Search tips
Search criteria

Results 1-25 (407051)

Clipboard (0)

Related Articles

1.  Trichomonasvirus: a new genus of protozoan viruses in the family Totiviridae 
Archives of virology  2010;156(1):171-179.
The family Totiviridae includes a number of viruses with monosegmented dsRNA genomes and isometric virions that infect either fungi or a number of medically important protozoan parasites such as Leishmania and Giardia. A new genus, Trichomonasvirus, was recently proposed for this family. Its name is based on the genus of its host organism, Trichomonas vaginalis, a protozoan parasite that colonizes the human genitourinary mucosa and is the most common non-viral sexually transmitted infection in the world. The type species of this new genus is Trichomonas vaginalis virus 1. Distinguishing characteristics of the new genus include infection of a human sexually transmitted parasite, stable mixed infection with more than one distinct Trichomonasvirus species, and sequence-based phylogenetic divergence that distinguishes it from all other family members.
PMCID: PMC3659425  PMID: 20976609
2.  Structure of a Protozoan Virus from the Human Genitourinary Parasite Trichomonas vaginalis 
mBio  2013;4(2):e00056-13.
The flagellated protozoan Trichomonas vaginalis is an obligate human genitourinary parasite and the most frequent cause of sexually transmitted disease worldwide. Most clinical isolates of T. vaginalis are persistently infected with one or more double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae, which appear to influence not only protozoan biology but also human disease. Here we describe the three-dimensional structure of Trichomonas vaginalis virus 1 (TVV1) virions, as determined by electron cryomicroscopy and icosahedral image reconstruction. The structure reveals a T = 1 capsid comprising 120 subunits, 60 in each of two nonequivalent positions, designated A and B, as previously observed for fungal Totiviridae family members. The putative protomer is identified as an asymmetric AB dimer consistent with either decamer or tetramer assembly intermediates. The capsid surface is notable for raised plateaus around the icosahedral 5-fold axes, with canyons connecting the 2- and 3-fold axes. Capsid-spanning channels at the 5-fold axes are unusually wide and may facilitate release of the viral genome, promoting dsRNA-dependent immunoinflammatory responses, as recently shown upon the exposure of human cervicovaginal epithelial cells to either TVV-infected T. vaginalis or purified TVV1 virions. Despite extensive sequence divergence, conservative features of the capsid reveal a helix-rich fold probably derived from an ancestor shared with fungal Totiviridae family members. Also notable are mass spectrometry results assessing the virion proteins as a complement to structure determination, which suggest that translation of the TVV1 RNA-dependent RNA polymerase in fusion with its capsid protein involves −2, and not +1, ribosomal frameshifting, an uncommonly found mechanism to date.
Trichomonas vaginalis causes ~250 million new cases of sexually transmitted disease each year worldwide and is associated with serious complications, including premature birth and increased transmission of other pathogens, including HIV. It is an extracellular parasite that, in turn, commonly hosts infections with double-stranded RNA (dsRNA) viruses, trichomonasviruses, which appear to exacerbate disease through signaling of immunoinflammatory responses by human epithelial cells. Here we report the first three-dimensional structure of a trichomonasvirus, which is also the first such structure of any protozoan dsRNA virus; show that it has unusually wide channels at the capsid vertices, with potential for releasing the viral genome and promoting dsRNA-dependent responses by human cells; and provide evidence that it uses −2 ribosomal frameshifting, an uncommon mechanism, to translate its RNA polymerase in fusion with its capsid protein. These findings provide both mechanistic and translational insights concerning the role of trichomonasviruses in aggravating disease attributable to T. vaginalis.
PMCID: PMC3622925  PMID: 23549915
3.  In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. 
Trichomonas vaginalis is a common sexually transmitted protozoan parasite. Although often considered simply a nuisance infection, T. vaginalis has been implicated in premature rupture of placental membranes and increases in the risk of acquiring human immunodeficiency virus. Metronidazole, a 5-nitroimidazole, is currently the drug of choice to treat T. vaginalis infection. Because some patients have severe reactions to metronidazole and others are infected with metronidazole-resistant T. vaginalis, we were prompted to investigate alternative therapies. Tinidazole, another 5-nitroimidazole used in other countries to treat T. vaginalis infections, and furazolidone, a nitrofuran presently used to treat giardiasis and infections with some anaerobic enteric bacteria, were investigated for effectiveness against 9 metronidazole-susceptible and 12 metronidazole-resistant T. vaginalis patient isolates. The in vitro aerobic and anaerobic minimum lethal concentrations (MLC) and the time for drug efficacy were determined. Tinidazole killed the metronidazole-susceptible isolates at a low MLC but was effective against only 4 of the 12 metronidazole-resistant isolates. In contrast, furazolidone was effective at a low MLC for all isolates. When tinidazole was effective, it required > 6 h to kill trichomonads. However, furazolidone killed both metronidazole-susceptible and resistant trichomonads within 2 to 3 h of exposure. These data suggest that furazolidone may be a good candidate for treating metronidazole-resistant trichomoniasis and that further investigation of this drug is warranted.
