PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (443398)

Clipboard (0)
None

Related Articles

1.  Antimicrobial Potential of Endophytic Fungi Derived from Three Seagrass Species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii 
PLoS ONE  2013;8(8):e72520.
Endophytic fungi from three commonly found seagrasses in southern Thailand were explored for their ability to produce antimicrobial metabolites. One hundred and sixty endophytic fungi derived from Cymodoceaserrulata (Family Cymodoceaceae), Halophilaovalis and Thalassiahemprichii (Family Hydrocharitaceae) were screened for production of antimicrobial compounds by a colorimetric broth microdilution test against ten human pathogenic microorganisms including Staphylococcus aureus ATCC 25923, a clinical isolate of methicillin-resistant S. aureus, Escherichia coli ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 90028 and NCPF 3153, Cryptococcus neoformans ATCC 90112 and ATCC 90113 and clinical isolates of Microsporumgypseum and Penicilliummarneffei. Sixty-nine percent of the isolates exhibited antimicrobial activity against at least one test strain. Antifungal activity was more pronounced than antibacterial activity. Among the active fungi, seven isolates including Hypocreales sp. PSU-ES26 from C. serrulata, Trichoderma spp. PSU-ES8 and PSU-ES38 from H. ovalis, and Penicillium sp. PSU-ES43, Fusarium sp. PSU-ES73, Stephanonectria sp. PSU-ES172 and an unidentified endophyte PSU-ES190 from T. hemprichii exhibited strong antimicrobial activity against human pathogens with minimum inhibitory concentrations (MIC) of less than 10 µg/ml. The inhibitory extracts at concentrations of 4 times their MIC destroyed the targeted cells as observed by scanning electron microscopy. These results showed the antimicrobial potential of extracts from endophytic fungi from seagrasses.
doi:10.1371/journal.pone.0072520
PMCID: PMC3745589  PMID: 23977310
2.  Antimicrobial Activity of Carpolobia Lutea Extracts and Fractions 
Carpolobia lutea (G. Don) (Polygalaceae) is a tropical medicinal plant putative in traditional medicines against gonorrhea, gingivitis, infertility, antiulcer and malaria. The present study evaluated the antimicrobial, antifungal and antihelicobacter effects of extracts C. lutea leaf, stem and root. The extracts were examined using the disc-diffusion and Microplates of 96 wells containing Muller-Hinton methods against some bacterial strains: Eschericia coli (ATCC 25922), E. coli (ATCC10418), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923), Staphyllococus aureus (ATCC 6571), Enterococcus faecalis (ATCC 29212) and Bacillus subtilis (NCTC 8853) and four clinical isolates: one fungi (Candida albican) and three bacteria (Salmonella, Sheigella and staphylococcus aureus). The Gram-positive bacteria: Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 19659) and the Gram-negative bacteria: Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Cândida albicans (ATCC 18804) and Helicobacter pylori (ATCC 43504). Some of these extracts were found to be active against some tested strains but activity against H. pylori was >1000mg/ml and good fungistatic activity against C. albican. The MIC against C. albican is in the order n-HF > CHF > ETF= EAF.The order of potency of fraction was the ethanol root > n-HF leaf > ethanol fraction stem > chloroform fraction leaf = ethyl acetate fraction leaf. Polyphenols were demonstrated in ethanol fraction, ethyl acetate fraction, crude ethyl acetate extract and ethanol extract, respectively. These polyphenols isolated may partly explain and support the use of C. lutea for the treatment of infectious diseases in traditional Ibibio medicine of Nigeria.
PMCID: PMC3746663  PMID: 23983362
Carpolobia lutea; Polygalaceae; antimicrobial; antifungal; antihelicobacter; Polyphenols
3.  Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia 
Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances.
doi:10.1016/j.sjbs.2013.06.001
PMCID: PMC3937469  PMID: 24596500
Marine algae; Red sea; Antibacterial activity; Human pathogens; Phyto-chemical analyses
4.  Trimebutine as a potential antimicrobial agent: a preliminary in vitro approach 
Hippokratia  2012;16(4):347-349.
Aim: The aim of this preliminary study was to investigate the in vitro effect of "non-antibiotic" trimebutine against reference strains Staphylococcus aureus ATCC 29213, ATCC 25923, Escherichia coli ATCC 25922, ATCC 35218, Pseudomonas aeruginosa ATCC 27853 and Enterococcus faecalis ATCC 29212; microbiota that are potentially involved in the pathophysiology of post-infectious functional gastrointestinal disorders.
