Search tips
Search criteria

Results 1-25 (1064344)

Clipboard (0)

Related Articles

1.  Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health 
The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies.
PMCID: PMC4373506  PMID: 25859220
vaginal microbiota; lactobacilli; bacterial vaginosis; STIs; probiotics
2.  The Probiotic Mixture VSL#3 Alters the Morphology and Secretion Profile of Both Polarized and Unpolarized Human Macrophages in a Polarization-Dependent Manner 
Patients with Inflammatory Bowel Disease (IBD), most commonly Crohn’s disease (CD) or ulcerative colitis (UC), suffer from chronic intestinal inflammation of unknown etiology. Increased proinflammatory macrophages (M1) have been documented in tissue from patients with CD. Anti-inflammatory macrophages (M2) may play a role in UC given the preponderance of Th2 cytokines in this variant of IBD. Animal and clinical studies have shown that the probiotic VSL#3 can ameliorate signs and symptoms of IBD. Although animal data suggests a modulatory effect on macrophage phenotype, the effect of VSL#3 on human macrophages remains unknown.
To determine the effect of the probiotic VSL#3 on the phenotype of polarized (M1/M2) and unpolarized (MΦ) human macrophages.
Human monocyte-derived macrophages, generated by culturing monocytes with M-CSF, were left unpolarized or were polarized towards an M1 or an M2 phenotype by culture with LPS and IFN-γ or IL-4, respectively, and were then cultured in the presence or absence of VSL#3 for 3 days. Changes in macrophage morphology were assessed. Cytokine and chemokine levels in supernatants were determined by multiplex assay.
VSL#3 decreased the granuloma-like aggregates of M1 macrophages, increased fibroblast-like M2 macrophages, and decreased fibroblast-like MΦ macrophages. VSL#3 increased the secretion of IL-1β, IL-6, IL-10, and G-CSF by M1, M2, and MΦ macrophages. VSL#3 exposure maintained the proinflammatory phenotype of M1 macrophages, sustaining IL-12 secretion, increasing IL-23 secretion, and decreasing MDC secretion. Both VSL#3-treated M2 and MΦ macrophages secreted higher levels of anti-inflammatory and pro-healing factors such as IL-1Ra, IL-13, EGF, FGF-2, TGF-α, and VEGF, as well as proinflammatory cytokines, including IL-12 and TNF-α.
Under our experimental conditions VSL#3 induced a mixed proinflammatory and anti-inflammatory phenotype in polarized and unpolarized macrophages. This differential effect could explain why patients with CD do not respond to probiotic therapy as well as patients with UC.
PMCID: PMC4145411  PMID: 25177525
M1; M2; macrophage; Inflammatory bowel disease; Ulcerative colitis; Crohn’s disease; Probiotic; VSL#3
3.  Preconceptional Folate Supplementation and the Risk of Spontaneous Preterm Birth: A Cohort Study 
PLoS Medicine  2009;6(5):e1000061.
In an analysis of a cohort of pregnant women, Radek Bukowski and colleagues describe an association between taking folic acid supplements and a reduction in the risk of preterm birth.
Low plasma folate concentrations in pregnancy are associated with preterm birth. Here we show an association between preconceptional folate supplementation and the risk of spontaneous preterm birth.
Methods and Findings
In a cohort of 34,480 low-risk singleton pregnancies enrolled in a study of aneuploidy risk, preconceptional folate supplementation was prospectively recorded in the first trimester of pregnancy. Duration of pregnancy was estimated based on first trimester ultrasound examination. Natural length of pregnancy was defined as gestational age at delivery in pregnancies with no medical or obstetrical complications that may have constituted an indication for delivery. Spontaneous preterm birth was defined as duration of pregnancy between 20 and 37 wk without those complications. The association between preconceptional folate supplementation and the risk of spontaneous preterm birth was evaluated using survival analysis. Comparing to no supplementation, preconceptional folate supplementation for 1 y or longer was associated with a 70% decrease in the risk of spontaneous preterm delivery between 20 and 28 wk (41 [0.27%] versus 4 [0.04%] spontaneous preterm births, respectively; HR 0.22, 95% confidence interval [CI] 0.08–0.61, p = 0.004) and a 50% decrease in the risk of spontaneous preterm delivery between 28 and 32 wk (58 [0.38%] versus 12 [0.18%] preterm birth, respectively; HR 0.45, 95% CI 0.24–0.83, p = 0.010). Adjustment for maternal characteristics age, race, body mass index, education, marital status, smoking, parity, and history of prior preterm birth did not have a material effect on the association between folate supplementation for 1 y or longer and spontaneous preterm birth between 20 and 28, and 28 to 32 wk (adjusted HR 0.31, 95% CI 0.11–0.90, p = 0.031 and 0.53, 0.28–0.99, p = 0.046, respectively). Preconceptional folate supplementation was not significantly associated with the risk of spontaneous preterm birth beyond 32 wk. The association between shorter duration (<1 y) of preconceptional folate supplementation and the risk of spontaneous preterm birth was not significant after adjustment for maternal characteristics. However, the risk of spontaneous preterm birth decreased with the duration of preconceptional folate supplementation (test for trend of survivor functions, p = 0.01) and was the lowest in women who used folate supplementation for 1 y or longer. There was also no significant association with other complications of pregnancy studied after adjustment for maternal characteristics.
Preconceptional folate supplementation is associated with a 50%–70% reduction in the incidence of early spontaneous preterm birth. The risk of early spontaneous preterm birth is inversely proportional to the duration of preconceptional folate supplementation. Preconceptional folate supplementation was specifically related to early spontaneous preterm birth and not associated with other complications of pregnancy.
Editors' Summary
Most pregnancies last about 40 weeks, but sometimes the new family member arrives early. Every year, half a million babies in the United States (12.5% of all babies) are born prematurely (before 37 completed weeks of pregnancy). Sadly, premature babies are more likely to die than full-term babies and many have short- and/or long-term health problems. Premature babies often have breathing problems, they are susceptible to life-threatening infections, and they are more likely to have learning and developmental disabilities than those born on time. The severity of these health problems depends on the degree of prematurity—preterm babies born between 34 and 36 weeks of pregnancy rarely develop severe disabilities, but a quarter of babies born before 28 weeks of pregnancy develop serious lasting disabilities and half have learning and behavioral problems. Although doctors have identified some risk factors for early delivery (for example, smoking), it is impossible to predict who will have an early birth and there is no effective way to prevent preterm births.
