PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (415002)

Clipboard (0)
None

Related Articles

1.  Evaluation of Antidiabetic Activity and Associated Toxicity of Artemisia afra Aqueous Extract in Wistar Rats 
Artemisia afra Jacq. ex Willd. is a widely used medicinal plant in South Africa for the treatment of diabetes. This study aimed to evaluate the hypoglycemic activity and possible toxicity effect of aqueous leaf extract of the herb administered at different dosages for 15 days in streptozotocin-induced diabetic rats. Administration of the extract at 50, 100, and 200 mg/kg body weight significantly (P < 0.05) increased body weight, decreased blood glucose levels, increased glucose tolerance, and improved imbalance in lipid metabolism in diabetic rats. These are indications of antidiabetic property of A. afra with 200 mg/kg body weight of the extract showing the best hypoglycemic action by comparing favourably well with glibenclamide, a standard hypoglycemic drug. The extract at all dosages tested also restored liver function indices and haematological parameters to normal control levels in the diabetic rats, whereas the kidney function indices were only normalized in the diabetic animals administered with 50 mg/kg body weight of the extract. This investigation clearly showed that in addition to its hypoglycemic activity, A. afra may also protect the liver and blood against impairment due to diabetes. However, some kidney functions may be compromised at high dosages of the extract.
doi:10.1155/2013/929074
PMCID: PMC3687504  PMID: 23861717
2.  Evaluation of the Antidiabetic and Antilipaemic Activities of the Hydroalcoholic Extract of Phoenix Dactylifera Palm Leaves and Its Fractions in Alloxan-Induced Diabetic Rats 
Background:
The antidiabetic and antilipaemic effects of Phoenix dactylifera leaf extract (PDE) and its fractions were investigated in various rat models.
Methods:
Diabetes was induced in male Wistar rats by alloxan monohydrate. Diabetic animals were randomly divided into 8 groups (1 diabetic control and 7 treated groups). Diabetic control animals received saline (5 mL/kg) orally, whereas the treatment groups received different doses of PDE (100, 200, and 400 mg/kg), PDE fractions (50, 100, and 200 mg/kg), or glibenclamide (4 mg/kg) orally once a day for 14 days. Blood was withdrawn for glucose determination on the 1st, 6th, 10th, and 14th days. The rats were fasted overnight and then sacrificed on the 14th day; blood was collected for biochemical evaluation, including the levels of blood glucose, plasma insulin, serum triglyceride, and cholesterol.
Results:
Subacute administration of PDE or its fractions in alloxan-induced diabetic rats significantly reduced blood glucose (P < 0.01). Water intake, serum triglyceride, and cholesterol also decreased in treated animals compared with the control group (P < 0.01). Plasma insulin level increased in the treated groups relative to the control group (P < 0.01).
Conclusion:
The results suggested that PDE exhibits antidiabetic and antilipaemic effects in alloxan-induced diabetic rats.
PMCID: PMC3216186  PMID: 22135555
antidiabetics; antilipaemics; antioxidants; diabetes metabolism; plant extracts
3.  Effect of Echium amoenum Fisch. et Mey a Traditional Iranian Herbal Remedy in an Experimental Model of Acute Pancreatitis 
ISRN Gastroenterology  2012;2012:141548.
Acute pancreatitis is a morbid inflammatory condition of pancreas with limited specific therapy. Enhanced oxidative stress plays an important role in induction and progression of acute pancreatitis. So reducing oxidative stress may relieve this pathogenic process. Echium amoenum Fisch. and Mey has been implemented in Iranian folk medicine for several centuries. Antioxidant, analgesic, immunomodulatory, and anxiolytic properties of E. amoenum suggest that this plant may have beneficial effects in the management of acute pancreatitis. The aim of this study was to evaluate the protective effect of petals of E. amoenum extract (EAE) on a murine model of pancreatitis. Acute pancreatitis was induced by five intraperitoneal (i.p.) injection of cerulein (50 μg/kg) with 1h intervals which was characterized by pancreatic inflammation and increase in the serum level of digestive enzymes, in comparison to normal mice. EAE (100, 200, and 400 mg/kg) was administered i.p., 30 minutes before induction of pancreatitis. Pretreatment with EAE (400 mg/kg) reduced significantly the inflammatory response of cerulein-induced acute pancreatitis by ameliorating pancreatic edema, amylase and lipase serum levels, proinflammatory cytokines, myeloperoxidase activity, lipid peroxidation and pathological alteration. These results show that EAE attenuates the severity of cerulein-induced acute pancreatitis with an anti-inflammatory, immunomodulatory and antioxidant effects.
doi:10.5402/2012/141548
PMCID: PMC3449129  PMID: 23008778
4.  Effect of an isolated active compound (Cg-1) of Cassia glauca leaf on blood glucose, lipid profile, and atherogenic index in diabetic rats 
Indian Journal of Pharmacology  2009;41(4):182-186.
