Search tips
Search criteria

Results 1-25 (713353)

Clipboard (0)

Related Articles

1.  Structure of a Protozoan Virus from the Human Genitourinary Parasite Trichomonas vaginalis 
mBio  2013;4(2):e00056-13.
The flagellated protozoan Trichomonas vaginalis is an obligate human genitourinary parasite and the most frequent cause of sexually transmitted disease worldwide. Most clinical isolates of T. vaginalis are persistently infected with one or more double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae, which appear to influence not only protozoan biology but also human disease. Here we describe the three-dimensional structure of Trichomonas vaginalis virus 1 (TVV1) virions, as determined by electron cryomicroscopy and icosahedral image reconstruction. The structure reveals a T = 1 capsid comprising 120 subunits, 60 in each of two nonequivalent positions, designated A and B, as previously observed for fungal Totiviridae family members. The putative protomer is identified as an asymmetric AB dimer consistent with either decamer or tetramer assembly intermediates. The capsid surface is notable for raised plateaus around the icosahedral 5-fold axes, with canyons connecting the 2- and 3-fold axes. Capsid-spanning channels at the 5-fold axes are unusually wide and may facilitate release of the viral genome, promoting dsRNA-dependent immunoinflammatory responses, as recently shown upon the exposure of human cervicovaginal epithelial cells to either TVV-infected T. vaginalis or purified TVV1 virions. Despite extensive sequence divergence, conservative features of the capsid reveal a helix-rich fold probably derived from an ancestor shared with fungal Totiviridae family members. Also notable are mass spectrometry results assessing the virion proteins as a complement to structure determination, which suggest that translation of the TVV1 RNA-dependent RNA polymerase in fusion with its capsid protein involves −2, and not +1, ribosomal frameshifting, an uncommonly found mechanism to date.
Trichomonas vaginalis causes ~250 million new cases of sexually transmitted disease each year worldwide and is associated with serious complications, including premature birth and increased transmission of other pathogens, including HIV. It is an extracellular parasite that, in turn, commonly hosts infections with double-stranded RNA (dsRNA) viruses, trichomonasviruses, which appear to exacerbate disease through signaling of immunoinflammatory responses by human epithelial cells. Here we report the first three-dimensional structure of a trichomonasvirus, which is also the first such structure of any protozoan dsRNA virus; show that it has unusually wide channels at the capsid vertices, with potential for releasing the viral genome and promoting dsRNA-dependent responses by human cells; and provide evidence that it uses −2 ribosomal frameshifting, an uncommon mechanism, to translate its RNA polymerase in fusion with its capsid protein. These findings provide both mechanistic and translational insights concerning the role of trichomonasviruses in aggravating disease attributable to T. vaginalis.
PMCID: PMC3622925  PMID: 23549915
2.  Trichomonasvirus: a new genus of protozoan viruses in the family Totiviridae 
Archives of virology  2010;156(1):171-179.
The family Totiviridae includes a number of viruses with monosegmented dsRNA genomes and isometric virions that infect either fungi or a number of medically important protozoan parasites such as Leishmania and Giardia. A new genus, Trichomonasvirus, was recently proposed for this family. Its name is based on the genus of its host organism, Trichomonas vaginalis, a protozoan parasite that colonizes the human genitourinary mucosa and is the most common non-viral sexually transmitted infection in the world. The type species of this new genus is Trichomonas vaginalis virus 1. Distinguishing characteristics of the new genus include infection of a human sexually transmitted parasite, stable mixed infection with more than one distinct Trichomonasvirus species, and sequence-based phylogenetic divergence that distinguishes it from all other family members.
PMCID: PMC3659425  PMID: 20976609
3.  Clinical Isolates of Trichomonas vaginalis Concurrently Infected by Strains of Up to Four Trichomonasvirus Species (Family Totiviridae)▿† 
Journal of Virology  2011;85(9):4258-4270.
Trichomonas vaginalis, which causes the most common nonviral sexually transmitted disease worldwide, is itself commonly infected by nonsegmented double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae. To date, cDNA sequences of one or more strains of each of three trichomonasvirus species have been reported, and gel electrophoresis showing several different dsRNA molecules obtained from a few T. vaginalis isolates has suggested that more than one virus strain might concurrently infect the same parasite cell. Here, we report the complete cDNA sequences of 3 trichomonasvirus strains, one from each of the 3 known species, infecting a single, agar-cloned clinical isolate of T. vaginalis, confirming the natural capacity for concurrent (in this case, triple) infections in this system. We furthermore report the complete cDNA sequences of 11 additional trichomonasvirus strains, from 4 other clinical isolates of T. vaginalis. These additional strains represent the three known trichomonasvirus species, as well as a newly identified fourth species. Moreover, 2 of these other T. vaginalis isolates are concurrently infected by strains of all 4 trichomonasvirus species (i.e., quadruple infections). In sum, the full-length cDNA sequences of these 14 new trichomonasviruses greatly expand the existing data set for members of this genus and substantiate our understanding of their genome organizations, protein-coding and replication signals, diversity, and phylogenetics. The complexity of this virus-host system is greater than has been previously well recognized and suggests a number of important questions relating to the pathogenesis and disease outcomes of T. vaginalis infections of the human genital mucosa.