Why Was This Study Done?
Some researchers think that folate supplements may prevent preterm births. Folate (folic acid), a vitamin found in leafy green vegetables, fruits, and dried beans, helps to prevent neural tube birth defects. Consequently, women are encouraged to take folic acid supplements throughout (and preferably before) pregnancy and many governments now mandate that bread, pasta, and other grain products be fortified with folic acid to help women get sufficient folate. There is some evidence that women who deliver early have less folate in their blood than women who deliver at term. Furthermore, folate supplementation during pregnancy has increased the length of pregnancy in some but not all clinical trials. A possible explanation for these mixed results is that the duration of pregnancy reflects conditions in the earliest stages of pregnancy or before conception and that folate supplementation needs to start before conception to reduce the risk of preterm birth. In this study, the researchers test this idea by analyzing data collected from nearly 35,000 pregnant women enrolled in a study that was originally designed to investigate screening for Down's syndrome.
What Did the Researchers Do and Find?
During the first three months of their pregnancy, the women were asked whether they had taken folate supplements before conception. The duration of each pregnancy was estimated from ultrasound measurements taken early in the pregnancy and from the time of delivery. During the study, 1,658 women had spontaneous preterm deliveries before 37 weeks and 160 delivered before 32 weeks. After allowing for other maternal characteristics that might have affected the likelihood of preterm delivery, the risk of spontaneous preterm delivery between 20 and 28 weeks was 70% lower in women who took folate supplements for more than a year before becoming pregnant than in women who didn't take a supplement. Long-term folate supplementation also reduced the risk of preterm delivery between 28 and 32 weeks by 50% but did not affect the risk of preterm birth beyond 32 weeks. Folate supplementation for less than a year before conception did not reduce the risk of preterm birth, and folate supplementation was not associated with any other complications of pregnancy.
What Do These Findings Mean?
These findings show that folate supplementation for a year or more before conception is associated with a 50%–70% decrease in early (but not late) spontaneous preterm births and that the longer a woman takes folate supplements before becoming pregnant, the lower her risk of a preterm birth. Although the researchers allowed for maternal characteristics that might have affected the duration of pregnancy, it is possible that folate supplementation may not be responsible for the reduction in preterm birth risk seen in this study. For example, taking folate supplements may be a marker of healthy behavior and the women taking the supplements might have been doing something else that was reducing their risk of preterm birth. However, despite this and other limitations of this study, these findings suggest that long-term folate supplementation before conception is worth investigating further as a potential way to prevent preterm births.
Additional Information
Please access these Web sites via the online version of this summary at
This study is further discussed in a PLoS Medicine Perspective by Nicholas Fisk
The MedlinePlus encyclopedia contains a page on premature babies (in English and Spanish); MedlinePlus provides links to other information on premature babies (in English and Spanish)
The US National Institute of Child Health and Human Development provides information on preterm labor and birth
The March of Dimes, a nonprofit organization for pregnancy and baby health, provides information on preterm birth and on folic acid (in English and Spanish)
The Nemours Foundation, another nonprofit organization for child health, also provides information on premature babies (in English and Spanish)
The US Office of Dietary Supplements has a fact sheet on folate
PMCID: PMC2671168  PMID: 19434228
4.  Functional Dynamics of the Gut Microbiome in Elderly People during Probiotic Consumption 
mBio  2015;6(2):e00231-15.
A mechanistic understanding of the purported health benefits conferred by consumption of probiotic bacteria has been limited by our knowledge of the resident gut microbiota and its interaction with the host. Here, we detail the impact of a single-organism probiotic, Lactobacillus rhamnosus GG ATCC 53103 (LGG), on the structure and functional dynamics (gene expression) of the gut microbiota in a study of 12 healthy individuals, 65 to 80 years old. The analysis revealed that while the overall community composition was stable as assessed by 16S rRNA profiling, the transcriptional response of the gut microbiota was modulated by probiotic treatment. Comparison of transcriptional profiles based on taxonomic composition yielded three distinct transcriptome groups that displayed considerable differences in functional dynamics. The transcriptional profile of LGG in vivo was remarkably concordant across study subjects despite the considerable interindividual nature of the gut microbiota. However, we identified genes involved in flagellar motility, chemotaxis, and adhesion from Bifidobacterium and the dominant butyrate producers Roseburia and Eubacterium whose expression was increased during probiotic consumption, suggesting that LGG may promote interactions between key constituents of the microbiota and the host epithelium. These results provide evidence for the discrete functional effects imparted by a specific single-organism probiotic and challenge the prevailing notion that probiotics substantially modify the resident microbiota within nondiseased individuals in an appreciable fashion.
Probiotic bacteria have been used for over a century to promote digestive health. Many individuals report that probiotics alleviate a number of digestive issues, yet little evidence links how probiotic microbes influence human health. Here, we show how the resident microbes that inhabit the healthy human gut respond to a probiotic. The well-studied probiotic Lactobacillus rhamnosus GG ATCC 53103 (LGG) was administered in a clinical trial, and a suite of measurements of the resident microbes were taken to evaluate potential changes over the course of probiotic consumption. We found that LGG transiently enriches for functions to potentially promote anti-inflammatory pathways in the resident microbes.
PMCID: PMC4453556  PMID: 25873374
5.  Biological control of vaginosis to improve reproductive health 
The Indian Journal of Medical Research  2014;140(Suppl 1):S91-S97.
