PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (607103)

Clipboard (0)
None

Related Articles

1.  Bone Micro-CT Assessments in an Orchidectomised Rat Model Supplemented with Eurycoma longifolia 
Recent studies suggested that Eurycoma longifolia, a herbal plant, may have the potential to treat osteoporosis in elderly male. This study aimed to determine the effects of Eurycoma longifolia supplementation on the trabecular bone microarchitecture of orchidectomised rats (androgen-deficient osteoporosis model). Forty-eight-aged (10–12 months old) Sprague Dawley rats were divided into six groups of sham-operated (SHAM), orchidectomised control (ORX), orchidectomised + 7 mg/rat testosterone enanthate (TEN) and orchidectomised + Eurycoma longifolia 30 mg/kg (EL30), orchidectomised + Eurycoma longifolia 60 mg/kg (EL60), orchidectomised + Eurycoma longifolia 90 mg/kg (EL90). Rats were euthanized following six weeks of treatment. The left femora were used to measure the trabecular bone microarchitecture using micro-CT. Orchidectomy significantly decreased connectivity density, trabecular bone volume, and trabecular number compared to the SHAM group. Testosterone replacement reversed all the orchidectomy-induced changes in the micro-CT parameters. EL at 30 and 60 mg/kg rat worsened the trabecular bone connectivity density and trabecular separation parameters of orchidectomised rats. EL at 90 mg/kg rat preserved the bone volume. High dose of EL (90 mg/kg) may have potential in preserving the bone microarchitecture of orchidectomised rats, but lower doses may further worsen the osteoporotic changes.
doi:10.1155/2012/501858
PMCID: PMC3431134  PMID: 22952556
2.  Effects of Eurycoma longifolia on Testosterone Level and Bone Structure in an Aged Orchidectomised Rat Model 
Testosterone replacement is the choice of treatment in androgen-deficient osteoporosis. However, long-term use of testosterone is potentially carcinogenic. Eurycoma longifolia (EL) has been reported to enhance testosterone level and prevent bone calcium loss but there is a paucity of research regarding its effect on the bone structural parameters. This study was conducted to explore the bone structural changes following EL treatment in normal and androgen-deficient osteoporosis rat model. Thirty-six male Sprague-Dawley rats aged 12 months were divided into normal control, normal rat supplemented with EL, sham-operated, orchidectomised-control, orchidectomised with testosterone replacement, and orchidectomised with EL supplementation groups. Testosterone serum was measured both before and after the completion of the treatment. After 6 weeks of the treatment, the femora were processed for bone histomorphometry. Testosterone replacement was able to raise the testosterone level and restore the bone volume of orchidectomised rats. EL supplementation failed to emulate both these testosterone actions. The inability of EL to do so may be related to the absence of testes in the androgen deficient osteoporosis model for EL to stimulate testosterone production.
doi:10.1155/2012/818072
PMCID: PMC3433727  PMID: 22966245
3.  Combined Effects of Eurycoma longifolia and Testosterone on Androgen-Deficient Osteoporosis in a Male Rat Model 
Androgen-deficient osteoporosis in men is treated with testosterone therapy, which is associated with side effects. Eurycoma longifolia (EL) is known to possess androgenic properties and has been reported to protect bone from androgen-deficient osteoporosis in experimental animal models. The present study aimed to determine the effectiveness of combination therapy of EL and testosterone (T) in treating androgen-deficient osteoporosis. Forty male Sprague-Dawley rats were divided into: sham-operated (SHAM), orchidectomized-control (ORX), orchidectomized with testosterone (ORX + T), orchidectomized with EL (ORX + EL), and orchidectomized with combined T and EL therapy (ORX + T + EL). EL was administered via oral gavages daily at the dose of 15 mg/kg. T was injected intramuscularly at 8 mg/kg and 4 mg/kg for the ORX + T and ORX + T + EL groups, respectively. Following 6 weeks of treatment, the osteocalcin levels of ORX + T and ORX + T + EL groups were significantly lower than the SHAM group (P < 0.05). The posttreatment CTX levels of ORX + T and ORX + T + EL groups were significantly lower than their pretreatment levels (P < 0.05). Biomechanically, the strain parameter of the ORX + T + EL group was significantly higher than the ORX group (P < 0.05). Thus, the combination therapy of EL and low-dose T has potential for treatment of androgen-deficient osteoporosis. The lower T dose is beneficial in reducing the sideeffects of testosterone therapy.
doi:10.1155/2012/872406
PMCID: PMC3424595  PMID: 22924057
4.  Labisia pumila regulates bone-related genes expressions in postmenopausal osteoporosis model 
Background
Labisia Pumila var. alata (LPva) has shown potential as an alternative to estrogen replacement therapy (ERT) in prevention of estrogen-deficient osteoporosis. In earlier studies using postmenopausal model, LPva was able to reverse the ovariectomy-induced changes in biochemical markers, bone calcium, bone histomorphometric parameters and biomechanical strength. The mechanism behind these protective effects is unclear but LPva may have regulated factors that regulate bone remodeling. The aim of this study is to determine the bone-protective mechanism of LPva by measuring the expressions of several factors involved in bone formative and resorptive activities namely Osteoprotegerin (OPG), Receptor Activator of Nuclear Factor kappa-B Ligand (RANKL), Macrophage-Colony Stimulating Factor (MCSF) and Bone Morphogenetic Protein-2 (BMP-2).
