PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (499011)

Clipboard (0)
None

Related Articles

1.  Anthrax Outbreaks in Bangladesh, 2009–2010 
During August 2009–October 2010, a multidisciplinary team investigated 14 outbreaks of animal and human anthrax in Bangladesh to identify the etiology, pathway of transmission, and social, behavioral, and cultural factors that led to these outbreaks. The team identified 140 animal cases of anthrax and 273 human cases of cutaneous anthrax. Ninety one percent of persons in whom cutaneous anthrax developed had history of butchering sick animals, handling raw meat, contact with animal skin, or were present at slaughtering sites. Each year, Bacillus anthracis of identical genotypes were isolated from animal and human cases. Inadequate livestock vaccination coverage, lack of awareness of the risk of anthrax transmission from animal to humans, social norms and poverty contributed to these outbreaks. Addressing these challenges and adopting a joint animal and human health approach could contribute to detecting and preventing such outbreaks in the future.
doi:10.4269/ajtmh.2012.11-0234
PMCID: PMC3403762  PMID: 22492157
2.  Risk practices for animal and human anthrax in Bangladesh: an exploratory study 
Infection Ecology & Epidemiology  2013;3:10.3402/iee.v3i0.21356.
Introduction
From August 2009 to October 2010, International Centre for Diarrheal Disease Research, Bangladesh and the Institute of Epidemiology, Disease Control and Research together investigated 14 outbreaks of anthrax which included 140 animal and 273 human cases in 14 anthrax-affected villages. Our investigation objectives were to explore the context in which these outbreaks occurred, including livestock rearing practices, human handling of sick and dead animals, and the anthrax vaccination program.
Methods
Field anthropologists used qualitative data-collection tools, including 15 hours of unstructured observations, 11 key informant interviews, 32 open-ended interviews, and 6 group discussions in 5 anthrax-affected villages.
Results
Each cattle owner in the affected communities raised a median of six ruminants on their household premises. The ruminants were often grazed in pastures and fed supplementary rice straw, green grass, water hyacinth, rice husk, wheat bran, and oil cake; lactating cows were given dicalcium phosphate. Cattle represented a major financial investment. Since Islamic law forbids eating animals that die from natural causes, when anthrax-infected cattle were moribund, farmers often slaughtered them on the household premises while they were still alive so that the meat could be eaten. Farmers ate the meat and sold it to neighbors. Skinners removed and sold the hides from discarded carcasses. Farmers discarded the carcasses and slaughtering waste into ditches, bodies of water, or open fields. Cattle in the affected communities did not receive routine anthrax vaccine due to low production, poor distribution, and limited staffing for vaccination.
Conclusion
Slaughtering anthrax-infected animals and disposing of butchering waste and carcasses in environments where ruminants live and graze, combined with limited vaccination, provided a context that permitted repeated anthrax outbreaks in animals and humans. Because of strong financial incentives, slaughtering moribund animals and discarding carcasses and waste products will likely continue. Long-term vaccination coverage for at-risk animal populations may reduce anthrax infection.
doi:10.3402/iee.v3i0.21356
PMCID: PMC3843109  PMID: 24298326
anthrax; Bangladesh; ruminants; vulture; qualitative
3.  Anthrax Infection 
Bacillus anthracis infection is rare in developed countries. However, recent outbreaks in the United States and Europe and the potential use of the bacteria for bioterrorism have focused interest on it. Furthermore, although anthrax was known to typically occur as one of three syndromes related to entry site of (i.e., cutaneous, gastrointestinal, or inhalational), a fourth syndrome including severe soft tissue infection in injectional drug users is emerging. Although shock has been described with cutaneous anthrax, it appears much more common with gastrointestinal, inhalational (5 of 11 patients in the 2001 outbreak in the United States), and injectional anthrax. Based in part on case series, the estimated mortalities of cutaneous, gastrointestinal, inhalational, and injectional anthrax are 1%, 25 to 60%, 46%, and 33%, respectively. Nonspecific early symptomatology makes initial identification of anthrax cases difficult. Clues to anthrax infection include history of exposure to herbivore animal products, heroin use, or clustering of patients with similar respiratory symptoms concerning for a bioterrorist event. Once anthrax is suspected, the diagnosis can usually be made with Gram stain and culture from blood or surgical specimens followed by confirmatory testing (e.g., PCR or immunohistochemistry). Although antibiotic therapy (largely quinolone-based) is the mainstay of anthrax treatment, the use of adjunctive therapies such as anthrax toxin antagonists is a consideration.
doi:10.1164/rccm.201102-0209CI
PMCID: PMC3361358  PMID: 21852539
Bacillus anthracis; diagnosis; pathogenesis; treatment
4.  An overview of anthrax infection including the recently identified form of disease in injection drug users 
Intensive care medicine  2012;38(7):1092-1104.