The human vaginal microbiota plays an important role in the maintenance of a woman's health, as well as of her partner's and newborns’. When this predominantly Lactobacillus community is disrupted, decreased in abundance and replaced by different anaerobes, bacterial vaginosis (BV) may occur. BV is associated with ascending infections and obstetrical complications, such as chorioamnionitis and preterm delivery, as well as with urinary tract infections and sexually transmitted infections. In BV the overgrowth of anaerobes produces noxious substances like polyamines and other compounds that trigger the release of pro-inflammatory cytokines interleukin (IL)-1 β and IL-8. BV can profoundly affect, with different mechanisms, all the phases of a woman's life in relation to reproduction, before pregnancy, during fertilization, through and at the end of pregnancy. BV can directly affect fertility, since an ascending dissemination of the involved species may lead to tubal factor infertility. Moreover, the increased risk of acquiring sexually transmitted diseases contributes to damage to reproductive health. Exogenous strains of lactobacilli have been suggested as a means of re-establishing a normal healthy vaginal flora. Carefully selected probiotic strains can eliminate BV and also exert an antiviral effect, thus reducing viral load and preventing foetal and neonatal infection. The administration of beneficial microorganisms (probiotics) can aid recovery from infection and restore and maintain a healthy vaginal ecosystem, thus improving female health also in relation to reproductive health.
PMCID: PMC4345761  PMID: 25673551
Bacterial vaginosis; lactobacilli; probiotics; reproductive health; vaginal microbiota
6.  Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis 
World Journal of Gastroenterology : WJG  2014;20(41):15163-15176.
The pool of microbes inhabiting our body is known as “microbiota” and their collective genomes as “microbiome”. The colon is the most densely populated organ in the human body, although other parts, such as the skin, vaginal mucosa, or respiratory tract, also harbour specific microbiota. This microbial community regulates some important metabolic and physiological functions of the host, and drives the maturation of the immune system in early life, contributing to its homeostasis during life. Alterations of the intestinal microbiota can occur by changes in composition (dysbiosis), function, or microbiota-host interactions and they can be directly correlated with several diseases. The only disease in which a clear causal role of a dysbiotic microbiota has been demonstrated is the case of Clostridium difficile infections. Nonetheless, alterations in composition and function of the microbiota have been associated with several gastrointestinal diseases (inflammatory bowel disease, colorectal cancer, or irritable bowel syndrome), as well as extra-intestinal pathologies, such as those affecting the liver, or the respiratory tract (e.g., allergy, bronchial asthma, and cystic fibrosis), among others. Species of Bifidobacterium genus are the normal inhabitants of a healthy human gut and alterations in number and composition of their populations is one of the most frequent features present in these diseases. The use of probiotics, including bifidobacteria strains, in preventive medicine to maintain a healthy intestinal function is well documented. Probiotics are also proposed as therapeutic agents for gastrointestinal disorders and other pathologies. The World Gastroenterology Organization recently published potential clinical applications for several probiotic formulations, in which species of lactobacilli are predominant. This review is focused on probiotic preparations containing Bifidobacterium strains, alone or in combination with other bacteria, which have been tested in human clinical studies. In spite of extensive literature on and research into this topic, the degree of scientific evidence of the effectiveness of probiotics is still insufficient in most cases. More effort need to be made to design and conduct accurate human studies demonstrating the efficacy of probiotics in the prevention, alleviation, or treatment of different pathologies.
PMCID: PMC4223251  PMID: 25386066
Intestinal microbiota; Bifidobacterium; Probiotics; Dysbiosis; Inflammatory bowel disease; Irritable bowel syndrome; Colorectal cancer; Liver disease; Respiratory disease; Functional foods
7.  Gut Microbial Diversity is Reduced by the Probiotic VSL#3 and Correlates with Decreased TNBS-Induced Colitis 
Inflammatory bowel diseases  2011;17(1):289-297.
Compositional changes within the normal intestinal microbiota have been associated with the development of various intestinal inflammatory disorders such as pouchitis and inflammatory bowel diseases (IBD). Therefore, it has been speculated that manipulation of a dysbiotic intestinal microbiota has the potential to restore microbial homeostasis and attenuate inflammation.
We performed community composition analyses by terminal restriction fragment length polymorphism (T-RFLP) of the bacterial 16S ribosomal RNA gene to investigate the impact of the probiotic VSL#3 on colonic microbial community composition and development of TNBS-induced colitis in rats.
TNBS-induced chronic colitis was significantly reduced in VSL#3 fed rats compared to controls (p < 0.05). T-RFLP analysis revealed distinct microbial communities at luminal versus mucosal sites. Within the luminal microbiota, chronic colitis was associated with an overall decrease in bacterial richness and diversity (Margalef's richness, p < 0.01; Shannon diversity, p <0.01). This decrease in luminal microbial diversity was enhanced in TNBS-treated rats fed VSL#3 (Margalef's richness, p < 0.001; Shannon diversity, p < 0.001) and significantly correlated with reduced clinical colitis scores (Pearson correlation p < 0.05).
Our data demonstrate that the probiotic VSL#3 alters the composition of the intestinal microbiota, and these changes correlate with VSL#3-induced disease protection.
PMCID: PMC2953593  PMID: 20564535
Microbiota; VSL#3; inflammatory bowel disease; probiotic; T-RFLP
8.  Comparison of Microbiological, Histological, and Immunomodulatory Parameters in Response to Treatment with Either Combination Therapy with Prednisone and Metronidazole or Probiotic VSL#3 Strains in Dogs with Idiopathic Inflammatory Bowel Disease 
PLoS ONE  2014;9(4):e94699.
Idiopathic inflammatory bowel disease (IBD) is a common chronic enteropathy in dogs. There are no published studies regarding the use of probiotics in the treatment of canine IBD. The objectives were to compare responses to treatment with either combination therapy (prednisone and metronidazole) or probiotic strains (VSL#3) in dogs with IBD.
Methodology and Principal Findings
Twenty pet dogs with a diagnosis of IBD, ten healthy pet dogs, and archived control intestinal tissues from three euthanized dogs were used in this open label study. Dogs with IBD were randomized to receive either probiotic (D-VSL#3, n = 10) or combination drug therapy (D-CT, n = 10). Dogs were monitored for 60 days (during treatment) and re-evaluated 30 days after completing treatment. The CIBDAI (P<0.001), duodenal histology scores (P<0.001), and CD3+ cells decreased post-treatment in both treatment groups. FoxP3+ cells (p<0.002) increased in the D-VSL#3 group after treatment but not in the D-CT group. TGF-β+ cells increased in both groups after treatment (P = 0.0043) with the magnitude of this increase being significantly greater for dogs in the D-VSL#3 group compared to the D-CT group. Changes in apical junction complex molecules occludin and claudin-2 differed depending on treatment. Faecalibacterium and Turicibacter were significantly decreased in dogs with IBD at T0, with a significant increase in Faecalibacterium abundance observed in the animals treated with VSL#3 strains.
