated oral bioavailability of 72% (36 to 109%). On day 2 coadministration with food did not increase mefloquine absorption significantly, and there were no significant differences between patients receiving split- and single-dose administration. In combination with artesunate, mefloquine administration should be delayed until the second or third day after presentation.
PMCID: PMC89074  PMID: 9925529
12.  The efficacy and tolerability of artemisinin-piperaquine (Artequick®) versus artesunate-amodiaquine (Coarsucam™) for the treatment of uncomplicated Plasmodium falciparum malaria in south-central Vietnam 
Malaria Journal  2012;11:217.
In Vietnam, the artemisinin-based combination therapy (ACT) of dihydroartemisinin-piperaquine is currently used for first-line treatment of uncomplicated Plasmodium falciparum malaria. However, limited efficacy and tolerability data are available on alternative forms of ACT in Vietnam in case there is a reduction in the susceptibility of dihydroartemisinin-piperaquine. A study was conducted to compare the efficacy and tolerability of two fixed-dose formulations of ACT, artemisinin–piperaquine (Artequick®, ARPQ) and artesunate-amodiaquine (Coarsucam™, ASAQ) for the treatment of P. falciparum malaria in south-central Vietnam.
A randomized, open-label trial was conducted comparing the efficacy of a two-day regimen of ARPQ (~2.8 mg/kg artemisinin plus ~17.1 mg/kg of piperaquine per day) and a three-day regimen of ASAQ (~4.7 mg/kg of artesunate plus ~12.6 mg/kg of amodiaquine per day) for the treatment of children and adults with uncomplicated falciparum malaria. Primary efficacy endpoint was day 42, PCR-corrected, parasitological cure rate. Secondary endpoints were parasite and fever clearance times and tolerability.
Of 128 patients enrolled, 63 were administered ARPQ and 65 ASAQ. Of the patients who completed the 42 days follow-up period or had a recurrence of malaria, 55 were on ARPQ (30 children, 25 adults) and 59 were on ASAQ (31 children, 28 adults). Recrudescent parasitaemia was PCR-confirmed for one patient in each treatment group, with cure rates at day 42 of 98% (95% CI: 88–100) for both forms of ACT. The median parasite clearance time was significantly slower in the ARPQ group compared with the ASAQ group (48 h vs. 36 h, P<0.001) and fever clearance times were shorter in the ASAQ group (12 h vs. 24 h, P = 0.07). The two forms of ACT were well tolerated with no serious adverse events.
Both forms of ACT were highly efficacious in the treatment of uncomplicated P. falciparum malaria. Although the two-day course of ARPQ was equally as effective as the three-day course of ASAQ, parasite and fever clearance times were shorter with ASAQ. Further studies are warranted in different regions of Vietnam to determine the nationwide efficacy of ASAQ.
Trial registration
Australian New Zealand Clinical Trials Registry Number, ACTRN12609000816257
PMCID: PMC3411481  PMID: 22741618
Malaria; Plasmodium falciparum; Artemisinin; Piperaquine; Artesunate; Amodiaquine
13.  Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study 
Lancet  2012;379(9830):1960-1966.
Artemisinin-resistant falciparum malaria has arisen in western Cambodia. A concerted international effort is underway to contain artemisinin-resistant Plasmodium falciparum, but containment strategies are dependent on whether resistance has emerged elsewhere. We aimed to establish whether artemisinin resistance has spread or emerged on the Thailand–Myanmar (Burma) border.
In malaria clinics located along the northwestern border of Thailand, we measured six hourly parasite counts in patients with uncomplicated hyperparasitaemic falciparum malaria (≥4% infected red blood cells) who had been given various oral artesunate-containing regimens since 2001. Parasite clearance half-lives were estimated and parasites were genotyped for 93 single nucleotide polymorphisms.
3202 patients were studied between 2001 and 2010. Parasite clearance half-lives lengthened from a geometric mean of 2·6 h (95% CI 2·5–2·7) in 2001, to 3·7 h (3·6–3·8) in 2010, compared with a mean of 5·5 h (5·2–5·9) in 119 patients in western Cambodia measured between 2007 and 2010. The proportion of slow-clearing infections (half-life ≥6·2 h) increased from 0·6% in 2001, to 20% in 2010, compared with 42% in western Cambodia between 2007 and 2010. Of 1583 infections genotyped, 148 multilocus parasite genotypes were identified, each of which infected between two and 13 patients. The proportion of variation in parasite clearance attributable to parasite genetics increased from 30% between 2001 and 2004, to 66% between 2007 and 2010.
