PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (826012)

Clipboard (0)
None

Related Articles

1.  Comparison of 18F SPECT with PET in myocardial imaging: A realistic thorax-cardiac phantom study 
Background
Positron emission tomography (PET) imaging with fluorine-18 (18F) Fluorodeoxyglucose (FDG) and flow tracer such as Rubidium-82 (82Rb) is an established method for evaluating an ischemic but viable myocardium. However, the high cost of PET imaging restricts its wider clinical use. Therefore, less expensive 18F FDG single photon emission computed tomography (SPECT) imaging has been considered as an alternative to 18F FDG PET imaging. The purpose of the work is to compare SPECT with PET in myocardial perfusion/viability imaging.
Methods
A nonuniform RH-2 thorax-heart phantom was used in the SPECT and PET acquisitions. Three inserts, 3 cm, 2 cm and 1 cm in diameter, were placed in the left ventricular (LV) wall to simulate infarcts. The phantom acquisition was performed sequentially with 7.4 MBq of 18F and 22.2 MBq of Technetium-99m (99mTc) in the SPECT study and with 7.4 MBq of 18F and 370 MBq of 82Rb in the PET study. SPECT and PET data were processed using standard reconstruction software provided by vendors. Circumferential profiles of the short-axis slices, the contrast and viability of the inserts were used to evaluate the SPECT and PET images.
Results
The contrast for 3 cm, 2 cm and 1 cm inserts were for 18F PET data, 1.0 ± 0.01, 0.67 ± 0.02 and 0.25 ± 0.01, respectively. For 82Rb PET data, the corresponding contrast values were 0.61 ± 0.02, 0.37 ± 0.02 and 0.19 ± 0.01, respectively. For 18F SPECT the contrast values were, 0.31 ± 0.03 and 0.20 ± 0.05 for 3 cm and 2 cm inserts, respectively. For 99mTc SPECT the contrast values were, 0.63 ± 0.04 and 0.24 ± 0.05 for 3 cm and 2 cm inserts respectively. In SPECT, the 1 cm insert was not detectable. In the SPECT study, all three inserts were falsely diagnosed as "viable", while in the PET study, only the 1 cm insert was diagnosed falsely "viable".
Conclusion
For smaller defects the 99mTc/18F SPECT imaging cannot entirely replace the more expensive 82Rb/18F PET for myocardial perfusion/viability imaging, due to poorer image spatial resolution and poorer defect contrast.
doi:10.1186/1471-2385-6-5
PMCID: PMC1634842  PMID: 17076890
2.  Positron Emission Tomography for the Assessment of Myocardial Viability 
Executive Summary
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.
After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.
A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.
The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Magnetic Resonance Imaging for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Objective
The objective of this analysis is to assess the effectiveness and safety of positron emission tomography (PET) imaging using F-18-fluorodeoxyglucose (FDG) for the assessment of myocardial viability. To evaluate the effectiveness of FDG PET viability imaging, the following outcomes are examined:
the diagnostic accuracy of FDG PET for predicting functional recovery;
the impact of PET viability imaging on prognosis (mortality and other patient outcomes); and
the contribution of PET viability imaging to treatment decision making and subsequent patient outcomes.
Clinical Need: Condition and Target Population
Left Ventricular Systolic Dysfunction and Heart Failure
Heart failure is a complex syndrome characterized by the heart’s inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality.
In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD)1 is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997.
Treatment Options
In general, there are three options for the treatment of heart failure: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure.
Myocardial Viability
Left ventricular dysfunction may be permanent if a myocardial scar is formed, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically:
dobutamine echocardiography (echo),
stress echo with contrast,
SPECT using either technetium or thallium,
cardiac magnetic resonance imaging (cardiac MRI), and
positron emission tomography (PET).
Dobutamine Echocardiography
Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 – 10 μg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability.
Stress Echocardiography with Contrast
Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium.
SPECT
SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images.
The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%.
There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%.
Cardiac Magnetic Resonance Imaging
Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. Two types of cardiac MRI are used to assess myocardial viability: dobutamine stress magnetic resonance imaging (DSMR) and delayed contrast-enhanced cardiac MRI (DE-MRI). DE-MRI, the most commonly used technique in Ontario, uses gadolinium-based contrast agents to define the transmural extent of scar, which can be visualized based on the intensity of the image. Hyper-enhanced regions correspond to irreversibly damaged myocardium. As the extent of hyper-enhancement increases, the amount of scar increases, so there is a lower the likelihood of functional recovery.
Cardiac Positron Emission Tomography
Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG).
During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. This collision results in annihilation where the combined mass of the positron and electron is converted into energy in the form of two 511 keV gamma rays, which are then emitted in opposite directions (180 degrees) and captured by an external array of detector elements in the PET gantry. Computer software is then used to convert the radiation emission into images. The system is set up so that it only detects coincident gamma rays that arrive at the detectors within a predefined temporal window, while single photons arriving without a pair or outside the temporal window do not active the detector. This allows for increased spatial and contrast resolution.
Evidence-Based Analysis
Research Questions
What is the diagnostic accuracy of PET for detecting myocardial viability?
What is the prognostic value of PET viability imaging (mortality and other clinical outcomes)?
What is the contribution of PET viability imaging to treatment decision making?
What is the safety of PET viability imaging?
Literature Search
A literature search was performed on July 17, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 to July 16, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. In addition, published systematic reviews and health technology assessments were reviewed for relevant studies published before 2004. Reference lists of included studies were also examined for any additional relevant studies not already identified. The quality of the body of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Inclusion Criteria
Criteria applying to diagnostic accuracy studies, prognosis studies, and physician decision-making studies:
English language full-reports
Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials (RCTs), and observational studies
Patients with chronic, known CAD
PET imaging using FDG for the purpose of detecting viable myocardium
Criteria applying to diagnostic accuracy studies:
Assessment of functional recovery ≥3 months after revascularization
Raw data available to calculate sensitivity and specificity
Gold standard: prediction of global or regional functional recovery
Criteria applying to prognosis studies:
Mortality studies that compare revascularized patients with non-revascularized patients and patients with viable and non-viable myocardium
Exclusion Criteria
Criteria applying to diagnostic accuracy studies, prognosis studies, and physician decision-making studies:
PET perfusion imaging
< 20 patients
< 18 years of age
Patients with non-ischemic heart disease
Animal or phantom studies
Studies focusing on the technical aspects of PET
Studies conducted exclusively in patients with acute myocardial infarction (MI)
Duplicate publications
Criteria applying to diagnostic accuracy studies
Gold standard other than functional recovery (e.g., PET or cardiac MRI)
Assessment of functional recovery occurs before patients are revascularized
Outcomes of Interest
Diagnostic accuracy studies
Sensitivity and specificity
Positive and negative predictive values (PPV and NPV)
Positive and negative likelihood ratios
Diagnostic accuracy
Adverse events
Prognosis studies
Mortality rate
Functional status
Exercise capacity
Quality of Life
Influence on PET viability imaging on physician decision making
Statistical Methods
Pooled estimates of sensitivity and specificity were calculated using a bivariate, binomial generalized linear mixed model. Statistical significance was defined by P values less than 0.05, where “false discovery rate” adjustments were made for multiple hypothesis testing. Using the bivariate model parameters, summary receiver operating characteristic (sROC) curves were produced. The area under the sROC curve was estimated by numerical integration with a cubic spline (default option). Finally, pooled estimates of mortality rates were calculated using weighted means.