Methods
Thirty-two female Wistar rats were randomly divided into four groups: Sham-operated (Sham), ovariectomized control (OVXC), ovariectomized with Labisia pumila var. alata (LPva) and ovariectomized with ERT (Premarin®) (ERT). The LPva and ERT were administered via daily oral gavages at doses of 17.5 mg/kg and 64.5 μg/kg, respectively. Following two months of treatment, the rats were euthanized and the gene expressions of BMP-2, OPG, RANKL and MCSF in the femoral bones were measured using a branch - DNA technique.
Results
The RANKL gene expression was increased while the OPG and BMP-2 gene expressions were reduced in the OVXC group compared to the SHAM group. There were no significant changes in the MCSF gene expressions among the groups. Treatment with either LPva or ERT was able to prevent these ovariectomy-induced changes in the gene expressions in ovariectomized rats with similar efficacy.
Conclusion
LPva may protect bone against estrogen deficiency-induced changes by regulating the RANKL, OPG and BMP-2 gene expressions.
doi:10.1186/1472-6882-13-217
PMCID: PMC3847139  PMID: 24007208
Labisia pumila; Postmenopausal osteoporosis; Estrogen; OPG; BMP-2; RANKL; MCSF
5.  Eurycoma longifolia: Medicinal Plant in the Prevention and Treatment of Male Osteoporosis due to Androgen Deficiency 
Osteoporosis in elderly men is now becoming an alarming health issue due to its relation with a higher mortality rate compared to osteoporosis in women. Androgen deficiency (hypogonadism) is one of the major factors of male osteoporosis and it can be treated with testosterone replacement therapy (TRT). However, one medicinal plant, Eurycoma longifolia Jack (EL), can be used as an alternative treatment to prevent and treat male osteoporosis without causing the side effects associated with TRT. EL exerts proandrogenic effects that enhance testosterone level, as well as stimulate osteoblast proliferation and osteoclast apoptosis. This will maintain bone remodelling activity and reduce bone loss. Phytochemical components of EL may also prevent osteoporosis via its antioxidative property. Hence, EL has the potential as a complementary treatment for male osteoporosis.
doi:10.1155/2012/125761
PMCID: PMC3403331  PMID: 22844328
6.  Alendronate (ALN) combined with Osteoprotegerin (OPG) significantly improves mechanical properties of long bone than the single use of ALN or OPG in the ovariectomized rats 
Background
Alendronate (ALN) is the most common form of bisphosphonates used for the treatment of osteoporosis. Osteoprotegerin (OPG) has also been shown to reduce osteoporotic changes in both humans and experimental animals after systemic administration. The aim of this current study was to test if the anti-resorption effects of ALN may be enhanced when used in combination with OPG.
Objectives
To investigate the effects of ALN, OPG or combined on bone mass and bone mechanical properties in ovariectomized (OVX) rats.
Methods
OVX rats were treated with ALN, OPG-Fc, or OPG-Fc and ALN. Biochemical markers, trabecular bone mass, biomechanics, histomorphometry and RANKL expression in the bone tissues were examined following the treatments.
Results
The treatment of ALN, OPG-Fc and ALN+OPG-Fc all prevented bone loss in the OVX-rats, there was no statistical difference among the three treatment groups in terms of vertebrae BMD, mineralizing surfaces, mineral apposition rate, BFR/BS. The ALN+OPG-Fc treatment group had significantly increased the mechanical strength of lumber vertebral bodies and femoral shafts when compared to the ALN and OPG-Fc treatment groups. The RANKL protein expression in the vertebral bones was significantly decreased in the ALN and ALN+OPG-Fc treatment groups, suggesting the combined use of OPG-Fc and ALN might have amplified inhibition of bone resorption through inhibiting RANKL-dependent osteoclastogenesis.
Conclusion
The combined use of OPG-Fc and ALN may be a new treatment strategy for reversing bone loss and restoring bone quality in osteoprotic disorders.
doi:10.1186/1749-799X-6-34
PMCID: PMC3143091  PMID: 21752290
Osteoprotegerin; Alendronate; RANKL; Osteoporosis; Ovariectomy
7.  Effect of parathyroid hormone on hypogonadism induced bone loss of proximal femur of orchiectomized rat 
World Journal of Urology  2011;29(4):529-534.
Purpose
Management of hypogonadism-induced osteoporosis in elderly men is still a challenge. We investigated the short-term effects of parathyroid hormone (PTH) treatments on strength, micro-architecture, and mineral density of trochanteric region of orchiectomized rat femur.