Purpose
Bacillus anthracis infection (anthrax) can be highly lethal. Two recent outbreaks related to contaminated mail in the USA and heroin in the UK and Europe and its potential as a bioterrorist weapon have greatly increased concerns over anthrax in the developed world.
Methods
This review summarizes the microbiology, pathogenesis, diagnosis, and management of anthrax.
Results and conclusions
Anthrax, a gram-positive bacterium, has typically been associated with three forms of infection: cutaneous, gastrointestinal, and inhalational. However, the anthrax outbreak among injection drug users has emphasized the importance of what is now considered a fourth disease form (i.e., injectional anthrax) that is characterized by severe soft tissue infection. While cutaneous anthrax is most common, its early stages are distinct and prompt appropriate treatment commonly produces a good outcome. However, early symptoms with the other three disease forms can be nonspecific and mistaken for less lethal conditions. As a result, patients with gastrointestinal, inhalational, or injectional anthrax may have advanced infection at presentation that can be highly lethal. Once anthrax is suspected, the diagnosis can usually be made with gram stain and culture from blood or tissue followed by confirmatory testing (e.g., PCR). While antibiotics are the mainstay of anthrax treatment, use of adjunctive therapies such as anthrax toxin antagonists are a consideration. Prompt surgical therapy appears to be important for successful management of injectional anthrax.
doi:10.1007/s00134-012-2541-0
PMCID: PMC3523299  PMID: 22527064
Bacillus anthracis; Anthrax; Pathogenesis; Diagnosis; Treatment
5.  Evidence of Local Persistence of Human Anthrax in the Country of Georgia Associated with Environmental and Anthropogenic Factors 
Background
Anthrax is a soil-borne disease caused by the bacterium Bacillus anthracis and is considered a neglected zoonosis. In the country of Georgia, recent reports have indicated an increase in the incidence of human anthrax. Identifying sub-national areas of increased risk may help direct appropriate public health control measures. The purpose of this study was to evaluate the spatial distribution of human anthrax and identify environmental/anthropogenic factors associated with persistent clusters.
Methods/Findings
A database of human cutaneous anthrax in Georgia during the period 2000–2009 was constructed using a geographic information system (GIS) with case data recorded to the community location. The spatial scan statistic was used to identify persistence of human cutaneous anthrax. Risk factors related to clusters of persistence were modeled using a multivariate logistic regression. Areas of persistence were identified in the southeastern part of the country. Results indicated that the persistence of human cutaneous anthrax showed a strong positive association with soil pH and urban areas.
Conclusions/Significance
Anthrax represents a persistent threat to public and veterinary health in Georgia. The findings here showed that the local level heterogeneity in the persistence of human cutaneous anthrax necessitates directed interventions to mitigate the disease. High risk areas identified in this study can be targeted for public health control measures such as farmer education and livestock vaccination campaigns.
Author Summary
Anthrax is a zoonotic bacterial disease that occurs nearly worldwide. Despite a large number of countries reporting endemic anthrax, persistence of the disease appears to be associated with specific ecological factors related to soil composition and climatic conditions. Human cases are most often associated with handling infected livestock or contaminated meat and most cases are in cutaneous form (skin infections). Following the collapse of the Soviet Union, the country of Georgia has undergone major restructuring in land management and livestock handling and anthrax remains a serious public health risk. Few studies have evaluated the local spatial patterns of human anthrax. Here we identify areas on the landscape where human cutaneous anthrax persisted over the last decade. Persistence was found to be associated with both anthropogenic and environmental factors including soil pH and livestock density. These findings aid in the establishment of spatial baseline estimates of the disease and allow public health officials to adopt targeted anthrax control strategies, such as livestock vaccination campaigns and farmer education.
doi:10.1371/journal.pntd.0002388
PMCID: PMC3764226  PMID: 24040426
6.  Lethal Factor Toxemia and Anti-Protective Antigen Antibody Activity in Naturally Acquired Cutaneous Anthrax 
The Journal of Infectious Diseases  2011;204(9):1321-1327.
Cutaneous anthrax outbreaks occurred in Bangladesh from August to October 2009. As part of the epidemiological response and to confirm anthrax diagnoses, serum samples were collected from suspected case patients with observed cutaneous lesions. Anthrax lethal factor (LF), anti-protective antigen (anti-PA) immunoglobulin G (IgG), and anthrax lethal toxin neutralization activity (TNA) levels were determined in acute and convalescent serum of 26 case patients with suspected cutaneous anthrax from the first and largest of these outbreaks. LF (0.005–1.264 ng/mL) was detected in acute serum from 18 of 26 individuals. Anti-PA IgG and TNA were detected in sera from the same 18 individuals and ranged from 10.0 to 679.5 μg/mL and 27 to 593 units, respectively. Seroconversion to serum anti-PA and TNA was found only in case patients with measurable toxemia. This is the first report of quantitative analysis of serum LF in cutaneous anthrax and the first to associate acute stage toxemia with subsequent antitoxin antibody responses.
doi:10.1093/infdis/jir543
PMCID: PMC3182309  PMID: 21908727
7.  The Potential Contributions of Lethal and Edema Toxins to the Pathogenesis of Anthrax Associated Shock  
Toxins  2011;3(9):1185-1202.