Quality of Evidence
The quality of evidence assigned to individual diagnostic studies was determined using the QUADAS tool, a list of 14 questions that address internal and external validity, bias, and generalizibility of diagnostic accuracy studies. Each question is scored as “yes”, “no”, or “unclear”. The quality of the body of evidence was then assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
A total of 40 studies met the inclusion criteria and were included in this review: one health technology assessment, two systematic reviews, 22 observational diagnostic accuracy studies, and 16 prognosis studies. The available PET viability imaging literature addresses two questions: 1) what is the diagnostic accuracy of PET imaging for the assessment; and 2) what is the prognostic value of PET viability imaging. The diagnostic accuracy studies use regional or global functional recovery as the reference standard to determine the sensitivity and specificity of the technology. While regional functional recovery was most commonly used in the studies, global functional recovery is more important clinically. Due to differences in reporting and thresholds, however, it was not possible to pool global functional recovery.
Functional recovery, however, is a surrogate reference standard for viability and consequently, the diagnostic accuracy results may underestimate the specificity of PET viability imaging. For example, regional functional recovery may take up to a year after revascularization depending on whether it is stunned or hibernating tissue, while many of the studies looked at regional functional recovery 3 to 6 months after revascularization. In addition, viable tissue may not recover function after revascularization due to graft patency or re-stenosis. Both issues may lead to false positives and underestimate specificity. Given these limitations, the prognostic value of PET viability imaging provides the most direct and clinically useful information. This body of literature provides evidence on the comparative effectiveness of revascularization and medical therapy in patients with viable myocardium and patients without viable myocardium. In addition, the literature compares the impact of PET-guided treatment decision making with SPECT-guided or standard care treatment decision making on survival and cardiac events (including cardiac mortality, MI, hospital stays, unintended revascularization, etc).
The main findings from the diagnostic accuracy and prognosis evidence are:
Based on the available very low quality evidence, PET is a useful imaging modality for the detection of viable myocardium. The pooled estimates of sensitivity and specificity for the prediction of regional functional recovery as a surrogate for viable myocardium are 91.5% (95% CI, 88.2% – 94.9%) and 67.8% (95% CI, 55.8% – 79.7%), respectively.
Based the available very low quality of evidence, an indirect comparison of pooled estimates of sensitivity and specificity showed no statistically significant difference in the diagnostic accuracy of PET viability imaging for regional functional recovery using perfusion/metabolism mismatch with FDG PET plus either a PET or SPECT perfusion tracer compared with metabolism imaging with FDG PET alone.
FDG PET + PET perfusion metabolism mismatch: sensitivity, 89.9% (83.5% – 96.4%); specificity, 78.3% (66.3% – 90.2%);
FDG PET + SPECT perfusion metabolism mismatch: sensitivity, 87.2% (78.0% – 96.4%); specificity, 67.1% (48.3% – 85.9%);
FDG PET metabolism: sensitivity, 94.5% (91.0% – 98.0%); specificity, 66.8% (53.2% – 80.3%).
Given these findings, further higher quality studies are required to determine the comparative effectiveness and clinical utility of metabolism and perfusion/metabolism mismatch viability imaging with PET.
Based on very low quality of evidence, patients with viable myocardium who are revascularized have a lower mortality rate than those who are treated with medical therapy. Given the quality of evidence, however, this estimate of effect is uncertain so further higher quality studies in this area should be undertaken to determine the presence and magnitude of the effect.
While revascularization may reduce mortality in patients with viable myocardium, current moderate quality RCT evidence suggests that PET-guided treatment decisions do not result in statistically significant reductions in mortality compared with treatment decisions based on SPECT or standard care protocols. The PARR II trial by Beanlands et al. found a significant reduction in cardiac events (a composite outcome that includes cardiac deaths, MI, or hospital stay for cardiac cause) between the adherence to PET recommendations subgroup and the standard care group (hazard ratio, .62; 95% confidence intervals, 0.42 – 0.93; P = .019); however, this post-hoc sub-group analysis is hypothesis generating and higher quality studies are required to substantiate these findings.
The use of FDG PET plus SPECT to determine perfusion/metabolism mismatch to assess myocardial viability increases the radiation exposure compared with FDG PET imaging alone or FDG PET combined with PET perfusion imaging (total-body effective dose: FDG PET, 7 mSv; FDG PET plus PET perfusion tracer, 7.6 – 7.7 mSV; FDG PET plus SPECT perfusion tracer, 16 – 25 mSv). While the precise risk attributed to this increased exposure is unknown, there is increasing concern regarding lifetime multiple exposures to radiation-based imaging modalities, although the incremental lifetime risk for patients who are older or have a poor prognosis may not be as great as for healthy individuals.
PMCID: PMC3377573  PMID: 23074393
3.  Molecular imaging of angiogenesis with SPECT 
Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed.
doi:10.1007/s00259-010-1499-9
PMCID: PMC2914864  PMID: 20617435
Angiogenesis; αvβ3; VEGF; PMSA; ECM
4.  Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies 
Physics in Medicine and Biology  2011;57(2):375-393.
Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum-likelihood expectation-maximization (4D ML-EM) reconstructions gave more accurate reconstructions than did standard frame-by-frame static 3D ML-EM reconstructions. The SPECT/P results showed that 4D ML-EM reconstruction gave higher and more accurate estimates of K1 than did 3D ML-EM, yielding anywhere from a 44% underestimation to 24% overestimation for the three patients. The SPECT/D results showed that 4D ML-EM reconstruction gave an overestimation of 28% and 3D ML-EM gave an underestimation of 1% for K1. For the patient study the 4D ML-EM reconstruction provided continuous images as a function of time of the concentration in both ventricular cavities and myocardium during the 2 min infusion. It is demonstrated that a 2 min infusion with a two-headed SPECT system rotating 180° every 54 s can produce measurements of blood pool and myocardial TACs, though the SPECT simulation studies showed that one must sample at least every 30 s to capture a 1 min infusion input function.
doi:10.1088/0031-9155/57/2/375
PMCID: PMC3325151  PMID: 22170801
5.  Magnetic Resonance Imaging (MRI) for the Assessment of Myocardial Viability 
Executive Summary
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of noninvasive cardiac imaging modalities.
After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.
A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.
A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).
The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Magnetic Resonance Imaging for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Objective
The objective of this analysis is to assess the effectiveness and cost-effectiveness of cardiovascular magnetic resonance imaging (cardiac MRI) for the assessment of myocardial viability. To evaluate the effectiveness of cardiac MRI viability imaging, the following outcomes were examined: the diagnostic accuracy in predicting functional recovery and the impact of cardiac MRI viability imaging on prognosis (mortality and other patient outcomes).
Clinical Need: Condition and Target Population
Left Ventricular Systolic Dysfunction and Heart Failure
Heart failure is a complex syndrome characterized by the heart’s inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality.
In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD) 1 is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997.
Treatment Options
In general, there are three options for the treatment of heart failure: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or, in some cases, through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure.
Myocardial Viability
Left ventricular dysfunction may be permanent, due to the formation of myocardial scar, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically:
dobutamine echocardiography (echo),
stress echo with contrast,
SPECT using either technetium or thallium,
cardiac magnetic resonance imaging (cardiac MRI), and
positron emission tomography (PET).
Dobutamine Echocardiography
Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 – 10 µg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability.
Stress Echocardiography with Contrast
Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium.
SPECT
SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images.
The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%.
There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%.
Cardiac Positron Emission Tomography
Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG).
During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. This collision results in annihilation where the combined mass of the positron and electron is converted into energy in the form of two 511 keV gamma rays, which are then emitted in opposite directions (180 degrees) and captured by an external array of detector elements in the PET gantry. Computer software is then used to convert the radiation emission into images. The system is set up so that it only detects coincident gamma rays that arrive at the detectors within a predefined temporal window, while single photons arriving without a pair or outside the temporal window do not active the detector. This allows for increased spatial and contrast resolution.
Cardiac Magnetic Resonance Imaging
Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. Two types of cardiac MRI are used to assess myocardial viability: dobutamine stress magnetic resonance imaging (DSMR) and delayed contrast-enhanced cardiac MRI (DE-MRI). DE-MRI, the most commonly used technique in Ontario, uses gadolinium-based contrast agents to define the transmural extent of scar, which can be visualized based on the intensity of the image. Hyper-enhanced regions correspond to irreversibly damaged myocardium. As the extent of hyper-enhancement increases, the amount of scar increases, so there is a lower the likelihood of functional recovery.