Methods
Eight-month-old male Sprague–Dawley rats (n = 44) were divided into two groups: (1) orchiectomized (ORX) and (2) sham group. Twelve weeks after orchiectomy, half of the orchiectomized animals were treated with daily subcutaneously injected PTH (0.040 mg/kg/BW) (ORX-PTH) for 5 weeks. The other half remained untreated (ORX). The sham-operated group was divided and treated in the same way (sham, sham-PTH). After 5 weeks, both femurs were excised for biomechanical and histomorphometric analysis, trabecular measurements, mineral content assessment, and immunofluorescence analysis.
Results
The femoral trochanteric strength after PTH treatment was enhanced in the breaking test (ORX-Fmax = 158.7 N vs. ORX + PTH-Fmax = 202 N). Stiffness of treated ORX animals reached nearly the levels observed in untreated sham rats. PTH therapy improved the trabecular connectivity, width, and area (ORX-Tb.Ar = 47.79% vs. ORX + PTH-Tb.Ar = 68.47%, P < 0.05) in the proximal femur. The treated rats showed significantly improved mineral content in ashed femurs (ORX-mineral content = 43.73% vs. ORX + PTH-mineral content = 49.49%) when compared to the untreated animals. A comparison of widths of fluorescence bands in cortical bone of the subtrochanteric cross-sections showed a significant increase in oppositions after the PTH therapy.
Conclusions
Our finding supports the hypothesis that PTH therapy seems to be a rational therapy in patients with hypogonadism induced bone loss and improves the bone strength of trochanteric region of rat femur.
doi:10.1007/s00345-011-0652-9
PMCID: PMC3143324  PMID: 21298272
Hypogonadism; Osteoporosis; Parathyroid hormone; Trochanteric region
8.  The Effect of Eurycoma Longifolia Jack on Spermatogenesis in Estrogen-Treated Rats 
Clinics  2010;65(1):93-98.
INTRODUCTION:
There is little data concerning the ability of Eurycoma longifolia Jack (EL) to reverse the inhibitory effects of estrogen on testosterone production and spermatogenesis. The aim of the present study was to determine the effect of EL on testicular histology and sperm count in estrogen-treated male rats.
METHODS:
Adult male Sprague-Dawley rats weighing 200–250 g were divided into four groups of six rats each. Group A (control) was given solvent in the same manner as the treated groups were given EL. Group B was treated with EL (8 mg/kg body weight) orally. Group C was treated with estradiol (E2) (intramuscular dose of 500 μg/kg body weight), and group D received a combined treatment of oral EL and intramuscular E2. After fourteen consecutive days of treatment, rats from all groups were sacrificed and subjected to spermatogenic and epididymal sperm cell counts.
RESULTS:
The spermatogenic cell count in the E2-treated group was significantly decreased as compared to the control (p < 0.05) and EL+E2-treated groups (p < 0.05). A similar finding was found for the epididymal sperm count; the E2-treated group had a significant decrease in the count compared to the control (p < 0.05) and EL+E2-treated groups (p < 0.05). Rats that were treated with EL alone exhibited significantly higher sperm counts and sperm motility when compared to the control group (p < 0.05).
CONCLUSIONS:
EL extract acts as a potential agent for reversing the effects of estrogen by increasing spermatogenesis and sperm counts in rats after fourteen consecutive days of treatment.
doi:10.1590/S1807-59322010000100014
PMCID: PMC2815289  PMID: 20126351
Eurycoma longifolia Jack; Estrogen; Testis; Spermatogenesis; Anatomy; Histology
9.  Immunolocalization of RANKL is Increased and OPG Decreased During Dietary Magnesium Deficiency in the Rat 
Background
Epidemiological studies have linked low dietary magnesium (Mg) to low bone mineral density and osteoporosis. Mg deficiency in animal models has demonstrated a reduction in bone mass and increase in skeletal fragility. One major mechanism appears to be an increase in osteoclast number and bone resorption. The final pathway of osteoclastogenesis involves three constituents of a cytokine system: receptor activator of nuclear factor kB ligand (RANKL); its receptor, receptor activator of nuclear factor kB (RANK); and its soluble decoy receptor, osteoprotegerin (OPG). The relative presence of RANKL and OPG dictates osteoclastogenesis. The objective of this study was to assess the presence of RANKL and OPG in rats on a low Mg diet.
Methods
RANKL and OPG were assessed by immunocytochemistry staining in the tibia for up to 6 months in control rats on regular Mg intake (0.5 g/kg) and experimental rats on reduction of dietary Mg (.04%, 25% and 50% of this Nutrient Requirement).
Results
At all dietary Mg intakes, alteration in the presence of immunocytochemical staining of RANKL and OPG was observed. In general, OPG was decreased and RANKL increased, reflecting an alteration in the RANKL/OPG ratio toward increased osteoclastogenesis.
