PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (999943)

Clipboard (0)
None

Related Articles

1.  Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9T) and comparison to “Dehalococcoides” strains 
Standards in Genomic Sciences  2012;6(2):251-264.
Dehalogenimonas lykanthroporepellens is the type species of the genus Dehalogenimonas, which belongs to a deeply branching lineage within the phylum Chloroflexi. This strictly anaerobic, mesophilic, non spore-forming, Gram-negative staining bacterium was first isolated from chlorinated solvent contaminated groundwater at a Superfund site located near Baton Rouge, Louisiana, USA. D. lykanthroporepellens was of interest for genome sequencing for two reasons: (a) an unusual ability to couple growth with reductive dechlorination of environmentally important polychlorinated aliphatic alkanes and (b) a phylogenetic position that is distant from previously sequenced bacteria. The 1,686,510 bp circular chromosome of strain BL-DC-9T contains 1,720 predicted protein coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small subunit rRNA (16S) locus.
doi:10.4056/sigs.2806097
PMCID: PMC3387798  PMID: 22768368
reductive dechlorination; groundwater; strictly anaerobic; hydrogen utilization; contamination; Chloroflexi
2.  Detoxification of 1,1,2-Trichloroethane to Ethene by Desulfitobacterium and Identification of Its Functional Reductase Gene 
PLoS ONE  2015;10(4):e0119507.
1,1,2-trichloroethane (1,1,2-TCA) has become a common groundwater pollutant due to historically extensive utilization, improper disposal, as well as from incomplete dechlorination of 1,1,2,2-tetrachloroethane. Currently, limited information is available on microbial detoxification of 1,1,2-TCA. Desulfitobacterium sp. strain PR, which was isolated from an anaerobic bioreactor maintained to dechlorinate chloroethenes/ethanes, exhibited the capacity to dechlorinate 1,1,1-trichloroethane and chloroform. In this study, the dechlorinating ability of strain PR was further explored. Strain PR showed the capability to dechlorinate 1,1,2-TCA (~1.12 mM) predominantly to 1,2-dichloroethane (1,2-DCA) and chloroethane, and to trace amounts of vinyl chloride and ethene within 20 days. Strain PR coupled growth with dechlorination of 1,1,2-TCA to 1,2-DCA, while no cell growth was observed with dechlorination of 1,2-DCA to chloroethane. Later, through transcriptomic and enzymatic analysis, the reductive dehalogenase CtrA, which was previously reported to be responsible for 1,1,1-trichloroethane and chloroform dechlorination, was identified as the 1,1,2-TCA reductive dehalogenase. Since trichloroethene (TCE) is usually co-contaminated with 1,1,2-TCA, a co-culture containing Dehalococcoides mccartyi strain 11a capable of detoxifying TCE and 1,2-DCA and strain PR was established. Interestingly, this co-culture dechlorinated 1,1,2-TCA and TCE to the non-toxic end-product ethene within 48 days without chloroethane production. This novel pathway avoids production of the carcinogenic intermediate dechlorination product vinyl chloride, providing a more environmentally friendly strategy to treat 1,1,2-TCA.
doi:10.1371/journal.pone.0119507
PMCID: PMC4383557  PMID: 25835017
3.  Characterization of a Dehalobacter Coculture That Dechlorinates 1,2-Dichloroethane to Ethene and Identification of the Putative Reductive Dehalogenase Gene▿  
Dehalobacter and “Dehalococcoides” spp. were previously shown to be involved in the biotransformation of 1,1,2-trichloroethane (1,1,2-TCA) and 1,2-dichloroethane (1,2-DCA) to ethene in a mixed anaerobic enrichment culture. Here we report the further enrichment and characterization of a Dehalobacter sp. from this mixed culture in coculture with an Acetobacterium sp. Through a series of serial transfers and dilutions with acetate, H2, and 1,2-DCA, a stable coculture of Acetobacterium and Dehalobacter spp. was obtained, where Dehalobacter grew during dechlorination. The isolated Acetobacterium strain did not dechlorinate 1,2-DCA. Quantitative PCR with specific primers showed that Dehalobacter cells did not grow in the absence of a chlorinated electron acceptor and that the growth yield with 1,2-DCA was 6.9 (±0.7) × 107 16S rRNA gene copies/μmol 1,2-DCA degraded. PCR with degenerate primers targeting reductive dehalogenase genes detected three distinct Dehalobacter/Desulfitobacterium-type sequences in the mixed-parent culture, but only one of these was present in the 1,2-DCA-H2 coculture. Reverse transcriptase PCR revealed the transcription of this dehalogenase gene specifically during the dechlorination of 1,2-DCA. The 1,2-DCA-H2 coculture could dechlorinate 1,2-DCA but not 1,1,2-TCA, nor could it dechlorinate chlorinated ethenes. As a collective, the genus Dehalobacter has been show to dechlorinate many diverse compounds, but individual species seem to each have a narrow substrate range.
doi:10.1128/AEM.02037-08
PMCID: PMC2681677  PMID: 19270140
4.  A 1,1,1-Trichloroethane-Degrading Anaerobic Mixed Microbial Culture Enhances Biotransformation of Mixtures of Chlorinated Ethenes and Ethanes▿  
Applied and Environmental Microbiology  2006;72(12):7849-7856.