PMCID: PMC3126235  PMID: 21345965
4.  In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. 
Trichomonas vaginalis is a common sexually transmitted protozoan parasite. Although often considered simply a nuisance infection, T. vaginalis has been implicated in premature rupture of placental membranes and increases in the risk of acquiring human immunodeficiency virus. Metronidazole, a 5-nitroimidazole, is currently the drug of choice to treat T. vaginalis infection. Because some patients have severe reactions to metronidazole and others are infected with metronidazole-resistant T. vaginalis, we were prompted to investigate alternative therapies. Tinidazole, another 5-nitroimidazole used in other countries to treat T. vaginalis infections, and furazolidone, a nitrofuran presently used to treat giardiasis and infections with some anaerobic enteric bacteria, were investigated for effectiveness against 9 metronidazole-susceptible and 12 metronidazole-resistant T. vaginalis patient isolates. The in vitro aerobic and anaerobic minimum lethal concentrations (MLC) and the time for drug efficacy were determined. Tinidazole killed the metronidazole-susceptible isolates at a low MLC but was effective against only 4 of the 12 metronidazole-resistant isolates. In contrast, furazolidone was effective at a low MLC for all isolates. When tinidazole was effective, it required > 6 h to kill trichomonads. However, furazolidone killed both metronidazole-susceptible and resistant trichomonads within 2 to 3 h of exposure. These data suggest that furazolidone may be a good candidate for treating metronidazole-resistant trichomoniasis and that further investigation of this drug is warranted.
PMCID: PMC163276  PMID: 8723451
5.  Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis 
Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes.
Methodology/Principal Findings
Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages.
Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.
Author Summary
The human parasite Trichomonas vaginalis causes trichomoniasis, the world's most common non-viral sexually transmitted infection. Research on T. vaginalis genetic diversity has been limited by a lack of appropriate genotyping tools. To address this problem, we recently published a panel of T. vaginalis-specific genetic markers; here we use these markers to genotype isolates collected from ten regions around the globe. We detect high levels of genetic diversity, infer a two-type population structure, identify clinically relevant differences between the two types, and uncover evidence of genetic exchange in what was believed to be a clonal organism. Together, these results greatly improve our understanding of the population genetics of T. vaginalis and provide insights into the possibility of genetic exchange in the parasite, with implications for the epidemiology and control of the disease. By taking into account the existence of different types and their unique characteristics, we can improve understanding of the wide range of symptoms that patients manifest and better implement appropriate drug treatment. In addition, by recognizing the possibility of genetic exchange, we are more equipped to address the growing concern of drug resistance and the mechanisms by which it may spread within parasite populations.
PMCID: PMC3313929  PMID: 22479659
6.  Clinical and Microbiological Aspects of Trichomonas vaginalis 
Clinical Microbiology Reviews  1998;11(2):300-317.
Trichomonas vaginalis, a parasitic protozoan, is the etiologic agent of trichomoniasis, a sexually transmitted disease (STD) of worldwide importance. Trichomoniasis is the most common nonviral STD, and it is associated with many perinatal complications, male and female genitourinary tract infections, and an increased incidence of HIV transmission. Diagnosis is difficult, since the symptoms of trichomoniasis mimic those of other STDs and detection methods lack precision. Although current treatment protocols involving nitroimidazoles are curative, metronidazole resistance is on the rise, outlining the need for research into alternative antibiotics. Vaccine development has been limited by a lack of understanding of the role of the host immune response to T. vaginalis infection. The lack of a good animal model has made it difficult to conduct standardized studies in drug and vaccine development and pathogenesis. Current work on pathogenesis has focused on the host-parasite relationship, in particular the initial events required to establish infection. These studies have illustrated that the pathogenesis of T. vaginalis is indeed very complex and involves adhesion, hemolysis, and soluble factors such as cysteine proteinases and cell-detaching factor. T. vaginalis interaction with the members of the resident vaginal flora, an advanced immune evasion strategy, and certain stress responses enable the organism to survive in its changing environment. Clearly, further research and collaboration will help elucidate these pathogenic mechanisms, and with better knowledge will come improved disease control.