Conclusion
We have, for the first time demonstrated that a reduction in dietary Mg in the rat alters the presence of RANKL and OPG and may explain the increase in osteoclast number and decrease in bone mass in this animal model. As some of these dietary intake reductions in terms of the RDA are present in a large segment of or population, Mg deficiency may be another risk factor for osteoporosis.
doi:10.1186/1743-7075-2-24
PMCID: PMC1266035  PMID: 16162295
10.  Therapeutic implications of osteoprotegerin 
Osteoprotegerin (OPG), a member of the tumor necrosis factor (TNF) receptor superfamily, contributes determinatively to the bone remodeling as well as to the pathogenetic mechanism of bone malignancies and disorders of mineral metabolism. There is additional evidence that OPG can promote cell survival by inhibiting TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. A number of recent in vitro, in vivo and clinical studies have defined the role of the RANK/RANKL/OPG pathway in skeletal and vascular diseases. These works were the milestone of the deep understanding of the mechanism of OPG. This review provides an overview of the potential innovative therapeutic strategies of OPG in metastatic breast and prostate carcinoma, multiple myeloma, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis and rheumatoid arthritis. Special reference is given to the increasing evidence that RANKL and OPG may link the skeletal with the vascular system.
doi:10.1186/1475-2867-9-26
PMCID: PMC2754428  PMID: 19747396
11.  Oestrogen deficiency modulates particle-induced osteolysis 
Arthritis Research & Therapy  2011;13(3):R100.
Introduction
Postmenopausal osteoporosis may modulate bone response to wear debris. In this article, we evaluate the influence of oestrogen deficiency on experimental particle-induced osteolysis.
Methods
Polyethylene (PE) particles were implanted onto the calvaria of normal controls, sham-ovariectomized (OVX), OVX mice and OVX mice supplemented with oestrogen (OVX+E). After 14 days, seven skulls per group were analyzed using a high-resolution micro-computed tomography (micro-CT) and histomorphometry, and for tartrate-specific alkaline phosphatase. Five calvariae per group were cultured for the assay of IL-1β, IL-6, TNF-α and receptor activator of the nuclear factor κB (RANKL) secretion using quantitative ELISA. Serum IL-6 concentrations were obtained. The expression of RANKL and osteoprotegerin (OPG) mRNA were evaluated using real-time PCR.
Results
As assessed by μCT and by histomorphometry, PE particles induced extensive bone resorption and an intense inflammatory reaction in normal controls, sham-OVX and OVX+E mice, but not in the OVX mice group. In normal controls, sham-OVX and OVX+E mice, PE particles induced an increase in serum IL-6, in TNF-α and RANKL local concentrations, and resulted in a significant increase in RANKL/OPG messenger RNA (mRNA) ratio. Conversely, these parameters remained unchanged in OVX mice after PE implantation.
Conclusions
Oestrogen privation in the osteolysis murine model ultimately attenuated osteolytic response to PE particles, suggesting a protective effect. This paradoxical phenomenon was associated with a down-regulation of pro-resorptive cytokines. It is hypothesized that excessive inflammatory response was controlled, illustrated by the absence of increase of serum IL-6 in OVX mice after PE implantation.
doi:10.1186/ar3381
PMCID: PMC3218915  PMID: 21696618
12.  Effect of whole body vibration therapy on circulating serotonin levels in an ovariectomized rat model of osteoporosis 
Objective(s): Studies have reported that whole body vibration (WBV) played a vital role in bone remodeling. Circulating serotonin is also involved in negative regulating bone mass in rodents and humans. However, both WBV and inhibition of serotonin biosynthesis may suppress receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis in vitro. The purpose of the current study was to investigate the effect of WBV therapy on the levels of serum serotonin in ovariectomized rats.
Materials and Methods: Thirty-six-month-old female Sprague Dawley rats weighing 276.15±37.75 g were ovariectomized to induce osteoporosis, and another ten rats underwent sham operation to establish sham control (SHAM) group. After 3 months, ovariectomized rats were divided into three subgroups and then separately treated with WBV, Alendronate (ALN) and normal saline (OVX), SHAM group was given normal saline. After 6 weeks of treatment, rats were sacrificed. Serum serotonin, RANKL, bone turnover markers, and bone mineral density (BMD), bone strength were evaluated.
Results: The serum serotonin level was significantly lower in WBV group than OVX and ALN groups (P<0.05 and P<0.001). RANKL levels significantly decreased in WBV and ALN groups compared to OVX group (P<0.001 for both). BMD and biomechanical parameters of femur significantly increased (P<0.05 for both) and bone turnover levels decreased (P<0.001 for both) in WBV group compared to OVX group.
Conclusion: These data indicated that WBV enhanced the bone strength and BMD in ovariectomized rats most likely by reducing the levels of circulating serotonin.
PMCID: PMC3938888  PMID: 24592309
Osteoporosis; Ovariectomy; Serotonin; Whole body vibration
13.  RANKL, a necessary chance for clinical application to osteoporosis and cancer-related bone diseases 
World Journal of Orthopedics  2013;4(4):207-217.