Outbreaks of Bacillus anthracis in the US and Europe over the past 10 years have emphasized the health threat this lethal bacteria poses even for developed parts of the world. In contrast to cutaneous anthrax, inhalational disease in the US during the 2001 outbreaks and the newly identified injectional drug use form of disease in the UK and Germany have been associated with relatively high mortality rates. One notable aspect of these cases has been the difficulty in supporting patients once shock has developed. Anthrax bacilli produce several different components which likely contribute to this shock. Growing evidence indicates that both major anthrax toxins may produce substantial cardiovascular dysfunction. Lethal toxin (LT) can alter peripheral vascular function; it also has direct myocardial depressant effects. Edema toxin (ET) may have even more pronounced peripheral vascular effects than LT, including the ability to interfere with the actions of conventional vasopressors. Additionally, ET also appears capable of interfering with renal sodium and water retention. Importantly, the two toxins exert their actions via quite different mechanisms and therefore have the potential to worsen shock and outcome in an additive fashion. Finally, both toxins have the ability to inhibit host defense and microbial clearance, possibly contributing to the very high bacterial loads noted in patients dying with anthrax. This last point is clinically relevant since emerging data has begun to implicate other bacterial components such as anthrax cell wall in the shock and organ injury observed with infection. Taken together, accumulating evidence regarding the potential contribution of LT and ET to anthrax-associated shock supports efforts to develop adjunctive therapies that target both toxins in patients with progressive shock.
doi:10.3390/toxins3091185
PMCID: PMC3202877  PMID: 22069762
anthrax; lethal toxin; edema toxin; shock; myocardial function
8.  Two anthrax cases with soft tissue infection, severe oedema and sepsis in Danish heroin users 
BMC Infectious Diseases  2013;13:408.
Background
Anthrax had become extremely rare in Europe, but in 2010 an outbreak of anthrax among heroin users in Scotland increased awareness of contaminated heroin as a source of anthrax. We present the first two Danish cases of injectional anthrax and discuss the clinical presentations, which included both typical and more unusual manifestations.
Case presentations
The first patient, a 55-year old man with HIV and hepatitis C virus co-infection, presented with severe pain in the right thigh and lower abdomen after injecting heroin into the right groin. Computed tomography and ultrasonographic examination of the abdomen and right thigh showed oedematous thickened peritoneum, distended oedematous mesentery and subcutaneous oedema of the right thigh. At admission the patient was afebrile but within 24 hours he progressed to severe septic shock and abdominal compartment syndrome. Cultures of blood and intraperitoneal fluid grew Bacillus anthracis. The patient was treated with meropenem, clindamycin, ciprofloxacin and metronidazole. Despite maximum supportive care including mechanical ventilation, vasopressor treatment and continuous veno-venous hemodiafiltration the patient died on day four.
The second patient, a 39-year old man with chronic hepatitis C virus infection, presented with fever and a swollen right arm after injecting heroin into his right arm. The arm was swollen from the axilla to the wrist with tense and discoloured skin. He was initially septic with low blood pressure but responded to crystalloids. During the first week, swelling progressed and the patient developed massive generalised oedema with a weight gain of 40 kg. When blood cultures grew Bacillus anthracis antibiotic treatment was changed to meropenem, moxifloxacin and metronidazole, and on day 7 hydroxycloroquin was added. The patient responded to treatment and was discharged after 29 days.
Conclusions
These two heroin-associated anthrax cases from Denmark corroborate that heroin contaminated with anthrax spores may be a continuous source of injectional anthrax across Europe. Clinicians and clinical microbiologists need to stay vigilant and suspect anthrax in patients with a history of heroin use who present with soft tissue or generalised infection. Marked swelling of affected soft tissue or unusual intra-abdominal oedema should strengthen clinical suspicion.
doi:10.1186/1471-2334-13-408
PMCID: PMC3844346  PMID: 24004900
9.  Raxibacumab: potential role in the treatment of inhalational anthrax 
Anthrax is a highly contagious and potentially fatal human disease caused by Bacillus anthracis, an aerobic, Gram-positive, spore-forming rod-shaped bacterium with worldwide distribution as a zoonotic infection in herbivore animals. Bioterrorist attacks with inhalational anthrax have prompted the development of more effective treatments. Antibodies against anthrax toxin have been shown to decrease mortality in animal studies. Raxibacumab is a recombinant human monoclonal antibody developed against inhalational anthrax. The drug received approval after human studies showed its safety and animal studies demonstrated its efficacy for treatment as well as prophylaxis against inhalational anthrax. It works by preventing binding of the protective antigen component of the anthrax toxin to its receptors in host cells, thereby blocking the toxin’s deleterious effects. Recently updated therapy guidelines for Bacillus anthracis recommend the use of antitoxin treatment. Raxibacumab is the first monoclonal antitoxin antibody made available that can be used with the antibiotics recommended for treatment of the disease. When exposure is suspected, raxibacumab should be given with anthrax vaccination to augment immunity. Raxibacumab provides additional protection against inhalational anthrax via a mechanism different from that of either antibiotics or active immunization. In combination with currently available and recommended therapies, raxibacumab should reduce the morbidity and mortality of inhalational anthrax.