PMCID: PMC163276  PMID: 8723451
4.  Down-regulation of flavin reductase and alcohol dehydrogenase-1 (ADH1) in metronidazole-resistant isolates of Trichomonas vaginalis 
Molecular and Biochemical Parasitology  2012;183-222(2):177-183.
Graphical abstract
In isolates of Trichomonas vaginalis with reduced susceptibility metronidazole, flavin reductase and alcohol dehydrogenase-1 (ADH1) activities are down-regulated.
► In clinical isolates of Trichomonas vaginalis with reduced metronidazole susceptibility flavin reductase is down-regulated. ► In clinical isolates of T. vaginalis with reduced metronidazole susceptibility alcohol dehydrogenase-1 (ADH1) is down-regulated. ► Thioredoxin reductase levels are not changed in metronidazole-resistant T. vaginalis clinical isolates.
The microaerophilic parasite Trichomonas vaginalis is a causative agent of painful vaginitis or urethritis, termed trichomoniasis, and can also cause preterm delivery or stillbirth. Treatment of trichomoniasis is almost exclusively based on the nitroimidazole drugs metronidazole and tinidazole. Metronidazole resistance in T. vaginalis does occur and is often associated with treatment failure. In most cases, metronidazole-resistant isolates remain susceptible to tinidazole, but cross resistance between the two closely related drugs can be a problem.
In this study we measured activities of thioredoxin reductase and flavin reductase in four metronidazole-susceptible and five metronidazole-resistant isolates. These enzyme activities had been previously found to be downregulated in T. vaginalis with high-level metronidazole resistance induced in the laboratory. Further, we aimed at identifying factors causing metronidazole resistance and compared the protein expression profiles of all nine isolates by application of two-dimensional gel electrophoresis (2DE).
Thioredoxin reductase activity was nearly equal in all strains assayed but flavin reductase activity was clearly down-regulated, or even absent, in metronidazole-resistant strains. Since flavin reductase has been shown to reduce oxygen to hydrogen peroxide, its down-regulation could significantly contribute to the impairment of oxygen scavenging as reported by others for metronidazole-resistant strains. Analysis by 2DE revealed down-regulation of alcohol dehydrogenase 1 (ADH1) in strains with reduced sensitivity to metronidazole, an enzyme that could be involved in detoxification of intracellular acetaldehyde.
PMCID: PMC3341570  PMID: 22449940
Trichomonosis; Metronidazole resistance; Thiordoxin reductase; Flavin reductase; Alcohol dehydrogenase 1
5.  Clinical Isolates of Trichomonas vaginalis Concurrently Infected by Strains of Up to Four Trichomonasvirus Species (Family Totiviridae)▿† 
Journal of Virology  2011;85(9):4258-4270.
Trichomonas vaginalis, which causes the most common nonviral sexually transmitted disease worldwide, is itself commonly infected by nonsegmented double-stranded RNA (dsRNA) viruses from the genus Trichomonasvirus, family Totiviridae. To date, cDNA sequences of one or more strains of each of three trichomonasvirus species have been reported, and gel electrophoresis showing several different dsRNA molecules obtained from a few T. vaginalis isolates has suggested that more than one virus strain might concurrently infect the same parasite cell. Here, we report the complete cDNA sequences of 3 trichomonasvirus strains, one from each of the 3 known species, infecting a single, agar-cloned clinical isolate of T. vaginalis, confirming the natural capacity for concurrent (in this case, triple) infections in this system. We furthermore report the complete cDNA sequences of 11 additional trichomonasvirus strains, from 4 other clinical isolates of T. vaginalis. These additional strains represent the three known trichomonasvirus species, as well as a newly identified fourth species. Moreover, 2 of these other T. vaginalis isolates are concurrently infected by strains of all 4 trichomonasvirus species (i.e., quadruple infections). In sum, the full-length cDNA sequences of these 14 new trichomonasviruses greatly expand the existing data set for members of this genus and substantiate our understanding of their genome organizations, protein-coding and replication signals, diversity, and phylogenetics. The complexity of this virus-host system is greater than has been previously well recognized and suggests a number of important questions relating to the pathogenesis and disease outcomes of T. vaginalis infections of the human genital mucosa.
PMCID: PMC3126235  PMID: 21345965
6.  Clinical and Microbiological Aspects of Trichomonas vaginalis 
Clinical Microbiology Reviews  1998;11(2):300-317.
