Search tips
Search criteria

Results 1-25 (808048)

Clipboard (0)

Related Articles

1.  Proline is required for male gametophyte development in Arabidopsis 
BMC Plant Biology  2012;12:236.
In crosses between the proline-deficient mutant homozygous for p5cs1 and heterozygous for p5cs2 (p5cs1 p5cs2/P5CS2), used as male, and different Arabidopsis mutants, used as females, the p5cs2 mutant allele was rarely transmitted to the outcrossed progeny, suggesting that the fertility of the male gametophyte carrying mutations in both P5CS1 and P5CS2 is severely compromised.
To confirm the fertility defects of pollen from p5cs1 p5cs2/P5CS2 mutants, transmission of mutant alleles through pollen was tested in two ways. First, the number of progeny inheriting a dominant sulfadiazine resistance marker linked to p5cs2 was determined. Second, the number of p5cs2/p5cs2 embryos was determined. A ratio of resistant to susceptible plantlets close to 50%, and the absence of aborted embryos were consistent with the hypothesis that the male gametophyte carrying both p5cs1 and p5cs2 alleles is rarely transmitted to the offspring. In addition, in reciprocal crosses with wild type, about 50% of the p5cs2 mutant alleles were transmitted to the sporophytic generation when p5cs1 p5cs2/P5CS2 was used as a female, while less than 1% of the p5cs2 alleles could be transmitted to the outcrossed progeny when p5cs1 p5cs2/P5CS2 was used as a male. Morphological and functional analysis of mutant pollen revealed a population of small, degenerated, and unviable pollen grains, indicating that the mutant homozygous for p5cs1 and heterozygous for p5cs2 is impaired in pollen development, and suggesting a role for proline in male gametophyte development. Consistent with these findings, we found that pollen from p5cs1 homozygous mutants, display defects similar to, but less pronounced than pollen from p5cs1 p5cs2/P5CS2 mutants. Finally, we show that pollen from p5cs1 p5cs2/P5CS2 plants contains less proline than wild type and that exogenous proline supplied from the beginning of another development can partially complement both morphological and functional pollen defects.
Our data show that the development of the male gametophyte carrying mutations in both P5CS1 and P5CS2 is severely compromised, and indicate that proline is required for pollen development and transmission.
PMCID: PMC3543202  PMID: 23234543
Proline; Male gametophyte; Arabidopsis; p5cs1 p5cs2/P5CS2
2.  A Species-Specific Cluster of Defensin-Like Genes Encodes Diffusible Pollen Tube Attractants in Arabidopsis 
PLoS Biology  2012;10(12):e1001449.
AtLURE1 defensin-like peptides, which show species-specific evolution, are essential in Arabidopsis for attracting pollen tubes and can function in the breakdown of reproductive isolation barriers.
Genes directly involved in male/female and host/parasite interactions are believed to be under positive selection. The flowering plant Arabidopsis thaliana has more than 300 defensin-like (DEFL) genes, which are likely to be involved in both natural immunity and cell-to-cell communication including pollen–pistil interactions. However, little is known of the relationship between the molecular evolution of DEFL genes and their functions. Here, we identified a recently evolved cluster of DEFL genes in A. thaliana and demonstrated that these DEFL (cysteine-rich peptide [CRP810_1]) peptides, named AtLURE1 peptides, are pollen tube attractants guiding pollen tubes to the ovular micropyle. The AtLURE1 genes formed the sole species-specific cluster among DEFL genes compared to its close relative, A. lyrata. No evidence for positive selection was detected in AtLURE1 genes and their orthologs, implying neutral evolution of AtLURE1 genes. AtLURE1 peptides were specifically expressed in egg-accompanying synergid cells and secreted toward the funicular surface through the micropyle. Genetic analyses showed that gametophytic mutants defective in micropylar guidance (myb98, magatama3, and central cell guidance) do not express AtLURE1 peptides. Downregulation of the expression of these peptides impaired precise pollen tube attraction to the micropylar opening of some populations of ovules. Recombinant AtLURE1 peptides attracted A. thaliana pollen tubes at a higher frequency compared to A. lyrata pollen tubes, suggesting that these peptides are species-preferential attractants in micropylar guidance. In support of this idea, the heterologous expression of a single AtLURE1 peptide in the synergid cell of Torenia fournieri was sufficient to guide A. thaliana pollen tubes to the T. fournieri embryo sac and to permit entry into it. Our results suggest the unique evolution of AtLURE1 genes, which are directly involved in male–female interaction among the DEFL multigene family, and furthermore suggest that these peptides are sufficient to overcome interspecific barriers in gametophytic attraction and penetration.
Author Summary
Defensin-like (DEFL) peptides commonly function as effector peptides and are involved in male-female and host-parasite interactions in eukaryotes. In higher plants, DEFL genes belong to a large multigene family and are highly variable between species. However, little is known about the relationship between the molecular evolution of DEFL genes and their functions. By comparing multiply duplicated DEFL genes between A. thaliana and its close relative A. lyrata, we have now identified pollen tube attractant peptides called AtLURE1 peptides, in A. thaliana. We find that AtLURE1 genes form a species-specific gene cluster and that the AtLURE1 peptides these genes encode are specifically expressed in the synergid (egg-accompanying) cells and are secreted along the path down which the pollen tube elongates to reach the female gametophyte. AtLURE1 peptides attract pollen tubes in a species-preferential manner and their downregulation impairs pollen tube guidance. Interestingly, the genetic introduction of a single AtLURE1 gene from A. thaliana into another plant, T. fournieri, is sufficient to breakdown reproductive isolation barriers in pollen tube guidance and penetration. These results suggest that AtLURE1 peptides, which show species-specific evolution, are key molecules that attract pollen tubes from a plant's own species to the embryo sac to enable successful reproduction.
PMCID: PMC3525529  PMID: 23271953
3.  MYB97, MYB101 and MYB120 Function as Male Factors That Control Pollen Tube-Synergid Interaction in Arabidopsis thaliana Fertilization 
PLoS Genetics  2013;9(11):e1003933.