Osteoporosis is a common bone disease characterized by reduced bone and increased risk of fracture. In postmenopausal women, osteoporosis results from bone loss attributable to estrogen deficiency. Osteoclast differentiation and activation is mediated by receptor activator of nuclear factor-κB ligand (RANKL), its receptor receptor activator of nuclear factor-κB (RANK), and a decoy receptor for RANKL, osteoprotegerin (OPG). The OPG/RANKL/RANK system plays a pivotal role in osteoclast biology. Currently, a fully human anti-RANKL monoclonal antibody named denosumab is being clinically used for the treatment of osteoporosis and cancer-related bone disorders. This review describes recent advances in RANKL-related research, a story from bench to bedside. First, the discovery of the key factors, OPG/RANKL/RANK, revealed the molecular mechanism of osteoclastogenesis. Second, we established three animal models: (1) a novel and rapid bone loss model by administration of glutathione-S transferase-RANKL fusion protein to mice; (2) a novel mouse model of hypercalcemia with anorexia by overexpression of soluble RANKL using an adenovirus vector; and (3) a novel mouse model of osteopetrosis by administration of a denosumab-like anti-mouse RANKL neutralizing monoclonal antibody. Lastly, anti-human RANKL monoclonal antibody has been successfully applied to the treatment of osteoporosis and cancer-related bone disorders in many countries. This is a real example of applying basic science to clinical practice.
doi:10.5312/wjo.v4.i4.207
PMCID: PMC3801240  PMID: 24147256
Osteoclast; Osteoblast; Receptor activator of nuclear factor-κB ligand; Denosumab; Receptor activator of nuclear factor-κB; Osteoprotegerin
14.  The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss 
Gut  2005;54(4):479-487.
Background and aims: A substantial proportion of patients with inflammatory bowel disease (IBD) develops osteopenia and osteoporosis in the course of disease. Recent data from a mouse model of colitis suggest that the receptor activator of nuclear factor kappa B (RANKL)/osteoprotegerin (OPG) system may be responsible for bone loss.
Methods: We investigated the activation state of the RANKL/OPG system and its association with bone loss in human IBD. Plasma levels of OPG and RANKL were correlated with bone mineral density and current IBD therapy. Colonic secretion of OPG and RANKL and cell types responsible for such secretion were determined.
Results: OPG plasma levels were elevated 2.4-fold in Crohn’s disease (CD) and 1.9-fold in ulcerative colitis (UC) whereas soluble RANKL (sRANKL) levels were not significantly different in IBD patients compared with healthy controls. High levels of OPG were released from colonic explant cultures (CEC) derived from inflamed IBD specimens, and colonic macrophages and dendritic cells costained for OPG. sRANKL levels from CEC were low both in IBD patients and healthy controls. Interestingly, increased expression of RANKL was mainly confined to cells in the lamina muscularis. A significant negative correlation was found between OPG plasma levels and femoral neck/lumbar spine bone mineral density.
Conclusions: We have demonstrated that IBD is associated with alterations in the RANKL/OPG system. Applying results from a murine model of colitis associated bone loss, the constellation of OPG and sRANKL regulation observed in our study raises the possibility that RANKL/OPG may contribute to the development of bone loss in IBD.
doi:10.1136/gut.2004.044370
PMCID: PMC1774465  PMID: 15753532
Crohn’s disease; ulcerative colitis; inflammatory bowel disease; osteoprotegerin; receptor activator of nuclear factor kappa B; bone mineral density
15.  Therapeutic Effects of Cortex acanthopanacis Aqueous Extract on Bone Metabolism of Ovariectomized Rats 
The aim of this study was to evaluate effects of aqueous extract from Cortex acanthopanacis (CAE) on osteoporosis rats induced by ovariectomy (OVX) using aqueous extract from Folium Epimedii (FEE) as positive control agent. Three-month-old female rats that underwent OVX were treated with CAE. After 12 weeks, bone mineral density (BMD) and indices of bone histomorphometry of tibia were measured. Levels of protein and mRNA expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) in tibia were evaluated. In addition, the serum concentrations of osteocalcin (OC), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), calcitonin (CT), and parathyroid hormone (PTH) were determined. Administration of CAE significantly prevented OVX-induced rats from gain of the body weight. Treatment with CAE increased bone mass remarkably and showed a significant inhibitory effect on bone resorption by downregulating significantly the expression of RANKL in tibia of OVX rats. Meanwhile, treatment of CAE significantly reduced serum level of IL-1β and increased level of CT in OVX rats. This suggests that CAE has the potential to be used as an alternative therapeutic agent for postmenopausal osteoporosis.
doi:10.1155/2012/492627
PMCID: PMC3446781  PMID: 22997530
16.  Effects of Multi-Deficiencies-Diet on Bone Parameters of Peripheral Bone in Ovariectomized Mature Rat 
PLoS ONE  2013;8(8):e71665.
Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors in future fracture healing studies.
doi:10.1371/journal.pone.0071665
PMCID: PMC3745426  PMID: 23977109
17.  Testosterone regulates cell proliferation in aggressive fibromatosis (desmoid tumour) 
British Journal of Cancer  2011;104(9):1452-1458.
Background:
Aggressive fibromatosis (desmoid tumour) is a locally invasive tumour caused by mutations resulting in β-catenin protein stabilisation. Apc1638N mice are predisposed to developing aggressive fibromatosis tumours, and male mice develop greater numbers of tumours than female mice, suggesting a role for androgens in this tumour type.
Methods:
Human aggressive fibromatosis tumours were examined for the expression of the androgen receptor, and primary human tumour cell cultures were treated with testosterone. Orchidectomised Apc1638N mice were investigated for the development of tumours, and were treated with testosterone to study the effect of tumour formation and the level of β-catenin.