Methods: Trimebutine activity was assessed by the broth microdilution method according to Clinical and Laboratory Standards Institute recommendations against reference strains S. aureus ATCC 29213 and ATCC 25923, E. coli ATCC 25922 and ATCC 35218, P. aeruginosa ATCC 27853 and E. faecalis ATCC 29212. Bactericidal activity of the compound was determined by spreading a 10 μL aliquot on Mueller-Hinton agar from each dilution showing non-visible growth. All tests were carried out in triplicate.
Results: Trimebutine was active against all strains tested presenting with MIC ranging from 1024 to 4000 mg/L. MIC and MBC were similar for E. coli ATCC 25922 and P. aeruginosa ATCC 27853 whereas for Gram-positive isolates and E. coli ATCC 35218 the MBC was higher.
Conclusions: We demonstrated the in vitro bacteriostatic/bactericidal activity of trimebutine against bacteria frequently colonizing the gastrointestinal tract and potentially involved in human gastrointestinal infections that might trigger post-infectious functional gastrointestinal disorders.
PMCID: PMC3738610  PMID: 23935315
trimebutine; antimicrobial effect; post-infectious irritable bowel syndrome; functional dyspepsia; gastroesophageal reflux disease
5.  Antibacterial and antioxidant activity of methanol extract of Evolvulus nummularius 
Indian Journal of Pharmacology  2009;41(5):233-236.
Objective:
To evaluate the antibacterial and antioxidant activity of methanol extract of Evolvulus nummularius (L) L.
Materials and Methods:
Disc diffusion and broth serial dilution tests were used to determine the antibacterial activity of the methanol extract against two Gram-positive bacterial strains (Bacillus subtilus NCIM 2718, Staphylococcus aureus ATCC 25923) and three Gram-negative bacterial strains (Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 and Escherichia coli ATCC 25922). The methanol extract was subjected to preliminary phytochemical analysis. Free radical scavenging activity of the methanol extract at different concentrations was determined with 2, 2-diphenyl-1picrylhydrazyl (DPPH).
Results:
The susceptible organisms to the methanol extract were Escherichia coli (MIC=12.50 mg/ml) and Bacillus subtilus (MIC=3.125 mg/ml) and the most resistant strains were Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. The methanol extracts exhibited radical scavenging activity with IC50 of 350 μg/ml.
Conclusion:
The results from the study show that methanol extract of E.nummularius has antibacterial activity. The antioxidant activity may be attributed to the presence of tannins, flavonoids and triterpenoids in the methanol extract. The antibacterial and antioxidant activity exhibited by the methanol extract can be corroborated to the usage of this plant in Indian folk medicine.
doi:10.4103/0253-7613.58514
PMCID: PMC2812784  PMID: 20177496
Antibacterial; DPPH; Evolvulus nummularius
6.  Synthesis and Antibacterial Activity of Triphenyltinbenzoate 
Triphenyltinbenzoate was synthesized using triphenyltinchloride and silver benzoate prepared from sodium benzoate. The structure of the synthetic compound was elucidated by spectral and C, H analysis. The antibacterial activities of the organotin compound were determined against four bacteria namely Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (clinical isolate) and Pseudomonas aeruginosa (ATCC 27853) in vitro experiment. All the bacteria were inhibited at a concentration of 200 μg/ml and 20 μg/ml in dimethylsulphoxide solution and the minimum inhibitory concentration was found to be same, 7.5 μg/ml for Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes and 10 μg/ml for Pseudomonas aeruginosa.
doi:10.4103/0250-474X.73923
PMCID: PMC3013556  PMID: 21218074
Antibacterial activity; MIC; synthesis; triphenyltinbenzoate; zone of inhibition
7.  Quality Control Guidelines for Disk Diffusion and Broth Microdilution Antimicrobial Susceptibility Tests with Seven Drugs for Veterinary Applications 
Journal of Clinical Microbiology  2000;38(1):453-455.
This multicenter study proposes antimicrobial susceptibility (MIC and disk diffusion methods) quality control (QC) parameters for seven compounds utilized in veterinary health. Alexomycin, apramycin, tiamulin, tilmicosin, and tylosin were tested by broth microdilution against various National Committee for Clinical Laboratory Standards (NCCLS)-recommended QC organisms (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Streptococcus pneumoniae ATCC 49619, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853). In addition, disk diffusion zone diameter QC limits were determined for apramycin, enrofloxacin, and premafloxacin by using E. coli ATCC 25922, P. aeruginosa ATCC 27853, and S. aureus ATCC 25923. The results from five or six participating laboratories produced ≥99.0% of MICs and ≥95.0% of the zone diameters within suggested guidelines. The NCCLS Subcommittee for Veterinary Antimicrobial Susceptibility Testing has recently approved these ranges for publication in the next M31 document.