Video abstract
doi:10.2147/IDR.S47305
PMCID: PMC4011807  PMID: 24812521
anthrax; monoclonal antibody; protective antigen; raxibacumab
10.  The dissemination of anthrax from imported wool: Kidderminster 1900–14 
Background: A century ago anthrax was a continuing health risk in the town of Kidderminster. The distribution of cases in people and in animals provides an indication of the routes by which spores were disseminated. The response to these cases provides an insight into attitudes to an occupational and environmental risk at the time and can be compared with responses in more recent times.
Aims: To assess the distribution of anthrax cases associated with the use of contaminated wool and to review the response to them.
Methods: The area studied was Kidderminster, Worcestershire, England, from 1900 to 1914. Data sources were national records of the Factory Inspectorate and local records from the infirmary, Medical Officer of Health and inquest reports, and county agricultural records, supplemented by contemporary and later review articles. Case reports and summary data were analysed, and discussions and actions taken to improve precautions reviewed.
Results: There were 36 cases of anthrax, with five deaths, one of which was the sole case of the internal form of the disease. Cases of cutaneous anthrax were most frequently found in those handling raw wool, but they also occurred in workers at later stages of the spinning process and in people with little or no recorded exposure to contaminated wool. Limited precautionary measures were in place at the start of the study period. Some improvements were made, especially in the treatment of infections, but wool with a high risk of anthrax contamination continued to be used and cases continued to arise. Major changes were made to the disposal of waste and to agricultural practice in contaminated areas to curtail outbreaks in farm animals.
Conclusions: The introduction of anthrax as a contaminant of imported wool led not only to cases in the highly exposed groups of workers but also to cases in other members of the population and in farm animals. The measures taken during the study period reduced fatalities from cutaneous anthrax but did not eliminate the disease. Public concern about the cases was muted.
doi:10.1136/oem.2002.001131
PMCID: PMC1740714  PMID: 14739375
11.  Endemic Gastrointestinal Anthrax in 1960s Lebanon: Clinical Manifestations and Surgical Findings 
Emerging Infectious Diseases  2003;9(5):520-525.
Anthrax is an ancient disease caused by the gram-positive Bacillus anthracis; recently, it has gained much attention because of its potential use in biologic warfare. Anthrax infection occurs in three forms: cutaneous, inhalational, and gastrointestinal. The last type results from ingestion of poorly cooked contaminated meat. Intestinal anthrax was widely known in Lebanon in the 1960s, when a series of >100 cases were observed in the Bekaa Valley. We describe some of these cases, introduce the concept of the surgical management of advanced intestinal anthrax, and describe some of the approaches for treatment.
doi:10.3201/eid0905.020537
PMCID: PMC2972760  PMID: 12737733
anthrax; intestinal; Lebanon; ascites; spore-forming organisms; synopsis
12.  Surveillance for Anthrax Cases Associated with Contaminated Letters, New Jersey, Delaware, and Pennsylvania, 2001 
Emerging Infectious Diseases  2002;8(10):1073-1077.
In October 2001, two inhalational anthrax and four cutaneous anthrax cases, resulting from the processing of Bacillus anthracis–containing envelopes at a New Jersey mail facility, were identified. Subsequently, we initiated stimulated passive hospital-based and enhanced passive surveillance for anthrax-compatible syndromes. From October 24 to December 17, 2001, hospitals reported 240,160 visits and 7,109 intensive-care unit admissions in the surveillance area (population 6.7 million persons). Following a change to reporting criteria on November 8, the average of possible inhalational anthrax reports decreased 83% from 18 to 3 per day; the proportion of reports requiring follow-up increased from 37% (105/286) to 41% (47/116). Clinical follow-up was conducted on 214 of 464 possible inhalational anthrax patients and 98 possible cutaneous anthrax patients; 49 had additional laboratory testing. No additional cases were identified. To verify the limited scope of the outbreak, surveillance was essential, though labor-intensive. The flexibility of the system allowed interim evaluation, thus improving surveillance efficiency.
doi:10.3201/eid0810.020322
PMCID: PMC2730289  PMID: 12396918
Bacillus anthracis; anthrax; surveillance; bioterrorism
13.  Gastrointestinal anthrax: clinical experience in 5 cases 
Background: Bacillus anthracis may usually cause three forms of anthrax: inhalation, gastrointestinal and cutaneous. The gastrointestinal (GI) anthrax develops after eating contaminated meat. Thus, in this paper were report 5 cases of intestinal anthrax.