Pollen tube reception involves a pollen tube-synergid interaction that controls the discharge of sperm cells into the embryo sac during plant fertilization. Despite its importance in the sexual reproduction of plants, little is known about the role of gene regulation in this process. We report here that the pollen-expressed transcription factors MYB97, MYB101 and MYB120 probably control genes whose encoded proteins play important roles in Arabidopsis thaliana pollen tube reception. They share a high amino acid sequence identity and are expressed mainly in mature pollen grains and pollen tubes. None of the single or double mutants of these three genes exhibited any visible defective phenotype. Although the myb97 myb101 myb120 triple mutant was not defective in pollen development, pollen germination, pollen tube growth or tube guidance, the pollen tubes of the triple mutants exhibited uncontrolled growth and failed to discharge their sperm cells after entering the embryo sac. In addition, the myb97 myb101 myb120 triple mutation significantly affected the expression of a group of pollen-expressed genes in mature pollen grains. All these results indicate that MYB97, MYB101 and MYB120 participate in pollen tube reception, possibly by controlling the expression of downstream genes.
Author Summary
Pollen tube reception is an important step of fertilization and is controlled by interactions between the pollen tube and synergid. Components of both the pollen tube and synergid are believed to be involved in the process. Several proteins associated with this process have been identified in synergid cells. However, very little is known about the components contributed by the pollen tube. This work identified a group of Arabidopsis pollen-expressed MYB transcription factors, among which at least three members are involved in pollen tube reception. The myb97 myb101 myb120 triple mutation caused overgrowth of the pollen tube into the embryo sac and disrupted sperm cell discharge, leading to failed fertilization. This study provides novel evidence demonstrating that male factors are involved in pollen tube reception.
PMCID: PMC3836714  PMID: 24278028
4.  Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil 
PLoS Genetics  2009;5(8):e1000621.
Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell–cell interaction.
Author Summary
For successful reproduction in flowering plants, a single-celled pollen tube must rapidly extend through female pistil tissue, locate female gametes, and deliver sperm. Pollen tubes undergo a dramatic transformation while growing in the pistil; they grow faster compared to tubes grown in vitro and become competent to perceive and respond to navigation cues secreted by the pistil. The genes expressed by pollen tubes in response to growth in the pistil have not been characterized. We used a surgical procedure to obtain large quantities of uncontaminated pollen tubes that grew through the pistil and defined their transcriptome by microarray analysis. Importantly, we identify a set of genes that are specifically expressed in pollen tubes in response to their growth in the pistil and are not expressed during other stages of pollen or plant development. We analyzed mutants in 33 pollen tube–expressed genes using a sensitive series of pollen function assays and demonstrate that seven of these genes are critical for pollen tube growth; two specifically disrupt growth in the pistil. By identifying pollen tube genes induced by the pistil and describing a mutant analysis scheme to understand their function, we lay the foundation for functional genomic analysis of pollen–pistil interactions.
PMCID: PMC2726614  PMID: 19714218
5.  Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa 
BMC Genomics  2010;11:338.
Pollen development from the microspore involves a series of coordinated cellular events, and the resulting mature pollen has a specialized function to quickly germinate, produce a polar-growth pollen tube derived from the vegetative cell, and deliver two sperm cells into the embryo sac for double fertilization. The gene expression profiles of developing and germinated pollen have been characterised by use of the eudicot model plant Arabidopsis. Rice, one of the most important cereal crops, has been used as an excellent monocot model. A comprehensive analysis of transcriptome profiles of developing and germinated pollen in rice is important to understand the conserved and diverse mechanism underlying pollen development and germination in eudicots and monocots.
We used Affymetrix GeneChip® Rice Genome Array to comprehensively analyzed the dynamic changes in the transcriptomes of rice pollen at five sequential developmental stages from microspores to germinated pollen. Among the 51,279 transcripts on the array, we found 25,062 pollen-preferential transcripts, among which 2,203 were development stage-enriched. The diversity of transcripts decreased greatly from microspores to mature and germinated pollen, whereas the number of stage-enriched transcripts displayed a "U-type" change, with the lowest at the bicellular pollen stage; and a transition of overrepresented stage-enriched transcript groups associated with different functional categories, which indicates a shift in gene expression program at the bicellular pollen stage. About 54% of the now-annotated rice F-box protein genes were expressed preferentially in pollen. The transcriptome profile of germinated pollen was significantly and positively correlated with that of mature pollen. Analysis of expression profiles and coexpressed features of the pollen-preferential transcripts related to cell cycle, transcription, the ubiquitin/26S proteasome system, phytohormone signalling, the kinase system and defense/stress response revealed five expression patterns, which are compatible with changes in major cellular events during pollen development and germination. A comparison of pollen transcriptomes between rice and Arabidopsis revealed that 56.6% of the rice pollen preferential genes had homologs in Arabidopsis genome, but 63.4% of these homologs were expressed, with a small proportion being expressed preferentially, in Arabidopsis pollen. Rice and Arabidopsis pollen had non-conservative transcription factors each.
Our results demonstrated that rice pollen expressed a set of reduced but specific transcripts in comparison with vegetative tissues, and the number of stage-enriched transcripts displayed a "U-type" change during pollen development, with the lowest at the bicellular pollen stage. These features are conserved in rice and Arabidopsis. The shift in gene expression program at the bicellular pollen stage may be important to the transition from earlier cell division to later pollen maturity. Pollen at maturity pre-synthesized transcripts needed for germination and early pollen tube growth. The transcription regulation associated with pollen development would have divergence between the two species. Our results also provide novel insights into the molecular program and key components of the regulatory network regulating pollen development and germination.
PMCID: PMC2895629  PMID: 20507633
6.  A Plant Germline-Specific Integrator of Sperm Specification and Cell Cycle Progression 
PLoS Genetics  2009;5(3):e1000430.