A protective effect of VSL#3 strains was observed in dogs with IBD, with a significant decrease in clinical and histological scores and a decrease in CD3+ T-cell infiltration. Protection was associated with an enhancement of regulatory T-cell markers (FoxP3+ and TGF-β+), specifically observed in the probiotic-treated group and not in animals receiving combination therapy. A normalization of dysbiosis after long-term therapy was observed in the probiotic group. Larger scale studies are warranted to evaluate the clinical efficacy of VSL#3 in canine IBD.
PMCID: PMC3983225  PMID: 24722235
9.  Modulation of Intestinal Microbiota by the Probiotic VSL#3 Resets Brain Gene Expression and Ameliorates the Age-Related Deficit in LTP 
PLoS ONE  2014;9(9):e106503.
The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut–brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function.
PMCID: PMC4159266  PMID: 25202975
10.  Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine 
BMC Microbiology  2012;12:47.
Antibiotic associated diarrhea and Clostridium difficile infection are frequent complications of broad spectrum antibiotic therapy. Probiotic bacteria are used as therapeutic and preventive agents in these disorders, but the exact functional mechanisms and the mode of action are poorly understood. The effects of clindamycin and the probiotic mixture VSL#3 (containing the 8 bacterial strains Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei and Lactobacillus delbrueckii subsp. Bulgaricus) consecutively or in combination were investigated and compared to controls without therapy using a standardized human fecal microbiota in a computer-controlled in vitro model of large intestine. Microbial metabolites (short chain fatty acids, lactate, branched chain fatty acids, and ammonia) and the intestinal microbiota were analyzed.
Compared to controls and combination therapy, short chain fatty acids and lactate, but also ammonia and branched chain fatty acids, were increased under probiotic therapy. The metabolic pattern under combined therapy with antibiotics and probiotics had the most beneficial and consistent effect on intestinal metabolic profiles. The intestinal microbiota showed a decrease in several indigenous bacterial groups under antibiotic therapy, there was no significant recovery of these groups when the antibiotic therapy was followed by administration of probiotics. Simultaneous application of anti- and probiotics had a stabilizing effect on the intestinal microbiota with increased bifidobacteria and lactobacilli.
Administration of VSL#3 parallel with the clindamycin therapy had a beneficial and stabilizing effect on the intestinal metabolic homeostasis by decreasing toxic metabolites and protecting the endogenic microbiota from destruction. Probiotics could be a reasonable strategy in prevention of antibiotic associated disturbances of the intestinal homeostasis and disorders.
PMCID: PMC3338381  PMID: 22452835
11.  A Systems Biology Approach Investigating the Effect of Probiotics on the Vaginal Microbiome and Host Responses in a Double Blind, Placebo-Controlled Clinical Trial of Post-Menopausal Women 
PLoS ONE  2014;9(8):e104511.
A lactobacilli dominated microbiota in most pre and post-menopausal women is an indicator of vaginal health. The objective of this double blinded, placebo-controlled crossover study was to evaluate in 14 post-menopausal women with an intermediate Nugent score, the effect of 3 days of vaginal administration of probiotic L. rhamnosus GR-1 and L. reuteri RC-14 (2.5×109 CFU each) on the microbiota and host response. The probiotic treatment did not result in an improved Nugent score when compared to when placebo. Analysis using 16S rRNA sequencing and metabolomics profiling revealed that the relative abundance of Lactobacillus was increased following probiotic administration as compared to placebo, which was weakly associated with an increase in lactate levels. A decrease in Atopobium was also observed. Analysis of host responses by microarray showed the probiotics had an immune-modulatory response including effects on pattern recognition receptors such as TLR2 while also affecting epithelial barrier function. This is the first study to use an interactomic approach for the study of vaginal probiotic administration in post-menopausal women. It shows that in some cases multifaceted approaches are required to detect the subtle molecular changes induced by the host to instillation of probiotic strains.
Trial Registration NCT02139839
PMCID: PMC4134203  PMID: 25127240
12.  Dismicrobism in inflammatory bowel disease and colorectal cancer: Changes in response of colocytes 
World Journal of Gastroenterology : WJG  2014;20(48):18121-18130.
Patients with inflammatory bowel disease (IBD) have an increased risk of 10%-15% developing colorectal cancer (CRC) that is a common disease of high economic costs in developed countries. The CRC has been increasing in recent years and its mortality rates are very high. Multiple biological and biochemical factors are responsible for the onset and progression of this pathology. Moreover, it appears absolutely necessary to investigate the environmental factors favoring the onset of CRC and the promotion of colonic health. The gut microflora, or microbiota, has an extensive diversity both quantitatively and qualitatively. In utero, the intestine of the mammalian fetus is sterile. At birth, the intestinal microbiota is acquired by ingesting maternal anal or vaginal organisms, ultimately developing into a stable community, with marked variations in microbial composition between individuals. The development of IBD is often associated with qualitative and quantitative disorders of the intestinal microbial flora (dysbiosis). The healthy human gut harbours about 10 different bacterial species distributed in colony forming units which colonize the gastrointestinal tract. The intestinal microbiota plays a fundamental role in health and in the progression of diseases such as IBD and CRC. In healthy subjects, the main control of intestinal bacterial colonization occurs through gastric acidity but other factors such as endoluminal temperature, competition between different bacterial strains, peristalsis and drugs can influence the intestinal microenvironment. The microbiota exerts diverse physiological functions to include: growth inhibition of pathogenic microorganisms, synthesis of compounds useful for the trophism of colonic mucosa, regulation of intestinal lymphoid tissue and synthesis of amino acids. Furthermore, mucus seems to play an important role in protecting the intestinal mucosa and maintaining its integrity. Changes in the microbiota composition are mainly influenced by diet and age, as well as genetic factors. Increasing evidence indicates that dysbiosis favors the production of genotoxins and metabolites associated with carcinogenesis and induces dysregulation of the immune response which promotes and sustains inflammation in IBD leading to carcinogenesis. A disequilibrium in gut microflora composition leads to the specific activation of gut associated lymphoid tissue. The associated chronic inflammatory process associated increases the risk of developing CRC. Ulcerative colitis and Crohn’s disease are the two major IBDs characterized by an early onset and extraintestinal manifestations, such as rheumatoid arthritis. The pathogenesis of both diseases is complex and not yet fully known. However, it is widely accepted that an inappropriate immune response to microbial flora can play a pivotal role in IBD pathogenesis.