PMCID: PMC106834  PMID: 9564565
7.  Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa 
Clinical Microbiology Reviews  2001;14(1):150-164.
The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently been investigated using laboratory-induced resistant isolates. Instead of downregulation of the pyruvate:ferredoxin oxidoreductase and ferredoxin pathway as seen in G. duodenalis and T. vaginalis, E. histolytica induces oxidative stress mechanisms, including superoxide dismutase and peroxiredoxin. The review examines the value of investigating both clinical and laboratory-induced syngeneic drug-resistant isolates and dissection of the complementary data obtained. Comparison of resistance mechanisms in anaerobic bacteria and the parasitic protozoa is discussed as well as the value of studies of the epidemiology of resistance.
PMCID: PMC88967  PMID: 11148007
8.  Down-regulation of flavin reductase and alcohol dehydrogenase-1 (ADH1) in metronidazole-resistant isolates of Trichomonas vaginalis 
Molecular and Biochemical Parasitology  2012;183-222(2):177-183.
Graphical abstract
In isolates of Trichomonas vaginalis with reduced susceptibility metronidazole, flavin reductase and alcohol dehydrogenase-1 (ADH1) activities are down-regulated.
► In clinical isolates of Trichomonas vaginalis with reduced metronidazole susceptibility flavin reductase is down-regulated. ► In clinical isolates of T. vaginalis with reduced metronidazole susceptibility alcohol dehydrogenase-1 (ADH1) is down-regulated. ► Thioredoxin reductase levels are not changed in metronidazole-resistant T. vaginalis clinical isolates.
The microaerophilic parasite Trichomonas vaginalis is a causative agent of painful vaginitis or urethritis, termed trichomoniasis, and can also cause preterm delivery or stillbirth. Treatment of trichomoniasis is almost exclusively based on the nitroimidazole drugs metronidazole and tinidazole. Metronidazole resistance in T. vaginalis does occur and is often associated with treatment failure. In most cases, metronidazole-resistant isolates remain susceptible to tinidazole, but cross resistance between the two closely related drugs can be a problem.
In this study we measured activities of thioredoxin reductase and flavin reductase in four metronidazole-susceptible and five metronidazole-resistant isolates. These enzyme activities had been previously found to be downregulated in T. vaginalis with high-level metronidazole resistance induced in the laboratory. Further, we aimed at identifying factors causing metronidazole resistance and compared the protein expression profiles of all nine isolates by application of two-dimensional gel electrophoresis (2DE).
Thioredoxin reductase activity was nearly equal in all strains assayed but flavin reductase activity was clearly down-regulated, or even absent, in metronidazole-resistant strains. Since flavin reductase has been shown to reduce oxygen to hydrogen peroxide, its down-regulation could significantly contribute to the impairment of oxygen scavenging as reported by others for metronidazole-resistant strains. Analysis by 2DE revealed down-regulation of alcohol dehydrogenase 1 (ADH1) in strains with reduced sensitivity to metronidazole, an enzyme that could be involved in detoxification of intracellular acetaldehyde.
PMCID: PMC3341570  PMID: 22449940
Trichomonosis; Metronidazole resistance; Thiordoxin reductase; Flavin reductase; Alcohol dehydrogenase 1
9.  Three-Dimensional Structure of a Protozoal Double-Stranded RNA Virus That Infects the Enteric Pathogen Giardia lamblia 
Journal of Virology  2014;89(2):1182-1194.
Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related “T=2” capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a “primitive” (early-branching) eukaryotic host and an important enteric pathogen of humans.
IMPORTANCE Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa, including Giardia lamblia, Leishmania species, and Trichomonas vaginalis are persistently infected with dsRNA viruses, and growing evidence indicates that at least some of these protozoal viruses can likewise enhance the pathogenicity of their hosts. Understanding of these protozoal viruses, however, lags far behind that of many bacteriophages. Here, we investigated the dsRNA virus that infects the widespread enteric parasite Giardia lamblia. Using electron cryomicroscopy and icosahedral image reconstruction, we determined the virion structure of Giardia lamblia virus, obtaining new information relating to its assembly, stability, functions in cell entry and transcription, and similarities and differences with other dsRNA viruses. The results of our study set the stage for further mechanistic work on the roles of these viruses in protozoal virulence.
PMCID: PMC4300635  PMID: 25378500
10.  Efficacy of New 5-Nitroimidazoles against Metronidazole-Susceptible and -Resistant Giardia, Trichomonas, and Entamoeba spp. 