Trichomonas vaginalis, a parasitic protozoan, is the etiologic agent of trichomoniasis, a sexually transmitted disease (STD) of worldwide importance. Trichomoniasis is the most common nonviral STD, and it is associated with many perinatal complications, male and female genitourinary tract infections, and an increased incidence of HIV transmission. Diagnosis is difficult, since the symptoms of trichomoniasis mimic those of other STDs and detection methods lack precision. Although current treatment protocols involving nitroimidazoles are curative, metronidazole resistance is on the rise, outlining the need for research into alternative antibiotics. Vaccine development has been limited by a lack of understanding of the role of the host immune response to T. vaginalis infection. The lack of a good animal model has made it difficult to conduct standardized studies in drug and vaccine development and pathogenesis. Current work on pathogenesis has focused on the host-parasite relationship, in particular the initial events required to establish infection. These studies have illustrated that the pathogenesis of T. vaginalis is indeed very complex and involves adhesion, hemolysis, and soluble factors such as cysteine proteinases and cell-detaching factor. T. vaginalis interaction with the members of the resident vaginal flora, an advanced immune evasion strategy, and certain stress responses enable the organism to survive in its changing environment. Clearly, further research and collaboration will help elucidate these pathogenic mechanisms, and with better knowledge will come improved disease control.
PMCID: PMC106834  PMID: 9564565
7.  Efficacy of New 5-Nitroimidazoles against Metronidazole-Susceptible and -Resistant Giardia, Trichomonas, and Entamoeba spp. 
The efficacies of 12 5-nitroimidazole compounds and 1 previously described lactam-substituted nitroimidazole with antiparasitic activity, synthesized via SRN1 and subsequent reactions, were assayed against the protozoan parasites Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica. Two metronidazole-sensitive lines and two metronidazole-resistant lines of Giardia and one line each of metronidazole-sensitive and -resistant Trichomonas were tested. All except one of the compounds were as effective or more effective than metronidazole against Giardia and Trichomonas, but none was as effective overall as the previously described 2-lactam-substituted 5-nitroimidazole. None of the compounds was markedly more effective than metronidazole against Entamoeba. Significant cross-resistance between most of the drugs tested and metronidazole was evident among metronidazole-resistant lines of Giardia and Trichomonas. However, some drugs were lethal to metronidazole-resistant Giardia and had minimum lethal concentrations similar to that of metronidazole for drug-susceptible parasites. This study emphasizes the potential in developing new nitroimidazole drugs which are more effective than metronidazole and which may prove to be useful clinical alternatives to metronidazole.
PMCID: PMC89023  PMID: 9869568
8.  Impact of T. Vaginalis Infection on Innate Immune Responses and Reproductive Outcome 
Journal of reproductive immunology  2009;83(1-2):185-189.
Trichomonas vaginalis is the most common non-viral sexually transmitted pathogen. The infection is prevalent in reproductive age women and is associated with vaginitis, endometritis, adnexitis, pyosalpinx, infertility, preterm birth, low birth weight, bacterial vaginosis, and increased risk of cervical cancer, HPV, and HIV infection. In men, its complications include urethritis, prostatitis, epididymitis, and infertility through inflammatory damage or interference with the sperm function. The infection is often asymptomatic and recurrent despite the presence of specific antibodies, suggesting the importance of the innate immune defense. T. vaginalis adhesion proteins, cysteine proteases, and the major parasite lipophosphoglycan (LPG) play distinct roles in the pathogenesis and evasion of host immunity. LPG plays a key role in the parasite adherence and signaling to human vaginal and cervical epithelial cells, which is at least in part mediated by galectins. The epithelial cells respond to T. vaginalis infection and purified LPG by selective upregulation of proinflammatory mediators. At the same time, T. vaginalis triggers an immunosuppressive response in monocytes, macrophages, and dendritic cells. The molecular mechanisms underlying reproductive complications and epidemiologic risks associated with T. vaginalis infection remain to be elucidated.
PMCID: PMC2788009  PMID: 19850356
Trichomonas vaginalis; lipophosphoglycan; cytokines; galectins; human vaginal epithelial cells
9.  Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa 
Clinical Microbiology Reviews  2001;14(1):150-164.
The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently been investigated using laboratory-induced resistant isolates. Instead of downregulation of the pyruvate:ferredoxin oxidoreductase and ferredoxin pathway as seen in G. duodenalis and T. vaginalis, E. histolytica induces oxidative stress mechanisms, including superoxide dismutase and peroxiredoxin. The review examines the value of investigating both clinical and laboratory-induced syngeneic drug-resistant isolates and dissection of the complementary data obtained. Comparison of resistance mechanisms in anaerobic bacteria and the parasitic protozoa is discussed as well as the value of studies of the epidemiology of resistance.