1,1,1-Trichloroethane (1,1,1-TCA) is a common groundwater pollutant as a result of improper disposal and accidental spills. It is often found as a cocontaminant with trichloroethene (TCE) and inhibits some TCE-degrading microorganisms. 1,1,1-TCA removal is therefore required for effective bioremediation of sites contaminated with mixed chlorinated organics. This study characterized MS, a 1,1,1-TCA-degrading, anaerobic, mixed microbial culture derived from a 1,1,1-TCA-contaminated site in the northeastern United States. MS reductively dechlorinated 1,1,1-TCA to 1,1-dichloroethane (1,1-DCA) and then to monochloroethane (CA) but not further. Cloning of bacterial 16S rRNA genes revealed among other organisms the presence of a Dehalobacter sp. and a Desulfovibrio sp., which are both phylogenetically related to known dehalorespiring strains. Monitoring of these populations with species-specific quantitative PCR during degradation of 1,1,1-TCA and 1,1-DCA showed that Dehalobacter proliferated during dechlorination. Dehalobacter growth was dechlorination dependent, whereas Desulfovibrio growth was dechlorination independent. Experiments were also performed to test whether MS could enhance TCE degradation in the presence of inhibiting levels of 1,1,1-TCA. Dechlorination of cis-dichloroethene (cDCE) and vinyl chloride (VC) in KB-1, a chloroethene-degrading culture used for bioaugmentation, was inhibited with 1,1,1-TCA present. When KB-1 and MS were coinoculated, degradation of cDCE and VC to ethene proceeded as soon as the 1,1,1-TCA was dechlorinated to 1,1-DCA by MS. This demonstrated the potential application of the MS and KB-1 cultures for cobioaugmentation of sites cocontaminated with 1,1,1-TCA and TCE.
doi:10.1128/AEM.01269-06
PMCID: PMC1694251  PMID: 17056695
5.  Growth of Dehalobacter and Dehalococcoides spp. during Degradation of Chlorinated Ethanes 
Mixed anaerobic microbial subcultures enriched from a multilayered aquifer at a former chlorinated solvent disposal facility in West Louisiana were examined to determine the organism(s) involved in the dechlorination of the toxic compounds 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA) to ethene. Sequences phylogenetically related to Dehalobacter and Dehalococcoides, two genera of anaerobic bacteria that are known to respire with chlorinated ethenes, were detected through cloning of bacterial 16S rRNA genes. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments after starvation and subsequent reamendment of culture with 1,2-DCA showed that the Dehalobacter sp. grew during the dichloroelimination of 1,2-DCA to ethene, implicating this organism in degradation of 1,2-DCA in these cultures. Species-specific real-time quantitative PCR was further used to monitor proliferation of Dehalobacter and Dehalococcoides during the degradation of chlorinated ethanes and showed that in fact both microorganisms grew simultaneously during the degradation of 1,2-DCA. Conversely, Dehalobacter grew during the dichloroelimination of 1,1,2-TCA to vinyl chloride (VC) but not during the subsequent reductive dechlorination of VC to ethene, whereas Dehalococcoides grew only during the reductive dechlorination of VC but not during the dichloroelimination of 1,1,2-TCA. This demonstrated that in mixed cultures containing multiple dechlorinating microorganisms, these organisms can have either competitive or complementary dechlorination activities, depending on the chloro-organic substrate.
doi:10.1128/AEM.72.1.428-436.2006
PMCID: PMC1352275  PMID: 16391074
6.  Phylogenetically Distinct Bacteria Involve Extensive Dechlorination of Aroclor 1260 in Sediment-Free Cultures 
PLoS ONE  2013;8(3):e59178.
Microbial reductive dechlorination of the persistent polychlorinated biphenyls (PCBs) is attracting much attention in cleanup of the contaminated environment. Nevertheless, most PCB dechlorinating cultures require presence of sediment or sediment substitutes to maintain their dechlorination activities which hinders subsequent bacterial enrichment and isolation processes. The information on enriching sediment-free PCB dechlorinating cultures is still limited. In this study, 18 microcosms established with soils and sediments were screened for their dechlorination activities on a PCB mixture – Aroclor 1260. After one year of incubation, 10 out of 18 microcosms showed significant PCB dechlorination with distinct dechlorination patterns (e.g., Process H, N and T classified based on profiles of PCB congeners loss and new congeners formation). Through serial transfers in defined medium, six sediment-free PCB dechlorinating cultures (i.e., CW-4, CG-1, CG-3, CG-4, CG-5 and SG-1) were obtained without amending any sediment or sediment-substitutes. PCB dechlorination Process H was the most frequently observed dechlorination pattern, which was found in four sediment-free cultures (CW-4, CG-3, CG-4 and SG-1). Sediment-free culture CG-5 showed the most extensive PCB dechlorination among the six cultures, which was mediated by Process N, resulting in the accumulation of penta- (e.g., 236-24-CB) and tetra-chlorobiphenyls (tetra-CBs) (e.g., 24-24-CB, 24-25-CB, 24-26-CB and 25-26-CB) via dechlorinating 30.44% hepta-CBs and 59.12% hexa-CBs after three months of incubation. For culture CG-1, dechlorinators mainly attacked double flanked meta-chlorines and partially ortho-chlorines, which might represent a novel dechlorination pattern. Phylogenetic analysis showed distinct affiliation of PCB dechlorinators in the microcosms, including Dehalogenimonas and Dehalococcoides species. This study broadens our knowledge in microbial reductive dechlorination of PCBs, and provides essential information for culturing and stimulating PCB dechlorinators for in situ bioremediation applications.