Results:
Androgen receptors are universally expressed in human aggressive fibromatosis tumours. Testosterone increased the proliferation rate and β-catenin protein level in a dose-dependent manner in human aggressive fibromatosis tumours. Orchiectomy reduced the number and size of tumours that formed in male Apc1638N mice to a similar level as observed in female mice. Testosterone treatment increased the number of tumours that formed in orchidectomised male mice, and resulted in a marked increase in β-catenin protein levels.
Conclusion:
Testosterone regulates β-catenin protein level and proliferation rate in this mesenchymal tumour. This work identifies the therapeutic use of testosterone blockade in aggressive fibromatosis as an area for further investigation.
doi:10.1038/bjc.2011.107
PMCID: PMC3101926  PMID: 21468052
aggressive fibromatosis; testosterone; β-catenin; mouse model; APC
18.  Histological Changes in the Fracture Callus Following the Administration of Water Extract of Piper Sarmentosum (Daun Kadok) in Estrogen-Deficient Rats 
Background: The fracture healing is impaired in osteoporosis. Piper sarmentosum is a plant, which contains potent antioxidant, naringenin that may enhance fracture healing. The present histological study aimed to determine the effects of water extract of Piper sarmentosum on the late phase of fracture healing in estrogen-deficient rats.
Methods: Twenty four female Sprague-Dawley rats (200-250 gm) were obtained. Six rats underwent sham operation and the rest were ovariectomized. Six weeks post-ovariectomy all the rats were fractured at the mid-diaphysis of the right femur and a K-wire was inserted for internal fixation. The sham group was given vehicle (normal saline) and the ovariectomized group was randomly subdivided into three groups: (i) ovariectomized-control group supplemented with vehicle; (ii) ovariectomized+estrogen replacement therapy group treated with estrogen (100 µg/kg/day) and (iii) ovariectomized+Piper sarmentosum group treated with Piper sarmentosum water extract (125 mg/kg). Following six weeks of treatment, the rats were sacrificed and the right femora were harvested for histological assessment of fracture callus.
Results: The ovariectomized-control group showed a significant delay in fracture healing compared to the sham, ovariectomized-estrogen replacement therapy and ovariectomized-Piper sarmentosum groups. The median callus score for the ovariectomized-Piper sarmentosum group was 4.50 (range, 4-5), which was significantly higher than the median callus score 3.50 (range, 3-4) for the ovariectomized-control group (P=0.019). However, there was no significant (P>0.05) difference in the callus score among the sham, ovariectomized-estrogen replacement therapy and ovariectomized-Piper sarmentosum groups groups.
Conclusion: Treatment with water extract of Piper sarmentosum proved beneficial in the fracture healing in estrogen-deficient rats.
PMCID: PMC3470271  PMID: 23115413
Antioxidant; callus; fracture healing; histology; osteoporosis; ovariectomy
19.  Tocotrienol Supplementation Improves Late-Phase Fracture Healing Compared to Alpha-Tocopherol in a Rat Model of Postmenopausal Osteoporosis: A Biomechanical Evaluation 
This study investigated the effects of α-tocopherol and palm oil tocotrienol supplementations on bone fracture healing in postmenopausal osteoporosis rats. 32 female Sprague-Dawley rats were divided into four groups. The first group was sham operated (SO), while the others were ovariectomised. After 2 months, the right femora were fractured under anesthesia and fixed with K-wire. The SO and ovariectomised-control rats (OVXC) were given olive oil (vehicle), while both the alpha-tocopherol (ATF) and tocotrienol-enriched fraction (TEF) groups were given alpha-tocopherol and tocotrienol-enriched fraction, respectively, at the dose of 60 mg/kg via oral gavages 6 days per week for 8 weeks. The rats were then euthanized and the femora dissected out for bone biomechanical testing to assess their strength. The callous of the TEF group had significantly higher stress parameter than the SO and OVXC groups. Only the SO group showed significantly higher strain parameter compared to the other treatment groups. The load parameter of the OVXC and ATF groups was significantly lower than the SO group. There was no significant difference in the Young's modulus between the groups. In conclusion, tocotrienol is better than α-tocopherol in improving the biomechanical properties of the fracture callous in postmenopausal osteoporosis rat model.
doi:10.1155/2012/372878
PMCID: PMC3398681  PMID: 22829855
20.  The relationship between osteoclastogenic and anti-osteoclastogenic pro-inflammatory cytokines differs in human osteoporotic and osteoarthritic bone tissues 
Background
Pro-inflammatory cytokines possess osteoclastogenic or anti-osteoclastogenic activities. They influence osteoclasts directly or via the receptor activator of nuclear factor κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) system. Recent evidence suggests that inflammation may play a role in osteoporosis (OP) and osteoarthritis (OA). We aimed therefore to determine whether there is a difference between both groups: first, in the expression of the osteoclastogenic and anti-osteoclastogenic cytokines, second, in correlation of these cytokines with bone mineral density (BMD) and levels of bone turnover markers (BTM) and third, in correlation between the expression of these cytokines and osteoclast specific genes and RANK/RANKL/OPG genes.