Objectives:
The objective of present study was to evaluate the effect of active principle (Cg-1) from Cassia glauca leaf on serum glucose and lipid profile in normal and diabetic rats.
Materials and Methods:
Diabetes was induced by streptozotocin in neonates. Oral administration of petroleum ether, chloroform, acetone, and methanol of C. glauca leaf (100 mg/kg, p.o.) for 21 days caused a decrease in fasting blood glucose (FBG) in diabetic rats. Among all the extracts, acetone extract was found to lower the FBG level significantly in diabetic rats. Glibenclamide was used as standard antidiabetic drug (5 mg/kg, p.o). Acetone extract was subjected to column chromatography that led to isolation of an active principle, which was given trivial name Cg-1. Cg-1 (50 mg/kg, p.o.) was studied for its hypoglycemic and hypolipidemic potential. The unpaired t-test and analysis of variance (ANOVA) followed by post hoc test was used for statistical analysis.
Results:
Cg-1 caused a significant reduction in FBG level. It also caused reduction in cholesterol, triglycerides, and LDL levels and improvement in the atherogenic index and HDL level in diabetic rats.
Conclusion:
Improvement in the FBG and the atherogenic index by Cg-1 indicates that Cg-1 has cardioprotective potential along with antidiabetic activity and provides a scientific rationale for the use as an antidiabetic agent.
doi:10.4103/0253-7613.56076
PMCID: PMC2875738  PMID: 20523870
Blood glucose; β-sitosterol; Cassia glauca; diabetes; lipid profile; streptozotocin
5.  Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats 
The antidiabetic activity of Pongamia pinnata ( Family: Leguminosae) leaf extracts was investigated in alloxan-induced diabetic albino rats. A comparison was made between the action of different extracts of P. pinnata and a known antidiabetic drug glibenclamide (600 μg/kg b. wt.). An oral glucose tolerance test (OGTT) was also performed in experimental diabetic rats. The petroleum ether, chloroform, alcohol and aqueous extracts of P. pinnata were obtained by simple maceration method and were subjected to standardization using pharmacognostical and phytochemical screening methods. Dose selection was made on the basis of acute oral toxicity study (50-5000 mg/kg b. w.) as per OECD guidelines. P. pinnata ethanolic extract (PPEE) and aqueous extract (PPAE) showed significant (P < 0.001) antidiabetic activity. In alloxan-induced model, blood glucose levels of these extracts on 7th day of the study were 155.83 ± 11.211mg/dl (PPEE) and 132.00 ± 4.955mg/dl (PPAE) in comparison of diabetic control (413.50 ± 4.752mg/dl) and chloroform extract (210.83 ± 14.912mg/dl). In glucose loaded rats, PPEE exhibited glucose level of 164.50 ± 6.350mg/dl after 30 min and 156.50 ± 4.089mg/dl after 90 min, whereas the levels in PPAE treated animals were 176 ± 3.724mg/dl after 30 min and 110.33 ± 6.687mg/dl after 90 min. These extracts also prevented body weight loss in diabetic rats. The drug has the potential to act as an antidiabetic drug.
doi:10.4103/0974-7788.76780
PMCID: PMC3059439  PMID: 21455444
Acute toxicity; alloxan; antidiabetic activity; Pongamia pinnata
6.  Antidiabetic and haematological effect of aqueous extract of stem bark of Afzelia africana (Smith) on streptozotocin-induced diabetic Wistar rats 
Objective
To investigate the antidiabetic properties of aqueous extract of stem bark of Afzelia africana (A. africana) and its beneficial effect on haematological parameters in streptozotocin induced diabetic rats.
Methods
A total of 30 rats including 24 diabetic and 6 normal rats were used for this study. Diabetes was induced in male Wistar rats by intraperitoneal injection of streptozotocin. After being confirmed diabetic, animals were orally treated with distilled water or extracts at 100 or 200 mg/kg body weight daily for 10 days. The haematological parameters including red blood and white blood cells and their functional indices were evaluated in diabetic treated groups compared with the controls.
Results
The extract significantly reduced the blood glucose levels while the best result was obtained at 200 mg/kg body weight. The feed and water intake in diabetic rats were significantly reduced while weight loss was minimized at both dosages. Similarly, the levels of red blood, white blood cells and their functional indices were significantly improved after extract administration at both doses.