Genetically determined artemisinin resistance in P falciparum emerged along the Thailand–Myanmar border at least 8 years ago and has since increased substantially. At this rate of increase, resistance will reach rates reported in western Cambodia in 2–6 years.
The Wellcome Trust and National Institutes of Health.
PMCID: PMC3525980  PMID: 22484134
14.  Mefloquine pharmacokinetics and mefloquine-artesunate effectiveness in Peruvian patients with uncomplicated Plasmodium falciparum malaria 
Malaria Journal  2009;8:58.
Artemisinin-based combination therapy (ACT) is recommended as a means of prolonging the effectiveness of first-line malaria treatment regimens. Different brands of mefloquine (MQ) have been reported to be non-bioequivalent; this could result in sub-therapeutic levels of mefloquine with decreased efficacy. In 2002, mefloquine-artesunate (MQ-AS) combination therapy was adopted as the first-line treatment for uncomplicated Plasmodium falciparum malaria in the Amazon region of Peru. Although MQ resistance has yet to be reported from the Peruvian Amazon, it has been reported from other countries in the Amazon Region. Therefore, continuous monitoring is warranted to ensure that the first-line therapy remains efficacious. This study examines the in vivo efficacy and pharmacokinetic parameters through Day 56 of three commercial formulations of MQ (Lariam®, Mephaquin®, and Mefloquina-AC® Farma) given in combination with artesunate.
Thirty-nine non-pregnant adults with P. falciparum mono-infection were randomly assigned to receive artesunate in combination with either (1) Lariam, (2) Mephaquin, or (3) Mefloquina AC. Patients were assessed on Day 0 (with blood samples for pharmacokinetics at 0, 2, 4, and 8 hours), 1, 2, 3, 7, and then weekly until day 56. Clinical and parasitological outcomes were based on the standardized WHO protocol.
Whole blood mefloquine concentrations were determined by high-performance liquid chromatography and pharmacokinetic parameters were determined using non-compartmental analysis of concentration versus time data.
By day 3, all patients had cleared parasitaemia except for one patient in the AC Farma arm; this patient cleared by day 4. No recurrences of parasitaemia were seen in any of the 34 patients. All three MQ formulations had a terminal half-life of 14–15 days and time to maximum plasma concentration of 45–52 hours. The maximal concentration (Cmax) and interquartile range was 2,820 ng/ml (2,614–3,108) for Lariam, 2,500 ng/ml (2,363–2,713) for Mephaquin, and 2,750 ng/ml (2,550–3,000) for Mefloquina AC Farma. The pharmacokinetics of the three formulations were generally similar, with the exception of the Cmax of Mephaquin which was significantly different to that of Lariam (p = 0.04).
All three formulations had similar pharmacokinetics; in addition, the pharmacokinetics seen in this Peruvian population were similar to reports from other ethnic groups. All patients rapidly cleared their parasitaemia with no evidence of recrudescence by Day 56. Continued surveillance is needed to ensure that patients continue to receive optimal therapy.
PMCID: PMC2674465  PMID: 19358697
15.  Decreased In Vitro Susceptibility of Plasmodium falciparum Isolates to Artesunate, Mefloquine, Chloroquine, and Quinine in Cambodia from 2001 to 2007 ▿  
This study describes the results of in vitro antimalarial susceptibility assays and molecular polymorphisms of Plasmodium falciparum isolates from Cambodia. The samples were collected from patients enrolled in therapeutic efficacy studies (TES) conducted by the Cambodian National Malaria Control Program for the routine efficacy monitoring of artemisinin-based combination therapy (ACT) (artesunate-mefloquine and artemether-lumefantrine combinations). The isolates (n = 2,041) were obtained from nine sentinel sites during the years 2001 to 2007. Among these, 1,588 were examined for their in vitro susceptibilities to four antimalarials (artesunate, mefloquine, chloroquine, and quinine), and 851 isolates were genotyped for single nucleotide polymorphisms (SNPs). The geometric means of the 50% inhibitory concentrations (GMIC50s) of the four drugs tested were significantly higher for isolates from western Cambodia than for those from eastern Cambodia. GMIC50s for isolates from participants who failed artesunate-mefloquine therapy were significantly higher than those for patients who were cured (P, <0.001). In vitro correlation of artesunate with the other drugs was observed. The distributions of the SNPs differed between eastern and western Cambodia, suggesting different genetic backgrounds of the parasite populations in these two parts of the country. The GMIC50s of the four drugs tested increased significantly in eastern Cambodia during 2006 to 2007. These results are worrisome, because they may signal deterioration of the efficacy of artesunate-mefloquine beyond the Cambodian-Thai border.