PMCID: PMC4277951  PMID: 25561781
Dismicrobism; Inflammatory bowel disease; Colorectal Cancer; Dysbiosis; Eubiosis; Heat shock proteins
13.  Effect of Probiotic (VSL#3) and Omega-3 on Lipid Profile, Insulin Sensitivity, Inflammatory Markers, and Gut Colonization in Overweight Adults: A Randomized, Controlled Trial 
Mediators of Inflammation  2014;2014:348959.
To evaluate the effects of probiotic (VSL#3) and omega-3 fatty acid on insulin sensitivity, blood lipids, and inflammation, we conducted a clinical trial in 60 overweight (BMI > 25), healthy adults, aged 40–60 years. After initial screening the subjects were randomized into four groups with 15 per group. The four groups received, respectively, placebo, omega-3 fatty acid, probiotic VSL#3, or both omega-3 and probiotic, for 6 weeks. Blood and fecal samples were collected at baseline and after 6 weeks. The probiotic (VSL#3) supplemented group had significant reduction in total cholesterol, triglyceride, LDL, and VLDL and had increased HDL (P < 0.05) value. VSL#3 improved insulin sensitivity (P < 0.01), decreased hsCRP, and favorably affected the composition of gut microbiota. Omega-3 had significant effect on insulin sensitivity and hsCRP but had no effect on gut microbiota. Addition of omega-3 fatty acid with VSL#3 had more pronounced effect on HDL, insulin sensitivity and hsCRP. Subjects with low HDL, insulin resistance, and high hsCRP had significantly lower total lactobacilli and bifidobacteria count and higher E. coli and bacteroides count.
PMCID: PMC3984795  PMID: 24795503
14.  The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women 
Microbiome  2014;2:4.
This study was undertaken to characterize the vaginal microbiota throughout normal human pregnancy using sequence-based techniques. We compared the vaginal microbial composition of non-pregnant patients with a group of pregnant women who delivered at term.
A retrospective case–control longitudinal study was designed and included non-pregnant women (n = 32) and pregnant women who delivered at term (38 to 42 weeks) without complications (n = 22). Serial samples of vaginal fluid were collected from both non-pregnant and pregnant patients. A 16S rRNA gene sequence-based survey was conducted using pyrosequencing to characterize the structure and stability of the vaginal microbiota. Linear mixed effects models and generalized estimating equations were used to identify the phylotypes whose relative abundance was different between the two study groups. The vaginal microbiota of normal pregnant women was different from that of non-pregnant women (higher abundance of Lactobacillus vaginalis, L. crispatus, L. gasseri and L. jensenii and lower abundance of 22 other phylotypes in pregnant women). Bacterial community state type (CST) IV-B or CST IV-A characterized by high relative abundance of species of genus Atopobium as well as the presence of Prevotella, Sneathia, Gardnerella, Ruminococcaceae, Parvimonas, Mobiluncus and other taxa previously shown to be associated with bacterial vaginosis were less frequent in normal pregnancy. The stability of the vaginal microbiota of pregnant women was higher than that of non-pregnant women; however, during normal pregnancy, bacterial communities shift almost exclusively from one CST dominated by Lactobacillus spp. to another CST dominated by Lactobacillus spp.
We report the first longitudinal study of the vaginal microbiota in normal pregnancy. Differences in the composition and stability of the microbial community between pregnant and non-pregnant women were observed. Lactobacillus spp. were the predominant members of the microbial community in normal pregnancy. These results can serve as the basis to study the relationship between the vaginal microbiome and adverse pregnancy outcomes.
PMCID: PMC3916806  PMID: 24484853
Community stability; Longitudinal sampling; Pregnancy; Vaginal microbiome; Lactobacillus; Dynamics
15.  Robustness of Gut Microbiota of Healthy Adults in Response to Probiotic Intervention Revealed by High-Throughput Pyrosequencing 
Probiotics are live microorganisms that potentially confer beneficial outcomes to host by modulating gut microbiota in the intestine. The aim of this study was to comprehensively investigate effects of probiotics on human intestinal microbiota using 454 pyrosequencing of bacterial 16S ribosomal RNA genes with an improved quantitative accuracy for evaluation of the bacterial composition. We obtained 158 faecal samples from 18 healthy adult Japanese who were subjected to intervention with 6 commercially available probiotics containing either Bifidobacterium or Lactobacillus strains. We then analysed and compared bacterial composition of the faecal samples collected before, during, and after probiotic intervention by Operational taxonomic units (OTUs) and UniFrac distances. The results showed no significant changes in the overall structure of gut microbiota in the samples with and without probiotic administration regardless of groups and types of the probiotics used. We noticed that 32 OTUs (2.7% of all analysed OTUs) assigned to the indigenous species showed a significant increase or decrease of ≥10-fold or a quantity difference in >150 reads on probiotic administration. Such OTUs were found to be individual specific and tend to be unevenly distributed in the subjects. These data, thus, suggest robustness of the gut microbiota composition in healthy adults on probiotic administration.
PMCID: PMC3686430  PMID: 23571675
probiotics; gut microbiota; 16S ribosomal RNA gene; pyrosequencing
16.  The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term 
Microbiome  2014;2:18.
This study was undertaken to determine whether the vaginal microbiota of pregnant women who subsequently had a spontaneous preterm delivery is different from that of women who had a term delivery.
This was a nested case–control study of pregnant women who had a term delivery (controls) and those who had a spontaneous preterm delivery before 34 weeks of gestation (cases). Samples of vaginal fluid were collected longitudinally and stored at −70°C until assayed. A microbial survey using pyrosequencing of V1-V3 regions of 16S rRNA genes was performed. We tested the hypothesis of whether the relative abundance of individual microbial species (phylotypes) was different between women who had a term versus preterm delivery. A suite of bioinformatic and statistical tools, including linear mixed effects models and generalized estimating equations, was used. We show that: 1) the composition of the vaginal microbiota during normal pregnancy changed as a function of gestational age, with an increase in the relative abundance of four Lactobacillus spp., and decreased in anaerobe or strict-anaerobe microbial species as pregnancy progressed; 2) no bacterial taxa differed in relative abundance between women who had a spontaneous preterm delivery and those who delivered at term; and 3) no differences in the frequency of the vaginal community state types (CST I, III, IV-B) between women who delivered at term and those who delivered preterm were detected.