Evidence-Based Analysis
Research Questions
What is the diagnostic accuracy of cardiac MRI for detecting myocardial viability?
What is the impact of cardiac MRI viability imaging on prognosis (mortality and other clinical outcomes)?
How does cardiac MRI compare with cardiac PET imaging for the assessment of myocardial viability?
What is the contribution of cardiac MRI viability imaging to treatment decision making?
Is cardiac MRI cost-effective compared with other cardiac imaging modalities for the assessment of myocardial viability?
Literature Search
A literature search was performed on October 9, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2005 until October 9, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria full-text articles were obtained. In addition, published systematic reviews and health technology assessments were reviewed for relevant studies published before 2005. Reference lists were also examined for any additional relevant studies not identified through the search. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Inclusion Criteria
English language full-reports
Published between January 1, 2005 and October 9, 2009
Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials (RCTs), and observational studies
Patients with chronic, known coronary artery disease (CAD)
Used contrast-enhanced MRI
Assessment of functional recovery ≥ 3 months after revascularization
Exclusion Criteria
< 20 patients
< 18 years of age
Patients with non-ischemic heart disease
Studies conducted exclusively in patients with acute myocardial infarction (MI)
Studies where TP, TN, FP, FN cannot be determined
Outcomes of Interest
Sensitivity
Specificity
Positive predictive value (PPV)
Negative Predictive value (NPV)
Positive likelihood ratio
Negative likelihood ratio
Diagnostic accuracy
Mortality rate (for prognostic studies)
Adverse events
Summary of Findings
Based on the available very low quality evidence, MRI is a useful imaging modality for the detection of viable myocardium. The pooled estimates of sensitivity and specificity for the prediction of regional functional recovery as a surrogate for viable myocardium are 84.5% (95% CI: 77.5% – 91.6%) and 71.0% (95% CI: 68.8% – 79.2%), respectively.
Subgroup analysis demonstrated a statistically significant difference in the sensitivity of MRI to assess myocardial viability for studies using ≤25% hyperenhancement as a viability threshold versus studies using ≤50% hyperenhancement as their viability threshold [78.7 (95% CI: 69.1% - 88.2%) and 96.2 (95% CI: 91.8 – 100.6); p=0.0044 respectively]. Marked differences in specificity were observed [73.6 (95% CI: 62.6% - 84.6%) and 47.2 (95% CI: 22.2 – 72.3); p=0.2384 respectively]; however, these findings were not statistically significant.
There were no statistically significant differences between the sensitivities or specificities for any other subgroups including mean preoperative LVEF, imaging method for function recovery assessment, and length of follow-up.
There was no evidence available to determine whether patients with viable myocardium who are revascularized have a lower mortality rate than those who are treated with medical therapy.
PMCID: PMC3426228  PMID: 23074392
6.  Dual tracer imaging of SPECT and PET probes in living mice using a sequential protocol 
Over the past 20 years, multimodal imaging strategies have motivated the fusion of Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scans with an X-ray computed tomography (CT) image to provide anatomical information, as well as a framework with which molecular and functional images may be co-registered. Recently, pre-clinical nuclear imaging technology has evolved to capture multiple SPECT or multiple PET tracers to further enhance the information content gathered within an imaging experiment. However, the use of SPECT and PET probes together, in the same animal, has remained a challenge. Here we describe a straightforward method using an integrated trimodal imaging system and a sequential dosing/acquisition protocol to achieve dual tracer imaging with 99mTc and 18F isotopes, along with anatomical CT, on an individual specimen. Dosing and imaging is completed so that minimal animal manipulations are required, full trimodal fusion is conserved, and tracer crosstalk including down-scatter of the PET tracer in SPECT mode is avoided. This technique will enhance the ability of preclinical researchers to detect multiple disease targets and perform functional, molecular, and anatomical imaging on individual specimens to increase the information content gathered within longitudinal in vivo studies.
PMCID: PMC3484419  PMID: 23145357
Dual tracer imaging; trimodal imaging; Positron Emission Tomography (PET); Single Photon Emission Computed Tomography (SPECT); X-ray Computed Tomography (CT); nuclear imaging
7.  Positron Emission Tomography for the Assessment of Myocardial Viability 
Executive Summary
Objective
The objective was to update the 2001 systematic review conducted by the Institute For Clinical Evaluative Sciences (ICES) on the use of positron emission tomography (PET) in assessing myocardial viability. The update consisted of a review and analysis of the research evidence published since the 2001 ICES review to determine the effectiveness and cost-effectiveness of PET in detecting left ventricular (LV) viability and predicting patient outcomes after revascularization in comparison with other noninvasive techniques.
Background
Left Ventricular Viability
Heart failure is a complex syndrome that impairs the contractile ability of the heart to maintain adequate blood circulation, resulting in poor functional capacity and increased risk of morbidity and mortality. It is the leading cause of hospitalization in elderly Canadians. In more than two-thirds of cases, heart failure is secondary to coronary heart disease. It has been shown that dysfunctional myocardium resulting from coronary heart disease (CAD) may recover contractile function (i.e. considered viable). Dysfunctional but viable myocardium may have been stunned by a brief episode of ischemia, followed by restoration of perfusion, and may regain function spontaneously. It is believed that repetitive stunning results in hibernating myocardium that will only regain contractile function upon revascularization.
For people with CAD and severe LV dysfunction (left ventricular ejection fraction [LVEF] <35%) refractory to medical therapy, coronary artery bypass and heart transplantation are the only treatment options. The opportunity for a heart transplant is limited by scarcityof donor hearts. Coronary artery bypass in these patients is associated with high perioperative complications; however, there is evidence that revascularization in the presence of dysfunctional but viable myocardium is associated with survival benefits and lower rates of cardiac events. The assessment of left ventricular (LV) viability is, therefore, critical in deciding whether a patient with coronary artery disease and severe LV dysfunction should undergo revascularization, receive a heart transplant, or remain on medical therapy.
Assessment of Left Ventricular Viability
Techniques for assessing myocardial viability depend on the measurement of a specific characteristic of viable myocytes such as cell membrane integrity, preserved metabolism, mitochondria integrity, and preserved contractile reserve. In Ontario, single photon emission computed tomography (SPECT) using radioactive 201thallium is the most commonly used technique followed by dobutamine echocardiography. Newer techniques include SPECT using technetium tracers, cardiac magnetic resonance imaging, and PET, the subject of this review.
Positron Emission Tomography
PET is a nuclear imaging technique based on the metabolism of radioactive analogs of normal substrates such as glucose and water. The radiopharmaceutical used most frequently in myocardial viability assessment is F18 fluorodeoxyglucose (FDG), a glucose analog. The procedure involves the intravenous administration of FDG under controlled glycemic conditions, and imaging with a PET scanner. The images are reconstructed using computer software and analyzed visually or semi-quantitatively, often in conjunction with perfusion images. Dysfunctional but stunned myocardium is characterized by normal perfusion and normal FDG uptake; hibernating myocardium exhibits reduced perfusion and normal/enhanced FDG uptake (perfusion/metabolism mismatch), whereas scar tissue is characterized by reduction in both perfusion and FDG uptake (perfusion/metabolism match).
Review Strategy
The Medical Advisory Secretariat used a search strategy similar to that used in the 2001 ICES review to identify English language reports of health technology assessments and primary studies in selected databases, published from January 1, 2001 to April 20, 2005. Patients of interest were those with CAD and severe ventricular dysfunction being considered for revascularization that had undergone viability assessment using either PET and/or other noninvasive techniques. The outcomes of interest were diagnostic and predictive accuracy with respect to recovery of regional or global LV function, long-term survival and cardiac events, and quality of life. Other outcomes of interest were impact on treatment decision, adverse events, and cost-effectiveness ratios.