The unique double fertilisation mechanism in flowering plants depends upon a pair of functional sperm cells. During male gametogenesis, each haploid microspore undergoes an asymmetric division to produce a large, non-germline vegetative cell and a single germ cell that divides once to produce the sperm cell pair. Despite the importance of sperm cells in plant reproduction, relatively little is known about the molecular mechanisms controlling germ cell proliferation and specification. Here, we investigate the role of the Arabidopsis male germline-specific Myb protein DUO POLLEN1, DUO1, as a positive regulator of male germline development. We show that DUO1 is required for correct male germ cell differentiation including the expression of key genes required for fertilisation. DUO1 is also necessary for male germ cell division, and we show that DUO1 is required for the germline expression of the G2/M regulator AtCycB1;1 and that AtCycB1:1 can partially rescue defective germ cell division in duo1. We further show that the male germline-restricted expression of DUO1 depends upon positive promoter elements and not upon a proposed repressor binding site. Thus, DUO1 is a key regulator in the production of functional sperm cells in flowering plants that has a novel integrative role linking gametic cell specification and cell cycle progression.
Author Summary
Flowering plants, unlike animals, require not one, but two sperm cells for successful fertilisation—one sperm cell to join with the egg cell to produce the embryo and the other to join with the central cell to produce the nutrient-rich endosperm tissue inside the seed. A mystery in this “double fertilization” process was how each single pollen grain could produce the pair of sperm cells needed for fertility and seed production. Here, we report the discovery of a dual role for DUO1, a regulatory gene required for plant sperm cell production. We show that the DUO1 gene is required to promote the division of sperm precursor cells, while at the same time promoting their differentiation into functional sperm cells. DUO1 is required for the expression of a key cell cycle regulator and for the expression of genes that are critical for gamete differentiation and fertilisation. This work provides the first molecular insight into the mechanisms through which cell cycle progression and gamete differentiation are coordinated in flowering plants. This knowledge will be helpful in understanding the mechanisms and evolution of gamete development in flowering plants and may be useful in the control of gene flow and crossing behaviour.
PMCID: PMC2653642  PMID: 19300502
7.  Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Processes in Male Reproductive Development 
Annals of Botany  2006;97(5):731-738.
• Background and Aims Global warming is gaining significance as a threat to natural and managed ecosystems since temperature is one of the major environmental factors affecting plant productivity. Hence, the effects of moderate temperature increase on the growth and development of the tomato plant (Lycopersicon esculentum) were investigated.
• Methods Plants were grown at 32/26 °C as a moderately elevated temperature stress (METS) treatment or at 28/22 °C (day/night temperatures) as a control with natural light conditions. Vegetative growth and reproductive development as well as sugar content and metabolism, proline content and translocation in the androecium were investigated.
• Key Results METS did not cause a significant change in biomass, the number of flowers, or the number of pollen grains produced, but there was a significant decrease in the number of fruit set, pollen viability and the number of pollen grains released. Glucose and fructose contents in the androecium (i.e. all stamens from one flower) were generally higher in the control than METS, but sucrose was higher in METS. Coincidently, the mRNA transcript abundance of acid invertase in the androecium was decreased by METS. Proline contents in the androecium were almost the same in the control and METS, while the mRNA transcript level of proline transporter 1, which expresses specifically at the surface of microspores, was significantly decreased by METS.
• Conclusions The research indicated that failure of tomato fruit set under a moderately increased temperature above optimal is due to the disruption of sugar metabolism and proline translocation during the narrow window of male reproductive development.
PMCID: PMC2803419  PMID: 16497700
Lycopersicon esculentum; moderately elevated temperature stress; microsporogenesis; mean daily temperature; fruit set; pollen release; male reproductive development; tapetum; hexose; sucrose; acid invertase; proline transporter
8.  In planta function of compatible solute transporters of the AtProT family 
Journal of Experimental Botany  2010;62(2):787-796.
The three proline transporters of Arabidopsis thaliana (AtProTs) transport the compatible solutes proline and glycine betaine and the stress-induced compound γ-aminobutyric acid when expressed in heterologous systems. The aim of the present study was to show transport and physiological relevance of these three AtProTs in planta. Using single, double, and triple knockout mutants and AtProT-overexpressing lines, proline content, growth on proline, transport of radiolabelled betaine, and expression of AtProT genes and enzymes of proline metabolism were analysed. AtProT2 was shown to facilitate uptake of L- and D-proline as well as [14C]glycine betaine in planta, indicating a role in the import of compatible solutes into the root. Toxic concentrations of L- and D-proline resulted in a drastic growth retardation of AtProT-overexpressing plants, demonstrating the need for a precise regulation of proline uptake and/or distribution. Furthermore evidence is provided that AtProT genes are highly expressed in tissues with elevated proline content—that is, pollen and leaf epidermis.
PMCID: PMC3003823  PMID: 20959625
Arabidopsis; compatible solute; epidermis; pollen; proline; transport
9.  Functional characterization of an ornithine cyclodeaminase-like protein of Arabidopsis thaliana 
BMC Plant Biology  2013;13:182.
In plants, proline synthesis occurs by two enzymatic steps starting from glutamate as a precursor. Some bacteria, including bacteria such as Agrobacterium rhizogenes have an Ornithine Cyclodeaminase (OCD) which can synthesize proline in a single step by deamination of ornithine. In A. rhizogenes, OCD is one of the genes transferred to the plant genome during the transformation process and plants expressing A. rhizogenes OCD have developmental phenotypes. One nuclear encoded gene of Arabidopsis thaliana has recently been annotated as an OCD (OCD-like; referred to here as AtOCD) but nothing is known of its function. As proline metabolism contributes to tolerance of low water potential during drought, it is of interest to determine if AtOCD affects proline accumulation or low water potential tolerance.
Expression of AtOCD was induced by low water potential stress and by exogenous proline, but not by the putative substrate ornithine. The AtOCD protein was plastid localized. T-DNA mutants of atocd and AtOCD RNAi plants had approximately 15% higher proline accumulation at low water potential while p5cs1-4/atocd double mutants had 40% higher proline than p5cs1 at low water potential but no change in proline metabolism gene expression which could directly explain the higher proline level. AtOCD overexpression did not affect proline accumulation. Enzymatic assays with bacterially expressed AtOCD or AtOCD purified from AtOCD:Flag transgenic plants did not detect any activity using ornithine, proline or several other amino acids as substrates. Moreover, AtOCD mutant or over-expression lines had normal morphology and no difference in root elongation or flowering time, in contrast to previous report of transgenic plants expressing A. rhizogenes OCD. Metabolite analysis found few differences between AtOCD mutants and overexpression lines.