PMCID: PMC2863643  PMID: 20194689
16.  Compliance with a three-day course of artesunate-mefloquine combination and baseline anti-malarial treatment in an area of Thailand with highly multidrug resistant falciparum malaria 
Malaria Journal  2010;9:43.
Artemisinin-based combination therapy (ACT) is presently recommended by the World Health Organization as first-line treatment for uncomplicated Plasmodium falciparum malaria in several countries, as a mean of prolonging the effectiveness of first-line malaria treatment regimens. A three-day course of artesunate-mefloquine (4 mg/kg body weight once daily for three consecutive days, plus 15 and 10 mg/kg body weight mefloquine on the first and second days) has been adopted by Malaria Control Programme of Thailand as first-line treatment for uncomplicated falciparum malaria all over the country since 2008. The gametocytocydal anti-malarial drug primaquine is administered at the dose of 30 mg (0.6 mg/kg) on the last day. The aim of the present study was to assess patient compliance of this combination regimen when applied to field condition.
A total of 240 patients (196 males and 44 females) who were attending the malaria clinics in Mae-Sot, Tak Province and presenting with symptomatic acute uncomplicated falciparum malaria, with no reappearance of Plasmodium vivax parasitaemia during follow-up were included into the study. The first dose of the treatment was given to the patients under direct supervision. All patients were given the medication for self-treatment at home and were requested to come back for follow-up on day 3 of the initial treatment. Baseline (day 0) and day 3 whole blood mefloquine and plasma primaquine concentrations were determined by high performance liquid chromatography.
Two patients had recrudescence on days 28 and 35. The Kaplan-Meier estimate of the 42-day efficacy rate of this combination regimen was 99.2% (238/240). Based on whole blood mefloquine and plasma primaquine concentrations on day 3 of the initial treatment, compliance with mefloquine and primaquine in this three-day artesunate-mefloquine combination regimen were 96.3% (207/215), and 98.5% (197/200), respectively. Baseline mefloquine and primaquine levels were observed in 24 and 16% of the patients.
The current first-line treatment and a three-day combination regimen of artesunate-mefloquine provides excellent patient compliance with good efficacy and tolerability in the treatment of highly multidrug resistance falciparum malaria. Previous treatment with mefloquine and primaquine were common in this area.
PMCID: PMC2829592  PMID: 20132537
17.  A Randomised Controlled Trial of Artemether-Lumefantrine Versus Artesunate for Uncomplicated Plasmodium falciparum Treatment in Pregnancy 
PLoS Medicine  2008;5(12):e253.
To date no comparative trials have been done, to our knowledge, of fixed-dose artemisinin combination therapies (ACTs) for the treatment of Plasmodium falciparum malaria in pregnancy. Evidence on the safety and efficacy of ACTs in pregnancy is needed as these drugs are being used increasingly throughout the malaria-affected world. The objective of this study was to compare the efficacy, tolerability, and safety of artemether-lumefantrine, the most widely used fixed ACT, with 7 d artesunate monotherapy in the second and third trimesters of pregnancy.
Methods and Findings
An open-label randomised controlled trial comparing directly observed treatment with artemether-lumefantrine 3 d (AL) or artesunate monotherapy 7 d (AS7) was conducted in Karen women in the border area of northwestern Thailand who had uncomplicated P. falciparum malaria in the second and third trimesters of pregnancy. The primary endpoint was efficacy defined as the P. falciparum PCR-adjusted cure rates assessed at delivery or by day 42 if this occurred later than delivery, as estimated by Kaplan-Meier survival analysis. Infants were assessed at birth and followed until 1 y of life. Blood sampling was performed to characterise the pharmacokinetics of lumefantrine in pregnancy. Both regimens were very well tolerated. The cure rates (95% confidence interval) for the intention to treat (ITT) population were: AS7 89.2% (82.3%–96.1%) and AL 82.0% (74.8%–89.3%), p = 0.054 (ITT); and AS7 89.7% (82.6%–96.8%) and AL 81.2% (73.6%–88.8%), p = 0.031 (per-protocol population). One-third of the PCR-confirmed recrudescent cases occurred after 42 d of follow-up. Birth outcomes and infant (up to age 1 y) outcomes did not differ significantly between the two groups. The pharmacokinetic study indicated that low concentrations of artemether and lumefantrine were the main contributors to the poor efficacy of AL.