Case Presentation: We report a case series of intestinal anthrax, with history of consumption of raw or poorly cooked liver of sheep. One patient was female and 4 were males with the age range between 17 and 26 years. All patients were admitted with abdominal pain, nausea, and vomiting. Examination revealed abdominal distention on the right lower quadrant or diffuse tenderness. Laboratory examination in all patients showed leukocytosis with polymorphonuclear of >80%. Because of the unclear and questionable diagnosis, exploratory laparotomy was performed on several patients, invariably showing an abundant yellowish and thick ascitic fluid, soft hypertrophied mesenteric lymph nodes (3-5 cm) mostly in the ileocecal region, and substantial edema involving one segment of small bowel, cecum or ascending colon. Anthrax was diagnosed on the epidemiologic basis (ingestion history of half cooked liver of sheep) or microbiologic (microscopy with bacterial culture) and pathologic testing (post surgery in four patients or autopsy in one patient). With appropriate treatment, 4 survived and one patient died.
Conclusion: Gastrointestinal anthrax is characterized by rapid onset, fever, ascitis and septicemia. The symptoms can mimic those seen in an acute surgical abdomen. Rapid diagnosis and prompt initiation of antibiotic therapy and then exploratory laparotomy (right hemicolectomy) are keys to survival.
PMCID: PMC3755822  PMID: 24009958
Anthrax; Gastrointestinal; Bacillus anthracis
14.  Anthrax outbreak in a Swedish beef cattle herd - 1st case in 27 years: Case report 
After 27 years with no detected cases, an outbreak of anthrax occurred in a beef cattle herd in the south of Sweden. The outbreak was unusual as it occurred in winter, in animals not exposed to meat-and-bone meal, in a non-endemic country.
The affected herd consisted of 90 animals, including calves and young stock. The animals were kept in a barn on deep straw bedding and fed only roughage. Seven animals died during 10 days, with no typical previous clinical signs except fever. The carcasses were reportedly normal in appearance, particularly as regards rigor mortis, bleeding and coagulation of the blood. Subsequently, three more animals died and anthrax was suspected at necropsy and confirmed by culture and PCR on blood samples.
The isolated strain was susceptible to tetracycline, ciprofloxacin and ampicillin. Subtyping by MLVA showed the strain to cluster with isolates in the A lineage of Bacillus anthracis.
Environmental samples from the holding were all negative except for two soil samples taken from a spot where infected carcasses had been kept until they were picked up for transport.
The most likely source of the infection was concluded to be contaminated roughage, although this could not be substantiated by laboratory analysis. The suspected feed was mixed with soil and dust and originated from fields where flooding occurred the previous year, followed by a dry summer with a very low water level in the river allowing for the harvesting on soil usually not exposed. In the early 1900s, animal carcasses are said to have been dumped in this river during anthrax outbreaks and it is most likely that some anthrax spores could remain in the area.
The case indicates that untypical cases in non-endemic areas may be missed to a larger extent than previously thought. Field tests allowing a preliminary risk assessment of animal carcasses would be helpful for increased sensitivity of detection and prevention of further exposure to the causative agent.
doi:10.1186/1751-0147-52-7
PMCID: PMC2826306  PMID: 20122147
15.  Isolated Case of Bioterrorism-related Inhalational Anthrax, New York City, 2001 
Emerging Infectious Diseases  2003;9(6):689-696.
On October 31, 2001, in New York City, a 61-year-old female hospital employee who had acquired inhalational anthrax died after a 6-day illness. To determine sources of exposure and identify additional persons at risk, the New York City Department of Health, Centers for Disease Control and Prevention, and law enforcement authorities conducted an extensive investigation, which included interviewing contacts, examining personal effects, summarizing patient’s use of mass transit, conducting active case finding and surveillance near her residence and at her workplace, and collecting samples from co-workers and the environment. We cultured all specimens for Bacillus anthracis. We found no additional cases of cutaneous or inhalational anthrax. The route of exposure remains unknown. All environmental samples were negative for B. anthracis. This first case of inhalational anthrax during the 2001 outbreak with no apparent direct link to contaminated mail emphasizes the need for close coordination between public health and law enforcement agencies during bioterrorism-related investigations.
doi:10.3201/eid0906.020668
PMCID: PMC3000144  PMID: 12781008
B. anthracis; inhalational anthrax; bioterrorism; research
16.  Investigation of an outbreak of cutaneous anthrax in Banlu village, Lianyungang, China, 2012 
Objective
After notification of a suspected case of anthrax following the slaughtering of a sick cow in Banlu village, an area that has not had any anthrax cases for decades, we aimed to confirm the outbreak, determine the transmission mechanism and implement control measures.
Methods
The outbreak response team interviewed all people that had contact with the sick cow. Three types of cases’ specimens were collected and tested by blood smear, real-time polymerase chain reaction (PCR) and the gold colloid method. Traceback of potentially contaminated meat and cattle were conducted.