The Arabidopsis OCD-like protein (AtOCD) may not catalyze ornithine to proline conversion and this is consistent with observation that three residues critical for activity of bacterial OCDs are not conserved in AtOCD. AtOCD was, however, stress and proline induced and lack of AtOCD expression increased proline accumulation by an unknown mechanism which did not require expression of P5CS1, the main enzyme responsible for stress-induced proline synthesis from glutamate. The results suggest that AtOCD may have function distinct from bacterial OCDs.
PMCID: PMC3840593  PMID: 24237637
Ornithine cyclodeaminase; Proline; Drought; Arabidopsis thaliana
10.  Proline metabolism and cancer: emerging links to glutamine and collagen 
Purpose of review
Proline metabolism impacts a number of regulatory targets in both animals and plants and is especially important in cancer. Glutamine, a related amino acid, is considered second in importance only to glucose as a substrate for tumors. But proline and glutamine are interconvertible and linked in their metabolism. In animals, proline and glutamine have specific regulatory functions and their respective physiologic sources. A comparison of the metabolism of proline and glutamine would help us understand the importance of these two nonessential amino acids in cancer metabolism.
Recent findings
The regulatory functions of proline metabolism proposed 3 decades ago have found relevance in many areas. For cancer, these functions play a role in apoptosis, autophagy and in response to nutrient and oxygen deprivation. Importantly, proline-derived reactive oxygen species served as a driving signal for reprogramming. This model has been applied by others to metabolic regulation for the insulin-prosurvival axis, induction of adipose triglyceride lipase for lipid metabolism and regulation of embryonic stem cell development. Of special interest, modulatory proteins such as parkinson protein 7 and oral cancer overexpressed 1 interact with pyrroline-5-carboxylate reductase, a critical component of the proline regulatory axis. Although the interconvertibility of proline and glutamine has been long established, recent findings showed that the proto-oncogene, cellular myelocytomatosis oncogene, upregulates glutamine utilization (glutaminase) and routes glutamate to proline biosynthesis (pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductases). Additionally, collagen, which contains large amounts of proline, may be metabolized to serve as a reservoir for proline. This metabolic relationship as well as the new regulatory targets of proline metabolism invites an elucidation of the differential effects of these nonessential amino acids and their production, storage and mobilization.
Mechanisms by which the proline regulatory axis modulates the cancer phenotype are being revealed. Proline can be synthesized from glutamine as well as derived from collagen degradation. The metabolism of proline serves as a source of energy during stress, provides signaling reactive oxygen species for epigenetic reprogramming and regulates redox homeostasis.
PMCID: PMC4255759  PMID: 25474014
apoptosis; autophagy; collagen; glutamine; metabolic stress
11.  Defensin-Like ZmES4 Mediates Pollen Tube Burst in Maize via Opening of the Potassium Channel KZM1 
PLoS Biology  2010;8(6):e1000388.
Species-preferential osmotic pollen tube burst and sperm discharge in maize involve induced opening of the pollen tube-expressed potassium channel KZM1 by the egg apparatus-derived defensin-like protein ZmES4.
In contrast to animals and lower plant species, sperm cells of flowering plants are non-motile and are transported to the female gametes via the pollen tube, i.e. the male gametophyte. Upon arrival at the female gametophyte two sperm cells are discharged into the receptive synergid cell to execute double fertilization. The first players involved in inter-gametophyte signaling to attract pollen tubes and to arrest their growth have been recently identified. In contrast the physiological mechanisms leading to pollen tube burst and thus sperm discharge remained elusive. Here, we describe the role of polymorphic defensin-like cysteine-rich proteins ZmES1-4 (Zea mays embryo sac) from maize, leading to pollen tube growth arrest, burst, and explosive sperm release. ZmES1-4 genes are exclusively expressed in the cells of the female gametophyte. ZmES4-GFP fusion proteins accumulate in vesicles at the secretory zone of mature synergid cells and are released during the fertilization process. Using RNAi knock-down and synthetic ZmES4 proteins, we found that ZmES4 induces pollen tube burst in a species-preferential manner. Pollen tube plasma membrane depolarization, which occurs immediately after ZmES4 application, as well as channel blocker experiments point to a role of K+-influx in the pollen tube rupture mechanism. Finally, we discovered the intrinsic rectifying K+ channel KZM1 as a direct target of ZmES4. Following ZmES4 application, KZM1 opens at physiological membrane potentials and closes after wash-out. In conclusion, we suggest that vesicles containing ZmES4 are released from the synergid cells upon male-female gametophyte signaling. Subsequent interaction between ZmES4 and KZM1 results in channel opening and K+ influx. We further suggest that K+ influx leads to water uptake and culminates in osmotic tube burst. The species-preferential activity of polymorphic ZmES4 indicates that the mechanism described represents a pre-zygotic hybridization barrier and may be a component of reproductive isolation in plants.
Author Summary
Sperm cells of animals and lower plants are mobile and can swim to the oocyte or egg cell. In contrast, flowering plants generate immobile sperm encased in a pollen coat to protect them from drying out and are transported via the pollen tube cell towards the egg apparatus to achieve double fertilization. Upon arrival the pollen tube tip bursts to deliver two sperm cells, one fusing with the egg cell to generate the embryo and the other fusing with the central cell to generate the endosperm. Here, we report the mechanisms leading to pollen tube burst and sperm discharge in maize. We found that before fertilization the defensin-like protein ZmES1-4 is stored in the secretory zone of the egg apparatus cells and that pollen tubes cannot discharge sperm in ZmES1-4 knock-down plants. Application of chemically synthesized ZmES4 leads to pollen tube burst within seconds in maize, but not in other plant species, suggesting this mechanism may be species specific. Finally, we identified the pollen tube-expressed potassium channel KZM1 as a target of ZmES4, which opens after ZmES4 treatment and probably leads to K+ influx and sperm release after osmotic burst.
PMCID: PMC2879413  PMID: 20532241
12.  Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana 
Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.
PMCID: PMC4290513  PMID: 25628629
Arabidopsis thaliana; lipid signaling; Phosphatidylinositol 3-kinase (PI3K); proline; proline dehydrogenase 1 (ProDH1); salt stress
13.  Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana 
eLife  2014;3:e04501.