PMCID: PMC88967  PMID: 11148007
10.  Murine Models of Vaginal Trichomonad Infections 
Trichomonas vaginalis and Tritrichomonas foetus cause common sexually transmitted infections in humans and cattle, respectively. Mouse models of trichomoniasis are important for pathogenic and therapeutic studies. Here, we compared murine genital infections with T. vaginalis and T. foetus. Persistent vaginal infection with T. foetus was established with 100 parasites but T. vaginalis infection required doses of 106, perhaps because of greater susceptibility to killing by mouse vaginal polymorphonuclear leukocytes. Infection with T. vaginalis persisted longest after combined treatment of mice with estrogen and dexamethasone, whereas infection was only short-lived when mice were given estrogen or dexamethasone alone, co-infected with Lactobacillus acidophilus, and/or pretreated with antibiotics. Infection rates were similar with metronidazole-resistant (MR) and metronidazole-sensitive (MS) T. vaginalis. High dose but not low dose metronidazole treatment controlled infection with MS better than MR T. vaginalis. These murine models will be valuable for investigating the pathogenesis and treatment of trichomoniasis.
PMCID: PMC3183775  PMID: 21976570
11.  Trichomonas vaginalis Lipophosphoglycan Triggers a Selective Upregulation of Cytokines by Human Female Reproductive Tract Epithelial Cells  
Infection and Immunity  2006;74(10):5773-5779.
Trichomonas vaginalis is one of the most common nonviral sexually transmitted human infections and, worldwide, has been linked to increased incidence of human immunodeficiency virus type 1 transmission, preterm delivery, low birth weight, cervical cancer, and vaginitis. The molecular pathways that are important in initiating host inflammatory and immune responses to T. vaginalis are poorly understood. Here we report interactions of human cervicovaginal epithelial cells with the most abundant cell surface glycoconjugate of the parasite, the T. vaginalis lipophosphoglycan (LPG). Purified LPG mediated the adhesion of parasites to human vaginal epithelial cells in a dose-dependent manner. Furthermore, T. vaginalis LPG (but not LPG from Tritrichomonas foetus, the causative agent of bovine trichomoniasis) induced a selective upregulation of chemotactic cytokines by human endocervical, ectocervical, and vaginal epithelial cells, which do not express Toll-like receptor 4/MD2. The T. vaginalis LPG triggered interleukin 8 (IL-8), which promotes the adhesion and transmigration of neutrophils across the endothelium, and macrophage inflammatory protein 3α, which is a chemoattractant for immune cells and is essential for dendritic cell maturation. These effects were dose dependent and sustained in the absence of cytotoxicity and IL-1β release and utilized, at least in part, a signaling pathway independent from the Toll-like/IL-1 receptor adaptor protein MyD88.
PMCID: PMC1594934  PMID: 16988255
12.  Treatment of Infections Caused by Metronidazole-Resistant Trichomonas vaginalis 
Clinical Microbiology Reviews  2004;17(4):783-793.
Infections with the sexually transmitted protozoan Trichomonas vaginalis are usually treated with metronidazole, a 5-nitroimidazole drug derived from the antibiotic azomycin. Metronidazole treatment is generally efficient in eliminating T. vaginalis infection and has a low risk of serious side effects. However, studies have shown that at least 5% of clinical cases of trichomoniasis are caused by parasites resistant to the drug. The lack of approved alternative therapies for T. vaginalis treatment means that higher and sometimes toxic doses of metronidazole are the only option for patients with resistant disease. Clearly, studies of the treatment and prevention of refractory trichomoniasis are essential. This review describes the mechanisms of metronidazole resistance in T. vaginalis and provides a summary of trichomonicidal and vaccine candidate drugs.
PMCID: PMC523556  PMID: 15489348
13.  Gene Diversity of Trichomonas vaginalis Isolates 
Iranian Journal of Parasitology  2011;6(3):101-106.
Trichomonas vaginalis is protozoan parasite responsible for trichomoniasis and is more common in high-risk behavior group such as prostitute individuals. Interest in trichomoniasis is due to increase one's susceptibility to viruses such as herpes, human papillomavirus and HIV. The aim of this study was to find genotypic differences between the isolates.
Forty isolates from prisoners' women in Tehran province were used in this study. The random amplified polymorphic DNA (RAPD) technique was used to determine genetic differences among isolates and was correlated with patient's records. By each primer the banding pattern size of each isolates was scored (bp), genetic differences were studied, and the genealogical tree was constructed by using NTSYS software program and UPGMA method.
The least number of bands were seen by using primer OPD8 and the most by using OPD3. Results showed no significant difference in isolates from different geographical areas in Iran. By using primer OPD1 specific amplified fragment with length 1300 base pair were found in only 8 isolates. All these isolates were belonged to addicted women; however, six belonged to asymptomatic patients and two to symptomatic ones.