PMCID: PMC88749  PMID: 10618141
8.  Phytochemical and Antimicrobial Effects of Chrozophora Senegalensis 
The in vitro antimicrobial activities of the whole plant extract (ethanolic-CEE) of Chrozophora senegalensis and its fractions (ethyl acetate-EAA, n-butanol-NBE, aqueous-AQE) were assayed using the agar plate diffusion and nutrient broth dilution methods. Test microorganisms were Bacillus subtilis (NCTC 8326 B76), Escherichia coli (ATCC 11775), Pseudomonas aeruginosa (ATCC 10145), Staphylococcus aureus (ATCC 021001). Aspergillus flavus, Aspergillus niger, Candida albicans and Salmonella typhi - laboratory isolates. CEE, EAA and NBE inhibited all the test bacterial organisms and a fungus-Aspergillus flavus. AQE inhibited only Salmonella typhi and Bacillus subtilis. None of the extracts had activity on other 3 fungal organisms tested. CEE and EAA showed minimum inhibition concentration (MIC) of 0.390 and 3.125 mg/ml against S. typhi and E. coli, while NBE and AQE had MIC of 3.125 and 1.563 mg/ml against S. typhi respectively. NBE had an MIC of 12.500 mg/ml against E. coli. The minimum bactericidal concentration (MBC) of CEE and EAA was found to be <0.098 against S. typhi. The MBC of AQE was 12.5 mg/ml against E. coli and S. aureus, and 6.25 mg/ml towards P. aeruginosa. CEE and EAA exhibited similar antibacterial activities, followed by AQE. The extracts revealed the presence of carbohydrates, tannins, saponins, sterols determined by utilizing standard methods of analysis.
This study has justified the traditional use of the plant for treating diarrhea, boils and syphilis.
PMCID: PMC2816503  PMID: 20161917
Antimicrobial activity; Chrozophora senegalensis; Extracts; Phytochemical Screening; Euphorbiaceae
9.  Evaluation of Antimicrobial and Wound Healing Potential of Justicia flava and Lannea welwitschii 
Microbial infections of various types of wounds are a challenge to the treatment of wounds and wound healing. The aim of the study is to determine the antimicrobial, antioxidant, and in vivo wound healing properties of methanol leaf extracts of Justicia flava and Lannea welwitschii. The antimicrobial activity was investigated using agar well diffusion and microdilution methods. The free radical scavenging activity of the methanol leaf extracts was performed using 1,1-diphenyl-2-picryl-hydrazyl (DPPH). The rate of wound contraction was determined using excision model. The test organisms used were Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 4853, Bacillus subtilis NTCC 10073, Staphylococcus aureus ATCC 25923, and clinical strains of Candida albicans. The MICs of methanol leaf extract of J. flava against test organisms were E. coli (7.5 mg/mL); P. aeruginosa (7.5 mg/mL); S. aureus (5 mg/mL); B. subtilis (7.5 mg/mL); and C. albicans (5 mg/mL). The MICs of methanol leaf extract of L. welwitschii against test organisms were E. coli (5 mg/mL); P. aeruginosa (10 mg/mL); S. aureus (5 mg/mL); B. subtilis (2.5 mg/mL); and C. albicans (2.5 mg/mL). The MBC/MFC of the extract was between 10 and 50 mg/mL. The IC50 of the reference antioxidant, α-tocopherol, was 1.5 μg/mL and the methanol leaf extracts of J. flava and L. welwitschii had IC50 of 65.3 μg/mL and 81.8 μg/mL, respectively. The methanol leaf extracts of J. flava and L. welwitschii gave a significant reduction in wound size as compared to the untreated. The rates of wound closure after the application of the extracts (7.5% w/w) were compared to the untreated wounds. On the 9th day, J. flava extract had a percentage wound closure of 99% (P < 0.01) and that of L. welwitschii exhibited wound closure of 95% (P < 0.05) on the 13th day compared to the untreated wounds. The two extracts significantly (P < 0.01) increased the tensile strength of wounds compared to the untreated wounds. The extracts treated wound tissues showed improved angiogenesis, collagenation, and reepithelialization compared to the untreated wound tissues. The preliminary phytochemical screening of J. flava and L. welwitschii leaf extracts revealed the presence of tannins, alkaloids, flavonoids, and glycosides. The above results indicate that methanol leaf extracts of J. flava and L. welwitschii possess antimicrobial and wound healing properties which may justify the traditional uses of J. flava and L. welwitschii in the treatment of wounds and infections.