Conclusions
It can be concluded that the aqueous extract of bark of A. africana possesses antihyperglycemic properties. In addition, the extract can prevent various complications of diabetes and improve some haematological parameters. Further experimental investigation is needed to exploit its relevant therapeutic effect to substantiate its ethnomedicinal usage.
doi:10.1016/S2221-1691(11)60079-8
PMCID: PMC3614195  PMID: 23569792
Afzelia africana; Diabetes mellitus; Haematology; Antidiabetic property; Aqueous extract; Beneficial effect; Haematological parameter; Ethnomedicinal usage; Wistar rat
7.  Hypoglycaemic and Antihyperglycaemic Activity of Ageratum Conyzoides L. in Rats 
The hypoglycaemic and antihyperglycaemic properties of the aqueous extracts of the leaves of Ageratum conyzoides L. were evaluated in normoglycemic and in streptozotocin-induced diabetic rats, in order to validate its use in folk medicine. Tested animals were given the aqueous extracts of the plant at the doses of 100, 200 and 300mg/kg. These doses were tested also on glucose loaded normal male rats (Oral Glucose Tolerance Test). Of all the doses, the aqueous extracts at 200 and 300mg/kg showed statistically significant hypoglycaemic and antihyperglycaemic activities. For the oral glucose tolerance test, 100mg/kg dose only attenuated significantly the rise of blood glucose in normal fasted rats. Consequently, these results confirmed the hypoglycaemic properties of the leaves of Ageratum conyzoides.
PMCID: PMC2816573  PMID: 20209003
Ageratum conyzoides; hypoglycaemic activity; antihyperglycaemic activity; Oral glucose tolerance test
8.  Evaluation of Antidiabetic Activity of Hydroalcoholic Extract of Cestrum nocturnum Leaves in Streptozotocin-Induced Diabetic Rats 
Objective. To investigate antidiabetic activity of hydroalcoholic extract of Cestrum nocturnum leaves in Wistar rats. Method. Cestrum nocturnum leaves extract in hydroalcoholic solution were prepared by Soxhletation method and stored in refrigerator at 4°C for two days before use. Wistar rats were made diabetic by a single dose of streptozotocin (150 mg/kg i.p.). Hydroalcoholic leaves extract of Cestrum nocturnum was screened for antidiabetic activity and given to the STZ-induced diabetic rats at a concentration of 200 mg/kg and 400 mg/kg of body weight in different groups of 6 diabetic rats each orally once a day for 15 days. Metformin is also given to another group to support the result at a dose of 10 mg/kg of body weight orally once a day for 15 days. Blood glucose levels and body weights of rats were measured on 0, 5, 7, and 15th days. Results. Oral administration of the extracts for 15 days caused a significant (P < 0.01) reduction in blood glucose levels in diabetic rats. The body weight of diabetic animals was also improved after daily administration of extracts. The extract also improved other altered biochemical parameters associated with diabetes. Also the changes in food intake, water intake, and weight of internal organs were also restored to normal by the prolonged effect of extract treatment.
doi:10.1155/2013/150401
PMCID: PMC3787616  PMID: 24151502
9.  Histological changes and antidiabetic activities of Icacina trichantha tuber extract in beta-cells of alloxan induced diabetic rats 
Objective
To investigate the antidiabetic, hypolipidaemic activities and histopathological changes of Icacina trichantha (I. trichantha) tuber extract in alloxan induced diabetic rats.
Methods
In the present study, 80% methanol extract of I. trichantha tuber was tested on alloxan induced diabetic rats. They were randomly grouped into control (distilled water and glibenclamide) and experimental (200, 400 and 600 mg/kg body weight). Diabetes was induced by a single intraperitoneal injection of 160 mg/kg body weight of alloxan. Blood glucose levels were measured using blood glucose test strips with AccuCheck Advantage II glucometer at 1, 3, 6, and 24 h on the first day and 1 h after treatment on Day 7, 14 and 21. Blood samples were collected and centrifuged to separate serum for estimation of lipid profile and other biochemical parameters. Histopathological changes in diabetic rats pancreas were also studied after extract treatment.
Results
Daily oral administration of I. trichantha tuber extract (200, 400, and 600 mg/kg body weight) and glibenclamide (2 mg/kg) showed beneficial effects on blood glucose level (P<0.01) as well as improving liver, kidney functions and hyperlipidaemia due to diabetes. The extract had a favourable effect on the histopathological changes of the pancreas in alloxan induced diabetes.
Conclusions
I. trichantha tuber extracts posses antidiabetic activities as well as improve liver and renal profile and total lipids levels. I. trichantha tuber extracts also have favourable effects to inhibit the histopathological changes of the pancreas in alloxan induced diabetes.
doi:10.1016/S2221-1691(13)60127-6
PMCID: PMC3703556  PMID: 23905020
Icacina trichantha; Diabetes mellitus; Glibenclamide; Alloxan monohydrate; Rats
10.  Hypoglycemic effect of aqueous extract of Trichosanthes dioica in normal and diabetic rats 
Background:
Trichosanthes dioica is used to treat diabetes mellitus, epilepsy, alopecia, and skin disease in folklore medicine. The leaf extract of the plant is used in diabetes mellitus but there have been no scientific studies reported.
Aims:
To study the effect of Trichosanthes dioica on serum glucose level in glucose loaded, normal and hyperglycemic rats.
Settings:
Kasturba Medical College, Manipal, Karnataka, India.
Design:
Experimental.
Materials and Methods:
The aqueous extract of leaves of Trichosanthes dioica are compared with glibeclamide for their influence on fasting blood sugar in glucose loaded, normoglycemic and streptozotocin induced (45 mg/kg ip) hyperglycemic rats.