In animals, microtubules and centrosomes direct the migration of gamete pronuclei for fertilization. By contrast, flowering plants have lost essential components of the centrosome, raising the question of how flowering plants control gamete nuclei migration during fertilization. Here, we use Arabidopsis thaliana to document a novel mechanism that regulates F-actin dynamics in the female gametes and is essential for fertilization. Live imaging shows that F-actin structures assist the male nucleus during its migration towards the female nucleus. We identify a female gamete-specific Rho-GTPase that regulates F-actin dynamics and further show that actin–myosin interactions are also involved in male gamete nucleus migration. Genetic analyses and imaging indicate that microtubules are dispensable for migration and fusion of male and female gamete nuclei. The innovation of a novel actin-based mechanism of fertilization during plant evolution might account for the complete loss of the centrosome in flowering plants.
eLife digest
Sexual reproduction involves combining the genetic material from two parents to create an offspring. The genetic material in the male sperm cell and the female egg cell is contained in the nucleus of each cell. Once these two cells fuse at fertilization, their nuclei must then navigate towards each other and fuse.
When an animal egg cell is fertilized, cable-like protein filaments called microtubules guide the two nuclei into contact. These microtubules are organized by a cellular structure called a centrosome. However, flowering plants do not have centrosomes; as such, it was unclear how genetic material from the sperm and egg cells is brought together after fertilization in flowering plants.
To investigate this, Kawashima et al. turned to a flowering plant commonly used in research, called Arabidopsis thaliana, and found that microtubules are not needed to guide the nuclei of the sperm and the egg cell after fertilization. Instead, another cable-forming protein—called F-actin—fulfills a similar role in Arabidopsis cells.
F-actin filaments often connect together to form a network; and when Kawashima et al. disrupted the F-actin in Arabidopsis egg cells, the nucleus of the sperm cell failed to fuse with that of the female. Pollen from Arabidopsis plants actually contains two sperm cells. One sperm cell fertilizes the egg cell; the other fertilizes the so-called ‘central cell’, which develops into a tissue that nourishes the plant embryo. Kawashima et al. found that the fertilization of both of these cells requires an intact F-actin network.
By looking more closely at F-actin networks in the larger central cell, Kawashima et al. discovered that the sperm nucleus becomes surrounded by a star-shaped structure of F-actin cables and that this F-actin structure migrates together with the sperm nucleus. The F-actin network constantly moves inward, from the edges of the cell towards the nucleus, prior to fertilization. This movement is essential for guiding the sperm nucleus towards the central cell nucleus.
Kawashima et al. also found that this continual movement of the F-actin network depends on a small signaling protein found in the central cell, called ROP8. It also involves a motor protein that normally transports “cargo”, such as proteins and other molecules, inside cells by walking along the F-actin networks. However, rather than transporting the sperm nucleus as cargo, Kawashima et al. believe that the motor protein instead helps to maintain the inward movement of the F-actin network. One of the next challenges will be to investigate the molecular mechanism that underlies this motor protein's involvement in this dynamic F-actin network.
PMCID: PMC4221737  PMID: 25303363
fertilization; cytoskeleton; gamete nuclear migration; Rho-GTPase; F-actin; reproduction; Arabidopsis
14.  Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses 
Annals of Botany  2011;108(4):727-737.
In contrast to animals and lower plants such as mosses and ferns, sperm cells of flowering plants (angiosperms) are immobile and require transportation to the female gametes via the vegetative pollen tube cell to achieve double fertilization. The path of the pollen tube towards the female gametophyte (embryo sac) has been intensively studied in many intra- and interspecific crossing experiments with the aim of increasing the gene pool of crop plants for greater yield, improved biotic and abiotic stress resistance, and for introducing new agronomic traits. Many attempts to hybridize different species or genotypes failed due to the difficulty for the pollen tubes in reaching the female gametophyte. Detailed studies showed that these processes are controlled by various self-incompatible (intraspecific) and cross-incompatible (interspecific) hybridization mechanisms.
Understanding the molecular mechanisms of crossing barriers is therefore of great interest in plant reproduction, evolution and breeding research. In particular, pre-zygotic hybridization barriers related to pollen tube germination, growth, guidance and sperm delivery, which are considered the major hybridization controls in nature and thus also contribute to species isolation and speciation, have been intensively investigated. Despite this general interest, surprisingly little is known about these processes in the most important agronomic plant family, the Gramineae, Poaceae or grasses. Small polymorphic proteins and their receptors, degradation of sterility locus proteins and general compounds such as calcium, γ-aminobutyric acid or nitric oxide have been shown to be involved in progamic pollen germination, adhesion, tube growth and guidance, as well as sperm release. Most advances have been made in the Brassicaceae, Papaveraceae, Linderniaceae and Solanaceae families including their well-understood self-incompatibility (SI) systems. Grass species evolved similar mechanisms to control the penetration and growth of self-pollen to promote intraspecific outcrossing and to prevent fertilization by alien sperm cells. However, in the Poaceae, the underlying molecular mechanisms are still largely unknown.
We propose to develop maize (Zea mays) as a model to investigate the above-described processes to understand the associated intra- and interspecific crossing barriers in grasses. Many genetic, cellular and biotechnological tools including the completion of a reference genome (inbred line B73) have been established in the last decade and many more maize inbred genomes are expected to be available soon. Moreover, a cellular marker line database as well as large transposon insertion collections and improved Agrobacterium transformation protocols are now available. Additionally, the processes described above are well studied at the morphological level and a number of mutants have been described already, awaiting disclosure of the relevant genes. The identification of the first key players in pollen tube growth, guidance and burst show maize to be an excellent grass model to investigate these processes in more detail. Here we provide an overview of our current understanding of these processes in Poaceae with a focus on maize, and also include relevant discoveries in eudicot model species.
PMCID: PMC3170146  PMID: 21345919
Maize; male germline; sperm cell; interspecific crosses; self- and cross-incompatibility; pollen tube growth and guidance; fertilization; reproductive isolation
15.  Genome-Wide Expression Profiling of the Arabidopsis Female Gametophyte Identifies Families of Small, Secreted Proteins 
PLoS Genetics  2007;3(10):e171.