The efficacies of 12 5-nitroimidazole compounds and 1 previously described lactam-substituted nitroimidazole with antiparasitic activity, synthesized via SRN1 and subsequent reactions, were assayed against the protozoan parasites Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica. Two metronidazole-sensitive lines and two metronidazole-resistant lines of Giardia and one line each of metronidazole-sensitive and -resistant Trichomonas were tested. All except one of the compounds were as effective or more effective than metronidazole against Giardia and Trichomonas, but none was as effective overall as the previously described 2-lactam-substituted 5-nitroimidazole. None of the compounds was markedly more effective than metronidazole against Entamoeba. Significant cross-resistance between most of the drugs tested and metronidazole was evident among metronidazole-resistant lines of Giardia and Trichomonas. However, some drugs were lethal to metronidazole-resistant Giardia and had minimum lethal concentrations similar to that of metronidazole for drug-susceptible parasites. This study emphasizes the potential in developing new nitroimidazole drugs which are more effective than metronidazole and which may prove to be useful clinical alternatives to metronidazole.
PMCID: PMC89023  PMID: 9869568
11.  Novel Trichomonacidal Spermicides▿†‡ 
Metronidazole, the U.S. Food and Drug Administration-approved drug against trichomoniasis, is nonspermicidal and thus cannot offer pregnancy protection when used vaginally. Furthermore, increasing resistance of Trichomonas vaginalis to 5-nitro-imidazoles is a cause for serious concern. On the other hand, the vaginal spermicide nonoxynol-9 (N-9) does not protect against sexually transmitted diseases and HIV in clinical situations but may in fact increase their incidence due to its nonspecific, surfactant action. We therefore designed dually active, nonsurfactant molecules that were capable of killing Trichomonas vaginalis (both metronidazole-susceptible and -resistant strains) and irreversibly inactivating 100% human sperm at doses that were noncytotoxic to human cervical epithelial (HeLa) cells and vaginal microflora (lactobacilli) in vitro. Anaerobic energy metabolism, cell motility, and defense against reactive oxygen species, which are key to survival of both sperm and Trichomonas in the host after intravaginal inoculation, depend crucially on availability of free thiols. Consequently, molecules were designed with carbodithioic acid moiety as the major pharmacophore, and chemical variations were incorporated to provide high excess of reactive thiols for interacting with accessible thiols on sperm and Trichomonas. We report here the in vitro activities, structure-activity relationships, and safety profiles of these spermicidal antitrichomonas agents, the most promising of which was more effective than N-9 (the OTC spermicide) in inactivating human sperm and more efficacious than metronidazole in killing Trichomonas vaginalis (including metronidazole-resistant strain). It also significantly reduced the available free thiols on human sperm and inhibited the cytoadherence of Trichomonas on HeLa cells. Experimentally in vitro, the new compounds appeared to be safer than N-9 for vaginal use.
PMCID: PMC3165359  PMID: 21709091
12.  Hydrogenosome Metabolism Is the Key Target for Antiparasitic Activity of Resveratrol against Trichomonas vaginalis 
Metronidazole (MDZ) and related 5-nitroimidazoles are the recommended drugs for treatment of trichomoniasis, a sexually transmitted disease caused by the protozoan parasite Trichomonas vaginalis. However, novel treatment options are needed, as recent reports have claimed resistance to these drugs in T. vaginalis isolates. In this study, we analyzed for the first time the in vitro effects of the natural polyphenol resveratrol (RESV) on T. vaginalis. At concentrations of between 25 and 100 μM, RESV inhibited the in vitro growth of T. vaginalis trophozoites; doses of 25 μM exerted a cytostatic effect, and higher doses exerted a cytotoxic effect. At these concentrations, RESV caused inhibition of the specific activity of a 120-kDa [Fe]-hydrogenase (Tvhyd). RESV did not affect Tvhyd gene expression and upregulated pyruvate-ferredoxin oxidoreductase (a hydrogenosomal enzyme) gene expression only at a high dose (100 μM). At doses of 50 to 100 μM, RESV also caused overexpression of heat shock protein 70 (Hsp70), a protective protein found in the hydrogenosome of T. vaginalis. The results demonstrate the potential of RESV as an antiparasitic treatment for trichomoniasis and suggest that the mechanism of action involves induction of hydrogenosomal dysfunction. In view of the results, we propose hydrogenosomal metabolism as a key target in the design of novel antiparasitic drugs.