doi:10.1371/journal.pone.0059178
PMCID: PMC3598663  PMID: 23554991
7.  Kinetics of 1,2-Dichloroethane and 1,2-Dibromoethane Biodegradation in Anaerobic Enrichment Cultures 
1,2-Dichloroethane (1,2-DCA) and 1,2-dibromoethane (ethylene dibromide [EDB]) contaminate groundwater at many hazardous waste sites. The objectives of this study were to measure yields, maximum specific growth rates (μ̂), and half-saturation coefficients (KS) in enrichment cultures that use 1,2-DCA and EDB as terminal electron acceptors and lactate as the electron donor and to evaluate if the presence of EDB has an effect on the kinetics of 1,2-DCA dehalogenation and vice versa. Biodegradation was evaluated at the high concentrations found at some industrial sites (>10 mg/liter) and at lower concentrations found at former leaded-gasoline sites (1.9 to 3.7 mg/liter). At higher concentrations, the Dehalococcoides yield was 1 order of magnitude higher when bacteria were grown with 1,2-DCA than when they were grown with EDB, while μ̂'s were similar for the two compounds, ranging from 0.19 to 0.52 day−1 with 1,2-DCA to 0.28 to 0.36 day−1 for EDB. KS was larger for 1,2-DCA (15 to 25 mg/liter) than for EDB (1.8 to 3.7 mg/liter). In treatments that received both compounds, EDB was always consumed first and adversely impacted the kinetics of 1,2-DCA utilization. Furthermore, 1,2-DCA dechlorination was interrupted by the addition of EDB at a concentration 100 times lower than that of the remaining 1,2-DCA; use of 1,2-DCA did not resume until the EDB level decreased close to its maximum contaminant level (MCL). In lower-concentration experiments, the preferential consumption of EDB over 1,2-DCA was confirmed; both compounds were eventually dehalogenated to their respective MCLs (5 μg/liter for 1,2-DCA, 0.05 μg/liter for EDB). The enrichment culture grown with 1,2-DCA has the advantage of a more rapid transition to 1,2-DCA after EDB is consumed.
doi:10.1128/AEM.02163-12
PMCID: PMC3568614  PMID: 23263950
8.  Stereoselective Microbial Dehalorespiration with Vicinal Dichlorinated Alkanes 
The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C2 groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis.
doi:10.1128/AEM.69.9.5643-5647.2003
PMCID: PMC194954  PMID: 12957955
9.  Genome sequence of the organohalide-respiring Dehalogenimonas alkenigignens type strain (IP3-3T) 
Dehalogenimonas alkenigignens IP3-3T is a strictly anaerobic, mesophilic, Gram negative staining bacterium that grows by organohalide respiration, coupling the oxidation of H2 to the reductive dehalogenation of polychlorinated alkanes. Growth has not been observed with any non-polyhalogenated alkane electron acceptors. Here we describe the features of strain IP3-3T together with genome sequence information and its annotation. The 1,849,792 bp high-quality-draft genome contains 1936 predicted protein coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small unit rRNA (16S) locus. The genome contains 29 predicted reductive dehalogenase genes, a large majority of which lack cognate genes encoding membrane anchoring proteins.
doi:10.1186/s40793-016-0165-7
PMCID: PMC4918011  PMID: 27340512
Chloroflexi; Dehalococcoidia; Reductive dechlorination; 1,2-dichloroethane; 1,2-dichloropropane; 1,2,3-trichloropropane
10.  A Novel Reductive Dehalogenase, Identified in a Contaminated Groundwater Enrichment Culture and in Desulfitobacterium dichloroeliminans Strain DCA1, Is Linked to Dehalogenation of 1,2-Dichloroethane▿  
A mixed culture dechlorinating 1,2-dichloroethane (1,2-DCA) to ethene was enriched from groundwater that had been subjected to long-term contamination. In the metagenome of the enrichment, a 7-kb reductive dehalogenase (RD) gene cluster sequence was detected by inverse and direct PCR. The RD gene cluster had four open reading frames (ORF) showing 99% nucleotide identity with pceB, pceC, pceT, and orf1 of Dehalobacter restrictus strain DSMZ 9455T, a bacterium able to dechlorinate chlorinated ethenes. However, dcaA, the ORF encoding the catalytic subunit, showed only 94% nucleotide and 90% amino acid identity with pceA of strain DSMZ 9455T. Fifty-three percent of the amino acid differences were localized in two defined regions of the predicted protein. Exposure of the culture to 1,2-DCA and lactate increased the dcaA gene copy number by 2 log units, and under these conditions the dcaA and dcaB genes were actively transcribed. A very similar RD gene cluster with 98% identity in the dcaA gene sequence was identified in Desulfitobacterium dichloroeliminans strain DCA1, the only known isolate that selectively dechlorinates 1,2-DCA but not chlorinated ethenes. The dcaA gene of strain DCA1 possesses the same amino acid motifs as the new dcaA gene. Southern hybridization using total genomic DNA of strain DCA1 with dcaA gene-specific and dcaB- and pceB-targeting probes indicated the presence of two identical or highly similar dehalogenase gene clusters. In conclusion, these data suggest that the newly described RDs are specifically adapted to 1,2-DCA dechlorination.