There was not much genetic diversity in T vaginalis isolates from three different geographical areas.
PMCID: PMC3279894  PMID: 22347304
Trichomonas vaginalis; Prisoners; RAPD; Gene diversity
14.  Early Repeated Infections with Trichomonas vaginalis among HIV-Positive and HIV-Negative Women 
The purpose of the study was to examine whether early repeated infections due to Trichomonas vaginalis among human immunuodeficiency virus (HIV)–positive and HIV-negative women are reinfections, new infections, or cases of treatment failure.
Women attending an HIV outpatient clinic and a family planning clinic in New Orleans, Louisiana, who had culture results positive for T. vaginalis were treated with 2 g of metronidazole under directly observed therapy. At 1 month, detailed sexual exposure and sexual partner treatment information was collected. Isolates from women who had clinical resistance (i.e., who tested positive for a third time after treatment at a higher dose) were tested for metronidazole susceptibility in vitro.
Of 60 HIV-positive women with trichomoniasis, 11 (18.3%) were T. vaginalis positive 1 month after treatment. The 11 recurrences were classified as 3 probable reinfections (27%), 2 probable infections from a new sexual partner (18%), and 6 probable treatment failures (55%); 2 of the 6 patients who experienced probable treatment failure had isolates with mild resistance to metronidazole. Of 301 HIV-negative women, 24 (8.0%) were T. vaginalis positive 1 month after treatment. The 24 recurrences were classified as 2 probable reinfections (8%) and 22 probable treatment failures (92%); of the 22 patients who experienced probable treatment failure, 2 had strains with moderate resistance to metronidazole, and 1 had a strain with mild resistance to metronidazole.
HIV-positive women were more likely to have sexual re-exposure than were HIV-negative women, although the rate of treatment failure was similar in both groups. High rates of treatment failure among both HIV-positive and HIV-negative women indicate that a 2-g dose of metronidazole may not be adequate for treatment of some women and that rescreening should be considered.
PMCID: PMC3855851  PMID: 18444815
15.  Effect of Echinophora platyloba, Stachys lavandulifolia, and Eucalyptus camaldulensis plants on Trichomonas vaginalis growth in vitro 
Trichomonas vaginalis is a protozoan parasite which causes vaginitis in women worldwide. Metronidazole with vast side effects is drug of choice for this infection. In search for an alternative drug, in this study the effect of three plants on Trichomonas vaginalis has been investigated in vitro.
Materials and Methods:
Alcoholic and watery extracts of Echinophora platyloba, Stachys lavandulifolia, and Eucalyptus camaldulensis were prepared. In TYIS culture medium containing alive Trichomonas vaginalis different concentrations of extracts of three plants were added. Following, 24, 48, and 72 h incubation the number of parasite in each test tube was counted.
Eucalyptus camaldulensis showed a strong effect on Trichomonas vaginalis growth. However, no significant effect was observed with Echinophora platyloba or Stachys lavandulifolia extracts.
Eucalyptus camaldulensis can be considered as an alternative drug for treatment of infective vaginitis which is caused by bacteria, fungi and parasites.
PMCID: PMC3544131  PMID: 23326809
Echinophora platyloba; Eucalyptus camaldulensis; plants; Stachys lavandulifolia; Trichomonas vaginalis
16.  Alternative Pathway of Metronidazole Activation in Trichomonas vaginalis Hydrogenosomes 
Antimicrobial Agents and Chemotherapy  2005;49(12):5033-5036.
Metronidazole and related 5-nitroimidazoles are the only available drugs in the treatment of human urogenital trichomoniasis caused by the protozoan parasite Trichomonas vaginalis. The drugs are activated to cytotoxic anion radicals by their reduction within the hydrogenosomes. It has been established that electrons required for metronidazole activation are released from pyruvate by the activity of pyruvate:ferredoxin oxidoreductase and transferred to the drug by a low-redox-potential carrier, ferredoxin. Here we describe a novel pathway involved in the drug activation within the hydrogenosome. The source of electrons is malate, another major hydrogenosomal substrate, which is oxidatively decarboxylated to pyruvate and CO2 by NAD-dependent malic enzyme. The electrons released during this reaction are transferred from NADH to ferredoxin by NADH dehydrogenase homologous to the catalytic module of mitochondrial complex I, which uses ferredoxin as electron acceptor. Trichomonads acquire high-level metronidazole resistance only after both pyruvate- and malate-dependent pathways of metronidazole activation are eliminated from the hydrogenosomes.
PMCID: PMC1315937  PMID: 16304169
17.  Resistance of Trichomonas vaginalis to Metronidazole: Report of the First Three Cases from Finland and Optimization of In Vitro Susceptibility Testing under Various Oxygen Concentrations 
Journal of Clinical Microbiology  2000;38(2):763-767.