Of 456 citations, 8 systematic reviews/meta-analyses and 37 reports on primary studies met the selection criteria. The reports were categorized using the Medical Advisory Secretariat levels of evidence system, and the quality of the reports was assessed using the criteria of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) developed by the Centre for Dissemination of Research (National Health Service, United Kingdom). Analysis of sensitivity, specificity, predictive values and likelihood ratios were conducted for all data as well as stratified by mean left ventricular ejection fraction (LVEF). There were no randomized controlled trials. The included studies compared PET with one or more other noninvasive viability tests on the same group of patients or examined the long-term outcomes of PET viability assessments. The quality assessment showed that about 50% or more of the studies had selection bias, interpreted tests without blinding, excluded uninterpretable segments in the analysis, or did not have clearly stated selection criteria. Data from the above studies were integrated with data from the 2001 ICES review for analysis and interpretation.
Summary of Findings
The evidence was derived from populations with moderate to severe ischemic LV dysfunction with an overall quality that ranges from moderate to low.
PET appears to be a safe technique for assessing myocardial viability.
CAD patients with moderate to severe ischemic LV dysfunction and residual viable myocardium had significantly lower 2-year mortality rate (3.2%) and higher event-free survival rates (92% at 3 years) when treated with revascularization than those who were not revascularized but were treated medically (16% mortality at 2-years and 48% 3-year event-free survival).
A large meta-analysis and moderate quality studies of diagnostic accuracy consistently showed that compared to other noninvasive diagnostic tests such as thallium SPECT and echocardiography, FDG PET has:
Higher sensitivity (median 90%, range 71%–100%) and better negative likelihood ratio (median 0.16, range 0–0.38; ideal <0.1) for predicting regional myocardial function recovery after revascularization.
Specificity (median 73%, range 33%–91%) that is similar to other radionuclide imaging but lower than that of dobutamine echocardiography
Less useful positive likelihood ratio (median 3.1, range 1.4 –9.2; ideal>10) for predicting segmental function recovery.
Taking positive and negative likelihood ratios together suggests that FDG PET and dobutamine echocardiography may produce small but sometimes important changes in the probability of recovering regional wall motion after revascularization.
Given its higher sensitivity, PET is less likely to produce false positive results in myocardial viability. PET, therefore, has the potential to identify some patients who might benefit from revascularization, but who would not have been identified as suitable candidates for revascularization using thallium SPECT or dobutamine echocardiography.
PET appears to be superior to other nuclear imaging techniques including SPECT with 201thallium or technetium labelled tracers, although recent studies suggest that FDG SPECT may have comparable diagnostic accuracy as FDG PET for predicting regional and global LV function recovery.
No firm conclusion can be reached about the incremental value of PET over other noninvasive techniques for predicting global function improvement or long-term outcomes in the most important target population (patients with severe ischemic LV dysfunction) due to lack of direct comparison.
An Ontario-based economic analysis showed that in people with CAD and severe LV dysfunction and who were found to have no viable myocardium or indeterminate results by thallium SPECT, the use of PET as a follow-up assessment would likely result in lower cost and better 5-year survival compared to the use of thallium SPECT alone. The projected annual budget impact of adding PET under the above scenario was estimated to range from $1.5 million to $2.3 million.
Conclusion
In patients with severe LV dysfunction, that are deemed to have no viable myocardium or indeterminate results in assessments using other noninvasive tests, PET may have a role in further identifying patients who may benefit from revascularization. No firm conclusion can be drawn on the impact of PET viability assessment on long-term clinical outcomes in the most important target population (i.e. patients with severe LV dysfunction).
PMCID: PMC3385418  PMID: 23074467
8.  Coregistration of Magnetic Resonance and Single Photon Emission Computed Tomography Images for Noninvasive Localization of Stem Cells Grafted in the Infarcted Rat Myocardium 
This paper demonstrates the application of mutual information based coregistration of radionuclide and magnetic resonance imaging (MRI) in an effort to use multimodality imaging for noninvasive localization of stem cells grafted in the infarcted myocardium in rats. Radionuclide imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) inherently has high sensitivity and is suitable for tracking of labeled stem cells, while high-resolution MRI is able to provide detailed anatomical and functional information of myocardium. Thus, coregistration of PET or SPECT images with MRI will map the location and distribution of stem cells on detailed myocardium structures. To validate this coregistration method, SPECT data were simulated by using a Monte Carlo-based projector that modeled the pinhole-imaging physics assuming nonzero diameter and photon penetration at the edge. Translational and rotational errors of the coregistration were examined with respect to various SPECT activities, and they are on average about 0.50 mm and 0.82°, respectively. Only the rotational error is dependent on activity of SPECT data. Stem cells were labeled with 111 Indium oxyquinoline and grafted in the ischemic myocardium of a rat model. Dual-tracer small-animal SPECT images were acquired, which allowed simultaneous detection of 111In-labeled stem cells and of [99mTc]sestamibi to assess myocardial perfusion deficit. The same animals were subjected to cardiac MRI. A mutual-information-based coregistration method was then applied to the SPECT and MRIs. By coregistration, the 111 In signal from labeled cells was mapped into the akinetic region identified on cine MRIs; the regional perfusion deficit on the SPECT images also coincided with the akinetic region on the MR image.
doi:10.1007/s11307-006-0062-3
PMCID: PMC2579787  PMID: 17053860
SPECT; MRI; Coregistration; Myocardial ischemia; Stem cells; Mutual information
9.  Accuracy and Reproducibility of Absolute Quantification of Myocardial Focal Tracer Uptake from Molecularly Targeted SPECT/CT: A Canine Validation 
Accurate and reproducible SPECT quantification of myocardial molecular processes remains a challenge because of the complication of heterogeneous background and extracardiac activity adjacent to the heart, which causes errors in the estimation of myocardial focal tracer uptake. Our aim in this study was to introduce a heuristic method for the correction of extracardiac activity into SPECT quantification and validate the modified quantification method for accuracy and reproducibility using a canine model.
Methods
Dual-isotope–targeted 99mTc and 201Tl perfusion SPECT images were acquired using a hybrid SPECT/CT camera in 6 dogs at 2 wk after myocardial infarction. Images were reconstructed with and without CT-based attenuation correction, and the reconstructed SPECT images were filtered and quantified simultaneously with incorporation of extracardiac radioactivity correction, gaussian fitting, and total-count sampling. Absolute myocardial focal tracer uptake was quantified from SPECT images using 3 different normal limits (maximum entropy [ME], mean-squared-error minimization [MSEM], and global minimum [GM]). SPECT-quantified percentage injected dose (%ID) was calculated and compared with the well-counted radioactivity measured from the postmortem myocardial tissue. SPECT quantitative processing was performed by 2 different individuals with extensive experience in cardiac image processing, to assess reproducibility of the quantitative analysis.
Results
Correlations between SPECT-quantified and well-counted %IDs using 3 different normal limits were excellent (ME: r = 0.82, y = 0.932x − 0.0102; MSEM: r = 0.73, y = 1.1413x − 0.0052; and GM: r = 0.7, y = 1.2147x − 0.0002). SPECT quantification using ME normal limits resulted in an underestimation of %ID, as compared with well-counted %ID. Myocardial focal tracer uptake quantified from SPECT images without CT-based attenuation correction was significantly lower than that with the attenuation correction. The %IDs quantified from attenuation-corrected SPECT images using MSEM and GM normal limits were not significantly different from well-counted %IDs. Reproducibility of the SPECT quantitative analysis was excellent (ME: r = 0.98, y = 0.9221x + 0.0001; MSEM: r = 0.97, y = 0.9357x + 0.0004; and GM: r = 0.96, y = 0.9026x + 0.001).