The female gametophyte of flowering plants, the embryo sac, develops within the diploid (sporophytic) tissue of the ovule. While embryo sac–expressed genes are known to be required at multiple stages of the fertilization process, the set of embryo sac–expressed genes has remained poorly defined. In particular, the set of genes responsible for mediating intracellular communication between the embryo sac and the male gametophyte, the pollen grain, is unknown. We used high-throughput cDNA sequencing and whole-genome tiling arrays to compare gene expression in wild-type ovules to that in dif1 ovules, which entirely lack embryo sacs, and myb98 ovules, which are impaired in pollen tube attraction. We identified nearly 400 genes that are downregulated in dif1 ovules. Seventy-eight percent of these embryo sac–dependent genes were predicted to encode for secreted proteins, and 60% belonged to multigenic families. Our results define a large number of candidate extracellular signaling molecules that may act during embryo sac development or fertilization; less than half of these are represented on the widely used ATH1 expression array. In particular, we found that 37 out of 40 genes encoding Domain of Unknown Function 784 (DUF784) domains require the synergid-specific transcription factor MYB98 for expression. Several DUF784 genes were transcribed in synergid cells of the embryo sac, implicating the DUF784 gene family in mediating late stages of embryo sac development or interactions with pollen tubes. The coexpression of highly similar proteins suggests a high degree of functional redundancy among embryo sac genes.
Author Summary
During the sexual reproduction of flowering plants, a pollen tube delivers sperm cells to a specialized group of cells known as the embryo sac, which contains the egg cell. It is known that embryo sacs are active participants in guiding the growth of pollen tubes, in facilitating fertilization, and in initiating seed development. However, the genes responsible for the complex biology of embryo sacs are poorly understood. The authors use two recently developed technologies, whole-genome tiling microarrays and high-throughput cDNA sequencing, to identify hundreds of genes expressed in embryo sacs of Arabidopsis thaliana. Most embryo sac–dependent genes have no known function, and include entire families of related genes that are only expressed in embryo sacs. Furthermore, most embryo sac–dependent genes encode small proteins that are potentially secreted from their cells of origin, suggesting that they may act as intracellular signals or to modify the extracellular matrix during fertilization or embryo sac development. These results illustrate the extent to which our understanding of plant sexual reproduction is limited and identifies hundreds of candidate genes for future studies investigating the molecular biology of the embryo sac.
PMCID: PMC2014789  PMID: 17937500
16.  Mycorrhizal-Mediated Lower Proline Accumulation in Poncirus trifoliata under Water Deficit Derives from the Integration of Inhibition of Proline Synthesis with Increase of Proline Degradation 
PLoS ONE  2013;8(11):e80568.
Proline accumulation was often correlated with drought tolerance of plants infected by arbuscular mycorrhizal fungi (AMF), whereas lower proline in some AM plants including citrus was also found under drought stress and the relevant mechanisms have not been fully elaborated. In this study proline accumulation and activity of key enzymes relative to proline biosynthesis (▵1-pyrroline-5-carboxylate synthetase, P5CS; ornithine-δ-aminotransferase, OAT) and degradation (proline dehydrogenase, ProDH) were determined in trifoliate orange (Poncirus trifoliata, a widely used citrus rootstock) inoculated with or without Funneliformis mosseae and under well-watered (WW) or water deficit (WD). AMF colonization significantly increased plant height, stem diameter, leaf number, root volume, biomass production of both leaves and roots and leaf relative water content, irrespectively of water status. Water deficit induced more tissue proline accumulation, in company with an increase of P5CS activity, but a decrease of OAT and ProDH activity, no matter whether under AM or no-AM. Compared with no-AM treatment, AM treatment resulted in lower proline concentration and content in leaf, root, and total plant under both WW and WD. The AMF colonization significantly decreased the activity of both P5CS and OAT in leaf, root, and total plant under WW and WD, except for an insignificant difference of root OAT under WD. The AMF inoculation also generally increased tissue ProDH activity under WW and WD. Plant proline content significantly positively correlated with plant P5CS activity, negatively with plant ProDH activity, but not with plant OAT activity. These results suggest that AM plants may suffer less from WD, thereby inducing lower proline accumulation, which derives from the integration of an inhibition of proline synthesis with an enhancement of proline degradation.
PMCID: PMC3832396  PMID: 24260421
17.  Temperature stress and plant sexual reproduction: uncovering the weakest links 
Journal of Experimental Botany  2010;61(7):1959-1968.
The reproductive (gametophytic) phase in flowering plants is often highly sensitive to hot or cold temperature stresses, with even a single hot day or cold night sometimes being fatal to reproductive success. This review describes studies of temperature stress on several crop plants, which suggest that pollen development and fertilization may often be the most sensitive reproductive stage. Transcriptome and proteomic studies on several plant species are beginning to identify stress response pathways that function during pollen development. An example is provided here of genotypic differences in the reproductive stress tolerance between two ecotypes of Arabidopsis thaliana Columbia (Col) and Hilversum (Hi-0), when reproducing under conditions of hot days and cold nights. Hi-0 exhibited a more severe reduction in seed set, correlated with a reduction in pollen tube growth potential and tropism defects. Hi-0 thus provides an Arabidopsis model to investigate strategies for improved stress tolerance in pollen. Understanding how different plants cope with stress during reproductive development offers the potential to identify genetic traits that could be manipulated to improve temperature tolerance in selected crop species being cultivated in marginal climates.
PMCID: PMC2917059  PMID: 20351019
Cold stress; fertilization; gene expression; heat stress; plant reproduction; pollen; pollen tropism; seed set
18.  Gamete fusion is required to block multiple pollen tubes from entering an Arabidopsis ovule 
Current biology : CB  2012;22(12):1090-1094.