doi:10.1128/AEM.02748-06
PMCID: PMC1892866  PMID: 17351102
11.  Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. 
Applied and Environmental Microbiology  1989;55(11):2819-2826.
Degradation of trichloroethylene (TCE) by the methanotrophic bacterium Methylosinus trichosporium OB3b was studied by using cells grown in continuous culture. TCE degradation was a strictly cometabolic process, requiring the presence of a cosubstrate, preferably formate, and oxygen. M. trichosporium OB3b cells degraded TCE only when grown under copper limitation and when the soluble methane monooxygenase was derepressed. During TCE degradation, nearly total dechlorination occurred, as indicated by the production of inorganic chloride, and only traces of 2,2,2-trichloroethanol and trichloroacetaldehyde were produced. TCE degradation proceeded according to first-order kinetics from 0.1 to 0.0002 mM TCE with a rate constant of 2.14 ml min-1 mg of cells-1. TCE concentrations above 0.2 mM inhibited degradation in cell suspensions of 0.42 mg of cells ml-1. Other chlorinated aliphatics were also degraded by M. trichosporium OB3b. Dichloromethane, chloroform, 1,1-dichloroethane, and 1,2-dichloroethane were completely degraded, with the release of stoichiometric amounts of chloride. trans-1,2-Dichloroethylene, cis-1,2-dichloroethylene, and 1,2-dichloropropane were completely converted, but not all the chloride was released because of the formation of chlorinated intermediates, e.g., trans-2,3-dichlorooxirane, cis-2,3-dichlorooxirane, and 2,3-dichloropropanol, respectively. 1,1,1-Trichloroethane, 1,1-dichloroethylene, and 1,3-dichloropropylene were incompletely converted, and the first compound yielded 2,2,2-trichloroethanol as a chlorinated intermediate. The two perchlorinated compounds tested, carbon tetrachloride and tetrachloroethylene, were not converted.
PMCID: PMC203175  PMID: 2624462
12.  Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. 
Several 1- and 2-carbon halogenated aliphatic organic compounds present at low concentrations (less than 100 micrograms/liter) were degraded under methanogenic conditions in batch bacterial cultures and in a continuous-flow methanogenic fixed-film laboratory-scale column. Greater than 90% degradation was observed within a 2-day detention time under continuous-flow methanogenic conditions with acetate as a primary substrate. Carbon-14 measurements indicated that chloroform, carbon tetrachloride, and 1,2-dichloroethane were almost completely oxidized to carbon dioxide, confirming removal by biooxidation. The initial step in the transformations of tetrachloroethylene and 1,1,2,2-tetrachloroethane to nonchlorinated end products appeared to be reductive dechlorination to trichloroethylene and 1,1,2-trichloroethane, respectively. Transformations of the brominated aliphatic compounds appear to be the result of both biological and chemical processes. The data suggest that transformations of halogenated aliphatic compounds can occur under methanogenic conditions in the environment.
PMCID: PMC242452  PMID: 6859849
13.  Complete Reductive Dechlorination of 1,2-Dichloropropane by Anaerobic Bacteria 
The transformation of 1,2-dichloropropane (1,2-D) was observed in anaerobic microcosms and enrichment cultures derived from Red Cedar Creek sediment. 1-Chloropropane (1-CP) and 2-CP were detected after an incubation period of 4 weeks. After 4 months the initial amount of 1,2-D was stoichiometrically converted to propene, which was not further transformed. Dechlorination of 1,2-D was not inhibited by 2-bromoethanesulfonate. Sequential 5% (vol/vol) transfers from active microcosms yielded a sediment-free, nonmethanogenic culture, which completely dechlorinated 1,2-D to propene at a rate of 5 nmol min(sup-1) mg of protein(sup-1). No intermediate formation of 1-CP or 2-CP was detected in the sediment-free enrichment culture. A variety of electron donors, including hydrogen, supported reductive dechlorination of 1,2-D. The highest dechlorination rates were observed between 20(deg) and 25(deg)C. In the presence of 1,2-D, the hydrogen threshold concentration was below 1 ppm by volume (ppmv). In addition to 1,2-D, the enrichment culture transformed 1,1-D, 2-bromo-1-CP, tetrachloroethene, 1,1,2,2-tetrachloroethane, and 1,2-dichloroethane to less halogenated compounds. These findings extend our knowledge of the reductive dechlorination process and show that halogenated propanes can be completely dechlorinated by anaerobic bacteria.