Methods
Human bone samples from 54 age and sex matched patients with OP or OA were collected during hip arthroplasty surgery. The expression of 25 genes encoding pro-inflammatory cytokines, their receptors, osteoclast specific genes and RANK/RANKL/OPG genes was measured using quantitative real-time PCR. Total hip, femoral neck and lumbar spine BMD and BTM in blood samples were measured. The comparison between OP and OA was assessed using Student's t-test or Mann-Whitney U test and correlations between gene expression, BMD and BTM were determined using nonparametric correlation.
Results
The results demonstrated a higher expression of interleukin (IL)-6 and IL-1α in OP, and interferon (IFN)-γ in OA (p < 0.0005). Negative correlations of total hip BMD with tumor necrosis factor-α (TNF-α) in OA and with RANKL/RANK in OP were found (p < 0.05). Significant correlations with BTM were shown for IL-1α and IFN-γ in OP (rho = 0.608 and -0.634) and for TNF-α, IL-6 and transforming growth factor-β1 (TGF-β1) in OA (rho = 0.591, -0.521 and 0.636). Results showed OP specific negative correlations (IFN-γ with ITGB3, IFN-β1 with CTSK, tartrate resistant acid phosphatase (TRAP), CALCR, RANK, RANKL, IL-1α with CTSK, OPG, IL-17A with CALCR) and positive (TGF-β1 with CTSK, TRAP, RANK), and OA specific negative (IL-1α with osteoclast associated immunoglobulin-like receptor (OSCAR), TNF-α with RANK, RANKL, OPG) and positive (IL-6 with RANK, RANKL, OPG) correlations.
Conclusions
Our results demonstrate that the relationship between osteoclastogenic and anti-osteoclastogenic pro-inflammatory cytokines differs in human OP and OA bone and could present an important factor for characteristics of OP and OA bone phenotypes.
doi:10.1186/1423-0127-19-28
PMCID: PMC3307025  PMID: 22380539
Interleukins; Interferons; TNF-α; TGF-β1; β3 integrin; Cathepsin K; OSCAR
21.  Effect of Transient Hypothyroidism During Infancy on the Postnatal Ontogeny of Luteinising Hormone Release in the Agonadal Male Rhesus Monkey (Macaca mulatta): Implications for the Timing of Puberty in Higher Primates 
Journal of neuroendocrinology  2008;20(10):1203-1212.
The present study examined whether a transient thyroid hormone (T4) deficit during infancy in male monkeys would compromise the arrest of luteinising hormone (LH) secretion during the infant–juvenile transition, and/or interfere with the pubertal resurgence of LH. Animals were orchidectomised and thyroidectomised (n = 3; Tx) or sham Tx (n = 3) within 5 days of birth. T4 replacement was initiated in two Tx monkeys at age 19 weeks to reestablish a euthyroid condition. Blood samples were drawn weekly for hormone assay. Body weight, crown–rump length, and bone age were assessed throughout the study. Within a week of Tx, plasma T4 declined to undetectable levels and, by 6–8 weeks of age, signs of hypothyroidism were evident. Transient hypothyroidism during infancy failed to prevent either arrest of LH secretion during the infant–juvenile transition or the pubertal resurgence of LH secretion, both of which occurred at similar ages to sham Tx animals. Although body weight exhibited complete catch-up with T4 replacement, crown–rump length and bone age did not. Thus, bone age at the time of the pubertal LH resurgence in Tx animals was less advanced than that in shams. Although Tx did not influence qualitatively the pattern of gonadotrophin secretion, LH levels during infancy and after pubertal LH resurgence were elevated in Tx monkeys. This was not associated with changes in LH pulse frequency and amplitude, but half-life (53 versus 65 min) of the slow second phase of LH clearance was greater in Tx animals. These results indicate that hypothalamic mechanisms dictating the pattern of gonadotrophin-releasing hormone release from birth to puberty are not dependent on T4 action during infancy, and fail to support the notion that onset of puberty is causally coupled to skeletal maturation. They also indicate that LH renal clearance mechanisms may be programmed in a T4 dependent manner during infancy.
doi:10.1111/j.1365-2826.2008.01773.x
PMCID: PMC2981787  PMID: 18673410
infancy; thyroid; primates; growth; puberty
22.  Effects of Remifemin Treatment on Bone Integrity and Remodeling in Rats with Ovariectomy-Induced Osteoporosis 
PLoS ONE  2013;8(12):e82815.