Statistical Analysis:
The data was analyzed by one way ANOVA followed by Scheffe's post hoc test.
Results:
In glucose loaded rats, normal rats and hyperglycemic rats the aqueous extract at both the doses (800 mg/kg/p.o and 1600 mg/kg/p.o) reduced blood glucose significantly when compared to control but it was not as effective as glibenclamide.
Conclusion:
The aqueous extract of Trichosanthes dioica has antihyperglycemic action.
doi:10.4103/0973-3930.60011
PMCID: PMC2859283  PMID: 20431805
Diabetic rats; hypoglycemic effect; Trichosanthes dioica
11.  Antidiabetic Activity of the Ethanol Extract of Capparis sepiaria L Leaves 
Capparis sepiaria L, a profusely branched hedge plant, is used in Indian traditional medicine. Capparis sepiaria leaves were extracted with ethanol and concentrated to dryness. The LD50 value was determined as 894.43 mg/kg body weight by acute toxicity study. The ethanol extract was investigated for possible hypoglycemic effect produced by single oral administration at various dose levels 100, 200 and 300 mg/kg in the streptozotocin induced diabetic rats and compared against normal saline control and the standard glibenclamide. A maximum fall of plasma glucose level 9.40%; 13.57%; 15.25% and 18.80% was observed after 12 h of treatment when administered with ethanol extract of Capparis sepiaria at 100, 200 and 300 mg/kg, and glibenclamide 10 mg/kg dose, respectively. The findings from the study suggest that the Capparis sepiaria leaves may be prescribed as an adjunct to traditional formulation and drug treatment for controlling diabetes mellitus.
doi:10.4103/0250-474X.43008
PMCID: PMC2792502  PMID: 20046752
Capparis sepiaria; streptazotocin (STZ); antidiabetic activity and Capparidaceae
12.  A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model 
BMC Research Notes  2012;5:546.
Background
The decoction of the aerial parts of Rhynchosia recinosa (A.Rich.) Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae), Maytenus senegalensis (Lam.) Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.)Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants.
Methods
A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholerae (clinical isolate), and Klebsiella pneumoniae (clinical isolate) using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants.
Results
The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole. Both the individual plant extracts and the mixed extracts of 5 plants exhibited weak to moderate antibacterial activity against four G-ve bacteria. Despite Ozoroa insignis being toxic to mice at doses above 1000 mg/kg body wt, the other plant extracts and the combined extract of the 5 plants were tolerated by mice up to 5000 mg/kg body wt. The brine shrimp test results showed the same pattern of toxicity with Ozoroa insignis being the most toxic (LC50 = 10.63 μg/ml). Phytochemical tests showed that the combined extract of the five plants contained tannins, saponins, steroids, cardiac glycosides, flavonoids and terpenoids. Flavonoids, tannins and terpenoids are known to have antioxidant activity.
Conclusion
The combined extract of the five plants exhibited a dose-dependent protective activity in the rat ethanol-HCl gastric ulcer model. The extracts also exhibited weak antibacterial activity against four Gram negative bacteria and low acute toxicity in mice and brine shrimps. Although the results support claims by traditional healers who use a decoction of the five plants for treatment of peptic ulcers, more models of gastric ulceration and proper animal toxicity studies are needed to validate possible clinical use of the polyherbal extract. It is also evident that the doses of the crude extracts showing protection of the gastric mucosa are too large for realistic translation to direct clinical application, but further studies using bioassay guided fractionation are important to either identify more practical fractions or active compound/s.
doi:10.1186/1756-0500-5-546
PMCID: PMC3532137  PMID: 23031266
Ozoroa insignis; Maytenus senegalensis; Entada abyssinica; Lannea schimperi; Gastroprotection; Toxicity
13.  Hypoglycemic Effects of Three Medicinal Plants in Experimental Diabetes: Inhibition of Rat Intestinal α-glucosidase and Enhanced Pancreatic Insulin and Cardiac Glut-4 mRNAs Expression 
Garlic (Allium sativum L., Alliaceae), Persian shallot (Allium ascalonicum L., Alliaceae ) and Sage (Salvia officinalis L., Lamiaceae) are believed to have hypoglycemic properties and have been used traditionally as antidiabetic herbal medicines in Iran. In this study, diabetes was induced by subcutaneous injection of alloxan monohydrate (100 mg kg−1) to male Wistar rats. Antidiabetic effects of methanolic extracts of the above mentioned three plants on alloxan-diabetic rats was investigated in comparison with the effects of antidiabetic drugs such as acarbose, glibenclamide and metformin by measuring postprandial blood glucose (PBG), oral glucose tolerance test (OGTT), inhibition of rat intestinal α-glucosidase enzymes activities and pancreatic Insulin and cardiac Glut-4 mRNAs expression. In short term period, hypoglycemic effects of A. sativum and A. ascalonicum showed significant reduction of PBG similar to glibenclamide (5 mg kg−1 bw) while S. officinalis significantly reduced PBG similar to acarbose (20 mg kg−1 bw). After 3 weeks of treatment by methanolic plant extracts, significant chronic decrease in the PBG was observed similar to metformin (100 mg kg−1 bw). For OGTT, S. officinalis reduced PBG in a similar way as acarbose (20 mg kg−1 bw). Intestinal sucrase and maltase activities were inhibited significantly by A. sativum, A. ascalonicum and S. officinalis. In addition, we observed increased expression of Insulin and Glut-4 genes in diabetic rats treated with these plants extracts. Up regulation of Insulin and Glut-4 genes expression and inhibition of α-glucosidaseactivities are the two mechanisms that play a considerable role in hypoglycemic action of garlic, shallot and sage.