Conclusion
Our SPECT/CT quantification algorithm for the assessment of regional radioactivity may allow for accurate and reproducible serial noninvasive evaluation of molecularly targeted tracers in the myocardium.
doi:10.2967/jnumed.110.082214
PMCID: PMC3137905  PMID: 21321271
SPECT/CT; dual-isotope imaging; hot spot quantification; molecularly targeted cardiac imaging
10.  Serial Non-Invasive Targeted Imaging of Peripheral Angiogenesis: Validation and application of a semi-automated quantitative approach1 
Previous studies by our group have demonstrated the feasibility of non-invasive imaging of αv integrin to assess temporal and spatial changes in peripheral and myocardial angiogenesis. In this study we validate the reproducibility, accuracy, and applicability of a new semi-automated non-invasive approach for serial quantitative evaluation of targeted microSPECT-CT images of peripheral angiogenesis in wild-type and eNOS-deficient mice subjected to hindlimb ischemia.
Methods
Mice (n=15) underwent surgical ligation of the right femoral artery to induce unilateral hindlimb ischemia. One week post ligation, a 99mTc-labeled cyclic-RGD peptide targeted at αv integrin (NC100692, n=10) or a 99mTc-labeled negative control (AH-111744, n=5) was injected and 60-min later in vivo microSPECT-CT images were acquired. Mice were euthanized, tissue from proximal and distal hindlimb was excised for gamma well counting (GWC) of radiotracer activity, and ischemic-to-nonischemic (I/N) ratio calculated. MicroSPECT-CT images were analyzed using a new semi-automated approach which applies complex VOIs derived from segmentation of the microCT onto microSPECT images to calculate I/N activity ratios for the proximal and distal hindlimb. Studies were reprocessed for determination of intra- and inter-observer variability.
To compare 3D VOI analysis with traditional manual 2D ROI analysis of maximium intensity projection images, microSPECT images were summed onto a single anterior-posterior projection. Rectangular ROIs were manually drawn and I/N ratio calculated.
Our new 3D analysis approach was applied to additional groups of mice (eNOS-/-, n=5; wild-type, n=3) imaged before, 1 and 4 weeks after femoral artery resection.
Results
Our new semi-automated approach for evaluation of αv integrin targeted microSPECT-CT images demonstrated both a high intra- and inter-observer variability (R2=0.997), and accuracy (R2=0.780) for estimation of relative radiotracer activity relative to GWC. Analysis of serial microSPECT-CT images demonstrated a significant increase in relative NC100692 retention in the ischemic hindlimb of both wild-type and eNOS-deficient mice at 1 week after surgery. There was a significant (∼25%) decrease in radiotracer uptake in eNOS-/- mice relative to wild-type animals, which was not observed at baseline or 4 weeks post ligation.
Conclusion
A new semi-automated analysis of αv integrin targeted microSPECT-CT images provides a non-invasive approach for serial quantitative evaluation of peripheral angiogenesis. The reproducibility and accuracy of this approach allows for quantitative analysis of serial targeted molecular images of lower extremities, has applicability to other targeted SPECT or PET radiotracers, and may have implications for clinical imaging in patients with PAD.
doi:10.2967/jnumed.108.060822
PMCID: PMC3758240  PMID: 19617325
molecular imaging; microSPECT; microCT; peripheral angiogenesis
11.  Single Photon Emission Computed Tomography for the Diagnosis of Coronary Artery Disease 
Executive Summary
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease (CAD), an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients suspected of having CAD. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.
After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies for the diagnosis of CAD. Evidence-based analyses have been prepared for each of these five imaging modalities: cardiac magnetic resonance imaging, single photon emission computed tomography, 64-slice computed tomographic angiography, stress echocardiography, and stress echocardiography with contrast. For each technology, an economic analysis was also completed (where appropriate). A summary decision analytic model was then developed to encapsulate the data from each of these reports (available on the OHTAC and MAS website).
The Non-Invasive Cardiac Imaging Technologies for the Diagnosis of Coronary Artery Disease series is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Single Photon Emission Computed Tomography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Stress Echocardiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Stress Echocardiography with Contrast for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
64-Slice Computed Tomographic Angiography for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Cardiac Magnetic Resonance Imaging for the Diagnosis of Coronary Artery Disease: An Evidence-Based Analysis
Pease note that two related evidence-based analyses of non-invasive cardiac imaging technologies for the assessment of myocardial viability are also available on the MAS website:
Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Magnetic Resonance Imaging for the Assessment of Myocardial Viability: an Evidence-Based Analysis
The Toronto Health Economics and Technology Assessment Collaborative has also produced an associated economic report entitled:
The Relative Cost-effectiveness of Five Non-invasive Cardiac Imaging Technologies for Diagnosing Coronary Artery Disease in Ontario [Internet]. Available from: http://theta.utoronto.ca/reports/?id=7
Objective
The objective of the analysis is to determine the diagnostic accuracy of single photon emission tomography (SPECT) in the diagnosis of coronary artery disease (CAD) compared to the reference standard of coronary angiography (CA). The analysis is primarily meant to allow for indirect comparisons between non-invasive strategies for the diagnosis of CAD, using CA as a reference standard.
SPECT
Cardiac SPECT, or myocardial perfusion scintigraphy (MPS), is a widely used nuclear, non-invasive image acquisition technique for investigating ischemic heart disease. SPECT is currently appropriate for all aspects of detecting and managing ischemic heart disease including diagnosis, risk assessment/stratification, assessment of myocardial viability, and the evaluation of left ventricular function. Myocardial perfusion scintigraphy was originally developed as a two-dimensional planar imaging technique, but SPECT acquisition has since become the clinical standard in current practice. Cardiac SPECT for the diagnosis of CAD uses an intravenously administered radiopharmaceutical tracer to evaluate regional coronary blood flow usually at rest and after stress. The radioactive tracers thallium (201Tl) or technetium-99m (99mTc), or both, may be used to visualize the SPECT acquisition. Exercise or a pharmacologic agent is used to achieve stress. After the administration of the tracer, its distribution within the myocardium (which is dependent on myocardial blood flow) is imaged using a gamma camera. In SPECT imaging, the gamma camera rotates around the patients for 10 to 20 minutes so that multiple two-dimensional projections are acquired from various angles. The raw data are then processed using computational algorithms to obtain three-dimensional tomographic images.
Since its inception, SPECT has evolved and its techniques/applications have become increasingly more complex and numerous. Accordingly, new techniques such as attenuation correction and ECG gating have been developed to correct for attenuation due to motion or soft-tissue artifact and to improve overall image clarity.
Research Questions
What is the diagnostic accuracy of SPECT for the diagnosis of CAD compared to the reference standard of CA?
Is SPECT cost-effective compared to other non-invasive cardiac imaging modalities for the diagnosis of CAD?
What are the major safety concerns with SPECT when used for the diagnosis of CAD?
Methods
A preliminary literature search was performed across OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for all systematic reviews/meta-analysis published between January 1, 2004 and August 22, 2009. A comprehensive systematic review was identified from this search and used as a basis for an updated search.
A second comprehensive literature search was then performed on October 30, 2009 across the same databases for studies published between January 1, 2002 and October 30, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also hand-searched for any additional studies.
Systematic reviews, meta-analyses, controlled clinical trials, and observational studies
Minimum sample size of 20 patients who completed coronary angiography
Use of CA as a reference standard for the diagnosis of CAD
Data available to calculate true positives (TP), false positives (FP), false negatives (FN) and true negatives (TN)
Accuracy data reported by patient not by segment
English language
Non-systematic reviews, case reports
Grey literature and abstracts
Trials using planar imaging only
Trials conducted in patients with non-ischemic heart disease
Studies done exclusively in special populations (e.g., patients with left branch bundle block, diabetics, minority populations) unless insufficient data available
Summary of Findings
Eighty-four observational studies, one non-randomized, single arm controlled clinical trial, and one poorly reported trial that appeared to be a randomized controlled trial (RCT) met the inclusion criteria for this review. All studies assessed the diagnostic accuracy of myocardial perfusion SPECT for the diagnosis of CAD using CA as a reference standard. Based on the results of these studies the following conclusions were made:
According to very low quality evidence, the addition of attenuation correction to traditional or ECG-gated SPECT greatly improves the specificity of SPECT for the diagnosis of CAD although this improvement is not statistically significant. A trend towards improvement of specificity was also observed with the addition of ECG gating to traditional SPECT.