The current standard six-dose artemether-lumefantrine regimen was well tolerated and safe in pregnant Karen women with uncomplicated falciparum malaria, but efficacy was inferior to 7 d artesunate monotherapy and was unsatisfactory for general deployment in this geographic area. Reduced efficacy probably results from low drug concentrations in later pregnancy. A longer or more frequent AL dose regimen may be needed to treat pregnant women effectively and should now be evaluated. Parasitological endpoints in clinical trials of any antimalarial drug treatment in pregnancy should be extended to delivery or day 42 if it comes later.
Trial Registration: Current Controlled Trials ISRCTN86353884
Rose McGready and colleagues show that an artemether-lumefantrine regimen is well tolerated and safe in pregnant Karen women with uncomplicated falciparum malaria, but efficacy is inferior to artesunate, probably because of low drug concentrations in later pregnancy.
Editors' Summary
Plasmodium falciparum, a mosquito-borne parasite that causes malaria, kills nearly one million people every year. Although most deaths occur among young children, malaria during pregnancy is also an important public-health problem. In areas where malaria transmission is high (stable transmission), women acquire a degree of immunity. Although less symptomatic than women who lack natural protection, their babies are often small and sickly because malaria-related anemia (lack of red blood cells) and parasites in the placenta limit the nutrients supplied to the baby before birth. By contrast, in areas where malaria transmission is low (unstable transmission or sporadic outbreaks), women have little immunity to P. falciparum. If these women become infected during pregnancy, “uncomplicated” malaria (fever, chills, and anemia) can rapidly progress to “severe” malaria (in which vital organs are damaged), which can be fatal to the mother and/or her unborn child unless prompt and effective treatment is given.
Why Was This Study Done?
Malaria parasites are now resistant to many of the older antimalarial drugs (for example, quinine). So, since 2006, the World Health Organization (WHO) has recommended that uncomplicated malaria during the second and third trimester of pregnancy is treated with short course (3 d) fixed-dose artemisinin combination therapy (ACT; quinine is still used in early pregnancy because it is not known whether ACT damages fetal development, which mainly occurs during the first 3 mo of pregnancy). Artemisinin derivatives are fast-acting antimalarial agents that are used in combination with another antimalarial drug to reduce the chances of P. falciparum becoming resistant to either drug. The most widely used fixed-dose ACT is artemether–lumefantrine (AL) but, although several trials have examined the safety and efficacy of this treatment in non-pregnant women, little is known about how well it works in pregnant women. In this study, the researchers compare the efficacy, tolerability, and safety of AL with a 7-d course of artesunate monotherapy (AS7; another artemisinin derivative) in the treatment of uncomplicated malaria in pregnancy in northwest Thailand, an area with unstable but highly drug resistant malaria transmission.
What Did the Researchers Do and Find?
The researchers enrolled 253 women with uncomplicated malaria during the second and third trimesters of pregnancy into their open-label trial (a trial in which the patients and their health-care workers know who is receiving which drug regimen). Half the women received each type of treatment. The trial's main outcome was the “PCR-adjusted cure rate” at delivery or 42 d after treatment if this occurred after delivery. This cure rate was assessed by examining blood smears for parasites and then using a technique called PCR to determine which cases of malaria were new infections (classified as treatment successes along with negative blood smears) and which were recurrences of an old infection (classified as treatment failures). The PCR-adjusted cure rates were 89.7% and 81.2% for AS7 and AL, respectively. Both treatments were well tolerated, few side effects were seen with either treatment, and infant health and development at birth and up to 1 y old were similar with both regimens. Finally, an analysis of blood samples taken 7 d after treatment with AL showed that blood levels of lumefantrine were below those previously associated with treatment failure in about a third of the women tested.
What Do These Findings Mean?