In double fertilization, a reproductive system unique to flowering plants, two immotile sperm are delivered to an ovule by a pollen tube. One sperm fuses with the egg to generate a zygote, the other with the central cell to produce endosperm[1]. A mechanism preventing multiple pollen tubes from entering an ovule would ensure that only two sperm are delivered to female gametes. We use live-cell imaging[1, 2] and a novel mixed-pollination assay that can detect multiple pollen tubes and multiple sets of sperm within a single ovule to show that Arabidopsis efficiently prevents multiple pollen tubes from entering an ovule. However, when gamete-fusion defective hap2(gcs1) or duo1 sperm are delivered to ovules as many as three additional pollen tubes are attracted. When gamete fusion fails, one of two pollen tube-attracting synergid cells persists, enabling the ovule to attract more pollen tubes for successful fertilization. This mechanism prevents the delivery of more than one pair of sperm to an ovule, provides a means of salvaging fertilization in ovules that have received defective sperm, and ensures maximum reproductive success by distributing pollen tubes to all ovules.
PMCID: PMC3973743  PMID: 22608506
fertilization; gamete fusion; supernumerary pollen tubes; GCS1; HAP2; sperm; pollen tube reception; polytubey; polyspermy
19.  Regulation of cytoplasmic proline levels in Salmonella typhimurium: effect of osmotic stress on synthesis, degradation, and cellular retention of proline. 
Journal of Bacteriology  1988;170(5):2374-2378.
I investigated the effects of osmotic stress on the synthesis and catabolism of proline in Salmonella typhimurium by measuring the intracellular and extracellular proline levels in various strains. In the wild-type strain, exposure to 0.8 M NaCl did not cause a significant change in the intracellular proline level; however, it brought about a 6.5-fold increase in the intracellular glutamate pool size. These results indicate that gamma-glutamyl kinase is inhibited by proline in wild-type cells in media of normal or elevated osmolarity. I also tested whether proline is subject to turnover in cells wild type with respect to the enzymes of the proline degradation pathway. In strains that were wild type for proline biosynthesis, the loss of the proline catabolic enzymes, due to putA mutations, did not result in a statistically significant increase in the intracellular proline levels. Therefore, in the wild-type strain, proline turnover does not seem to be important for control of the intracellular proline levels. However, in a proline-overproducing mutant, a putA lesion caused a threefold increase in the intracellular proline level and a 6.5-fold increase in the extracellular proline level, indicating that proline is subject to turnover in the overproducing mutant. The proline-overproducing mutants excreted large quantities of the proline into the culture medium; osmotic stress altered the partitioning of proline such that the ratio of intracellular to extracellular levels of proline increased with increased osmotic stress. The increased cellular retention of proline in media of high osmolarity is probably due to the functioning of the ProP and ProU proline transport systems, which are stimulated under conditions of osmotic stress.
PMCID: PMC211132  PMID: 3283109
20.  Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions 
Planta  2012;236(2):659-676.
Large amounts of nitrogen (N) fertilizers are used in the production of oilseed rape. However, as low-input methods of crop management are introduced crops will need to withstand temporary N deficiency. In temperate areas, oilseed rape will also be affected by frequent drought periods. Here we evaluated the physiological and metabolic impact of nitrate limitation on the oilseed rape response to water deprivation. Different amounts of N fertilizer were applied to plants at the vegetative stage, which were then deprived of water and rehydrated. Both water and N depletion accelerated leaf senescence and reduced leaf development. N-deprived plants exhibited less pronounced symptoms of wilting during drought, probably because leaves were smaller and stomata were partially closed. Efficiency of proline production, a major stress-induced diversion of nitrogen metabolism, was assessed at different positions along the whole plant axis and related to leaf developmental stage and water status indices. Proline accumulation, preferentially in younger leaves, accounted for 25–85 % of the free amino acid pool. This was mainly due to a better capacity for proline synthesis in fully N-supplied plants whether they were subjected to drought or not, as deduced from the expression patterns of the proline metabolism BnP5CS and BnPDH genes. Although less proline accumulated in the oldest leaves, a significant amount was transported from senescing to emerging leaves. Moreover, during rehydration proline was readily recycled. Our results therefore suggest that proline plays a significant role in leaf N remobilization and in N use efficiency in oilseed rape.
Electronic supplementary material
The online version of this article (doi:10.1007/s00425-012-1636-8) contains supplementary material, which is available to authorized users.
PMCID: PMC3404282  PMID: 22526495
Brassica napus; Drought stress; Nitrogen supply; Proline metabolism; Source-sink relationship; Water status
21.  The beginning of a seed: regulatory mechanisms of double fertilization 
The launch of seed development in flowering plants (angiosperms) is initiated by the process of double fertilization: two male gametes (sperm cells) fuse with two female gametes (egg and central cell) to form the precursor cells of the two major seed components, the embryo and endosperm, respectively. The immobile sperm cells are delivered by the pollen tube toward the ovule harboring the female gametophyte by species-specific pollen tube guidance and attraction mechanisms. After pollen tube burst inside the female gametophyte, the two sperm cells fuse with the egg and central cell initiating seed development. The fertilized central cell forms the endosperm while the fertilized egg cell, the zygote, will form the actual embryo and suspensor. The latter structure connects the embryo with the sporophytic maternal tissues of the developing seed. The underlying mechanisms of double fertilization are tightly regulated to ensure delivery of functional sperm cells and the formation of both, a functional zygote and endosperm. In this review we will discuss the current state of knowledge about the processes of directed pollen tube growth and its communication with the synergid cells resulting in pollen tube burst, the interaction of the four gametes leading to cell fusion and finally discuss mechanisms how flowering plants prevent multiple sperm cell entry (polyspermy) to maximize their reproductive success.
PMCID: PMC4160995  PMID: 25309552
pollen tube; ovule; gamete interaction; cell fusion; signaling; fertilization; polyspermy
22.  Three MYB transcription factors control pollen tube differentiation required for sperm release 
Current biology : CB  2013;23(13):1209-1214.
In flowering plants, immotile sperm cells develop within the pollen grain and are delivered to female gametes by a pollen tube [1, 2]. Upon arrival at the female gametophyte, the pollen tube stops growing and releases sperm cells for successful fertilization [3]. Several female signaling components essential for pollen tube reception have been identified [4–11]); however, male components remain unknown. We show that the expression of three closely related MYB transcription factors is induced in pollen tubes by growth in the pistil. Pollen tubes lacking these three transcriptional regulators fail to stop growing in synergids, specialized cells flanking the egg cell that attract pollen tubes [12–16] and degenerate upon pollen tube arrival [17, 18]. myb triple mutant pollen tubes also fail to release their sperm cargo. We define a suite of pollen tube-expressed genes regulated by these critical MYBs and identify transporters, carbohydrate active enzymes, and small peptides as candidate molecular mediators of pollen-female interactions necessary for flowering plant reproduction. Our data indicate that de novo transcription in the pollen tube nucleus during growth in the pistil leads to pollen tube differentiation required for release of sperm cells.