According to very low quality evidence, neither the choice of stress agent (exercise or pharmacologic) nor the choice of radioactive tracer (technetium vs. thallium) significantly affect the diagnostic accuracy of SPECT for the diagnosis of CAD although a trend towards accuracy improvement was observed with the use of pharmacologic stress over exercise stress and technetium over thallium.
Considerably heterogeneity was observed both within and between trials. This heterogeneity may explain why some of the differences observed between accuracy estimates for various subgroups were not statistically significant.
More complex analytic techniques such as meta-regression may help to better understand which study characteristics significantly influence the diagnostic accuracy of SPECT.
PMCID: PMC3377554  PMID: 23074411
12.  The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI 
Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advantages and disadvantages of the different approaches are described. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combinations of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceuticals in clinical practice may be accelerated.
doi:10.1007/s00259-013-2685-3
PMCID: PMC4003405
13.  Nuclear cardiac imaging for the assessment of myocardial viability 
Netherlands Heart Journal  2005;13(11):408-415.
An important aspect of the diagnostic and prognostic work-up of patients with ischaemic cardiomyopathy is the assessment of myocardial viability. Patients with left ventricular dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischaemia but at the same time benefit most from revascularisation. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy (SPECT), whether using 201thallium, 99mTc-sestamibi, or 99mTc- tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management.
Metabolic and perfusion imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularisation. New techniques in the nuclear cardiology field, such as attenuation corrected SPECT, dual isotope simultaneous acquisition (DISA) SPECT and gated FDG PET are promising and will further improve the detection of myocardial viability. Also the combination of multislice computed tomography scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive coronary angiography to myocardial perfusion imaging and quantification.
Images
PMCID: PMC2497364
myocardial viability; LV dysfunction; new nuclear medicine techniques
14.  Molecular Imaging of Pulmonary Cancer and Inflammation 
Molecular imaging (MI) may be defined as imaging in vivo using molecules that report on biologic function. This review will focus on the clinical use of radioactive tracers (nonpharmacologic amounts of compounds labeled with a radioactive substance) that permit external imaging using single photon emission computed tomography (planar, SPECT) or positron emission tomography (PET) imaging. Imaging of lung cancer has been revolutionized with the use of fluorine-18–labeled fluorodeoxyglucose (18F-FDG), an analog of glucose that can be imaged using PET. The ability to carry out whole body imaging after intravenous injection of 18F-FDG allows accurate staging of disease, helping to determine regional and distant nodal and other parenchymal involvement. Glycolysis is increased in nonmalignant conditions, including inflammation (e.g., sarcoidosis), and 18F-FDG PET is a sensitive method for evaluation of active inflammatory disease. Inflammatory disease has been imaged, even before the advent of PET, with planar and SPECT imaging using gallium-67, a radiometal that binds to transferrin. Metabolic alteration in pulmonary pathology is currently being studied, largely in lung cancer, primarily with PET, with a variety of other radiotracers. Prominent among these is thymidine; fluorine-18–labeled thymidine PET is being increasingly used to evaluate proliferation rate in lung and other cancers. This overview will focus on the clinical utility of 18F-FDG PET in the staging and therapy evaluation of lung cancer as well as in imaging of nonmalignant pulmonary conditions. PET and SPECT imaging with other radiotracers of interest will also be reviewed. Future directions in PET imaging of pulmonary pathophysiology will also be explored.
doi:10.1513/pats.200902-005AW
PMCID: PMC3266015  PMID: 19687220
SPECT; PET; radiolabeled ligands; cancer; infection
15.  Small-animal SPECT and SPECT/CT: application in cardiovascular research 
Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease.
doi:10.1007/s00259-009-1321-8
PMCID: PMC2918793  PMID: 20069298
microSPECT; microSPECT/CT; Cardiovascular imaging
16.  Noninvasive Assessment of Myocardial Viability in a Small Animal Model: Comparison of MRI, SPECT, and PET 
Acute myocardial infarction (AMI) research relies increasingly on small animal models and noninvasive imaging methods such as MRI, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). However, a direct comparison among these techniques for characterization of perfusion, viability, and infarct size is lacking. Rats were studied within 18–24 hr post AMI by MRI (4.7 T) and subsequently (40–48 hr post AMI) by SPECT (99Tc-MIBI) and micro-PET (18FDG). A necrosis-specific MRI contrast agent was used to detect AMI, and a fast low angle shot (FLASH) sequence was used to acquire late enhancement and functional images contemporaneously. Infarcted regions showed late enhancement, whereas corresponding radionuclide images had reduced tracer uptake. MRI most accurately depicted AMI, showing the closest correlation and agreement with triphenyl tetrazolium chloride (TTC), followed by SPECT and PET. In some animals a mismatch of reduced uptake in normal myocardium and relatively increased 18FDG uptake in the infarct border zone precluded conventional quantitative analysis. We performed the first quantitative comparison of MRI, PET, and SPECT for reperfused AMI imaging in a small animal model. MRI was superior to the other modalities, due to its greater spatial resolution and ability to detect necrotic myocardium directly. The observed 18FDG mismatch likely represents variable metabolic conditions between stunned myocardium in the infarct border zone and normal myocardium and supports the use of a standardized glucose load or glucose clamp technique for PET imaging of reperfused AMI in small animals.
doi:10.1002/mrm.21445
PMCID: PMC2835521  PMID: 18228591
myocardial infarction; imaging; MR; SPECT; PET
17.  In Vivo Detection of Stem Cells Grafted in Infarcted Rat Myocardium 
The evaluation of stem cell–mediated cardiomyoplasty by noninvasive in vivo imaging is critical for its clinical application. We hypothesized that dual-tracer small-animal SPECT would allow simultaneous imaging of 99mTc-sestamibi to assess myocardial perfusion and of 111In-labeled stem cells to delineate stem cell engraftment.
Methods
Three to 4 million rat embryonic cardiomyoblasts (H9c2 cells) were labeled with 11.1–14.8 MBq (0.3–0.4 mCi) of 111In-oxyquinoline and then injected into the border zones of infarcted myocardium of rats. 111In images were acquired with a SPECT scanner 2, 24, 48, 72, and 96 h after the stem cells were injected into the infarcted myocardium. To visualize the perfusion deficit in the infarcted myocardium, we injected 74 MBq (2 mCi) of 99mTc-sestamibi (Cardiolite) intravenously 48 h after grafting. Dual-isotope pinhole SPECT was used to image 99mTc-sestamibi uptake simultaneously with 111In to delineate retention of 111In-labeled stem cells. The presence of labeled stem cells was confirmed by autoradiography and histology.
Results
SPECT of 99mTc-sestamibi was used to delineate perfusion deficits and infarcted myocardium. Bull's-eye plots indicated that the 111In signal from the labeled stem cells overlapped the perfusion deficits identified from the 99mTc-sestamibi images. The 111In signal associated with the radiolabeled stem cells could be detected with SPECT of the heart for 96 h after engraftment.
Conclusion
This study demonstrated the feasibility of using dual-isotope pinhole SPECT for high-resolution detection of perfusion deficits with 99mTc-sestamibi and with 111In-labeled stem cells grafted into the region of the infarct.
PMCID: PMC2579781  PMID: 15872356
myocardium; ischemia; stem cells; indium; sestamibi; SPECT
18.  Relation between the kinetics of thallium-201 in myocardial scintigraphy and myocardial metabolism in patients with acute myocardial infarction 
Heart  1998;80(1):28-34.
Objective—To investigate the relations between myocardial metabolism and the kinetics of thallium-201 in myocardial scintigraphy.