Results
There were five confirmed and three probable cases verified among 17 people who had contact with the sick cow – an attack rate of 47%. The incubation period ranged from one to eight days with a median of two days. All eight cases had lesions. All were native residents of Banlu village aged between 21 and 48 years. Five male cases were professional butchers; two females and one male were temporary assistants. The sick cow’s meat and hide, as well as all cattle processed at the same time, were recalled. Hypochlorite was used to disinfect the contaminated environments, butchering facilities and the contacts’ personal effects.
Conclusion
This outbreak was caused by anthrax bacillus transmitted to contacts from the tissues of the sick cow. Control of the outbreak was managed by recalling all potentially infected meat and disinfecting the slaughter house and the suspected cases’ personal effects and environment.
doi:10.5365/WPSAR.2012.3.4.005
PMCID: PMC3729087  PMID: 23908932
17.  A Retrospective Study on the Epidemiology of Anthrax, Foot and Mouth Disease, Haemorrhagic Septicaemia, Peste des Petits Ruminants and Rabies in Bangladesh, 2010-2012 
PLoS ONE  2014;9(8):e104435.
Anthrax, foot and mouth disease (FMD), haemorrhagic septicaemia (HS), peste des petits ruminants (PPR) and rabies are considered to be endemic in Bangladesh. This retrospective study was conducted to understand the geographic and seasonal distribution of these major infectious diseases in livestock based on data collected through passive surveillance from 1 January 2010 to 31 December 2012. Data analysis for this period revealed 5,937 cases of anthrax, 300,333 of FMD, 13,436 of HS, 247,783 of PPR and 14,085 cases of dog bite/rabies. While diseases were reported in almost every district of the country, the highest frequency of occurrence corresponded to the susceptible livestock population in the respective districts. There was no significant difference in the disease occurrences between districts bordering India/Myanmar and non-border districts (p>0.05). Significantly higher (p<0.01) numbers of anthrax (84.5%), FMD (88.3%), HS (84.9%) and dog bite/rabies (64.3%) cases were reported in cattle than any other species. PPR cases were reported mostly (94.8%) in goats with only isolated cases (5.2%) in sheep. The diseases occur throughout the year with peak numbers reported during June through September and lowest during December through April, with significant differences (p<0.01) between the months. The annual usages of vaccines for anthrax, FMD, HS and PPR were only 7.31%, 0.61%, 0.84% and 11.59% of the susceptible livestock population, respectively. Prophylactic vaccination against rabies was 21.16% of cases. There were significant differences (p<0.01) in the administration of anthrax, FMD and HS vaccines between border and non-border districts, but not PPR or rabies vaccines. We recommend that surveillance and reporting of these diseases need to be improved throughout the country. Furthermore, all suspected clinical cases should be confirmed by laboratory examination. The findings of this study can be used in the formulation of more effective disease management and control strategies, including appropriate vaccination policies in Bangladesh.
doi:10.1371/journal.pone.0104435
PMCID: PMC4125197  PMID: 25101836
18.  Anthrax: an update 
Anthrax is a zoonotic disease caused by Bacillus anthracis. It is potentially fatal and highly contagious disease. Herbivores are the natural host. Human acquire the disease incidentally by contact with infected animal or animal products. In the 18th century an epidemic destroyed approximately half of the sheep in Europe. In 1900 human inhalational anthrax occured sporadically in the United States. In 1979 an outbreak of human anthrax occured in Sverdlovsk of Soviet Union. Anthrax continued to represent a world wide presence. The incidence of the disease has decreased in developed countries as a result of vaccination and improved industrial hygiene. Human anthrax clinically presents in three forms, i.e. cutaneous, gastrointestinal and inhalational. About 95% of human anthrax is cutaneous and 5% is inhalational. Gastrointestinal anthrax is very rare (less than 1%). Inhalational form is used as a biological warefare agent. Penicillin, ciprofloxacin (and other quinolones), doxicyclin, ampicillin, imipenem, clindamycin, clarithromycin, vancomycin, chloramphenicol, rifampicin are effective antimicrobials. Antimicrobial therapy for 60 days is recommended. Human anthrax vaccine is available. Administration of anti-protective antigen (PA) antibody in combination with ciprofloxacin produced 90%-100% survival. The combination of CPG-adjuvanted anthrax vaccine adsorbed (AVA) plus dalbavancin significantly improved survival.
doi:10.1016/S2221-1691(11)60109-3
PMCID: PMC3614207  PMID: 23569822
Anthrax; Bacillus anthracis; Zoonotic disease; Contagious disease; Cutaneous anthrax; Inhalational anthrax; Gastrointestinal anthrax; Human anthrax
19.  Anthrax Lethal Factor as an Immune Target in Humans and Transgenic Mice and the Impact of HLA Polymorphism on CD4+ T Cell Immunity 
PLoS Pathogens  2014;10(5):e1004085.
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.