doi:10.1155/2013/632927
PMCID: PMC3789403  PMID: 24159350
10.  Production of microbial medium from defatted brebra (Milletia ferruginea) seed flour to substitute commercial peptone agar 
Objective
To investigate and optimize microbial media that substitute peptone agar using brebra seed defatted flour.
Methods
'Defatted process, inoculums preparation, evaluation of bacterial growth, preparation of cooked and hydrolyzed media and growth turbidity of tested bacteria were determined.
Results
Two percent defatted flour was found to be suitable concentration for the growth of pathogenic bacteria: Escherichia coli (ATCC 25922) (E. coli), Pseudomonas aeruginosa (ATCC 27853), Salmonella (NCTC 8385) and Shigella flexneri (ATCC 12022) (S. flexneri), while 3% defatted flour was suitable for Staphylococcus aureus (ATCC 25923) (S. aureus). E. coli (93±1) and S. flexneri (524±1) colony count were significantly (P≤0.05) greater in defatted flour without supplement than in supplemented medium. E. coli [(3.72×109±2) CFU/mL], S. aureus [(7.4×109±2) CFU/mL], S. flexneri [(4.03×109±2) CFU/mL] and Salmonella [(2.37×109±1) CFU/mL] in non-hydrolyzed sample were statistically (P≤0.05) greater than hydrolyzed one and commercial peptone agar. Colony count of Salmonella [(4.55×109±3) CFU/mL], S. flexneri [(5.40×109±3) CFU/mL] and Lyesria moncytogenes (ATCC 19116) [(5.4×109±3) CFU/mL] on raw defatted flour agar was significantly (P≤0.05) greater than cooked defatted flour and commercial peptone agar. Biomass of E. coli, S. aureus, Salmonella and Enterococcus faecalis in non-hydrolyzed defatted flour is highly increased over hydrolyzed defatted flour and commercial peptone broth.
Conclusions
The defatted flour agar was found to be better microbial media or comparable with peptone agar. The substances in it can serve as sources of carbon, nitrogen, vitamins and minerals that are essential to support the growth of microorganisms without any supplements. Currently, all supplements of peptone agar are very expensive in the market.
doi:10.1016/S2221-1691(13)60157-4
PMCID: PMC3761138  PMID: 24075344
Colony counts; Commercial media; Defatted flour; Microbial media; Pathogenic bacteria; Peptone agar
11.  Stability of imipenem in Mueller-Hinton agar stored at 4 degrees C. 
The purpose of the present study was to measure the stability of imipenem in Mueller-Hinton agar stored at 4 degrees C over time. MICs for Staphylococcus aureus ATCC 25923, Streptococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853 were determined in triplicate daily for up to 15 days. The calculated mean time to observe a shift of one dilution in MIC endpoints was 4.33 +/- 1.25 days. For routine work, imipenem agar dilution plates should be prepared within 48 to 72 h of the test.
PMCID: PMC176367  PMID: 3867331
12.  Single-strain regression analysis for determination of interpretive breakpoints for cefoperazone disk diffusion susceptibility testing. 
Journal of Clinical Microbiology  1983;17(6):975-980.
A novel approach for setting interpretive breakpoints in disk diffusion antibiotic susceptibility testing according to determined minimum inhibitory concentration (MIC) limits is described, using the method of single-strain regression analysis. The procedure was tested on reference strains Staphylococcus aureus (ATCC 25923), Streptococcus faecalis (ATCC 29212), Escherichia coli (ATCC 25922), and Pseudomonas aeruginosa (ATCC 27853), using published results from cefoperazone disk diffusion experiments. The correlation between logarithm of the disk content and inhibition zone diameter squared was linear, excluding three endpoint values. When constants A and B in the new regression line equation were calculated for the four strains, all four showed different regression lines. Zone diameters corresponding to various MICs were calculated for a disk content of 75 micrograms. The values obtained for the four strains were 20.1, 20.9, 24.9, and 25.8 mm, respectively, for an MIC of 16 micrograms/ml, and 15.7, 15.7, 22.3, and 17.9 mm, respectively, for an MIC of 64 micrograms/ml. The following zone diameter breakpoints were determined for the "I" (intermediate) category, using a 75-micrograms disk: S. aureus, 18 to 15 mm; S. faecalis, 23 to 13 mm; E. coli, 20 to 17 mm; and P. aeruginosa, 20 to 17 mm.