Methods—46 patients within six weeks after the onset of acute myocardial infarction underwent resting myocardial dual isotope, single acquisition, single photon emission computed tomography (SPECT) using radioiodinated 15-iodophenyl 3-methyl pentadecaenoic acid (BMIPP) and thallium-201, exercise thallium-201 SPECT, and positron emission tomography (PET) using nitrogen-13 ammonia (NH3) and [F18]fluorodeoxyglucose (FDG) under fasting conditions. The left ventricle was divided into nine segments, and the severity of defects was assessed visually.
Results—In the resting SPECT, less BMIPP uptake than thallium-201 uptake was observed in all of 40 segments with reverse redistribution of thallium-201, and in 21 of 88 segments with a fixed defect of thallium-201 (p < 0.0001); and more FDG uptake than NH3 uptake (NH3-FDG mismatch) was observed in 35 of 40 segments with reverse redistribution and in 38 of 88 segments with fixed defect (p < 0.0001). Less BMIPP uptake in the resting SPECT was observed in 49 of 54 segments with slow stress redistribution in exercise SPECT, and in nine of 17 segments with rapid stress redistribution (p < 0.0005); NH3-FDG mismatch was observed in 42 of 54 segments with slow stress redistribution and in five of 17 segments with rapid stress redistribution (p < 0.0005).
Conclusions—Thallium-201 myocardial scintigraphy provides information about not only myocardial perfusion and viability but also about myocardial metabolism in patients with acute myocardial infarction.

 Keywords: thallium-201 SPECT;  BMIPP SPECT;  FDG PET;  myocardial infarction;  redistribution
PMCID: PMC1728765  PMID: 9764055
19.  SYMPOSIUM ON MULTIMODALITY CARDIOVASCULAR MOLECULAR IMAGING IMAGING TECHNOLOGY - PART 2 
Rationale
The ability to trace or identify specific molecules within a specific anatomic location provides insight into metabolic pathways, tissue components and tracing of solute transport mechanisms. With the increasing use of small animals for research such imaging must have sufficiently high spatial resolution to allow anatomic localization as well as sufficient specificity and sensitivity to provide an accurate description of the molecular distribution and concentration.
Methods
Imaging methods based on electromagnetic radiation, such as PET, SPECT, MRI and CT, are increasingly applicable due to recent advances in novel scanner hardware, image reconstruction software and availability of novel molecules which have enhanced sensitivity in these methodologies.
Results
Micro-PET has been advanced by development of detector arrays that provide higher resolution and positron emitting elements that allow new molecular tracers to be labeled. Micro-MRI has been improved in terms of spatial resolution and sensitivity by increased magnet field strength and development of special purpose coils and associated scan protocols. Of particular interest is the associated ability to image local mechanical function and solute transport processes which can be directly related to the molecular information. This is further strengthened by the synergistic integration of the PET with MRI. Micro-SPECT has been improved by use of coded aperture imaging approaches as well as image reconstruction algorithms which can better deal with the photon limited scan data. The limited spatial resolution can be partially overcome by integrating the SPECT with CT. Micro-CT by itself provides exquisite spatial resolution of anatomy, but recent developments of high spatial resolution photon counting and spectrally-sensitive imaging arrays, combined with x-ray optical devices, have promise for actual molecular identification by virtue of the chemical bond lengths of molecules, especially of bio-polymers.
Conclusion
With the increasing use of small animals for evaluating new clinical imaging techniques as well as providing increased insights into patho-physiological phenomena, the availability of improved detection systems, scanning protocols and associated software, the repertoire of molecular imaging is greatly increased in sensitivity and specificity.
doi:10.2967/jnumed.109.068148
PMCID: PMC3968540  PMID: 20457793
PET; SPECT; MRI; CT
20.  Diagnostic value of 18F-FDG PET in the assessment of myocardial viability in coronary artery disease: A comparative study with 99mTc SPECT and echocardiography 
Objective
To investigate the diagnostic value of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) in the assessment of myocardial viability in patients with known coronary artery disease (CAD) when compared to 99mTc single photon emission computed tomography (SPECT) and echocardiography, with invasive coronary angiography as the gold standard.
Methods
Thirty patients with diagnosed CAD met the selection criteria, with 10 of them (9 men, mean age 59.5 ± 10.5 years) undergoing all of these imaging procedures consisting of SPECT and PET, echocardiography and invasive angiography. Diagnostic sensitivity of these less invasive modalities for detection of myocardial viability was compared to invasive coronary angiography. Inter- and intra-observer agreement was assessed for diagnostic performance of SPECT and PET.
Results
Of all patients with proven CAD, 50% had triple vessel disease. Diagnostic sensitivity of SPECT, PET and echocardiography was 90%, 100% and 80% at patient-based assessment, respectively. Excellent agreement was achieved between inter-observer and intra-observer agreement of the diagnostic value of SPECT and PET in myocardial viability (k = 0.9).
Conclusion
18F-FDG PET has high diagnostic value in the assessment of myocardial viability in patients with known CAD when compared to SPECT and echocardiography. Further studies based on a large cohort with incorporation of 18F-FDG PET into patient management are warranted.
doi:10.11909/j.issn.1671-5411.2014.03.008
PMCID: PMC4178515  PMID: 25278972
Coronary artery disease; Diagnostic value; Positron emission tomography; Single photon emission computed tomography; Viability
21.  Detection of misery perfusion in the cerebral hemisphere with chronic unilateral major cerebral artery steno-occlusive disease using crossed cerebellar hypoperfusion: comparison of brain SPECT and PET imaging 
Purpose
In patients with unilateral internal carotid or middle cerebral artery (ICA or MCA) occlusive disease, the degree of crossed cerebellar hypoperfusion that is evident within a few months after the onset of stroke may reflect cerebral metabolic rate of oxygen in the affected cerebral hemisphere relative to that in the contralateral cerebral hemisphere. The aim of the present study was to determine whether the ratio of blood flow asymmetry in the cerebellar hemisphere to blood flow asymmetry in the cerebral hemisphere on positron emission tomography (PET) and single photon emission computed tomography (SPECT) correlates with oxygen extraction fraction (OEF) asymmetry in the cerebral hemisphere on PET in patients with chronic unilateral ICA or MCA occlusive disease and whether this blood flow ratio on SPECT detects misery perfusion in the affected cerebral hemisphere in such patients.
Methods
Brain blood flow and OEF were assessed using 15O-PET and N-isopropyl-p-[123I]iodoamphetamine (123I-IMP) SPECT, respectively. All images were anatomically standardized using SPM2. A region of interest (ROI) was automatically placed in the bilateral MCA territories and in the bilateral cerebellar hemispheres using a three-dimensional stereotaxic ROI template, and affected-to-contralateral asymmetry in the MCA territory or contralateral-to-affected asymmetry in the cerebellar hemisphere was calculated. Sixty-three patients with reduced blood flow in the affected cerebral hemisphere on 123I-IMP SPECT were enrolled in this study.
Results
A significant correlation was observed between MCA ROI asymmetry of PET OEF and the ratio of cerebellar hemisphere asymmetry of blood flow to MCA ROI asymmetry of blood flow on PET (r = 0.381, p = 0.0019) or SPECT (r = 0.459, p = 0.0001). The correlation coefficient was higher when reanalyzed in a subgroup of 43 patients undergoing a PET study within 3 months after the last ischemic event (r = 0.541, p = 0.0001 for PET; r = 0.609, p < 0.0001 for SPECT). The blood flow ratio on brain perfusion SPECT in all patients provided 100 % sensitivity and 58 % specificity, with 43 % positive and 100 % negative predictive values for detecting abnormally elevated MCA ROI asymmetry of PET OEF.