PMCID: PMC3813273  PMID: 24250646
Diabetes; Glut-4; Insulin; OGTT; PBG
14.  A study of the antidiabetic activity of Barleria prionitisLinn 
Indian Journal of Pharmacology  2010;42(2):70-73.
Objectives:
To study the antidiabetic activity of Barleria prionitis Linn in normal and alloxan-induced diabetic rats.
Materials and Methods:
Alcoholic extract of leaf and root of B. prionitis was tested for their antidiabetic activity. Albino rats were divided into six groups of six animals each. In three groups, diabetes was induced using alloxan monohydrate (150 mg/kg b.w., i.p.) and all the rats were given different treatments consisting of vehicle, alcoholic extract of leaves, and alcoholic extract roots of B. prionitis Linn (200 mg/kg) for 14 days. The same treatment was given to the other three groups, comprising non-diabetic (normal) animals. Blood glucose level, glycosylated hemoglobin, liver glycogen, serum insulin, and body weight were estimated in normal and alloxan-induced diabetic rats, before and 2 weeks after administration of drugs.
Results:
Animals treated with the alcoholic extract of leaves of B. prionitis Linn showed a significant decrease in blood glucose level (P<0.01) and glycosylated hemoglobin (P<0.01). A significant increase was observed in serum insulin level (P<0.01) and liver glycogen level (P<0.05), whereas the decrease in the body weight was arrested by administration of leaf extract to the animals. The alcoholic extract of roots showed a moderate but non-significant antidiabetic activity in experimental animals.
Conclusion:
The study reveals that the alcoholic leaf extract of B. prionitis could be added in the list of herbal preparations beneficial in diabetes mellitus.
doi:10.4103/0253-7613.64493
PMCID: PMC2907017  PMID: 20711368
Barleria prionitis; alloxan monohydrate; alcoholic extract
15.  Hypoglycemic effect of aqueous extract of Parthenium hysterophorus L. in normal and alloxan induced diabetic rats 
Indian Journal of Pharmacology  2008;40(4):183-185.
Objectives:
To study the effects of Parthenium hysterophorus L. flower on serum glucose level in normal and alloxan induced diabetic rats.
Materials and Methods:
Albino rats were divided into six groups of six animals each, three groups of normal animals receiving different treatments consisting of vehicle, aqueous extract of Parthenium hysterophorus L. flower (100 mg/kg) and the standard antidiabetic drug, glibenclamide (0.5 mg/kg). The same treatment was given to the other three groups comprising alloxan induced diabetic animals. Fasting blood glucose level was estimated using the glucose oxidase method in normal and alloxan induced diabetic rats, before and 2 h after the administration of drugs.
Results:
Parthenium hysterophorus L. showed significant reduction in blood glucose level in the diabetic (P<0.01) rats. However, the reduction in blood glucose level with aqueous extract was less than with the standard drug glibenclamide. The extract showed less hypoglycemic effect in fasted normal rats, (P<0.05).
Conclusion:
The study reveals that the active fraction of Parthenium hysterophorus L. flower extract is very promising for developing standardized phytomedicine for diabetes mellitus.
doi:10.4103/0253-7613.43167
PMCID: PMC2792614  PMID: 20040954
Diabetes mellitus; hypoglycemia; Parthenium hysterophorus
16.  Antidiabetic activity of medium-polar extract from the leaves of Stevia rebaudiana Bert. (Bertoni) on alloxan-induced diabetic rats 
Objective:
To investigate the medicative effects of medium-polar (benzene:acetone, 1:1, v/v) extract of leaves from Stevia rebaudiana (family Asteraceae) on alloxan-induced diabetic rats.
Materials and Methods:
Diabetes was induced in adult albino Wistar rats by intraperitoneal (i.p.) injection of alloxan (180 mg/kg). Medium-polar extract was administered orally at daily dose of 200 and 400 mg/kg body wt. basis for 10 days. The control group received normal saline (0.9%) for the same duration. Glibenclamide was used as positive control reference drug against Stevia extract.
Results:
Medium-polar leaf extract of S. rebaudiana (200 and 400 mg/kg) produced a delayed but significant (P < 0.01) decrease in the blood glucose level, without producing condition of hypoglycemia after treatment, together with lesser loss in the body weight as compared with standard positive control drug glibenclamide.