PMCID: PMC4009620  PMID: 23791732
23.  Dynamics of maternal and paternal effects on embryo and seed development in wild radish (Raphanus sativus) 
Annals of Botany  2010;106(2):309-319.
Background and Aims
Variability in embryo development can influence the rate of seed maturation and seed size, which may have an impact on offspring fitness. While it is expected that embryo development will be under maternal control, more controversial hypotheses suggest that the pollen donor and the embryo itself may influence development. These latter possibilities are, however, poorly studied. Characteristics of 10-d-old embryos and seeds of wild radish (Raphanus sativus) were examined to address: (a) the effects of maternal plant and pollen donor on development; (b) the effects of earlier reproductive events (pollen tube growth and fertilization) on embryos and seeds, and the influence of embryo size on mature seed mass; (c) the effect of water stress on embryos and seeds; (d) the effect of stress on correlations of embryo and seed characteristics with earlier and later reproductive events and stages; and (e) changes in maternal and paternal effects on embryo and seed characteristics during development.
Eight maternal plants (two each from four families) and four pollen donors were crossed and developing gynoecia were collected at 10 d post-pollination. Half of the maternal plants experienced water stress. Characteristics of embryos and seeds were summarized and also compared with earlier and later developmental stages.
Key Results
In addition to the expected effects of the maternal plants, all embryo characters differed among pollen donors. Paternal effects varied over time, suggesting that there are windows of opportunity for pollen donors to influence embryo development. Water-stress treatment altered embryo characteristics; embryos were smaller and less developed. In addition, correlations of embryo characteristics with earlier and later stages changed dramatically with water stress.
The expected maternal effects on embryo development were observed, but there was also evidence for an early paternal role. The relative effects of these controls may change over time. Thus, there may be times in development when selection on the maternal, paternal or embryo contributions to development are more and less likely.
PMCID: PMC2908165  PMID: 20519237
Raphanus sativus; embryo development; maternal effects; paternal effects; seed development; seed size; water stress; wild radish
24.  Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions 
AoB Plants  2012;2012:pls024.
The paper supports the view that ethylene plays a significant role in maintaining tomato pollen thermotolerance. Interfering with the ethylene signalling pathway or reducing ethylene levels and increased tomato pollen sensitivity to heat stress. On the other hand, increasing ethylene levels before heat-stress improved pollen quality.
Background and aims
Exposure to higher-than-optimal temperatures reduces crop yield and quality, mainly due to sensitivity of developing pollen grains. The mechanisms maintaining high pollen quality under heat-stress conditions are poorly understood. Our recently published data indicate high heat-stress-induced expression of ethylene-responsive genes in tomato pollen, indicating ethylene involvement in the pollen heat-stress response. Here we elucidated ethylene's involvement in pollen heat-stress response and thermotolerance by assessing the effects of interfering with the ethylene signalling pathway and altering ethylene levels on tomato pollen functioning under heat stress.
Plants of the ethylene-insensitive mutant Never ripe (Nr)—defective in an ethylene response sensor (ERS)-like ethylene receptor—and the corresponding wild type were exposed to control or heat-stress growing conditions, and pollen quality was determined. Starch and carbohydrates were measured in isolated pollen grains from these plants. The effect of pretreating cv. Micro-Tom tomato plants, prior to heat-stress exposure, with an ethylene releaser or inhibitor of ethylene biosynthesis on pollen quality was assessed.
Principal results
Never ripe pollen grains exhibited higher heat-stress sensitivity, manifested by a significant reduction in the total number of pollen grains, reduction in the number of viable pollen and elevation of the number of non-viable pollen, compared with wild-type plants. Mature Nr pollen grains accumulated only 40 % of the sucrose level accumulated by the wild type. Pretreatment of tomato plants with an ethylene releaser increased pollen quality under heat stress, with an over 5-fold increase in the number of germinating pollen grains per flower. Pretreatment with an ethylene biosynthesis inhibitor reduced the number of germinating pollen grains following heat-stress exposure over 5-fold compared with non-treated controls.
Ethylene plays a significant role in tomato pollen thermotolerance. Interfering with the ethylene signalling pathway or reducing ethylene levels increased tomato pollen sensitivity to heat stress, whereas increasing ethylene levels prior to heat-stress exposure increased pollen quality.
PMCID: PMC3461890  PMID: 23050072
25.  Cytokinin receptors in sporophytes are essential for male and female functions in Arabidopsis thaliana 
Plant Signaling & Behavior  2011;6(1):66-71.
Arabidopsis has three cytokinin receptors genes: CRE1, AHK2 and AHK3. Availability of plants that are homozygous mutant for these three genes indicates that cytokinin receptors in the haploid cells are dispensable for the development of male and female gametophytes. The triple mutants form a few flowers but never set seed, indicating that reproductive growth is impaired. We investigated which reproductive processes are affected in the triple mutants. Anthers of mutant plants contained fewer pollen grains and did not dehisce. Pollen in the anthers completed the formation of the one vegetative nucleus and the two sperm nuclei, as seen in wild type. The majority of the ovules were abnormal: 78% lacked the embryo sac, 10% carried a female gametophyte that terminated its development before completing three rounds of nuclear division, and about 12% completed three rounds of nuclear division but the gametophytes were smaller than those of the wild type. Reciprocal crosses between the wild type and the triple mutants indicated that pollen from mutant plants did not germinate on wild-type stigmas, and wild-type pollen did not germinate on mutant stigmas. These results suggest that cytokinin receptors in the sporophyte are indispensable for anther dehiscence, pollen maturation, induction of pollen germination by the stigma and female gametophyte formation and maturation.
PMCID: PMC3122008  PMID: 21301212
cytokinin; cytokinin receptor; female gametophyte; male gametophyte; stigma

Results 1-25 (808048)