PMCID: PMC3716124  PMID: 23478970
13.  Gene Diversity of Trichomonas vaginalis Isolates 
Iranian Journal of Parasitology  2011;6(3):101-106.
Trichomonas vaginalis is protozoan parasite responsible for trichomoniasis and is more common in high-risk behavior group such as prostitute individuals. Interest in trichomoniasis is due to increase one's susceptibility to viruses such as herpes, human papillomavirus and HIV. The aim of this study was to find genotypic differences between the isolates.
Forty isolates from prisoners' women in Tehran province were used in this study. The random amplified polymorphic DNA (RAPD) technique was used to determine genetic differences among isolates and was correlated with patient's records. By each primer the banding pattern size of each isolates was scored (bp), genetic differences were studied, and the genealogical tree was constructed by using NTSYS software program and UPGMA method.
The least number of bands were seen by using primer OPD8 and the most by using OPD3. Results showed no significant difference in isolates from different geographical areas in Iran. By using primer OPD1 specific amplified fragment with length 1300 base pair were found in only 8 isolates. All these isolates were belonged to addicted women; however, six belonged to asymptomatic patients and two to symptomatic ones.
There was not much genetic diversity in T vaginalis isolates from three different geographical areas.
PMCID: PMC3279894  PMID: 22347304
Trichomonas vaginalis; Prisoners; RAPD; Gene diversity
14.  Effect of Recombinant Prophenin 2 on the Integrity and Viability of Trichomonas vaginalis 
BioMed Research International  2015;2015:430436.
Trichomonas vaginalis is the causal agent of trichomoniasis, which is associated with preterm child delivery, low birth weight, and an increased risk of infection by human papilloma virus and human immunodeficiency virus following exposure. Several reports have established increasing numbers of trichomoniasis cases resistant to metronidazole, the agent used for treatment, and it is therefore important to identify new therapeutic alternatives. Previously, our group reported the effect of tritrpticin, a synthetic peptide derived from porcine prophenin, on T. vaginalis; however, the hemolytic activity of this small peptide complicates its possible use as a therapeutic agent. In this study, we report that the propeptide and the processed peptide of prophenin 2 (cleaved with hydroxylamine) affected the integrity and growth of T. vaginalis and that pro-prophenin 2 displays some resistance to proteolysis by T. vaginalis proteinases at 1 h. Its effect on T. vaginalis as well as its low hemolytic activity and short-time stability to parasite proteinases makes prophenin 2 an interesting candidate for synergistic or alternative treatment against T. vaginalis.
PMCID: PMC4359812  PMID: 25815316
15.  Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶Parasite Interactions 
PLoS Pathogens  2013;9(7):e1003482.
Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization.
Author Summary
Trichomoniasis, the most common non-viral sexually transmitted disease worldwide, infects over 275 million people annually. Infection results from the colonization of the human urogenital tract by the parasite Trichomonas vaginalis. To establish and maintain infection the parasite adheres to host cells, a process that is poorly understood. Here, we show that T. vaginalis secretes small vesicles called exosomes that are capable of fusing with and delivering their contents to host cells. Parasite exosomes were found to induce changes in the host cell and to mediate the interaction of T. vaginalis with host by increasing the adherence of the parasite to host cells. Exosomes have been primarily studied in mammalian cells where they have been shown to mediate intercellular communication and have been implicated in processes including development, antigen presentation and cancer metastasis. Our data extend the function of exosomes to mediating host∶parasite interactions, cellular communication between two species and promoting colonization of an extracellular parasite. Research on T. vaginalis exosomes holds the potential for developing applications that would allow exosomes to be used in detecting and diagnosing trichomoniasis and for targeting drugs to the site of infection.
PMCID: PMC3708881  PMID: 23853596
16.  Concordance between genetic relatedness and phenotypic similarities of Trichomonas vaginalis strains 
Despite the medical importance of trichomoniasis, little is known about the genetic relatedness of Trichomonas vaginalis strains with similar biological characteristics. Furthermore, the distribution of endobionts such as mycoplasmas or Trichomonas vaginalis virus (TVV) in the T. vaginalis metapopulation is poorly characterised.
We assayed the relationship between 20 strains of T. vaginalis from 8 countries using the Random Amplified Polymorphic DNA (RAPD) analysis with 27 random primers. The genealogical tree was constructed and its bootstrap values were computed using the program FreeTree. Using the permutation tail probability tests we found that the topology of the tree reflected both the pattern of resistance to metronidazole (the major anti-trichomonal drug) (p < 0.01) and the pattern of infection of strains by mycoplasmas (p < 0.05). However, the tree did not reflect pattern of virulence, geographic origin or infection by TVV. Despite low bootstrap support for many branches, the significant clustering of strains with similar drug susceptibility suggests that the tree approaches the true genealogy of strains. The clustering of mycoplasma positive strains may be an experimental artifact, caused by shared RAPD characters which are dependent on the presence of mycoplasma DNA.