PMCID: PMC272786  PMID: 6223938
13.  Butremycin, the 3-Hydroxyl Derivative of Ikarugamycin and a Protonated Aromatic Tautomer of 5′-Methylthioinosine from a Ghanaian Micromonospora sp. K310 
Marine Drugs  2014;12(2):999-1012.
A new actinomycete strain Micromonospora sp. K310 was isolated from Ghanaian mangrove river sediment. Spectroscopy-guided fractionation led to the isolation of two new compounds from the fermentation culture. One of the compounds is butremycin (2) which is the (3-hydroxyl) derivative of the known Streptomyces metabolite ikarugamycin (1) and the other compound is a protonated aromatic tautomer of 5′-methylthioinosine (MTI) (3). Both new compounds were characterized by 1D, 2D NMR and MS data. Butremycin (2) displayed weak antibacterial activity against Gram-positive S. aureus ATCC 25923, the Gram-negative E. coli ATCC 25922 and a panel of clinical isolates of methicillin-resistant S. aureus (MRSA) strains while 3 did not show any antibacterial activity against these microbes.
doi:10.3390/md12020999
PMCID: PMC3944527  PMID: 24534843
Micromonospora; macrolactam; tautomer; tetramic acid; mangroves
14.  In vitro study of elution kinetics and bio-activity of meropenem-loaded acrylic bone cement 
Background
Use of antibiotic-loaded acrylic bone cement to treat orthopaedic infections continues to remain popular, but resistance to routinely used antibiotics has led to the search for alternative, more effective antibiotics. We studied, in vitro, the elution kinetics and bio-activity of different concentrations of meropenem-loaded acrylic bone cement.
Methods
Meropenem-loaded bone cement cylinders of different concentrations were serially immersed in normal saline. Elution kinetics was studied by measuring the drug concentration in the eluate, collected at pre-determined intervals, by high-performance liquid chromatography. Bio-activity of the eluate of two different antibiotic concentrations was tested for a period of 3 weeks against each of the following organisms: Staphylococcus aureus ATCC 2593 (MSSA), Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, S. aureus ATCC 43300 (MRSA) and Klebsiella pneumoniae ATCC 700603 (ESBL).
Results
Meropenem elutes from acrylic bone cement for a period of 3–27 days depending on the concentration of antibiotic. Higher doses of antibiotic concentration resulted in greater elution of the antibiotic. The eluate was found to be biologically active against S. aureus ATCC 2593 (MSSA), P. aeruginosa ATCC 27853, E. coli ATCC 25922 and K. pneumoniae ATCC 700603 (ESBL) for a period of 3 weeks.
Conclusions
The elution of meropenem is in keeping with typical antibiotic-loaded acrylic bone cement elution characteristics. The use of high-dose meropenem-loaded acrylic bone cement seems to be an attractive option for treatment of resistant Gram-negative orthopaedic infections but needs to be tested in vivo.
doi:10.1007/s10195-012-0191-1
PMCID: PMC3427696  PMID: 22461001
Local antibiotic delivery; Extended-spectrum beta-lactamase producers; Gram-negative; Orthopaedic infections; Antibiotic bone cement
15.  Ofloxacin susceptibility testing quality control parameters for microdilution and disk diffusion, and confirmation of disk diffusion interpretive criteria. 
The susceptibilities of 221 clinical isolates to ofloxacin were tested simultaneously by broth microdilution and disk diffusion methods with commercially prepared 5-micrograms ofloxacin disks. The acceptability of the following previously proposed zone diameter breakpoints was confirmed: greater than or equal to 16 mm, susceptible; 13 to 15 mm, intermediate; less than or equal to 12 mm, resistant. On the basis of a multilaboratory collaborative study, the following are proposed as acceptable ofloxacin MIC ranges for quality control organisms: Escherichia coli ATCC 25922, 0.03 to 0.06 micrograms/ml; Staphylococcus aureus ATCC 29213, 0.12 to 0.5 micrograms/ml; Pseudomonas aeruginosa ATCC 27853 and Enterococcus faecalis ATCC 29212, 1.0 to 4.0 micrograms/ml. Ofloxacin quality control zone diameter ranges for the disk diffusion test are tentatively proposed, but variations in the performance of different lots of Mueller-Hinton agar may prove to be a serious problem for users.