Conclusion
The ratio of blood flow asymmetry in the cerebellar hemisphere to blood flow asymmetry in the cerebral hemisphere on PET and SPECT correlates with PET OEF asymmetry in the cerebral hemisphere, and this blood flow ratio on SPECT detects misery perfusion in the affected cerebral hemisphere.
doi:10.1007/s00259-013-2463-2
PMCID: PMC3779315  PMID: 23740375
Crossed cerebellar hypoperfusion; Misery perfusion; Oxygen extraction fraction; PET; SPECT
22.  Systematic evaluation of 99mTc-tetrofosmin versus 99mTc-sestamibi to study murine myocardial perfusion in small animal SPECT/CT 
EJNMMI Research  2012;2:21.
Background
The “back-translation” of clinically available protocols to measure myocardial perfusion to preclinical imaging in mouse models of human disease is attractive for basic biomedical research. With respect to single-photon emission computed tomography (SPECT) approaches, clinical myocardial perfusion imaging protocols are established with different 99mTc-labeled perfusion tracers; however, studies evaluating and optimizing protocols for these tracers in high-resolution pinhole SPECT in mice are lacking. This study aims at evaluating two clinically available 99mTc-labeled myocardial perfusion tracers (99mTc-sestamibi vs. 99mTc-Tetrofosmin) in mice using four different imaging protocols.
Methods
Adult C57BL/6 male mice were injected with 99mTc-sestamibi (MIBI) or 99mTc-Tetrofosmin (TETRO) (4 MBq/g body weight) either intravenously through the tail vein (n = 5) or retroorbitally (n = 5) or intraperitoneally (i.p.) under anesthesia (n = 3) or i.p. in an awake state (n = 3) at rest. Immediately after injection, a multi-frame single-photon emission computed tomography/computed tomography (SPECT/CT) acquisition was initiated with six subsequent time frames of 10 min each. Reconstructed images of the different protocols were assessed and compared by visual analysis by experts and by time-activity-curves generated from regions-of-interest for various organs (normalized uptake values).
Results
Visually assessing overall image quality, the best image quality was found for MIBI for both intravenous injection protocols, whereas TETRO only had comparable image quality after retroorbital injections. These results were confirmed by quantitative analysis where left ventricular (LV) uptake of MIBI after tail vein injections was found significantly higher for all time points accompanied with a significantly slower washout of 16% for MIBI vs. 33% for TETRO (p = 0.009) from 10 to 60 min post injection (PI). Interestingly, LV washout from 10 to 60 min PI was significantly higher for TETRO when applied by tail vein injections when compared to retroorbital injections (22%, p = 0.008). However, liver uptake was significant and comparable for both tracers at all time points. Radioactivity concentration in the lungs was negligible for all time points and both tracers.
Conclusion
Intravenous MIBI injection (both tail vein and retroorbital) results in the best image quality for assessing myocardial perfusion of the murine heart by SPECT/CT. TETRO has a comparable image quality only for the retroorbital injection route.
doi:10.1186/2191-219X-2-21
PMCID: PMC3413527  PMID: 22626255
Multi-pinhole SPECT; Myocardial perfusion; MIBI; Tetrofosmin; Mouse
23.  Biodistribution and radiodosimetry of a novel myocardial perfusion tracer 123I-CMICE-013 in healthy rats 
EJNMMI Research  2014;4:16.
Background
123I-CMICE-013 is a novel radiotracer previously reported to have promising characteristics for single-photon emission computed tomography (SPECT) myocardial perfusion imaging. We evaluated the biokinetics and radiodosimetry of this rotenone-like 123I-labeled tracer in a microSPECT imaging-based study.
Methods
37 to 111 MBq of 123I-CMICE-013 was synthesized and administered intravenously to 14 healthy rats. Images were acquired with a microSPECT/CT camera at various time intervals and reconstructed to allow activity quantification in the tissues of interest. Radiation dosage resulted from the injection of 123I-CMICE-013 was estimated base on the biodistribution data. Tissue uptake values from image analysis were verified by gamma-counting dissected organs ex vivo.
Results
The heart/stomach and heart/intestine uptake ratios peaked shortly after the injection of 123I-CMICE-013, meanwhile the heart/liver ratio reached 2 as early as at 23 min post-injection. Little activity was observed in the lung and overnight clearance was significant in most of the measured tissues. The radiation dosimetry analysis based on the time-activity curves provided an estimate of the effective human dose of 6.99E-03 mSv/MBq using ICRP 60 and 7.15E-03 mSv/MBq using ICRP 103, which is comparable to the popular myocardium perfusion imaging (MPI) agents such as 99mTc-tetrofosmin and 99mTc-sestamibi, as well as other 123I-based radiotracers.
Conclusions
123I-CMICE-013 demonstrated desirable characteristics in its biokinetic and radiodosimetric profiles, supporting its potential application as a novel myocardial perfusion imaging agent.
doi:10.1186/2191-219X-4-16
PMCID: PMC3995622  PMID: 24620906
123I-CMICE-013; Myocardial perfusion imaging; Biodistribution; Radiodosimetry; Quantitative SPECT imaging
24.  Functional neuroimaging in epilepsy: FDG PET and ictal SPECT. 
Journal of Korean Medical Science  2001;16(6):689-696.
Epileptogenic zones can be localized by F-18 fluorodeoxyglucose positron emission tomography (FDG PET) and ictal single-photon emission computed tomography(SPECT). In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG PET or ictal SPECT is excellent, however, the sensitivity of MRI is so high that the incremental sensitivity by FDG PET or ictal SPECT has yet to be proven. When MRI findings are ambiguous or normal, or discordant with those of ictal EEG, FDG PET and ictal SPECT are helpful for localization without the need for invasive ictal EEG. In neocortical epilepsy, the sensitivities of FDG PET or ictal SPECT are fair. However, because almost a half of the patients are normal on MRI, FDG PET and ictal SPECT are helpful for localization or at least for lateralization in these non-lesional epilepsies in order to guide the subdural insertion of electrodes. Interpretation of FDG PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods confirmed the performance of previous visual interpretation results. Ictal SPECT was analyzed using subtraction methods(coregistered to MRI) and voxel-based analysis. Rapidity of injection of tracers, HMPAO versus ECD, and repeated ictal SPECT, which remain the technical issues of ictal SPECT, are detailed.
PMCID: PMC3054796  PMID: 11748346
25.  Evaluation of both perfusion and atrophy in multiple system atrophy of the cerebellar type using brain SPECT alone 
BMC Medical Imaging  2010;10:17.
Background
Partial volume effects in atrophied areas should be taken into account when interpreting brain perfusion single photon emission computed tomography (SPECT) images of neurodegenerative diseases. To evaluate both perfusion and atrophy using brain SPECT alone, we developed a new technique applying tensor-based morphometry (TBM) to SPECT.
Methods
After linear spatial normalization of brain perfusion SPECT using 99mTc-ethyl cysteinate dimer (99mTc-ECD) to a Talairach space, high-dimension-warping was done using an original 99mTc-ECD template. Contraction map images calculated from Jacobian determinants and spatially normalized SPECT images using this high-dimension-warping were compared using statistical parametric mapping (SPM2) between two groups of 16 multiple system atrophy of the cerebellar type (MSA-C) patients and 73 age-matched normal controls. This comparison was also performed in conventionally warped SPECT images.
Results
SPM2 demonstrated statistically significant contraction indicating local atrophy and decreased perfusion in the whole cerebellum and pons of MSA-C patients as compared to normal controls. Higher significance for decreased perfusion in these areas was obtained in high-dimension-warping than in conventional warping, possibly due to sufficient spatial normalization to a 99mTc-ECD template in high-dimensional warping of severely atrophied cerebellum and pons. In the present high-dimension-warping, modification of tracer activity remained within 3% of the original tracer distribution.
Conclusions
The present new technique applying TBM to brain SPECT provides information on both perfusion and atrophy at the same time thereby enhancing the role of brain perfusion SPECT
doi:10.1186/1471-2342-10-17
PMCID: PMC2927477  PMID: 20701753

Results 1-25 (826012)