Our results confirmed both the suitability of the RAPD technique for genealogical studies in T. vaginalis and previous conclusions on the relatedness of metronidazol resistant strains. However, our studies indicate that testing analysed strains for the presence of endobionts and assessment of the robustness of tree topologies by bootstrap analysis seem to be obligatory steps in such analyses.
PMCID: PMC60492  PMID: 11734059
17.  Impact of T. Vaginalis Infection on Innate Immune Responses and Reproductive Outcome 
Journal of reproductive immunology  2009;83(1-2):185-189.
Trichomonas vaginalis is the most common non-viral sexually transmitted pathogen. The infection is prevalent in reproductive age women and is associated with vaginitis, endometritis, adnexitis, pyosalpinx, infertility, preterm birth, low birth weight, bacterial vaginosis, and increased risk of cervical cancer, HPV, and HIV infection. In men, its complications include urethritis, prostatitis, epididymitis, and infertility through inflammatory damage or interference with the sperm function. The infection is often asymptomatic and recurrent despite the presence of specific antibodies, suggesting the importance of the innate immune defense. T. vaginalis adhesion proteins, cysteine proteases, and the major parasite lipophosphoglycan (LPG) play distinct roles in the pathogenesis and evasion of host immunity. LPG plays a key role in the parasite adherence and signaling to human vaginal and cervical epithelial cells, which is at least in part mediated by galectins. The epithelial cells respond to T. vaginalis infection and purified LPG by selective upregulation of proinflammatory mediators. At the same time, T. vaginalis triggers an immunosuppressive response in monocytes, macrophages, and dendritic cells. The molecular mechanisms underlying reproductive complications and epidemiologic risks associated with T. vaginalis infection remain to be elucidated.
PMCID: PMC2788009  PMID: 19850356
Trichomonas vaginalis; lipophosphoglycan; cytokines; galectins; human vaginal epithelial cells
18.  Early Repeated Infections with Trichomonas vaginalis among HIV-Positive and HIV-Negative Women 
The purpose of the study was to examine whether early repeated infections due to Trichomonas vaginalis among human immunuodeficiency virus (HIV)–positive and HIV-negative women are reinfections, new infections, or cases of treatment failure.
Women attending an HIV outpatient clinic and a family planning clinic in New Orleans, Louisiana, who had culture results positive for T. vaginalis were treated with 2 g of metronidazole under directly observed therapy. At 1 month, detailed sexual exposure and sexual partner treatment information was collected. Isolates from women who had clinical resistance (i.e., who tested positive for a third time after treatment at a higher dose) were tested for metronidazole susceptibility in vitro.
Of 60 HIV-positive women with trichomoniasis, 11 (18.3%) were T. vaginalis positive 1 month after treatment. The 11 recurrences were classified as 3 probable reinfections (27%), 2 probable infections from a new sexual partner (18%), and 6 probable treatment failures (55%); 2 of the 6 patients who experienced probable treatment failure had isolates with mild resistance to metronidazole. Of 301 HIV-negative women, 24 (8.0%) were T. vaginalis positive 1 month after treatment. The 24 recurrences were classified as 2 probable reinfections (8%) and 22 probable treatment failures (92%); of the 22 patients who experienced probable treatment failure, 2 had strains with moderate resistance to metronidazole, and 1 had a strain with mild resistance to metronidazole.
HIV-positive women were more likely to have sexual re-exposure than were HIV-negative women, although the rate of treatment failure was similar in both groups. High rates of treatment failure among both HIV-positive and HIV-negative women indicate that a 2-g dose of metronidazole may not be adequate for treatment of some women and that rescreening should be considered.
PMCID: PMC3855851  PMID: 18444815
19.  Trichomoniasis: clinical manifestations, diagnosis and management 
Trichomonas vaginalis was originally considered a commensal organism until the 1950s when the understanding of its role as a sexually transmitted infection (STI) began to evolve. Trichomoniasis has been associated with vaginitis, cervicitis, urethritis, pelvic inflammatory disease (PID), and adverse birth outcomes. Infection with T vaginalis could have an important role in transmission and acquisition of HIV. T vaginalis is site specific for the genitourinary tract and has been isolated from virtually all genitourinary structures. Asymptomatic disease is common in both men and women, thus screening for disease is important. Various sociodemographic factors have been correlated with presence of T vaginalis, and may be used to predict infection. Diagnosis is usually made from wet mount microscopy and direct visualisation, which are insensitive. DNA amplification techniques perform with good sensitivity, but are not yet approved for diagnostic purposes. In areas where diagnostic methods are limited, management of trichomoniasis is usually as part of a clinical syndrome; vaginal discharge for women and urethral discharge for men. A single dose of metronidazole is effective in the majority of cases. Outside of the United States, other nitroimidazoles may be used and are as effective as metronidazole. Metronidazole resistance is an emerging problem, but its clinical importance is not yet clear. Concomitant treatment of sexual partners is recommended.