Although these findings indicate that the AL regimen is a well tolerated and safe treatment for uncomplicated malaria in pregnant women living in northwest Thailand, the efficacy of this treatment was lower than that of artesunate monotherapy. In fact, neither treatment reached the 90% cure rate recommended by WHO for ACTs and it is likely that cure rates in a more realistic situation (that is, not in a trial where efforts are made to make sure everyone completes their treatment) would be even lower. The findings also suggest that the reduced efficacy of the AL regimen in pregnant women compared to the efficacy previously seen in non-pregnant women may be caused by lower drug blood levels during pregnancy. Thus, a higher-dose AL regimen (or an alternative ACT) may be needed to successfully treat uncomplicated malaria during pregnancy.
Additional Information.
Please access these Web sites via the online version of this summary at
The MedlinePlus encyclopedia contains a page on malaria (in English and Spanish)
Information is available from the World Health Organization on malaria (in several languages), and their 2006 Guidelines for the Treatment of Malaria includes specific recommendations for the treatment of pregnant women
The US Centers for Disease Control and Prevention provide information on malaria and on malaria during pregnancy (in English and Spanish)
Information is available from the Roll Back Malaria Partnership on malaria during pregnancy, on artemisinin-based combination therapies, and on malaria in Thailand
PMCID: PMC2605900  PMID: 19265453
18.  Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study 
The Lancet infectious diseases  2012;12(11):851-858.
Artemisinin-resistant Plasmodium falciparum has been reported in Pailin, western Cambodia, detected as a slow parasite clearance rate in vivo. Emergence of this phenotype in western Thailand and possibly elsewhere threatens to compromise the effectiveness of all artemisinin-based combination therapies. Parasite genetics is associated with parasite clearance rate but does not account for all variation. We investigated contributions of both parasite genetics and host factors to the artemisinin-resistance phenotype in Pursat, western Cambodia.
Between June 19 and Nov 28, 2009, and June 26 and Dec 6, 2010, we enrolled patients aged 10 years or older with uncomplicated falciparum malaria, a density of asexual parasites of at least 10 000 per μL of whole blood, no symptoms or signs of severe malaria, no other cause of febrile illness, and no chronic illness. We gave participants 4 mg/kg artesunate at 0, 24, and 48 h, 15 mg/kg mefloquine at 72 h, and 10 mg/kg mefloquine at 96 h. We assessed parasite density on thick blood films every 6 h until undetectable. The parasite clearance half-life was calculated from the parasite clearance curve. We genotyped parasites with 18 microsatellite markers and patients for haemoglobin E, α-thalassaemia, and a mutation of G6PD, which encodes glucose-6-phosphate dehydrogenase. To account for the possible effects of acquired immunity on half-life, we used three surrogates for increased likelihood of exposure to P falciparum: age, sex, and place of residence. This study is registered with, number NCT00341003.
We assessed 3504 individuals from all six districts of Pursat province seeking treatment for malaria symptoms. We enrolled 168 patients with falciparum malaria who met inclusion criteria. The geometric mean half-life was 5.85 h (95% CI 5.54–6.18) in Pursat, similar to that reported in Pailin (p=0.109). We identified two genetically different parasite clone groups: parasite group 1 (PG1) and parasite group 2 (PG2). Non-significant increases in parasite clearance half-life were seen in patients with haemoglobin E (0.55 h; p=0.078), those of male sex (0.96 h; p=0.064), and in 2010 (0.68 h; p=0.068); PG1 was associated with a significant increase (0.79 h; p=0.033). The mean parasite heritability of half-life was 0.40 (SD 0.17).
Heritable artemisinin resistance is established in a second Cambodian province. To accurately identify parasites that are intrinsically susceptible or resistant to artemisinins, future studies should explore the effect of erythrocyte polymorphisms and specific immune responses on half-life variation.
Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
PMCID: PMC3786328  PMID: 22940027
19.  Auditory assessment of patients with acute uncomplicated Plasmodium falciparum malaria treated with three-day mefloquine-artesunate on the north-western border of Thailand 
Malaria Journal  2008;7:233.
The use of artemisinin derivatives has increased exponentially with the deployment of artemisinin combination therapy (ACT) in all malarious areas. They are highly effective and are considered safe, but in animal studies artemisinin derivatives produce neurotoxicity targeting mainly the auditory and vestibular pathways. The debate remains as to whether artemisinin derivatives induce similar toxicity in humans.
This prospective study assessed the effects on auditory function of a standard 3-day oral dose of artesunate (4 mg/kg/day) combined with mefloquine (25 mg/kg) in patients with acute uncomplicated falciparum malaria treated at the Shoklo Malaria Research Unit, on the Thai-Burmese border. A complete auditory evaluation with tympanometry, audiometry and auditory brainstem responses (ABR) was performed before the first dose and seven days after initiation of the antimalarial treatment.