The bacterial taxa composition and abundance of vaginal microbial communities, characterized with 16S rRNA gene sequence-based techniques, were not different in pregnant women who subsequently delivered a preterm neonate versus those who delivered at term.
PMCID: PMC4066267  PMID: 24987521
Infection-induced preterm delivery; Histologic chorioamnionitis; Prematurity; Vaginal flora; Vaginal microbiome
17.  Intestinal Microbiota is Different in Women with Preterm Birth: Results from Terminal Restriction Fragment Length Polymorphism Analysis 
PLoS ONE  2014;9(11):e111374.
Preterm birth is a leading cause of perinatal morbidity and mortality. Studies using a cultivation method or molecular identification have shown that bacterial vaginosis is one of the risk factors for preterm birth. However, an association between preterm birth and intestinal microbiota has not been reported using molecular techniques, although the vaginal microbiota changes during pregnancy. Our aim here was to clarify the difference in intestinal and vaginal microbiota between women with preterm birth and women without preterm labor. 16S ribosomal ribonucleic acid genes were amplified from fecal and vaginal DNA by polymerase chain reaction. Using terminal restriction fragment length polymorphism (T-RFLP), we compared the levels of operational taxonomic units of both intestinal and vaginal flora among three groups: pregnant women who delivered term babies without preterm labor (non-PTL group) (n = 20), those who had preterm labor but delivered term babies (PTL group) (n = 11), and those who had preterm birth (PTB group) (n = 10). Significantly low levels of Clostridium subcluster XVIII, Clostridium cluster IV, Clostridium subcluster XIVa, and Bacteroides, and a significantly high level of Lactobacillales were observed in the intestinal microbiota in the PTB group compared with those in the non-PTL group. The levels of Clostridium subcluster XVIII and Clostridium subcluster XIVa in the PTB group were significantly lower than those in the PTL group, and these levels in the PTL group were significantly lower than those in non-PTL group. However, there were no significant differences in vaginal microbiota among the three groups. Intestinal microbiota in the PTB group was found to differ from that in the non-PTL group using the T-RFLP method.
PMCID: PMC4221021  PMID: 25372390
18.  Post-Translational Inhibition of IP-10 Secretion in IEC by Probiotic Bacteria: Impact on Chronic Inflammation 
PLoS ONE  2009;4(2):e4365.
Clinical and experimental studies suggest that the probiotic mixture VSL#3 has protective activities in the context of inflammatory bowel disease (IBD). The aim of the study was to reveal bacterial strain-specific molecular mechanisms underlying the anti-inflammatory potential of VSL#3 in intestinal epithelial cells (IEC).
Methodology/Principal Findings
VSL#3 inhibited TNF-induced secretion of the T-cell chemokine interferon-inducible protein (IP-10) in Mode-K cells. Lactobacillus casei (L. casei) cell surface proteins were identified as active anti-inflammatory components of VSL#3. Interestingly, L. casei failed to block TNF-induced IP-10 promoter activity or IP-10 gene transcription at the mRNA expression level but completely inhibited IP-10 protein secretion as well as IP-10-mediated T-cell transmigration. Kinetic studies, pulse-chase experiments and the use of a pharmacological inhibitor for the export machinery (brefeldin A) showed that L. casei did not impair initial IP-10 production but decreased intracellular IP-10 protein stability as a result of blocked IP-10 secretion. Although L. casei induced IP-10 ubiquitination, the inhibition of proteasomal or lysosomal degradation did not prevent the loss of intracellular IP-10. Most important for the mechanistic understanding, the inhibition of vesicular trafficking by 3-methyladenine (3-MA) inhibited IP-10 but not IL-6 expression, mimicking the inhibitory effects of L. casei. These findings suggest that L. casei impairs vesicular pathways important for the secretion of IP-10, followed by subsequent degradation of the proinflammatory chemokine. Feeding studies in TNFΔARE and IL-10−/− mice revealed a compartimentalized protection of VSL#3 on the development of cecal but not on ileal or colonic inflammation. Consistent with reduced tissue pathology in IL-10−/− mice, IP-10 protein expression was reduced in primary epithelial cells.
We demonstrate segment specific effects of probiotic intervention that correlate with reduced IP-10 protein expression in the native epithelium. Furthermore, we revealed post-translational degradation of IP-10 protein in IEC to be the molecular mechanism underlying the anti-inflammatory effect.
PMCID: PMC2634842  PMID: 19197385
19.  Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis 
Gut  2006;55(6):833-841.
The intestinal microbiota plays a critical role in the pathophysiology of pouchitis, a major complication after ileal pouch anal anastomosis in patients with ulcerative colitis. Recently, controlled trials have demonstrated that probiotics are effective in maintenance of remission in pouchitis patients. However, the mechanism by which therapy with probiotics works remains elusive. This study explores the role of the bacterial and fungal flora in a controlled trial for maintenance of remission in pouchitis patients with the probiotic VSL#3 compound.
The mucosa associated pouch microbiota was investigated before and after therapy with VSL#3 by analysis of endoscopic biopsies using ribosomal DNA/RNA based community fingerprint analysis, clone libraries, real time polymerase chain reaction (PCR), and fluorescence in situ hybridisation. Patients were recruited from a placebo controlled remission maintenance trial with VSL#3.
Patients who developed pouchitis while treated with placebo had low bacterial and high fungal diversity. Bacterial diversity was increased and fungal diversity was reduced in patients in remission maintained with VSL#3 (p = 0.001). Real time PCR experiments demonstrated that VSL#3 increased the total number of bacterial cells (p = 0.002) and modified the spectrum of bacteria towards anaerobic species. Taxa specific clone libraries for Lactobacilli and Bifidobacteria showed that the richness and spectrum of these bacteria were altered under probiotic therapy.