Conclusions:
Treatment of diabetes with sulfonylurea drugs (glibenclamide) causes hypoglycemia followed by greater reduction in body weight, which are the most worrisome effects of these drugs. Stevia extract was found to antagonize the necrotic action of alloxan and thus had a re-vitalizing effect on β-cells of pancreas.
doi:10.4103/0975-7406.80779
PMCID: PMC3103919  PMID: 21687353
Alloxan-induced diabetic rats; antidiabetic activity; benzene:acetone extract; Compositae; Stevia rebaudiana
17.  Antihyperglycemic effect of the alcoholic seed extract of Swietenia macrophylla on streptozotocin-diabetic rats 
Pharmacognosy Research  2011;3(1):67-71.
Background:
Streptozotocin (STZ) selectively destroys the pancreatic insulin secreting cells, leaving less active cells and resulting in a diabetic state. The present study was designed to investigate the antihyperglycemic effect of the ethanolic seed extract of Swietenia macrophylla (SME) in normal and STZ-diabetic rats.
Materials and Methods:
The experimental groups were rendered diabetic by intraperitoneal injection of a single dose of STZ (40 mg/kg body weight [BW]). Rats with glucose levels > 200 mg/dL were considered diabetic and were divided into 5 groups. Three groups of diabetic animals were orally administered, daily with seed extract at a dosage of 50, 100, and 200 mg/kg BW. One group of STZ rats was treated as diabetic control and the other group was orally administered 600 μg/kg BW glibenclamide daily.
Results:
Graded doses of seed extract and glibenclamide showed a significant reduction in blood glucose levels and improvement in serum insulin levels. The extract also improved body weight and promoted liver glycogen content. After treatment, hemoglobin (Hb) level increased and glycosylated Hb level significantly decreased in diabetic rats. The activities of the carbohydrate metabolic enzymes showed significant changes in the rats. Of the 3 doses, 100 mg dose showed maximum activity. Histological investigations of pancreas also supported the biochemical findings.
Conclusions:
Thus, our findings indicate the folklore use of the seed for diabetes and the mechanism seems to be insulin secretion.
doi:10.4103/0974-8490.79119
PMCID: PMC3119275  PMID: 21731399
Glucose; insulin; Swietenia macrophylla; strepotozotocin
18.  Ethnomedicinal uses of Hagenia abyssinica (Bruce) J.F. Gmel. among rural communities of Ethiopia 
Ethiopian communities highly depend on local plant resources to secure their subsistence and health. Local tree resources are exploited and used intensively for medicinal purposes. This study provides insight into the medicinal importance of Hagenia abyssinica as well as the degree of threat on its population. An ethnobotanical study was carried out to document medicinal uses of Hagenia abyssinica by rural communities of North and Southeastern Ethiopia. The study was conducted using an integrated approach of group discussions, observation, a local market survey and interviews. A total of 90 people were interviewed among whom elderly and traditional healers were the key informants. Societies in the study sites still depend on Hagenia abyssinica for medicine. All plant parts are used to treat different aliments. Tree identification, collection and utilization were different among the studied communities. In spite of its significance, interest in utilizing flowers of Hagenia abyssinica as an anthelmintic seems to be diminishing, notably among young people. This is partly because the medicine can be harmful when it is taken in large quantities. Nowadays, the widely used Hagenia abyssinica is endangered primarily due to various anthropogenic impacts. This in turn may become a threat for the associated knowledge. It is recommended to assist communities in documenting their traditional knowledge. Measures for conserving species are urgently needed.
doi:10.1186/1746-4269-6-20
PMCID: PMC2928183  PMID: 20701760
19.  Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats 
Pharmacognosy Research  2010;2(3):195-201.
Catharanthus roseus Linn (Apocynaceae), is a traditional medicinal plant used to control diabetes, in various regions of the world. In this study we evaluated the possible antidiabetic and hypolipidemic effect of C. roseus (Catharanthus roseus) leaf powder in diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 55 mg/kg body wt) to male Wistar rats. The animals were divided into four groups: Control, control-treated, diabetic, and diabetic-treated group. Diabetic-treated and control-treated rats were treated with C. roseus leaf powder suspension in 2 ml distilled water, orally (100 mg/kg body weight/day/60 days). In diabetic rats (D-group) the plasma glucose was increased and the plasma insulin was decreased gradually. In the diabetic-treated group lowering of plasma glucose and an increase in plasma insulin were observed after 15 days and by the end of the experimental period the plasma glucose had almost reached the normal level, but insulin had not. The significant enhancement in plasma total cholesterol, triglycerides, LDL and VLDL-cholesterol, and the atherogenic index of diabetic rats were normalized in diabetic-treated rats. Decreased hepatic and muscle glycogen content and alterations in the activities of enzymes of glucose metabolism (glycogen phosphorylase, hexokinase, phosphofructokinase, pyruvate kinase, and glucose-6-phosphate dehydrogenase), as observed in the diabetic control rats, were prevented with C. roseus administration. Our results demonstrated that C. roseus with its antidiabetic and hypolipidemic properties could be a potential herbal medicine in treating diabetes.
doi:10.4103/0974-8490.65523
PMCID: PMC3141314  PMID: 21808566
Anti Catharanthus roseus; plasma insulin; plasma lipids; STZ-induced diabetes
20.  Effect of Gymnema montanum Leaves on Serum and Tissue Lipids in Alloxan Diabetic Rats 
Experimental Diabesity Research  2003;4(3):183-189.