This study aims to evaluate the effects of Remifemin (isopropanolic extract of Cimicifuga Racemosa) on postmenopausal osteoporosis. 120 female Sprague-Dawley rats were randomly assigned to four groups: sham surgery with vehicle, ovariectomy with vehicle, ovariectomy with estradiol valerate, or ovariectomy with Remifemin. Daily oral administrations of the vehicle, estradiol valerate, or Remifemin began 2 weeks after surgery and lasted to 4, 8, or 12 weeks. Ten rats in each group were sacrificed at each timestep with assessment of bone mineral density, trabecular bone structure, and biomechanical parameters of the femur and lumbar vertebra. Bone turnover markers were evaluated 12 weeks after surgery. Both drugs prevented bone density loss in the distal end of the femur and preserved the trabecular bone structure in both the lumbar vertebra and distal end of the femur following ovariectomy. Both drugs protected bone stiffness at the tested regions and reduced bone reabsorption in ovariectomized rats. The preventive effects of Remifemin against bone-loss can rival those of estradiol valerate if treatment duration is adequately extended. In conclusion, Remifemin may demonstrate equivalent effects to estradiol valerate in terms of preventing postmenopausal osteoporosis.
doi:10.1371/journal.pone.0082815
PMCID: PMC3857312  PMID: 24349369
23.  Icariin Augments Bone Formation and Reverses the Phenotypes of Osteoprotegerin-Deficient Mice through the Activation of Wnt/β-Catenin-BMP Signaling 
Icariin has been mostly reported to enhance bone fracture healing and treat postmenopausal osteoporosis in ovariectomized animal model. As another novel animal model of osteoporosis, there is few publication about the effect of Icariin on osteoprotegerin-deficient mice. Therefore, the goal of this study is to find the effect on bone formation and underlying mechanisms of Icariin in osteoprotegerin (OPG) knockout (KO) mice. We found that Icariin significantly stimulated new bone formation after local injection over the surface of calvaria at the dose of 5 mg/kg per day. With this dose, Icariin was also capable of significantly reversing OPG-deficient-induced bone loss and bone strength reduction. Real-time PCR analysis showed that Icariin significantly upregulated the expression of BMP2, BMP4, RUNX2, OC, Wnt1, and Wnt3a in OPG KO mice. Icariin also significantly increased the expression of AXIN2, DKK1, TCF1, and LEF1, which are the direct target genes of β-catenin signaling. The in vitro studies showed that Icariin induced osteoblast differentiation through the activation of Wnt/β-catenin-BMP signaling by in vitro deletion of the β-catenin gene using β-cateninfx/fx mice. Together, our findings demonstrate that Icariin significantly reverses the phenotypes of OPG-deficient mice through the activation of Wnt/β-catenin-BMP signaling.
doi:10.1155/2013/652317
PMCID: PMC3835354  PMID: 24348713
24.  Eurycoma longifolia Jack in managing idiopathic male infertility 
Asian Journal of Andrology  2010;12(3):376-380.
This study investigated the effect of treatment with the proprietary standardized, water-soluble extract of the root of the Malaysian plant, Eurycoma longifolia Jack, which is thought to enhance male fertility with regard to higher semen volumes, sperm concentrations, the percentage of normal sperm morphology and sperm motility in male partners of sub-fertile couples with idiopathic infertility. A total of 350 patients were given 200 mg of the extract daily and follow-up semen analyses were performed every 3 months for 9 months. Of these 350 patients, 75 patients completed one full cycle of 3 months. Follow-up semen analyses in these patients showed significant improvement in all semen parameters. The proprietary extract of Eurycoma longifolia Jack significantly improved the sperm quality in these patients, allowing for 11 (14.7%) spontaneous pregnancies.
doi:10.1038/aja.2010.7
PMCID: PMC3739276  PMID: 20348942
male infertility; medicinal herbs; semen
25.  Polymorphisms in the Endothelial Nitric Oxide Synthase Gene and Bone Density/Ultrasound and Geometry in Humans 
Bone  2007;42(1):53-60.
Nitric oxide (NO), produced by endothelial cells, is a signaling molecule synthesized from L-arginine by nitric oxide synthases (NOS). NO is known to reduce the ratio of Receptor Activator of Nuclear factor KappaB (RANKL)/Osteoprotegerin (OPG), leading to decreased osteoclastogenesis and a reduction in bone resorption. Endothelial nitric oxide synthase (eNOS or NOS3) is the predominant constitutive isoform of nitric NOS within bone. Recently, a NOS3 polymorphism, Glu298Asp, previously implicated in osteoporosis, failed to demonstrate an association with bone mineral density (BMD), although there was some indication of an association with selected geometry indices. Since a single polymorphism does not capture all of the potential variants in a given gene, we investigated a broader coverage of the NOS3 gene with bone density/ultrasound and geometry indices in a sample of unrelated individuals from the Framingham Offspring Study. Our results indicated that the Glu298Asp polymorphism was not associated with BMD but suggested some haplotype-based associations in the linkage disequilibrium (LD) region that included the Glu298Asp polymorphism with several geometry indices. Although our findings exhibited several associations with selected bone density/ultrasound and geometry indices, the nominally significant associations are regarded as primarily hypothesis generating and suggest that replication in other samples is needed. Thus, NOS3 genetic variation does not appear to be a major contributor to adult bone density/ultrasound and geometry in our sample.
doi:10.1016/j.bone.2007.09.051
PMCID: PMC2386517  PMID: 17980690
Nitric oxide synthase; Bone density/ultrasound; Bone geometry; Genetic polymorphisms; Osteoporosis

Results 1-25 (607103)