PMCID: PMC1744792  PMID: 15054166
20.  Murine Models of Vaginal Trichomonad Infections 
Trichomonas vaginalis and Tritrichomonas foetus cause common sexually transmitted infections in humans and cattle, respectively. Mouse models of trichomoniasis are important for pathogenic and therapeutic studies. Here, we compared murine genital infections with T. vaginalis and T. foetus. Persistent vaginal infection with T. foetus was established with 100 parasites but T. vaginalis infection required doses of 106, perhaps because of greater susceptibility to killing by mouse vaginal polymorphonuclear leukocytes. Infection with T. vaginalis persisted longest after combined treatment of mice with estrogen and dexamethasone, whereas infection was only short-lived when mice were given estrogen or dexamethasone alone, co-infected with Lactobacillus acidophilus, and/or pretreated with antibiotics. Infection rates were similar with metronidazole-resistant (MR) and metronidazole-sensitive (MS) T. vaginalis. High dose but not low dose metronidazole treatment controlled infection with MS better than MR T. vaginalis. These murine models will be valuable for investigating the pathogenesis and treatment of trichomoniasis.
PMCID: PMC3183775  PMID: 21976570
21.  Treatment of Infections Caused by Metronidazole-Resistant Trichomonas vaginalis 
Clinical Microbiology Reviews  2004;17(4):783-793.
Infections with the sexually transmitted protozoan Trichomonas vaginalis are usually treated with metronidazole, a 5-nitroimidazole drug derived from the antibiotic azomycin. Metronidazole treatment is generally efficient in eliminating T. vaginalis infection and has a low risk of serious side effects. However, studies have shown that at least 5% of clinical cases of trichomoniasis are caused by parasites resistant to the drug. The lack of approved alternative therapies for T. vaginalis treatment means that higher and sometimes toxic doses of metronidazole are the only option for patients with resistant disease. Clearly, studies of the treatment and prevention of refractory trichomoniasis are essential. This review describes the mechanisms of metronidazole resistance in T. vaginalis and provides a summary of trichomonicidal and vaccine candidate drugs.
PMCID: PMC523556  PMID: 15489348
22.  Trichomonas vaginalis Lipophosphoglycan Triggers a Selective Upregulation of Cytokines by Human Female Reproductive Tract Epithelial Cells  
Infection and Immunity  2006;74(10):5773-5779.
Trichomonas vaginalis is one of the most common nonviral sexually transmitted human infections and, worldwide, has been linked to increased incidence of human immunodeficiency virus type 1 transmission, preterm delivery, low birth weight, cervical cancer, and vaginitis. The molecular pathways that are important in initiating host inflammatory and immune responses to T. vaginalis are poorly understood. Here we report interactions of human cervicovaginal epithelial cells with the most abundant cell surface glycoconjugate of the parasite, the T. vaginalis lipophosphoglycan (LPG). Purified LPG mediated the adhesion of parasites to human vaginal epithelial cells in a dose-dependent manner. Furthermore, T. vaginalis LPG (but not LPG from Tritrichomonas foetus, the causative agent of bovine trichomoniasis) induced a selective upregulation of chemotactic cytokines by human endocervical, ectocervical, and vaginal epithelial cells, which do not express Toll-like receptor 4/MD2. The T. vaginalis LPG triggered interleukin 8 (IL-8), which promotes the adhesion and transmigration of neutrophils across the endothelium, and macrophage inflammatory protein 3α, which is a chemoattractant for immune cells and is essential for dendritic cell maturation. These effects were dose dependent and sustained in the absence of cytotoxicity and IL-1β release and utilized, at least in part, a signaling pathway independent from the Toll-like/IL-1 receptor adaptor protein MyD88.
PMCID: PMC1594934  PMID: 16988255
23.  Specific nature of Trichomonas vaginalis parasitism of host cell surfaces. 
Infection and Immunity  1985;50(3):701-708.