PMCID: PMC1389209  PMID: 16535654
14.  Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates 
The genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis pathway is present in the five Dehalobacter genomes. This pathway corresponds to a newly described alternative heme biosynthesis route first identified in Archaea. This analysis of organohalide-respiring Firmicutes and Chloroflexi reveals profound evolutionary differences despite very similar niche-specific metabolism and function.
doi:10.3389/fmicb.2016.00100
PMCID: PMC4751268  PMID: 26903979
Dehalobacter; organohalide respiration; genome analysis; reductive dehalogenase; microbial evolution
15.  Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries. 
The reductive dechlorination of pentachlorophenol (PCP) was investigated in anaerobic sediments that contained nonadapted or 2,4- or 3,4-dichlorophenol (DCP)-adapted microbial communities. Adaptation of sediment communities increased the rate of conversion of 2,4- or 3,4-DCP to monochlorophenols (CPs) and eliminated the lag phase before dechlorination was observed. Both 2,4- and 3,4-DCP-adapted sediment communities dechlorinated the six DCP isomers to CPs. The specificity of chlorine removal from the DCP isomers indicated a preference for ortho-chlorine removal by 2,4-DCP-adapted sediment communities and for para-chlorine removal by 3,4-DCP-adapted sediment communities. Sediment slurries containing nonadapted microbial communities either did not dechlorinate PCP or did so following a lag phase of at least 40 days. Sediment communities adapted to dechlorinate 2,4- or 3,4-DCP dechlorinated PCP without an initial lag phase. The 2,4-DCP-adapted communities initially removed the ortho-chlorine from PCP, whereas the 3,4-DCP-adapted communities initially removed the para-chlorine from PCP. A 1:1 mixture of the adapted sediment communities also dechlorinated PCP without a lag phase. Dechlorination by the mixture was regiospecific, following a para greater than ortho greater than meta order of chlorine removal. Intermediate products of degradation, 2,3,5,6-tetrachlorophenol, 2,3,5-trichlorophenol, 3,5-DCP, 3-CP, and phenol, were identified by a combination of cochromatography (high-pressure liquid chromatography) with standards and gas chromatography-mass spectrometry.
PMCID: PMC183566  PMID: 1768102
16.  Metagenome phylogenetic profiling of microbial community evolution in a tetrachloroethene-contaminated aquifer responding to enhanced reductive dechlorination protocols 
Chlorinated solvent contamination of potable water supplies is a serious problem worldwide. Biostimulation protocols can successfully remediate chlorinated solvent contamination through enhanced reductive dechlorination pathways, however the process is poorly understood and sometimes stalls creating a more serious problem. Whole metagenome techniques have the potential to reveal details of microbial community changes induced by biostimulation. Here we compare the metagenome of a tetrachloroethene contaminated Environmental Protection Agency Superfund Site before and after the application of biostimulation protocols. Environmental DNA was extracted from uncultured microbes that were harvested by on-site filtration of groundwater one month prior to and five months after the injection of emulsified vegetable oil, nutrients, and hydrogen gas bioamendments. Pair-end libraries were prepared for high-throughput DNA sequencing and 90 basepairs from both ends of randomly fragmented 400 basepair DNA fragments were sequenced. Over 31 millions reads were annotated with Metagenome Rapid Annotation using Subsystem Technology representing 32 prokaryotic phyla, 869 genera, and 3,181 species. A 3.6 log2 fold increase in biomass as measured by DNA yield per mL water was measured, but there was a 9% decrease in the number of genera detected post-remediation. We apply Bayesian statistical methods to assign false discovery rates to fold-change abundance data and use Zipf’s power law to filter genera with low read counts. Plotting the log-rank against the log-fold-change facilitates the visualization of the changes in the community in response to the enhanced reductive dechlorination protocol. Members of the Archaea domain increased 4.7 log2 fold, dominated by methanogens. Prior to remediation, classes Alphaproteobacteria and Betaproteobacteria dominated the community but exhibit significant decreases five months after biostimulation. Geobacter and Sulfurospirillum replace “Sideroxydans” and Burkholderia as the most abundant genera. As a result of biostimulation, Deltaproteobacteria and Epsilonproteobacteria capable of dehalogenation, iron and sulfate reduction, and sulfur oxidation increase. Matches to thermophilic, haloalkane respiring archaea is evidence for additional species involved in biodegradation of chlorinated solvents. Additionally, potentially pathogenic bacteria increase, indicating that there may be unintended consequences of bioremediation.
doi:10.1186/s40793-016-0209-z
PMCID: PMC5131427  PMID: 27980706
Enhanced reductive dechlorination; Metagenomics
17.  Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. 
Applied and Environmental Microbiology  1996;62(10):3800-3808.