The effect of Gymnema montanum leaves on alloxaninduced hyperlipidemia was studied in male Wistar rats. Ethanolic extract of G. montanum leaves was administered orally and different doses of the extract on blood glucose, serum and tissue lipids, hexokinase, glucose-6-phosphatase, thiobarbituric acid–reactive substances (TBARS), hydroperoxides, and glutathione in alloxan-induced diabetic rats were studied. G. montanum leaf extract (GLEt) at doses of 50, 100, 200 mg/kg body weight for 3 weeks suppressed the elevated blood glucose and lipid levels in diabetic rats. GLEt at 200 mg/kg body weight was found to be comparable to glibenclamide, a reference drug. These data indicate that G. montanum represents an effective antihyperglycemic and antihyperlipidemic adjunct for the treatment of diabetes and a potential source of discovery of new orally active agent for future therapy.
doi:10.1155/EDR.2003.183
PMCID: PMC2478603  PMID: 15061646
21.  Effects of methanolic and butanolic fractions of Allium elburzense Wendelbo bulbs on blood glucose level of normal and STZ-induced diabetic rats 
Allium elburzense (A. elborzense, Alliaceae), a plant rich in saponins, is an edible vegetable in northern Iran with a folk background use as antidiabetic which has not yet been examined for this indication. To evaluate the antidiabetic potential of A. elburzense, its hydroalcoholic (HdAE) and butanolic extracts (BuE) were examined. The acute (1, 2, 3, 4, 8 h) and sub-acute (11 days) effects of oral (p.o.) and intraperitoneal (i.p.) administration of HdAE and BuE of A. elburzense bulbs in different doses were evaluated on blood glucose levels of normal and streptozotocin (STZ, 55 mg/kg body weight)-induced diabetic rats. Glibenclamide (1 mg/kg b.w.) was used as reference drug. Sub-acute treatment with HdAE for 11 days reduced significantly blood glucose levels in diabetic rats (at least P<0.05), while BuE was effective only following i.p. administration (P<0.01). Acute administration did not reduce blood glucose level in normal and diabetic animals. It is concluded that HdAE of A. elburzense exhibited a significant antihyperglycemic activity following chronic administration. These results provide evidence for potential use of A. elburzense in diabetes mellitus considering the fact that this plant is endemic to a location of Iran where diabetes is a high prevalence disorder.
PMCID: PMC3523411  PMID: 23248670
Allium elburzenses; Diabetes mellitus; Antidiabetic; Plant extract; Streptozotocin
22.  The In Vivo Antidiabetic Activity of Nigella sativa Is Mediated through Activation of the AMPK Pathway and Increased Muscle Glut4 Content 
The antidiabetic effect of N. sativa seed ethanol extract (NSE) was assessed in Meriones shawi after development of diabetes. Meriones shawi were divided randomly into four groups: normal control, diabetic control, diabetic treated with NSE (2 g eq plant/kg) or with metformin (300 mg/kg) positive control, both administered by daily intragastric gavage for 4 weeks. Glycaemia and body weight were evaluated weekly. At study's end, an Oral Glucose Tolerance Test (OGTT) was performed to estimate insulin sensitivity. Upon sacrifice, plasma lipid profile, insulin, leptin, and adiponectin levels were assessed. ACC phosphorylation and Glut4 protein content were determined in liver and skeletal muscle. NSE animals showed a progressive normalization of glycaemia, albeit slower than that of metformin controls. Moreover, NSE increased insulinemia and HDL-cholesterol, compared to diabetic controls. Leptin and adiponectin were unchanged. NSE treatment decreased OGTT and tended to decrease liver and muscle triglyceride content. NSE stimulated muscle and liver ACC phosphorylation and increased muscle Glut4. These results confirm NSE's previously reported hypoglycaemic and hypolipidemic activity. More significantly, our data demonstrate that in vivo treatment with NSE exerts an insulin-sensitizing action by enhancing ACC phosphorylation, a major component of the insulin-independent AMPK signaling pathway, and by enhancing muscle Glut4 expression.
doi:10.1155/2011/538671
PMCID: PMC3092603  PMID: 21584245
23.  Antidiabetic effect of hydroalcoholic extract of Carthamus tinctorius L. in alloxan-induced diabetic rats 
Background:
Carthamus tinctorius L. (Compositae) has been used in Iranian traditional medicine for treatment of diabetes. In this study, anti-diabetic effect of its hydroalcoholic extract was compared with that of glibenclamide.