Complete auditory tests at day 0 (D0) and day 7 (D7) were obtained for 93 patients. Hearing loss (threshold > 25 dB) on admission was common (57%) and associated with age only. No patient had a threshold change exceeding 10 dB between D0 and D7 at any tested frequency. No patient showed a shift in Wave III peak latency of more than 0.30 msec between baseline and D7.
Neither audiometric or the ABR tests showed clinical evidence of auditory toxicity seven days after receiving oral artesunate and mefloquine.
PMCID: PMC2590614  PMID: 18986553
20.  Artesunate-amodiaquine fixed dose combination for the treatment of Plasmodium falciparum malaria in India 
Malaria Journal  2012;11:97.
Artemisinin-based combination therapy (ACT) has been recommended for the treatment of falciparum malaria by the World Health Organization. Though India has already switched to ACT for treating falciparum malaria, there is need to have multiple options of alternative forms of ACT. A randomized trial was conducted to assess the safety and efficacy of the fixed dose combination of artesunate-amodiaquine (ASAQ) and amodiaquine (AQ) for the treatment of uncomplicated falciparum malaria for the first time in India. The study sites are located in malaria-endemic, chloroquine-resistant areas.
This was an open label, randomized trial conducted at two sites in India from January 2007 to January 2008. Patients between six months and 60 years of age having Plasmodium falciparum mono-infection were randomly allocated to ASAQ and AQ arms. The primary endpoint was 28-day PCR-corrected parasitological cure rate.
Three hundred patients were enrolled at two participating centres, Ranchi, Jharkhand and Rourkela, Odisha. Two patients in AQ arm had early treatment failure while there was no early treatment failure in ASAQ arm. Late treatment failures were seen in 13 and 12 patients in ASAQ and AQ arms, respectively. The PCR-corrected cure rates in intent-to-treat population were 97.51% (94.6-99.1%) in ASAQ and 88.65% (81.3-93.9%) in AQ arms. In per-protocol population, they were 97.47% (94.2-99.2%) and 88.30% (80-94%) in ASAQ and AQ arms respectively. Seven serious adverse events (SAEs) were reported in five patients, of which two were reported as related to the treatment. All SAEs resolved without sequel.
The fixed dose combination of ASAQ was found to be efficacious and safe treatment for P. falciparum malaria. Amodiaquine also showed acceptable efficacy, making it a suitable partner of artesunate. The combination could prove to be a viable option in case India opts for fixed dose combination ACT.
Clinical trial registry
PMCID: PMC3351019  PMID: 22458860
Artesunate; Amodiaquine; falciparum malaria; India
21.  Therapeutic efficacy and safety of dihydroartemisinin-piperaquine versus artesunate-mefloquine in uncomplicated Plasmodium falciparum malaria in India 
Malaria Journal  2012;11:233.
Resistance in Plasmodium falciparum to commonly used anti-malarial drugs, especially chloroquine, is being increasingly documented in India. By 2007, the first-line treatment for uncomplicated malaria has been revised to recommend artemisinin-based combination therapy (ACT) for all confirmed P. falciparum cases.
The objective of this study was to compare the efficacy, safety and tolerability between dihydroartemisinin-piperaquine (DP) and artesunate plus mefloquine (A + M) drug combinations in the treatment of uncomplicated P. falciparum malaria in India.
Between 2006 and 2007, 150 patients with acute uncomplicated P. falciparum malaria were enrolled, randomized to DP (101) or A + M (49) and followed up for 63 days as part of an open-label, non-inferiority, randomized, phase III multicenter trial in Asia.
The heterogeneity analysis showed no statistically significant difference between India and the other countries involved in the phase III study, for both the PCR-corrected and uncorrected cure rates. As shown at the whole study level, both forms of ACT were highly efficacious in India. In fact, in the per protocol population, the 63-day cure rates were 100% for A + M and 98.8% for DP. The DP combination exerted a significant post-treatment prophylactic effect, and compared with A + M a significant reduction in the incidence of new infections for DP was observed (respectively 17.1% versus 7.5% of patients experienced new infection within follow up). Parasite and fever clearance was rapid in both treatment arms (median time to parasite clearance of one day for both groups). Both DP and A + M were well tolerated, with the majority of adverse events of mild or moderate severity. The frequencies of individual adverse events were generally similar between treatments, although the incidence of post treatment adverse events was slightly higher in patients who received A + M with respect to those treated with DP.