Strain Co23, an anaerobic spore-forming microorganism, was enriched and isolated from a compost soil on the basis of its ability to grow with 2,3-dichlorophenol (DCP) as its electron acceptor, ortho chlorines were removed from polysubstituted phenols but not from monohalophenols. Growth by chlororespiration was indicated by a growth yield of 3.24 g of cells per mol of reducing equivalents (as 2[H]) from lactate oxidation to acetate in the presence of 3-chloro-4-hydroxybenzoate but no growth in the absence of the halogenated electron acceptor. Other indicators of chlororespiration were the fraction of electrons from the electron donor used for dechlorination (0.67) and the H2 threshold concentration of < 1.0 ppm. Additional electron donors utilized for reductive dehalogenation were pyruvate, formate, butyrate, crotonate, and H2. Pyruvate supported homoacetogenic growth in the absence of an electron acceptor. Strain Co23 also used sulfite, thiosulfate, and sulfur as electron acceptors for growth, but it did not use sulfate, nitrate or fumarate. The temperature optimum for growth was 37 degrees C; however, the rates of dechlorination were optimum at 45 degrees C and activity persisted to temperatures as high as 55 degrees C. The 16S rRNA sequence was determined, and strain Co23 was found to be related to Desulfitobacterium dehalogenans JW/IU DC1 and Desulfitobacterium strain PCE1, with sequence similarities of 97.2 and 96.8%, respectively. The phylogenetic and physiological properties exhibited by strain Co23 place it into a new species designated Desulfitobacterium chlororespirans.
PMCID: PMC168189  PMID: 8837437
18.  Transformations of halogenated organic compounds under denitrification conditions. 
Trihalomethanes, carbon tetrachloride, 1,1,1-trichloroethane, 1,2-dibromoethane, chlorinated benzenes, ethylbenzene, and naphthalene at concentrations commonly found in surface and groundwater were incubated under anoxic conditions to study their transformability in the presence of denitrifying bacteria. None of the aromatic compounds showed significant utilization relative to sterile controls at initial concentrations from 41 to 114 micrograms/liter after 11 weeks of incubation. Of the halogenated aliphatic compounds studied, transformations of carbon tetrachloride and brominated trihalomethanes were observed after 8 weeks in batch denitrification cultures. Carbon from the decomposition of carbon tetrachloride was both assimilated into cell material and mineralized to carbon dioxide. How this was possible remains unexplained, since carbon tetrachloride is transformed to CO2 by hydrolysis and not by oxidation-reduction. Chloroform was detected in bacterial cultures with carbon tetrachloride initially present, indicating that reductive dechlorination had occurred in addition to hydrolysis. The data suggest that transformations of certain halogenated aliphatic compounds are likely to occur under denitrification conditions in the environment.
PMCID: PMC242453  PMID: 6859850
19.  Microbial Reductive Dechlorination of Aroclor 1260 in Baltimore Harbor Sediment Microcosms Is Catalyzed by Three Phylotypes within the Phylum Chloroflexi▿  
The specific dechlorination pathways for Aroclor 1260 were determined in Baltimore Harbor sediment microcosms developed with the 11 most predominant congeners from this commercial mixture and their resulting dechlorination intermediates. Most of the polychlorinated biphenyl (PCB) congeners were dechlorinated in the meta position, and the major products were tetrachlorobiphenyls with unflanked chlorines. Using PCR primers specific for the 16S rRNA genes of known PCB-dehalogenating bacteria, we detected three phylotypes within the microbial community that had the capability to dechlorinate PCB congeners present in Aroclor 1260 and identified their selective activities. Phylotype DEH10, which has a high level of sequence identity to Dehalococcoides spp., removed the double-flanked chlorine in 234-substituted congeners and exhibited a preference for para-flanked meta-chlorines when no double-flanked chlorines were available. Phylotype SF1 had similarity to the o-17/DF-1 group of PCB-dechlorinating bacteria. Phylotype SF1 dechlorinated all of the 2345-substituted congeners, mostly in the double-flanked meta position and 2356-, 236-, and 235-substituted congeners in the ortho-flanked meta position, with a few exceptions. A phylotype with 100% sequence identity to PCB-dechlorinating bacterium o-17 was responsible for an ortho and a double-flanked meta dechlorination reaction. Most of the dechlorination pathways supported the growth of all three phylotypes based on competitive PCR enumeration assays, which indicates that PCB-impacted environments have the potential to sustain populations of these PCB-dechlorinating microorganisms. The results demonstrate that the variation in dechlorination patterns of congener mixtures typically observed at different PCB impacted sites can potentially be mediated by the synergistic activities of relatively few dechlorinating species.
doi:10.1128/AEM.02958-06
PMCID: PMC1892865  PMID: 17351091
20.  Identification and Characterization of a Novel CprA Reductive Dehalogenase Specific to Highly Chlorinated Phenols from Desulfitobacterium hafniense Strain PCP-1▿  
Applied and Environmental Microbiology  2010;76(22):7536-7540.