Probiotic therapy with VSL#3 increases the total number of intestinal bacterial cells as well as the richness and diversity of the bacterial microbiota, especially the anaerobic flora. The diversity of the fungal flora is repressed. Restoration of the integrity of a “protective” intestinal mucosa related microbiota could therefore be a potential mechanism of probiotic bacteria in inflammatory barrier diseases of the lower gastrointestinal tract.
PMCID: PMC1856240  PMID: 16401690
bacteria; fungi; microflora; pouchitis; probiotics
20.  Comparison of oral and vaginal metronidazole for treatment of bacterial vaginosis in pregnancy: impact on fastidious bacteria 
Bacterial vaginosis (BV) is a common condition that is associated with preterm birth and acquisition of complex communities of vaginal bacteria that include several fastidious species. Treatment of BV in pregnancy has mixed effects on the risk of preterm delivery, which some hypothesize is due to variable antibiotic efficacy for the fastidious bacteria. Both oral and intravaginal metronidazole can be used to treat bacterial vaginosis in pregnancy, but little is known about the impact of different routes of antibiotic administration on concentrations of fastidious vaginal bacteria.
This was a sub-study of a larger randomized trial of oral versus vaginal metronidazole for treatment of BV in pregnancy. Fifty-three women were evaluated, including 30 women who received oral metronidazole and 23 who received intravaginal metronidazole. Bacterial taxon-specific quantitative PCR assays were used to measure concentrations of bacterial vaginosis associated bacterium (BVAB) 1, 2, and 3, Gardnerella vaginalis, Atopobium species, Leptotrichia/Sneathia species, Megasphaera species, and Lactobacillus crispatus before and after antibiotic treatment.
Concentrations of Leptotrichia and Sneathia spp. and the fastidious Clostridia-like bacterium designated BVAB1 decreased significantly with oral (p = .002, p = .02) but not vaginal therapy (p = .141, p = .126). The fastidious bacterium BVAB3 did not significantly decrease with either treatment. Concentrations of Atopobium spp., reportedly resistant to metronidazole in vitro, dropped significantly with oral (p = .002) and vaginal (p = .001) treatment. There was no significant difference in the magnitude of change in bacterial concentrations between oral and vaginal treatment arms for any of the bacterial species. Lactobacillus crispatus concentrations did not change.
Both oral and vaginal metronidazole therapy in pregnant women result in a significant decrease in concentrations of most BV-associated anaerobic bacteria, with the exception that Leptotrichia, Sneathia and BVAB1 do not significantly decrease with vaginal metronidazole therapy. These data suggest that the route of antibiotic administration has a minor impact on bacterial eradication in pregnant women with BV.
Trail Registration
This trial is registered with, number NCT00153517
PMCID: PMC2703644  PMID: 19515236
21.  Gut microbiota of healthy elderly NSAID users is selectively modified with the administration of Lactobacillus acidophilus NCFM and lactitol 
Age  2011;34(4):987-999.
Ageing changes gut microbiota composition and alters immune system function. Probiotics, prebiotics and synbiotics may improve the health status of elderly individuals by modifying the intestinal environment and the microbiota composition, and by stimulating the immune system. In this work, we studied the effects of synbiotic supplementation on the gut microbiota of healthy elderly volunteers. Fifty-one elders were randomly assigned to consume either a synbiotic dietary supplement or a placebo in addition to their usual diet for a 2-week period. The synbiotic product consisted of the probiotic Lactobacillus acidophilus NCFM and the prebiotic lactitol and was ingested twice a day, with a total daily dose of 10 g lactitol and 2 × 1010 cells of probiotic bacteria. Before, during and after the intervention period fecal quantities of six phylogenetic bacterial groups were determined using quantitative PCR, and relative changes in total microbiota composition were assessed by percent guanine-plus-cytosine profiling. The microbiota profiles showed certain relative changes within the microbial community, and indicated an increase of bifidobacteria levels during synbiotic supplementation. Quantification by PCR confirmed the in changes in the microbiota composition; for example increases in total levels of endogenous bifidobacteria and lactobacilli were recorded. Throughout the 6-week study period there was a decrease unrelated to intervention in the Blautia coccoides–Eubacterium rectale bacterial group levels and Clostridium cluster XIVab levels, but this decrease appeared to be halted during the synbiotic intervention. In conclusion, putatively beneficial changes in microbiota were observed in the elderly subjects supplemented with the synbiotic product.
PMCID: PMC3682059  PMID: 21853265
Lactobacillus acidophilus; NCFM; Lactitol; Synbiotic; Elderly; Microbiota
22.  Blueberry Husks and Probiotics Attenuate Colorectal Inflammation and Oncogenesis, and Liver Injuries in Rats Exposed to Cycling DSS-Treatment 
PLoS ONE  2012;7(3):e33510.
Long-term colonic inflammation promotes carcinogenesis and histological abnormalities of the liver, and colorectal tumours frequently arise in a background of dysplasia, a precursor of adenomas. Altered colonic microbiota with an increased proportion of bacteria with pro-inflammatory characteristics, have been implicated in neoplastic progression. The composition of the microbiota can be modified by dietary components such as probiotics, polyphenols and dietary fibres. In the present study, the influence of probiotics in combination with blueberry husks on colorectal carcinogenesis and subsequent liver damage was evaluated.
Colorectal tumours were induced in rats by cyclic treatment with dextran sulphate sodium (DSS). Blueberry husks and a mixture of three probiotic strains (Bifidobacterium infantis DSM 15159, Lactobacillus gasseri, DSM 16737 and Lactobacillus plantarum DSM 15313) supplemented a basic diet fortified with oats. The condition of the rats was monitored using a disease activity index (DAI). A qualitative and quantitative histological judgement was performed on segments of distal colon and rectum and the caudate lobe of the liver. The formation of short-chain fatty acids, bacterial translocation, the inflammatory reaction and viable count of lactobacilli and Enterobaceriaceae were addressed.
Blueberry husks with or without probiotics significantly decreased DAI, and significantly reduced the number of colonic ulcers and dysplastic lesions. With a decreased proportion of blueberry husk in the diet, the probiotic supplement was needed to achieve a significant decrease in numbers of dysplastic lesions. Probiotics decreased faecal viable count of Enterobacteriaceae and increased that of lactobacilli. Blueberry husks with or without probiotics lowered the proportion of butyric acid in distal colon, and decreased the haptoglobin levels. Probiotics mitigated hepatic injuries by decreasing parenchymal infiltration and the incidence of stasis and translocation. The results demonstrate a dietary option for use of blueberry husks and probiotics to delay colonic carcinogenesis and hepatic injuries in the rat model.