The adherence of Trichomonas vaginalis NYH 286 to host cells was evaluated by using monolayer cultures of HeLa and HEp-2 epithelial cells and human fibroblast cell lines. Saturation of sites on HeLa cells was achieved, yielding a maximal T. vaginalis NYH 286-to-cell ratio of two. The ability of radiolabeled NYH 286 to compete with unlabeled trichomonads for attachment and the time, temperature, and pH-dependent nature of host cell parasitism reinforced the idea of specific parasite-cell associations. Other trichomonal isolates (JH31A, RU375, and JHHR) were also found to adhere to cell monolayers, albeit to different degrees, and all isolates produced maximal contact-dependent HeLa cell cytotoxicity. The avirulent trichomonad, Trichomonas tenax, did not adhere to cell monolayers and did not cause host cell damage. Interestingly, parasite cytadherence was greater with HeLa and HEp-2 epithelial cells than with fibroblast cells. In addition, cytotoxicity with fibroblast cells never exceeded 20% of the level of cell killing observed for epithelial cells. Elucidation of properties of the pathogenic human trichomonads that allowed for host cell surface parasitism was also attempted. Treatment of motile T. vaginalis NYH 286 with trypsin diminished cell parasitism. Incubation of trypsinized organisms in growth medium allowed for regeneration of trichomonal adherence, and cycloheximide inhibited the regeneration of attachment. Organisms poisoned with metronidazole or iodoacetate failed to attach to host cells, and adherent trichomonads exposed to metronidazole or iodoacetate were readily released from parasitized cells. Coincubation experiments with polycationic proteins and sugars and pretreatment of parasites or cells with neuraminidase or periodate had no effect on host cell parasitism. Colchicine and cytochalasin B, however, did produce some inhibition of adherence to HeLa cells. The data suggest that metabolizing T. vaginalis adheres to host cells via parasite surface proteins in a specific receptor-ligand fashion. Furthermore, parasitism of epithelial cells appears to render this cell type more susceptible than fibroblast cell types to contact-dependent cytotoxicity.
PMCID: PMC261136  PMID: 3877690
24.  Alternative Pathway of Metronidazole Activation in Trichomonas vaginalis Hydrogenosomes 
Antimicrobial Agents and Chemotherapy  2005;49(12):5033-5036.
Metronidazole and related 5-nitroimidazoles are the only available drugs in the treatment of human urogenital trichomoniasis caused by the protozoan parasite Trichomonas vaginalis. The drugs are activated to cytotoxic anion radicals by their reduction within the hydrogenosomes. It has been established that electrons required for metronidazole activation are released from pyruvate by the activity of pyruvate:ferredoxin oxidoreductase and transferred to the drug by a low-redox-potential carrier, ferredoxin. Here we describe a novel pathway involved in the drug activation within the hydrogenosome. The source of electrons is malate, another major hydrogenosomal substrate, which is oxidatively decarboxylated to pyruvate and CO2 by NAD-dependent malic enzyme. The electrons released during this reaction are transferred from NADH to ferredoxin by NADH dehydrogenase homologous to the catalytic module of mitochondrial complex I, which uses ferredoxin as electron acceptor. Trichomonads acquire high-level metronidazole resistance only after both pyruvate- and malate-dependent pathways of metronidazole activation are eliminated from the hydrogenosomes.
PMCID: PMC1315937  PMID: 16304169
25.  Study on ITS1 Gene of Iranian Trichomonas vaginalis by Molecular Methods 
Trichomoniasis is a worldwide protozoan parasitic disease and metronidazole is a choice drug for its treatment. Because of disease importance in public health and its controversial ideas about the prevalence of drug resistance, this study was carried out.
Fifty-two suspected vaginal samples were collected from 2006 to 2007 in Gynecology Maryam Hospital, Tehran, Iran. All isolates were examined by microscopic, culture and PCR techniques. The PCR products were analyzed by RFLP and CSGE methods and two suspected samples were sequenced.
Trichomonas vaginalis was identified from all 52 samples. Of 52 isolates, 45 samples were successfully cultured and amplified by PCR except one. Seven were positive only by PCR. Finally, ITS1 fragment was successfully amplified in 51 of 52. CSGE analysis and PCR products digestion by MspI followed by sequencing showed nucleotide mutation at position 209 (C209T) of the ITS1 fragment in two (3.9%) of them.
The results showed mutation in ITS1 fragment of T. vaginalis in two (3.9%) of Iranian isolates which may be related to metronidazole resistance.
PMCID: PMC3279855  PMID: 22347260
Trichomonas vaginalis; Mutation; ITS1 fragment

Results 1-25 (713353)