Methods:
Male white Wistar rats were randomly allocated into four groups of six each: nondiabetic control; diabetic control; diabetic treated with hydroalcoholic extract of Carthamus tinctorius (200 mg kg-1 BW); diabetic rats treated with glibenclamide (0.6 mg kg-1 BW). Alloxan was administered (120 mg kg-1 BW), intraperitoneally to induce diabetes. Fasting blood samples were collected three times, before injection of alloxan, two weeks and six weeks after injection of alloxan and fasting blood sugar (FBS), Hb A1C, insulin, cholesterol, LDL-C, HDL-C, VLDL-C, triglyceride, alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured each time.
Results:
FBS, triglyceride, cholesterol, LDL-C and VLDL-C had a meaningful decrease in diabetic rats treated with Carthamus tinctorius and diabetic rats treated with glibenclamide as compared with diabetic rats with no treatment. Insulin level increased significantly in diabetic groups received treatment (glibenclamide or Carthamus tinctorius L) in comparison with diabetic group with no treatment. The histological study revealed size of islets of Langerhans enlarged significantly consequentially as compared with diabetic rats with no treatment. The extract appeared non toxic as evidenced by normal levels of AST, ALP and ALT. Effects of administrating glibenclamide or extract of Carthamus tinctorius L on all biochemical parameters discussed above showed no difference and both tend to bring the values to near normal.
Conclusion:
These results suggested that the hydroalcoholic extract of Carthamus tinctorius possesses beneficial effect on treatment of diabetes.
PMCID: PMC3526135  PMID: 23267403
Alloxan; carthamus tinctorius L.; diabetes; glibenclamide; hydroalcoholic extract
24.  Antidiabetic Effect of Hydroalcholic Urtica dioica Leaf Extract in Male Rats with Fructose-Induced Insulin Resistance 
Background: Urtica dioica has been used as antihypertensive, antihyperlipidemic and antidiabetic herbal medicine. The purpose of this study was to study the effect of hydroalcoholic extract of Urtica dioica on fructose-induced insulin resistance rats.
Methods: Forty male Wistar rats were randomly divided into five groups including control, fructose, extract 50, extract 100 and extract 200. The control rat received vehicle, the fructose and extract groups received fructose 10% for eight weeks. The extract groups received single daily injection of vehicle, 50, 100 or 200 mg/kg/day for the two weeks. Blood glucose, insulin, last fasting insulin resistance index (FIRI), serum triglyceride (TG), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), high-density lipoprotein (HDL), alanin trasaminase (AST) and alkaline phosphatase (ALP), leptin and LDL/HDL ratio were determined.
Results: Compared to control group, daily administration of fructose was associated with significant increase in FIRI, blood glucose and insulin, significant decrease in lepin, and no significant change in TG, HDL, LDL, LDL/HDL ratio, VLDL, ALT, and ALP. The extract significantly decreased serum glucose, insulin, LDL and leptin, and LDL/HDL ratio and FIRI. It also significantly increased serum TG, VLDL, and AST, but did not change serum ALP.
Conclusion: We suggest that Urtica dioica extract, by decreasing serum glucose, and FIRI, may be useful to improve type 2 diabetes mellitus. Also, by positive effect on lipid profile and by decreasing effect on leptin, it may improve metabolic syndrome.
PMCID: PMC3470082  PMID: 23115450
Fructose; insulin resistance; Urtica dioica
25.  Antidiabetic and hypolipidemic activities of ethanolic leaf extract and fractions of Melanthera scandens 
Objective
To evaluate the antidiabetic and hypolipidemic activities of ethanolic leaf extract and fraction of Melanthera scandens (M. scandens) in alloxan-induced diabetic rats.
Methods
M. scandens leaf extract/fractions (37–111 mg/kg) were administered to alloxan-induced diabetic rats for 14 days and blood glucose levels (BGL) of the diabetic rats were monitored at intervals of 7 hours for acute study and 14 days for prolonged study. Lipid profiles of the treated diabetic rats were determined after the period of treatment.
Results
Treatment of alloxan-induced diabetic rats with the extract/fractions caused a significant (P<0.001) reduction in fasting bloodglucose levels (BGL) of the diabetic rats both in acute study and prolonged treatment (2 weeks). The activities of the extract and fractions were more than that of the reference drug, glibenclamide. The extract/fractions exerted a significant reduction in the levels of serum total cholesterol, triglycerides, LDL and VLDL of extract with increases in HDL levels of the diabetic rats.
Conclusions
These results suggest that the leaf extract/fractions of M. scandens possesses antidiabetic effect on alloxan induced diabetic rats and this justifies its use in ethno medicine and can be exploited in the management of diabetes.
doi:10.1016/S2221-1691(12)60089-6
PMCID: PMC3609341  PMID: 23569963
Antidiabetic; Hypolididemic; Melanthera scandens

Results 1-25 (415002)