Author Summary
Anthrax is of concern with respect to human exposure in endemic regions, concerns about bioterrorism and the considerable global burden of livestock infections. The immunology of this disease remains poorly understood. Vaccination has been based on B. anthracis filtrates or attenuated spore-based vaccines, with more recent trials of next-generation recombinant vaccines. Approaches generally require extensive vaccination regimens and there have been concerns about immunogenicity and adverse reactions. An ongoing need remains for rationally designed, effective and safe anthrax vaccines. The importance of T cell stimulating vaccines is inceasingly recognized. An essential step is an understanding of immunodominant epitopes and their relevance across the diverse HLA immune response genes of human populations. We characterized CD4 T cell immunity to anthrax Lethal Factor (LF), using HLA transgenic mice, as well as testing candidate peptide epitopes for binding to a wide range of HLA alleles. We identified anthrax epitopes, noteworthy in that they elicit exceptionally strong immunity with promiscuous binding across multiple HLA alleles and isotypes. T cell responses in humans exposed to LF through either natural anthrax infection or vaccination were also examined. Epitopes identified as candidates were used to protect HLA transgenic mice from anthrax challenge.
doi:10.1371/journal.ppat.1004085
PMCID: PMC4006929  PMID: 24788397
20.  Serodiagnosis of Human Cutaneous Anthrax in India Using an Indirect Anti-Lethal Factor IgG Enzyme-Linked Immunosorbent Assay 
Anthrax, caused by Bacillus anthracis, is primarily a zoonotic disease. Being a public health problem also in several developing countries, its early diagnosis is very important in human cases. In this study, we describe the use of an indirect enzyme-linked immunosorbent assay (ELISA) for detection of anti-lethal factor (anti-LF) IgG in human serum samples. A panel of 203 human serum samples consisting of 50 samples from patients with confirmed cutaneous anthrax, 93 samples from healthy controls from areas of India where anthrax is nonendemic, 44 samples from controls from an area of India where anthrax is endemic, and 16 patients with a disease confirmed not to be anthrax were evaluated with an anti-LF ELISA. The combined mean anti-LF ELISA titer for the three control groups was 0.136 ELISA unit (EU), with a 95% confidence interval (CI) of 0.120 to 0.151 EU. The observed sensitivity and specificity of the ELISA were 100% (95% CI, 92.89 to 100%) and 97.39% (95% CI, 93.44 to 99.28%), respectively, at a cutoff value of 0.375 EU, as decided by receiver operating characteristic (ROC) curve analysis. The likelihood ratio was found to be 49.98. The positive predictive value (PPV), negative predictive value (NPV), efficiency, and Youden's index (J) for reliability of the assay were 92.5%, 100%, 98.02%, and 0.97, respectively. The false-positive predictive rate and false-negative predictive rate of the assay were 2.61% and 0%. The assay could be a very useful tool for early diagnosis of cutaneous anthrax cases, as antibodies against LF appear much earlier than those against other anthrax toxins in human serum samples.
doi:10.1128/CVI.00598-12
PMCID: PMC3571271  PMID: 23269414
21.  Distribution and Molecular Evolution of Bacillus anthracis Genotypes in Namibia 
The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP) and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983–2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA) and, in part, by twelve single nucleotide polymorphism (SNP) markers and four single nucleotide repeat (SNR) markers. A total of 37 genotypes (GT) were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate epidemiological relationships.
Author Summary
Anthrax, the disease caused by Bacillus anthracis, is a neglected zoonotic diseases in the context of its impact on poor rural and periurban communities in Africa and other less developed areas of the world. Several regions of Namibia, the Etosha National Park in particular, are well known as being endemic areas for anthrax and, together, provide a good model for the investigation of the genetic diversity of B. anthracis circulating in livestock, wildlife and humans, and surrounding environments. The application of modern molecular strain typing techniques to the analysis of genotypic diversity, as it relates to the spatial and temporal distribution of B. anthracis strains in Namibia, is described in this paper. In particular, we demonstrate how it is possible to distinguish outbreaks of the disease caused by different strains from those caused by the spread of a single strain, to trace an outbreak strain back to its possible origin, and to track the routes of transmission of an outbreak strain within and between animal populations. The data described are relevant to all those concerned with monitoring, surveillance and prevention of the spread of anthrax in endemic areas.
doi:10.1371/journal.pntd.0001534
PMCID: PMC3295808  PMID: 22413024
22.  Mechanical transmission of Bacillus anthracis by stable flies (Stomoxys calcitrans) and mosquitoes (Aedes aegypti and Aedes taeniorhynchus). 
Infection and Immunity  1987;55(8):1859-1861.