Desulfitobacterium hafniense strain PCP-1 reductively dechlorinates pentachlorophenol (PCP) to 3-chlorophenol and a variety of halogenated aromatic compounds at the ortho, meta, and para positions. Several reductive dehalogenases (RDases) are thought to be involved in this cascade of dehalogenation. We partially purified a novel RDase involved in the dechlorination of highly chlorinated phenols from strain PCP-1 cultivated in the presence of 2,4,6-trichlorophenol. The RDase was membrane associated, and the activity was sensitive to oxygen, with a half-life of 128 min upon exposure to air. The pH and temperature optima were 7.0 and 55°C, respectively. Several highly chlorinated phenols were dechlorinated at the ortho positions. The highest dechlorinating activity levels were observed with PCP, 2,3,4,5-tetrachlorophenol, and 2,3,4-trichlorophenol. 3-Chloro-4-hydroxyphenylacetate, 3-chloro-4-hydroxybenzoate, dichlorophenols, and monochlorophenols were not dechlorinated. The apparent Km value for PCP was 46.7 μM at a methyl viologen concentration of 2 mM. A mixture of iodopropane and titanium citrate caused a light-reversible inhibition of the dechlorinating activity, suggesting the involvement of a corrinoid cofactor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the partially purified preparation revealed 2 bands with apparent molecular masses of 42 and 47 kDa. Mass spectrometry analysis using Mascot to search the genome sequence of D. hafniense strain DCB-2 identified the 42-kDa band as NADH-quinone oxidoreductase, subunit D, and the 47-kDa band as the putative chlorophenol RDase CprA3. This is the first report of an RDase with high affinity and high dechlorinating activity toward PCP.
doi:10.1128/AEM.01362-10
PMCID: PMC2976209  PMID: 20870790
21.  Two anaerobic polychlorinated biphenyl-dehalogenating enrichments that exhibit different para-dechlorination specificities. 
Applied and Environmental Microbiology  1997;63(12):4826-4832.
Two anaerobic polychlorinated biphenyl (PCB)-dechlorinating enrichments with distinct substrate specificities were obtained: a 2,3,4,6-tetrachlorobiphenyl (2346-CB) para-dechlorinating enrichment derived from Aroclor 1260-contaminated Woods Pond (Lenox, Mass.) sediment and a 2,4,6-trichlorobiphenyl (246-CB) unflanked para-dechlorinating enrichment derived from PCB-free Sandy Creek Nature Center (Athens, Ga.) sediment. The enrichments have been successfully transferred to autoclaved soil slurries over 20 times by using 300 to 350 microM 2346-CB or 246-CB. Both enrichments required soil for successful transfer of dechlorination activity. The 2346-CB enrichment para dehalogenated, in the absence or presence of 2346-CB, only 4 of 25 tested para halogen-containing congeners: 234-CB, 2345-CB, 2346-CB, and 2,4,6-tribromobiphenyl (246-BrB). In the presence of 246-CB, the 246-CB enrichment para dehalogenated 23 of the 25 tested congeners. However, only three congeners (34-CB, 2346-CB, and 246-BrB) were dehalogenated in the absence of 246-CB, indicating that these specific congeners initiate dehalogenation in this enrichment culture. The addition of the 2346-CB (para)-dechlorinating enrichment did not further stimulate the 2346-CB-primed dechlorination of the Aroclor 1260 residue in Woods Pond sediment samples. Compared to the addition of the primer 246-CB or the 246-CB unflanked para-dechlorinating enrichment alone, the addition of both 246-CB (300 microM) and the 246-CB enrichment stimulated the unflanked para dechlorination of the Aroclor 1260 residue in Woods Pond sediments. These results indicate that the two enrichments contain different PCB-dechlorinating organisms, each with high substrate specificities. Furthermore, bioaugmentation with the enrichment alone did not stimulate the desired dechlorination in PCB-contaminated Woods Pond sediment.
PMCID: PMC168807  PMID: 9406402
22.  Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. 
Journal of Bacteriology  1985;163(2):635-639.
A new enzyme, haloalkane dehalogenase, was isolated from the 1,2-dichloroethane-utilizing bacterium Xanthobacter autotrophicus GJ10. The purified enzyme catalyzed the hydrolytic dehalogenation of n-halogenated C1 to C4 alkanes, including chlorinated, brominated, and iodinated compounds. The highest activity was found with 1,2-dichloroethane, 1,3-dichloropropane, and 1,2-dibromoethane. The enzyme followed Michaelis-Menten kinetics, and the Km for 1,2-dichloroethane was 1.1 mM. Maximum activity was found at pH 8.2 and 37 degrees C. Thiol reagents such as p-chloromercuribenzoate and iodoacetamide rapidly inhibited the enzyme. The protein consists of a single polypeptide chain of a molecular weight of 36,000, and its amino acid composition and N-terminal sequence are given.
Images
PMCID: PMC219169  PMID: 4019411
23.  Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. 