DP is a new ACT displaying high efficacy and safety in the treatment of uncomplicated P. falciparum malaria and could potentially be considered for the first-line treatment of uncomplicated falciparum malaria in India.
Trial registration
Current Controlled Trials ISRCTN 81306618
PMCID: PMC3424202  PMID: 22818552
Plasmodium falciparum; Malaria; Artemisinin-based combination therapy (ACT); Dihydroartemisinin-piperaquine; Artesunate; Mefloquine; India
22.  Declining Artesunate-Mefloquine Efficacy against Falciparum Malaria on the Cambodia–Thailand Border 
Emerging Infectious Diseases  2008;14(5):716-719.
Emerging resistance in Southeast Asia raises concern over possible spread or similar evolution of resistance to other artemisinin-based combination therapies in Africa.
Resistance to many antimalaria drugs developed on the Cambodia–Thailand border long before developing elsewhere. Because antimalaria resistance is now a global problem, artemisinin-based combination therapies (ACTs) are the first-line therapies in most malaria-endemic countries. However, recent clinical and molecular studies suggest the emergence of ACT-resistant Plasmodium falciparum infections in the Cambodia–Thailand border area, where standard ACT is artesunate and mefloquine. These ACT failures might be caused by high-level mefloquine resistance because mefloquine was used for monotherapy long before the introduction of ACT. This observation raises 2 questions. First, how can existing P. falciparum–resistant strains be controlled? Second, how can the evolution of new ACT- resistant strains be avoided elsewhere, e.g., in Africa? Enforcement of rational drug use and improved diagnostic capacity are among the measures needed to avoid and contain ACT resistance.
PMCID: PMC2600243  PMID: 18439351
malaria; artesunate-mefloquine; drug resistance; Cambodia; Thailand; pfmdr1; Plasmodium falciparum; ACT; anti-malarial; rational therapy; synopsis
23.  Efficacy, safety and tolerability of artesunate-mefloquine in the treatment of uncomplicated Plasmodium falciparum malaria in four geographic zones of Nigeria 
Malaria Journal  2008;7:172.
The combination of artesunate and mefloquine has been reported to be effective against multi-drug resistant Plasmodium falciparum malaria, which has been reported in Nigeria. The objective of this multi-centre study was to evaluate the efficacy, safety and tolerability of the co-packaged formulation of artesunate and mefloquine in the treatment of uncomplicated malaria in two weight groups: those between 15 – 29 kg and ≥ 30 kg respectively.
The trial was conducted in rural communities in the north-east, north-central, south-west and south-eastern parts of Nigeria. The WHO protocol for testing antimalarial drugs was followed. Outpatients having amongst other criteria, parasite density of ≥1,000 μl were enrolled. The co-packaged drugs were administered for 3 days at a dosage of artesunate, 4 mg/kg body wt/day and mefloquine, 25 mg/kg/body wt total) on days 0, 1 and 2. Patients were followed up for 28 days with the assessment of the parasitological parameters on days 1, 2, 3, 7, and 28.
Four hundred and forty-six (446) patients were enrolled and 431 completed the study. Cure rates in both treatment groups was >90% at day 28. The mean parasite clearance times in treatment groups I and II were 40.1 and 42.4 hours respectively. The combination of artesunate and mefloquine showed good gametocidal activity, (gametocyte clearance time of 42.0 & 45.6 hours in treatment groups I and II respectively). There were no serious adverse events. Other adverse events observed were headache, dizziness, vomiting and abdominal discomfort. There was no significant derangement in the haematological and biochemical parameters.
This co-packaged formulation of artesunate + mefloquine (Artequin™) is highly efficacious, safe and well-tolerated. It is recommended for the treatment of uncomplicated P. falciparum malaria in Nigeria.
PMCID: PMC2542389  PMID: 18782445
24.  Four years’ monitoring of in vitro sensitivity and candidate molecular markers of resistance of Plasmodium falciparum to artesunate-mefloquine combination in the Thai-Myanmar border 
Malaria Journal  2014;13:23.
The decline in efficacy of artesunate (AS) and mefloquine (MQ) is now the major concern in areas along the Thai-Cambodian and Thai-Myanmar borders.