PMCID: PMC3311639  PMID: 22457771
23.  Gut microbiota is not modified by Randomized, Double-blind, Placebo-controlled Trial of VSL#3 in Diarrhea-predominant Irritable Bowel Syndrome 
Irritable Bowel Syndrome (IBS) is a common condition that negatively impacts the quality of life for many individuals. The exact etiology of this disorder is largely unknown; however, emerging studies suggest that the gut microbiota is a contributing factor. Several clinical trials show that probiotics, such as VSL#3, can have a favorable effect on IBS. This double-blind, randomized placebo-controlled study has been conducted in diarrhea-predominant IBS subjects in order to investigate the effect of VSL#3 on the fecal microbiota. The bacterial composition of the fecal microbiota was investigated using high-throughput microarray technology to detect 16S RNA. Twenty four subjects were randomized to receive VSL#3 or placebo for 8 weeks. IBS symptoms were monitored using GSRS and quality of life questionnaires. A favorable change in Satiety subscale was noted in the VSL #3 groups. However, the consumption of the probiotic did not change the gut microbiota. There were no adverse events or any safety concerns encountered during this study. To summarize, the use of VSL#3 in this pilot study was safe and showed improvement in specific GSRS-IBS scores in diarrhea-predominant IBS subjects. The gut microbiota was not affected by VSL#3 consumption suggesting that the mechanism of action is not directly linked to the microbiota.
PMCID: PMC3255476  PMID: 22247743
Irritable Bowel Syndrome; Diarrhea; Probiotics; Microbiota
24.  The ProPrems trial: investigating the effects of probiotics on late onset sepsis in very preterm infants 
BMC Infectious Diseases  2011;11:210.
Late onset sepsis is a frequent complication of prematurity associated with increased mortality and morbidity. The commensal bacteria of the gastrointestinal tract play a key role in the development of healthy immune responses. Healthy term infants acquire these commensal organisms rapidly after birth. However, colonisation in preterm infants is adversely affected by delivery mode, antibiotic treatment and the intensive care environment. Altered microbiota composition may lead to increased colonisation with pathogenic bacteria, poor immune development and susceptibility to sepsis in the preterm infant.
Probiotics are live microorganisms, which when administered in adequate amounts confer health benefits on the host. Amongst numerous bacteriocidal and nutritional roles, they may also favourably modulate host immune responses in local and remote tissues. Meta-analyses of probiotic supplementation in preterm infants report a reduction in mortality and necrotising enterocolitis. Studies with sepsis as an outcome have reported mixed results to date.
Allergic diseases are increasing in incidence in "westernised" countries. There is evidence that probiotics may reduce the incidence of these diseases by altering the intestinal microbiota to influence immune function.
This is a multi-centre, randomised, double blinded, placebo controlled trial investigating supplementing preterm infants born at < 32 weeks' gestation weighing < 1500 g, with a probiotic combination (Bifidobacterium infantis, Streptococcus thermophilus and Bifidobacterium lactis). A total of 1,100 subjects are being recruited in Australia and New Zealand. Infants commence the allocated intervention from soon after the start of feeds until discharge home or term corrected age. The primary outcome is the incidence of at least one episode of definite (blood culture positive) late onset sepsis before 40 weeks corrected age or discharge home. Secondary outcomes include: Necrotising enterocolitis, mortality, antibiotic usage, time to establish full enteral feeds, duration of hospital stay, growth measurements at 6 and 12 months' corrected age and evidence of atopic conditions at 12 months' corrected age.
Results from previous studies on the use of probiotics to prevent diseases in preterm infants are promising. However, a large clinical trial is required to address outstanding issues regarding safety and efficacy in this vulnerable population. This study will address these important issues.
Trial registration
Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN012607000144415
The product "ABC Dophilus Probiotic Powder for Infants®", Solgar, USA has its 3 probiotics strains registered with the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ - German Collection of Microorganisms and Cell Cultures) as BB-12 15954, B-02 96579, Th-4 15957.
PMCID: PMC3199779  PMID: 21816056
25.  Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals? 
Gut Microbes  2013;5(1):74-82.
It has become clear in recent years that the human intestinal microbiota plays an important role in maintaining health and thus is an attractive target for clinical interventions. Scientists and clinicians have become increasingly interested in assessing the ability of probiotics and prebiotics to enhance the nutritional status of malnourished children, pregnant women, the elderly, and individuals with non-communicable disease-associated malnutrition. A workshop was held by the International Scientific Association for Probiotics and Prebiotics (ISAPP), drawing on the knowledge of experts from industry, medicine, and academia, with the objective to assess the status of our understanding of the link between the microbiome and under-nutrition, specifically in relation to probiotic and prebiotic treatments for under-nourished individuals. These discussions led to four recommendations:
(1) The categories of malnourished individuals need to be differentiated
To improve treatment outcomes, subjects should first be categorized based on the cause of malnutrition, additional health-concerns, differences in the gut microbiota, and sociological considerations.
(2) Define a baseline “healthy” gut microbiota for each category
Altered nutrient requirement (for example, in pregnancy and old age) and individual variation may change what constitutes a healthy gut microbiota for the individual.
(3) Perform studies using model systems to test the effectiveness of potential probiotics and prebiotics against these specific categories
These should illustrate how certain microbiota profiles can be altered, as members of different categories may respond differently to the same treatment.
(4) Perform robust well-designed human studies with probiotics and/or prebiotics, with appropriate, defined primary outcomes and sample size
These are critical to show efficacy and understand responder and non-responder outcomes. It is hoped that these recommendations will lead to new approaches that combat malnutrition.
This report is the result of discussion during an expert workshop titled “How do the microbiota and probiotics and/or prebiotics influence poor nutritional status?” held during the 10th Meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) in Cork, Ireland from October 1–3, 2012. The complete list of workshop attendees is shown in Table 1.
PMCID: PMC4049942  PMID: 24637591
prebiotics; probiotics; microbiota; malnutrition; undernutrition; ISAPP

Results 1-25 (1064344)