PMCID: PMC267230  PMID: 2492304
16.  Three New Compounds from Aspergillus terreus PT06-2 Grown in a High Salt Medium 
Marine Drugs  2011;9(8):1368-1378.
To investigate the structurally novel and bioactive natural compounds from marine-derived microorganisms under high salinity, the fungus Aspergillus terreus PT06-2 was isolated from the sediment of the Putian Sea Saltern, Fujian, China. Three new compounds, terremides A (1) and B (2) and terrelactone A (3), along with twelve known compounds (4–15) were isolated and identified from the fermentation broth of A. terreus PT06-2 at 10% salinity. Among these metabolites, compounds 4 and 15 only produced in the 10% salinity culture, were identified as methyl 3,4,5-trimethoxy-2-(2-(nicotinamido) benzamido) benzoate, and (+)-terrein, respectively. The new compounds 1 and 2 exhibited antibacterial activity against Pseudomonas aeruginosa and Enterobacter aerogenes with MIC values of 63.9 and 33.5 μM, respectively. Compounds 5 showed moderate anti-H1N1 activity and lower cytotoxicity with IC50 and CC50 values of and 143.1 and 976.4 μM, respectively.
doi:10.3390/md9081368
PMCID: PMC3164379  PMID: 21892351
Aspergillus terreus; high salinity metabolites; terremides A and B; terrelactone A
17.  Synthesis and characterization of polysaccharide-maghemite composite nanoparticles and their antibacterial properties 
Nanoscale Research Letters  2012;7(1):576.
The aim of this study was to obtain saccharide (dextran and sucrose)-coated maghemite nanoparticles with antibacterial activity. The polysaccharide-coated maghemite nanoparticles were synthesized by an adapted coprecipitation method. X-ray diffraction (XRD) studies demonstrate that the obtained polysaccharide-coated maghemite nanoparticles can be indexed into the spinel cubic lattice with a lattice parameter of 8.35 Å. The refinement of XRD spectra indicated that no other phases except the maghemite are detectable. The characterization of the polysaccharide-coated maghemite nanoparticles by various techniques is described. The antibacterial activity of these polysaccharide-coated maghemite nanoparticles (NPs) was tested against Pseudomonas aeruginosa 1397, Enterococcus faecalis ATCC 29212, Candida krusei 963, and Escherichia coli ATCC 25922 and was found to be dependent on the polysaccharide type. The antibacterial activity of dextran-coated maghemite was significantly higher than that of sucrose-coated maghemite. The antibacterial studies showed the potential of dextran-coated iron oxide NPs to be used in a wide range of medical infections.
doi:10.1186/1556-276X-7-576
PMCID: PMC3497708  PMID: 23088756
Iron oxides; Biological polymers; Antibacterial activity
18.  Proposed quality control and interpretive criteria for disk diffusion susceptibility testing with enoxacin. 
Journal of Clinical Microbiology  1985;21(3):332-334.
The standardized disk diffusion test, in which a 10-micrograms enoxacin disk is used, was performed and microbroth dilution MICs were determined to establish individual test control values with Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, and S. aureus ATCC 29213. In addition, regression analysis correlating inhibitory zone diameter with MICs for approximately 400 gram-negative clinical isolates was performed. Based on linear regression and error rate-bounded analyses, criteria for the category calls of isolates are proposed.
PMCID: PMC271658  PMID: 3856570
19.  Synthetic peptides of human lysosomal cathepsin G with potent antipseudomonal activity. 
Infection and Immunity  1993;61(5):1900-1908.