The correlation between polymorphisms of pfatp6, pfcrt, pfmdr1 and pfmrp1 genes and in vitro sensitivity of Plasmodium falciparum isolates to the artemisinin-based combination therapy (ACT) components AS and MQ, including the previously used first-line anti-malarial drugs chloroquine (CQ) and quinine (QN) were investigated in a total of 119 P. falciparum isolates collected from patients with uncomplicated P. falciparum infection during 2006–2009.
Reduced in vitro parasite sensitivity to AS [median (95% CI) IC50 3.4 (3.1-3.7) nM] was found in 42% of the isolates, whereas resistance to MQ [median (95% CI) IC50 54.1 (46.8-61.4) nM] accounted for 58% of the isolates. Amplification of pfmdr1 gene was strongly associated with a decline in susceptibility of P. falciparum isolates to AS, MQ and QN. Significant difference in IC50 values of AS, MQ and QN was observed among isolates carrying one, two, three, and ≥ four gene copies [median (95% CI) AS IC50: 1.6 (1.3-1.9), 1.8 (1.1-2.5), 2.9 (2.1-3.7) and 3.1 (2.5-3.7) nM, respectively; MQ IC50: 19.2 (15.8-22.6), 37.8 (10.7-64.8), 55.3 (47.7-62.9) and 63.6 (49.2-78.0) nM, respectively; and QN IC50: 183.0 (139.9-226.4), 256.4 (83.7-249.1), 329.5 (206.6-425.5) and 420.0 (475.2-475.6) nM, respectively]. The prevalence of isolates which were resistant to QN was reduced from 21.4% during the period 2006–2007 to 6.3% during the period 2008–2009. Pfmdr1 86Y was found to be associated with increased susceptibility of the parasite to MQ and QN. Pfmdr1 1034C was associated with decreased susceptibility to QN. Pfmrp1 191Y and 1390I were associated with increased susceptibility to CQ and QN, respectively.
High prevalence of CQ and MQ-resistant P. falciparum isolates was observed during the four-year observation period (2006–2009). AS sensitivity was declined, while QN sensitivity was improved. Pfmdr1 and pfmrp1 appear to be the key genes that modulate multidrug resistance in P. falciparum.
PMCID: PMC3896708  PMID: 24423390
Plasmodium falciparum; Artesunate; Mefloquine; pfmdr1; pfmrp1; pfatp6; pfcrt; Gene polymorphisms
25.  Ex Vivo Susceptibility of Plasmodium falciparum to Antimalarial Drugs in Western, Northern, and Eastern Cambodia, 2011-2012: Association with Molecular Markers 
Antimicrobial Agents and Chemotherapy  2013;57(11):5277-5283.
In 2008, dihydroartemisinin (DHA)-piperaquine (PPQ) became the first-line treatment for uncomplicated Plasmodium falciparum malaria in western Cambodia. Recent reports of increased treatment failure rates after DHA-PPQ therapy in this region suggest that parasite resistance to DHA, PPQ, or both is now adversely affecting treatment. While artemisinin (ART) resistance is established in western Cambodia, there is no evidence of PPQ resistance. To monitor for resistance to PPQ and other antimalarials, we measured drug susceptibilities for parasites collected in 2011 and 2012 from Pursat, Preah Vihear, and Ratanakiri, in western, northern, and eastern Cambodia, respectively. Using a SYBR green I fluorescence assay, we calculated the ex vivo 50% inhibitory concentrations (IC50s) of 310 parasites to six antimalarials: chloroquine (CQ), mefloquine (MQ), quinine (QN), PPQ, artesunate (ATS), and DHA. Geometric mean IC50s (GMIC50s) for all drugs (except PPQ) were significantly higher in Pursat and Preah Vihear than in Ratanakiri (P ≤ 0.001). An increased copy number of P. falciparum mdr1 (pfmdr1), an MQ resistance marker, was more prevalent in Pursat and Preah Vihear than in Ratanakiri and was associated with higher GMIC50s for MQ, QN, ATS, and DHA. An increased copy number of a chromosome 5 region (X5r), a candidate PPQ resistance marker, was detected in Pursat but was not associated with reduced susceptibility to PPQ. The ex vivo IC50 and pfmdr1 copy number are important tools in the surveillance of multidrug-resistant (MDR) parasites in Cambodia. While MDR P. falciparum is prevalent in western and northern Cambodia, there is no evidence for PPQ resistance, suggesting that DHA-PPQ treatment failures result mainly from ART resistance.
PMCID: PMC3811250  PMID: 23939897

Results 1-25 (597326)