Resting cells of Desulfitobacterium dehalogenans JW/IU-DC1 growth with pyruvate and 3-chloro-4-hydroxyphenylacetate (3-Cl-4-OHPA) as the electron acceptor and inducer of dehalogenation reductively ortho-dehalogenate pentachlorophenol (PCP); tetrachlorophenols (TeCPs); the trichlorophenols 2,3,4-TCP, 2,3,6-TCP, and 2,4,6-TCP; the dichlorophenols 2,3-DCP, 2,4-DCP, and 2,6-DCP; 2,6-dichloro-4-R-phenols (2,6-DCl-4-RPs, where R is -H, -F, -Cl, -NO2, -CO2, or -COOCH3; 2-chloro-4-R-phenols (2-Cl-4-RPs, where R is -H, -F, -Cl, -Br, -NO2, -CO2-, -CH2CO2, or -COOCH3); and the bromophenols 2-BrP, 2,6-DBrP, and 2-Br-4ClP [corrected]. Monochlorophenols, the dichlorophenols 2,5-DCP, 3,4-DCP, and 3,5-DCP, the trichlorophenols 2,3,5-TCP, 2,4,5-TCP, and 3,4,5-TCP, and the fluorinated analog of 3-Cl-4-OHPA, 3-F-4-OHPA ("2-F-4-CH2CO2- P"), are not dehalogenated. A chlorine substituent in position 3 (meta), 4 (para), or 6 (second ortho) of the phenolic moiety facilitates ortho dehalogenation in position 2. Chlorine in the 5 (second meta) position has a negative effect on the dehalogenation rate or even prevents dechlorination in the 2 position. In general, 2,6-DCl-4-RPs are dechlorinated faster than the corresponding 2-Cl-4-RPs with the same substituent R in the 4 position. The highest dechlorination rate, however, was found for dechlorination of 2,3-DCP, with a maximal observed first-order rate constant of 19.4 h-1 g (dry weight) of biomass-1.(ABSTRACT TRUNCATED AT 250 WORDS)
PMCID: PMC167288  PMID: 7887614
24.  Bacterial diversity and reductive dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer 
Background
Bacteria possess a reservoir of metabolic functionalities ready to be exploited for multiple purposes. The use of microorganisms to clean up xenobiotics from polluted ecosystems (e.g. soil and water) represents an eco-sustainable and powerful alternative to traditional remediation processes. Recent developments in molecular-biology-based techniques have led to rapid and accurate strategies for monitoring and identification of bacteria and catabolic genes involved in the degradation of xenobiotics, key processes to follow up the activities in situ.
Results
We report the characterization of the response of an enriched bacterial community of a 1,2-dichloroethane (1,2-DCA) contaminated aquifer to the spiking with 5 mM lactate as electron donor in microcosm studies. After 15 days of incubation, the microbial community structure was analyzed. The bacterial 16S rRNA gene clone library showed that the most represented phylogenetic group within the consortium was affiliated with the phylum Firmicutes. Among them, known degraders of chlorinated compounds were identified. A reductive dehalogenase genes clone library showed that the community held four phylogenetically-distinct catalytic enzymes, all conserving signature residues previously shown to be linked to 1,2-DCA dehalogenation.
Conclusions
The overall data indicate that the enriched bacterial consortium shares the metabolic functionality between different members of the microbial community and is characterized by a high functional redundancy. These are fundamental features for the maintenance of the community's functionality, especially under stress conditions and suggest the feasibility of a bioremediation treatment with a potential prompt dehalogenation and a process stability over time.
doi:10.1186/1475-2859-9-12
PMCID: PMC2834577  PMID: 20170484
25.  Dehalogenimonas sp. Strain WBC-2 Genome and Identification of Its trans-Dichloroethene Reductive Dehalogenase, TdrA 
The Dehalogenimonas population in a dechlorinating enrichment culture referred to as WBC-2 was previously shown to be responsible for trans-dichloroethene (tDCE) hydrogenolysis to vinyl chloride (VC). In this study, blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzymatic assays and protein identification using liquid chromatography coupled with mass spectrometry (LC-MS/MS) led to the functional characterization of a novel dehalogenase, TdrA. This new reductive dehalogenase (RDase) catalyzes the dechlorination of tDCE to VC. A metagenome of the WBC-2 culture was sequenced, and a complete Dehalogenimonas genome, only the second Dehalogenimonas genome to become publicly available, was closed. The tdrA dehalogenase found within the Dehalogenimonas genome appears to be on a genomic island similar to genomic islands found in Dehalococcoides. TdrA itself is most similar to TceA from Dehalococcoides sp. strain FL2 with 76.4% amino acid pairwise identity. It is likely that the horizontal transfer of rdhA genes is not only a feature of Dehalococcoides but also a feature of other Dehalococcoidia, including Dehalogenimonas. A set of primers was developed to track tdrA in WBC-2 subcultures maintained on different electron acceptors. This newest dehalogenase is an addition to the short list of functionally defined RDases sharing the usual characteristic motifs (including an AB operon, a TAT export sequence, two iron-sulfur clusters, and a corrinoid binding domain), substrate flexibility, and evidence for horizontal gene transfer within the Dehalococcoidia.
doi:10.1128/AEM.02017-15
PMCID: PMC4702630  PMID: 26452554

Results 1-25 (999943)