We evaluated the potential of stable flies, Stomoxys calcitrans, and two species of mosquitoes, Aedes aegypti and Aedes taeniorhynchus, to transmit Bacillus anthracis Vollum 1B mechanically. After probing on Hartley guinea pigs with a bacteremia of ca. 10(8.6) CFU of B. anthracis per ml of blood, individual or pools of two to four stable flies or mosquitoes were allowed to continue feeding on either uninfected guinea pigs or A/J mice. All three insect species transmitted lethal anthrax infections to both guinea pigs and mice. Both stable flies and mosquitoes transmitted anthrax, even when they were held at room temperature for 4 h after exposure to the bacteremic guinea pig before being allowed to continue feeding on the susceptible animals. This study confirms that blood-feeding insects can mechanically transmit anthrax and supports recent anecdotal reports of fly-bite-associated cutaneous human anthrax. The potential for flies to mechanically transmit anthrax suggests that fly control should be considered as part of a program for control of epizootic anthrax.
PMCID: PMC260614  PMID: 3112013
23.  Epidemiologic Investigations of Bioterrorism-Related Anthrax, New Jersey, 2001 
Emerging Infectious Diseases  2002;8(10):1048-1055.
At least four Bacillus anthracis–containing envelopes destined for New York City and Washington, D.C., were processed at the Trenton Processing and Distribution Center (PDC) on September 18 and October 9, 2001. When cutaneous anthrax was confirmed in a Trenton postal worker, the PDC was closed. Four cutaneous and two inhalational anthrax cases were identified. Five patients were hospitalized; none died. Four were PDC employees; the others handled or received mail processed there. Onset dates occurred in two clusters following envelope processing at the PDC. The attack rate among the 170 employees present when the B. anthracis–containing letters were sorted on October 9 was 1.2%. Of 137 PDC environmental samples, 57 (42%) were positive. Five (10%) of 50 local post offices each yielded one positive sample. Cutaneous or inhalational anthrax developed in four postal employees at a facility where B. anthracis–containing letters were processed. Cross-contaminated mail or equipment was the likely source of infection in two other case-patients with cutaneous anthrax.
doi:10.3201/eid0810.020329
PMCID: PMC2730296  PMID: 12396914
Bacillus anthracis; anthrax; bioterrorism
24.  Swab Protocol for Rapid Laboratory Diagnosis of Cutaneous Anthrax 
Journal of Clinical Microbiology  2012;50(12):3960-3967.
The clinical laboratory diagnosis of cutaneous anthrax is generally established by conventional microbiological methods, such as culture and directly straining smears of clinical specimens. However, these methods rely on recovery of viable Bacillus anthracis cells from swabs of cutaneous lesions and often yield negative results. This study developed a rapid protocol for detection of B. anthracis on clinical swabs. Three types of swabs, flocked-nylon, rayon, and polyester, were evaluated by 3 extraction methods, the swab extraction tube system (SETS), sonication, and vortex. Swabs were spiked with virulent B. anthracis cells, and the methods were compared for their efficiency over time by culture and real-time PCR. Viability testing indicated that the SETS yielded greater recovery of B. anthracis from 1-day-old swabs; however, reduced viability was consistent for the 3 extraction methods after 7 days and nonviability was consistent by 28 days. Real-time PCR analysis showed that the PCR amplification was not impacted by time for any swab extraction method and that the SETS method provided the lowest limit of detection. When evaluated using lesion swabs from cutaneous anthrax outbreaks, the SETS yielded culture-negative, PCR-positive results. This study demonstrated that swab extraction methods differ in their efficiency of recovery of viable B. anthracis cells. Furthermore, the results indicated that culture is not reliable for isolation of B. anthracis from swabs at ≥7 days. Thus, we recommend the use of the SETS method with subsequent testing by culture and real-time PCR for diagnosis of cutaneous anthrax from clinical swabs of cutaneous lesions.
doi:10.1128/JCM.02076-12
PMCID: PMC3502990  PMID: 23035192
25.  Periocular cutaneous anthrax in Jimma Zone, Southwest Ethiopia: a case series 
BMC Research Notes  2013;6:313.
Background
Anthrax is a zoonotic disease caused by Bacillus anthracis. Naturally occurring human infection is rare and is generally the result of contact with anthrax-infected animals or animal products.
Case presentation
We examined three patients who had contact with presumed anthrax-infected animal and/or its product and presented with preseptal cellulitis with a localized itchy erythematous papule of the eyelid and non-pitting periorbital edema, followed by ulceration and dark eschar formation. All the three patients responded to intravenous antibiotics, and the lesion resolved leaving scars which caused cicatricial ectropion in all cases.
Conclusion
Anthrax is a rare disease but should be considered in the differential diagnosis of ulcerative (and eschar forming) preseptal cellulitis with a history of contact with anthrax-infected animals or animal products. Furthermore, cicatrization of the eyelids, one of the sequelae of periocular cutaneous anthrax, should be addressed. Urgent case report to the local zoonotic disease and infection control body and other responsible authorities is recommended.
doi:10.1186/1756-0500-6-313
PMCID: PMC3750427  PMID: 23924443
Anthrax; Preseptal cellulitis; Bacillus anthracis; Zoonotic disease; Eye lid

Results 1-25 (499011)