Enzymatically active and inactive (diisopropylfluorophosphate-treated) cathepsin G exerted antibacterial action in vitro against Staphylococcus aureus, whereas only enzymatically active cathepsin G displayed bactericidal action against Pseudomonas aeruginosa. In order to further test the requirement for protease activity for the antipseudomonal action of cathepsin G, synthetic peptides spanning the full-length mature protein were prepared and examined for antibacterial action. Surprisingly, three structurally distinct peptides that correspond to residues 61 to 80, 117 to 136, and 198 to 223 within the full-length protein were found to exert potent antipseudomonal action (> 4.5 logs of killing at 500 micrograms/ml) against P. aeruginosa ATCC 27853 and four mucoid clinical isolates. Only the peptide (CG117-136) corresponding to residues 117 to 136 (117-RPGTLCTVAGWGRVSMRRGT-136) within cathepsin G exerted antibacterial action against the gram-positive pathogen S. aureus. The antipseudomonal action of CG117-136 was rapid and could be inhibited either by increasing concentrations of NaCl or by 0.5 mM MgCl2 plus 0.5 mM CaCl2, and these conditions appeared to reduce binding of the peptide to whole bacteria. Variants of peptide CG117-136 lacking either a hydrophobic N-terminal domain or a positively charged C-terminal domain were found to have significantly less antipseudomonal action than CG117-136. The antibacterial capacity of the all-D-enantiomeric form of peptide CG117-136 was found to be identical to that of the all-L-peptide, suggesting that the mechanism of killing does not require the recognition of a target site possessing a chiral center.
Images
PMCID: PMC280782  PMID: 8478079
20.  Quality control and interpretive criteria for the azlocillin disk diffusion susceptibility test. 
The standardized disk diffusion test was performed with 75-micrograms azlocillin disks to determine individual test, accuracy, and precision control values with Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus ATCC 25923. In addition, regression lines for correlating inhibitory zone diameters with the 75-micrograms azlocillin disk and azlocillin minimal inhibitory concentrations were calculated for gram-negative clinical isolates (including Enterobacteriaceae, P. Aeruginosa, other nonfermenters, and Aeromonas hydrophila). Criteria for distinguishing susceptible isolates from resistant isolates, based on an error-rate bound classification scheme, are proposed.
PMCID: PMC183668  PMID: 7125631
21.  Preparation, characterization and in vitro antimicrobial activity of liposomal ceftazidime and cefepime against Pseudomonas aeruginosa strains 
Brazilian Journal of Microbiology  2012;43(3):984-992.
Pseudomonas aeruginosa is an opportunistic microorganism with the ability to respond to a wide variety of environmental changes, exhibiting a high intrinsic resistance to a number of antimicrobial agents. This low susceptibility to antimicrobial substances is primarily due to the low permeability of its outer membrane, efflux mechanisms and the synthesis of enzymes that promote the degradation of these drugs. Cephalosporins, particularty ceftazidime and cefepime are effective against P. aeruginosa, however, its increasing resistance has limited the usage of these antibiotics. Encapsulating antimicrobial drugs into unilamellar liposomes is an approach that has been investigated in order to overcome microorganism resistance. In this study, antimicrobial activity of liposomal ceftazidime and cefepime against P. aeruginosa ATCC 27853 and P. aeruginosa SPM-1 was compared to that of the free drugs. Liposomal characterization included diameter, encapsulation efficiency and stability. Minimum Inhibitory Concentration (MIC) was determined for free and liposomal forms of both drugs. Minimum Bactericidal Concentration (MBC) was determined at concentrations 1, 2 and 4 times MIC. Average diameter of liposomes was 131.88 nm and encapsulation efficiency for cefepime and ceftazidime were 2.29% end 5.77%, respectively. Improved stability was obtained when liposome formulations were prepared with a 50% molar ratio for cholesterol in relation to the phospholipid. MIC for liposomal antibiotics for both drugs were 50% lower than that of the free drug, demonstrating that liposomal drug delivery systems may contribute to increase the antibacterial activity of these drugs.
doi:10.1590/S1517-838220120003000020
PMCID: PMC3768856  PMID: 24031917
Pseudomonas aeruginosa; liposomes; cephalosporins
22.  Analysis of a single reference strain for determination of gentamicin regression line constants and inhibition zone diameter breakpoints in quality control of disk diffusion antibiotic susceptibility testing. 
Journal of Clinical Microbiology  1982;16(5):784-793.
An equation was derived from known formulas to express the size of the inhibition zone diameter in the disk diffusion antibiotic susceptibility test as a function of the disk content of antibiotic. The equation permitted a calculation of regression line constants for the correlation between zone diameter and the minimum inhibitory concentration (MIC) with a single reference strain. Analysis of reference strains Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853, as well as 12 clinical isolates belonging to these species, showed a linearity between zone size squared and the logarithm of disk content in tests with 10-, 30-, and 100-micrograms gentamicin disks. All three species, however, gave regression line constants which were characteristic for the individual bacterial species. Calculations of zone diameter breakpoints corresponding to recommended MIC limits with E. coli and P. aeruginosa reference strains gave an accurate prediction of gentamicin susceptibility. Histogram analysis of 48 strains of Streptococcus faecalis from clinical specimens showed a distribution of zone diameter values which would result in false classification of susceptibility with breakpoints calculated for the other bacterial species studied. Single reference strain analysis of S. faecalis ATCC 29212 (gentamicin MIC, 8 micrograms/ml) permitted the calculation of breakpoints which accurately assigned the strains tested to the intermediate category of susceptibility. Single reference strain analysis offers a quality control method for individual laboratories that allows the determination of inhibition zone diameter breakpoints corresponding to recommended MIC limits with no MIC determinations required.