Trichomonas vaginalis is a globally common sexually transmitted human parasite. Many strains of T. vaginalis from around the world have been described to be resistant to the current drug of choice, metronidazole. However, only a few cases of metronidazole resistance have been reported from Europe. The resistant strains cause prolonged infections which are difficult to treat. T. vaginalis infection also increases the risk for human immunodeficiency virus transmission. We present a practical method for determining the resistance of T. vaginalis to 5-nitroimidazoles. The suggested method was developed by determining the MICs and minimal lethal concentrations (MLCs) of metronidazole and ornidazole for T. vaginalis under various aerobic and anaerobic conditions. Using this assay we have found the first three metronidazole-resistant strains from Finland, although the origin of at least one of the strains seems to be Russia. Analysis of the patient-derived and previously characterized isolates showed that metronidazole-resistant strains were also resistant to ornidazole, and MLCs for all strains tested correlated well with the MICs. The suggested MICs of metronidazole for differentiation of sensitive and resistant isolates are >75 μg/ml in an aerobic 24-h assay and >15 μg/ml in an anaerobic 48-h assay.
PMCID: PMC86198  PMID: 10655382
18.  Trichomoniasis 
Clinical Microbiology Reviews  2004;17(4):794-803.
Trichomoniasis is perhaps the most common curable sexually transmitted disease worldwide, yet few resources are devoted to its control. It is associated with potentially serious complications such as preterm birth and human immunodeficiency virus acquisition and transmission. The immunology of a related organism, Tritrichomonas foetus, which causes disease in cattle, has been investigated to some extent, but more work is needed for the human strain, Trichomonas vaginalis. In addition, although trichomoniasis is easily treated with oral metronidazole, there is concern that the number of strains resistant to this antibiotic are increasing, and currently no alternative is licensed in the United States. As more is appreciated concerning the important public health implications of this common infection, more work will need to be done in understanding the diagnosis, treatment, and immunology of this organism.
PMCID: PMC523559  PMID: 15489349
19.  Novel Trichomonacidal Spermicides▿†‡ 
Metronidazole, the U.S. Food and Drug Administration-approved drug against trichomoniasis, is nonspermicidal and thus cannot offer pregnancy protection when used vaginally. Furthermore, increasing resistance of Trichomonas vaginalis to 5-nitro-imidazoles is a cause for serious concern. On the other hand, the vaginal spermicide nonoxynol-9 (N-9) does not protect against sexually transmitted diseases and HIV in clinical situations but may in fact increase their incidence due to its nonspecific, surfactant action. We therefore designed dually active, nonsurfactant molecules that were capable of killing Trichomonas vaginalis (both metronidazole-susceptible and -resistant strains) and irreversibly inactivating 100% human sperm at doses that were noncytotoxic to human cervical epithelial (HeLa) cells and vaginal microflora (lactobacilli) in vitro. Anaerobic energy metabolism, cell motility, and defense against reactive oxygen species, which are key to survival of both sperm and Trichomonas in the host after intravaginal inoculation, depend crucially on availability of free thiols. Consequently, molecules were designed with carbodithioic acid moiety as the major pharmacophore, and chemical variations were incorporated to provide high excess of reactive thiols for interacting with accessible thiols on sperm and Trichomonas. We report here the in vitro activities, structure-activity relationships, and safety profiles of these spermicidal antitrichomonas agents, the most promising of which was more effective than N-9 (the OTC spermicide) in inactivating human sperm and more efficacious than metronidazole in killing Trichomonas vaginalis (including metronidazole-resistant strain). It also significantly reduced the available free thiols on human sperm and inhibited the cytoadherence of Trichomonas on HeLa cells. Experimentally in vitro, the new compounds appeared to be safer than N-9 for vaginal use.
PMCID: PMC3165359  PMID: 21709091
20.  Antiprotozoal activities of benzimidazoles and correlations with beta-tubulin sequence. 
Benzimidazoles have been widely used since the 1960s as anthelmintic agents in veterinary and human medicine and as antifungal agents in agriculture. More recently, selected benzimidazole derivatives were shown to be active in vitro against two protozoan parasites, Trichomonas vaginalis and Giardia lamblia, and clinical studies with AIDS patients have suggested that microsporidia are susceptible as well. Here, we first present in vitro susceptibility data for T. vaginalis and G. lamblia using an expanded set of benzimidazole derivatives. Both parasites were highly susceptible to four derivatives, including mebendazole, flubendazole, and fenbendazole (50% inhibitory concentrations of 0.005 to 0.16 microgram/ml). These derivatives also had lethal activity that was time dependent: 90% of T. vaginalis cells failed to recover following a 20-h exposure to mebendazole at 0.17 microgram/ml. G. lamblia, but not T. vaginalis, was highly susceptible to five additional derivatives. Next, we examined in vitro activity of benzimidazoles against additional protozoan parasites: little or no activity was observed against Entamoeba histolytica, Leishmania major, and Acanthamoeba polyphaga. Since the microtubule protein beta-tubulin has been identified as the benzimidazole target in helminths and fungi, potential correlations between benzimidazole activity and beta-tubulin sequence were examined. This analysis included partial sequences (residues 108 to 259) from the organisms mentioned above, as well as the microsporidia Encephalitozoon hellem and Encephalitozoon cuniculi and the sporozoan Cryptosporidium parvum. beta-tubulin residues Glu-198 and, in particular, Phe-200 are strong predictors of benzimidazole susceptibility; both are present in Encephalitozoon spp. but absent in C. parvum.
PMCID: PMC284688  PMID: 7811023
21.  Chemical Structure of Trichomonas vaginalis Surface Lipoglycan 
The Journal of Biological Chemistry  2011;286(47):40494-40508.
Background: Trichomonas vaginalis lipoglycan (TvLG) mediates interactions between the parasite and human host.
Results: TvLG is composed of a polyrhamnose backbone with branches of poly-N-acetyllactosamine that are involved in attachment to host epithelium.
Conclusion: TvLG has a unique structure among solved parasite glycans.
Significance: This work provides a template to analyze TvLG from T. vaginalis with different binding properties.
The extracellular parasite Trichomonas vaginalis contains a surface glycoconjugate that appears to mediate parasite-host cell interaction via binding to human galectin-1. This glycoconjugate also elicits cytokine production from human vaginal epithelial cells, implicating its role in modulation of host immune responses. We have analyzed the structure of this glycoconjugate, previously described to contain the sugars rhamnose (Rha), N-acetylglucosamine (GlcNAc), galactose (Gal), xylose (Xyl), N-acetylgalactosamine (GalNAc), and glucose (Glc), using gas chromatograph mass spectrometry (GC-MS), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF), electrospray MS/MS, and nuclear magnetic resonance (NMR), combined with chemical and enzymatic digestions. Our data reveal a complex structure, named T. vaginalis lipoglycan (TvLG), that differs markedly from Leishmania lipophosphoglycan and Entamoeba lipopeptidophosphoglycan and is devoid of phosphosaccharide repeats. TvLG is composed of an α1–3 linked polyrhamnose core, where Rha residues are substituted at the 2-position with either β-Xyl or chains of, on average, five N-acetyllactosamine (-3Galβ1–4GlcNAcβ1-) (LacNAc) units and occasionally lacto-N-biose (-3Galβ1-3GlcNAcβ1-) (LNB). These chains are themselves periodically substituted at the Gal residues with Xyl-Rha. These structural analyses led us to test the role of the poly-LacNAc/LNB chains in parasite binding to host cells. We found that reduction of poly-LacNAc/LNB chains decreased the ability of TvLG to compete parasite binding to host cells. In summary, our data provide a new model for the structure of TvLG, composed of a polyrhamnose backbone with branches of Xyl and poly-LacNAc/LNB. Furthermore, the poly-LacNAc side chains are shown to be involved in parasite-host cell interaction.
PMCID: PMC3220458  PMID: 21900246
Adhesion; Glycoconjugate; Glycolipid Structure; Host-Pathogen Interactions; Pathogenesis; Trichomonas; TvLG
22.  Current Therapeutics, Their Problems, and Sulfur-Containing-Amino-Acid Metabolism as a Novel Target against Infections by “Amitochondriate” Protozoan Parasites 
Clinical Microbiology Reviews  2007;20(1):164-187.
The “amitochondriate” protozoan parasites of humans Entamoeba histolytica, Giardia intestinalis, and Trichomonas vaginalis share many biochemical features, e.g., energy and amino acid metabolism, a spectrum of drugs for their treatment, and the occurrence of drug resistance. These parasites possess metabolic pathways that are divergent from those of their mammalian hosts and are often considered to be good targets for drug development. Sulfur-containing-amino-acid metabolism represents one such divergent metabolic pathway, namely, the cysteine biosynthetic pathway and methionine γ-lyase-mediated catabolism of sulfur-containing amino acids, which are present in T. vaginalis and E. histolytica but absent in G. intestinalis. These pathways are potentially exploitable for development of drugs against amoebiasis and trichomoniasis. For instance, l-trifluoromethionine, which is catalyzed by methionine γ-lyase and produces a toxic product, is effective against T. vaginalis and E. histolytica parasites in vitro and in vivo and may represent a good lead compound. In this review, we summarize the biology of these microaerophilic parasites, their clinical manifestation and epidemiology of disease, chemotherapeutics, the modes of action of representative drugs, and problems related to these drugs, including drug resistance. We further discuss our approach to exploit unique sulfur-containing-amino-acid metabolism, focusing on development of drugs against E. histolytica.