PMCID: PMC272477  PMID: 6818249
23.  Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa 
Objective
To evaluate antibacterial activity of the Indonesian water soluble green tea extract, Camellia sinensis, against clinical isolates of methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) and multi-drug resistant Pseudomonas aeruginosa (MDR-P. aeruginosa).
Methods
Antimicrobial activity of green tea extract was determined by the disc diffusion method and the minimum inhibitory concentration (MIC) was determined by the twofold serial broth dilutions method. The tested bacteria using in this study were the standard strains and multi-drug resistant clinical isolates of S. aureus and P. aeruginosa, obtained from Laboratory of Clinical Microbiology, Faculty of Medicine, University of Indonesia.
Results
The results showed that the inhibition zone diameter of green tea extracts for S. aureus ATCC 25923 and MRSA were (18.970±0.287) mm, and (19.130±0.250) mm respectively. While the inhibition zone diameter for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were (17.550±0.393) mm and (17.670±0.398) mm respectively. The MIC of green tea extracts against S. aureus ATCC 25923 and MRSA were 400 µg/mL and 400 µg/mL, respectively, whereas the MIC for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were 800 µg/mL, and 800 µg/mL, respectively.
Conclusions
Camellia sinensis leaves extract could be useful in combating emerging drug-resistance caused by MRSA and P. aeruginosa.
doi:10.1016/S2221-1691(13)60133-1
PMCID: PMC3703562  PMID: 23905026
Camellia sinensis; Green tea; Antibacterial activity; MIC; Multi-drug resistant bacteria
24.  Bio-efficacy of Dioscorea pentaphylla from Midmid-Western Ghats, India 
Toxicology International  2012;19(2):100-105.
Antibacterial and antifungal activity of crude extracts of medicinally important and traditionally used yam plant, Dioscorea pentaphylla, from mid-Western Ghats was evaluated against 27 bacterial and 5 fungal clinical strains collected of the patients from infectious sources. The clinical strains belonging to their respective species showed concentration-dependent susceptibility toward crude petroleum ether extract, chloroform extract and methanol extract at 100 μg/100 μl. The extracts exhibited predominant antibacterial activity against Staphylococcus aureus (ATCC-20852), Pseudomonas aeruginosa (ATCC-29737) and Klebsiella pneumoniae (MTCC-618), respectively, and five clinically isolated pathogenic fungi, Trichophyton rubrum, Microsporum gypseum, Tricophyton tonsurans, Microsporum audouini, and Candida albicans, with antibacterial drug ciprofloxacin and antifungal drug fluconozole (50 μg/100 μl) as standards. Out of the three extracts, ethanol extracts possessed better minimum inhibitory concentration (MIC) against all the bacterial strains. All the three extracts showed significant activity against all the five fungal pathogen strains. The results are promising and support the traditional use of D. pentaphylla for the treatment of bacterial and fungal infections.
doi:10.4103/0971-6580.97195
PMCID: PMC3388750  PMID: 22778504
Antifungal; antibacterial; Dioscoreapentaphylla; minimum inhibitory concentration
25.  Interpretive standards and quality control guidelines for imipenem susceptibility tests with 10-micrograms disks. 
Journal of Clinical Microbiology  1984;20(5):988-989.
Tests with 10-micrograms imipenem disks accurately categorized 98.5% of 551 bacterial isolates when interpretive breakpoints of less than or equal to 13 mm for resistant and greater than or equal to 16 mm for susceptible were used. Because a sufficient number of resistant or moderately susceptible strains were not available for testing, these interpretive standards must be considered tentative. Quality control limits for tests with Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 are 26 to 32 and 20 to 28 mm, respectively. Zones obtained with Staphylococcus aureus ATCC 25923 were too large and variable to be useful for quality control purposes.
PMCID: PMC271490  PMID: 6439736

Results 1-25 (443398)