PMCID: PMC1797636  PMID: 17223627
23.  Hydrogenosome Metabolism Is the Key Target for Antiparasitic Activity of Resveratrol against Trichomonas vaginalis 
Metronidazole (MDZ) and related 5-nitroimidazoles are the recommended drugs for treatment of trichomoniasis, a sexually transmitted disease caused by the protozoan parasite Trichomonas vaginalis. However, novel treatment options are needed, as recent reports have claimed resistance to these drugs in T. vaginalis isolates. In this study, we analyzed for the first time the in vitro effects of the natural polyphenol resveratrol (RESV) on T. vaginalis. At concentrations of between 25 and 100 μM, RESV inhibited the in vitro growth of T. vaginalis trophozoites; doses of 25 μM exerted a cytostatic effect, and higher doses exerted a cytotoxic effect. At these concentrations, RESV caused inhibition of the specific activity of a 120-kDa [Fe]-hydrogenase (Tvhyd). RESV did not affect Tvhyd gene expression and upregulated pyruvate-ferredoxin oxidoreductase (a hydrogenosomal enzyme) gene expression only at a high dose (100 μM). At doses of 50 to 100 μM, RESV also caused overexpression of heat shock protein 70 (Hsp70), a protective protein found in the hydrogenosome of T. vaginalis. The results demonstrate the potential of RESV as an antiparasitic treatment for trichomoniasis and suggest that the mechanism of action involves induction of hydrogenosomal dysfunction. In view of the results, we propose hydrogenosomal metabolism as a key target in the design of novel antiparasitic drugs.
PMCID: PMC3716124  PMID: 23478970
24.  Concordance between genetic relatedness and phenotypic similarities of Trichomonas vaginalis strains 
Despite the medical importance of trichomoniasis, little is known about the genetic relatedness of Trichomonas vaginalis strains with similar biological characteristics. Furthermore, the distribution of endobionts such as mycoplasmas or Trichomonas vaginalis virus (TVV) in the T. vaginalis metapopulation is poorly characterised.
We assayed the relationship between 20 strains of T. vaginalis from 8 countries using the Random Amplified Polymorphic DNA (RAPD) analysis with 27 random primers. The genealogical tree was constructed and its bootstrap values were computed using the program FreeTree. Using the permutation tail probability tests we found that the topology of the tree reflected both the pattern of resistance to metronidazole (the major anti-trichomonal drug) (p < 0.01) and the pattern of infection of strains by mycoplasmas (p < 0.05). However, the tree did not reflect pattern of virulence, geographic origin or infection by TVV. Despite low bootstrap support for many branches, the significant clustering of strains with similar drug susceptibility suggests that the tree approaches the true genealogy of strains. The clustering of mycoplasma positive strains may be an experimental artifact, caused by shared RAPD characters which are dependent on the presence of mycoplasma DNA.
Our results confirmed both the suitability of the RAPD technique for genealogical studies in T. vaginalis and previous conclusions on the relatedness of metronidazol resistant strains. However, our studies indicate that testing analysed strains for the presence of endobionts and assessment of the robustness of tree topologies by bootstrap analysis seem to be obligatory steps in such analyses.
PMCID: PMC60492  PMID: 11734059
25.  Remarkable Anti-Trichomonas vaginalis Activity of Plants Traditionally Used by the Mbyá-Guarani Indigenous Group in Brazil 
BioMed Research International  2013;2013:826370.
Trichomonas vaginalis, a flagellate protozoan, is the causative agent of trichomonosis, the most common nonviral sexually transmitted disease worldwide. Taking into account the increased prevalence of metronidazole-resistant isolates, alternative drugs are essential for the successful treatment. Natural products are the source of most new drugs, and popular wisdom about the use of medicinal plants is a powerful tool in this search. In this study, the activity of 10 medicinal plants extensively used in daily life by Mbyá-Guarani indigenous group was evaluated against seven different T. vaginalis isolates. Among the aqueous extracts tested, Verbena sp. (Guachu ka'a in Mbyá-Guarani language) and Campomanesia xanthocarpa (Guavira in Mbyá-Guarani language) showed the highest activity against T. vaginalis with MIC value of 4.0 mg/mL reaching 100% of efficacy against the parasite. The kinetic growth assays showed that the extracts promoted complete growth abolishment after 4 h of incubation. In addition, the extracts tested did not promote a significant hemolytic activity against human erythrocytes. Our results show for the first time the potential activity of Verbena sp. and C. xanthocarpa against T. vaginalis. In addition, this study demonstrates that indigenous knowledge is an important source of new prototype antiprotozoal agents.
PMCID: PMC3705823  PMID: 23865068

Results 1-25 (407051)