PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (772708)

Clipboard (0)
None

Related Articles

1.  Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol 
Background
Lactobacillus reuteri converts glycerol to 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO) via 3-hydroxypropionaldehyde (3HPA) as an intermediate using enzymes encoded in its propanediol-utilization (pdu) operon. Since 3HP, 1,3PDO and 3HPA are important building blocks for the bio-based chemical industry, L. reuteri can be an attractive candidate for their production. However, little is known about the kinetics of glycerol utilization in the Pdu pathway in L. reuteri. In this study, the metabolic fluxes through the Pdu pathway were determined as a first step towards optimizing the production of 3HPA, and co-production of 3HP and 1,3PDO from glycerol. Resting cells of wild-type (DSM 20016) and recombinant (RPRB3007, with overexpressed pdu operon) strains were used as biocatalysts.
Results
The conversion rate of glycerol to 3HPA by the resting cells of L. reuteri was evaluated by in situ complexation of the aldehyde with carbohydrazide to avoid the aldehyde-mediated inactivation of glycerol dehydratase. Under operational conditions, the specific 3HPA production rate of the RPRB3007 strain was 1.9 times higher than that of the wild-type strain (1718.2 versus 889.0 mg/gCDW.h, respectively). Flux analysis of glycerol conversion to 1,3PDO and 3HP in the cells using multi-step variable-volume fed-batch operation showed that the maximum specific production rates of 3HP and 1,3PDO were 110.8 and 93.7 mg/gCDW.h, respectively, for the wild-type strain, and 179.2 and 151.4 mg/gCDW.h, respectively, for the RPRB3007 strain. The cumulative molar yield of the two compounds was ~1 mol/mol glycerol and their molar ratio was ~1 mol3HP/mol1,3PDO. A balance of redox equivalents between the glycerol oxidative and reductive pathway branches led to equimolar amounts of the two products.
Conclusions
Metabolic flux analysis was a useful approach for finding conditions for maximal conversion of glycerol to 3HPA, 3HP and 1,3PDO. Improved specific production rates were obtained with resting cells of the engineered RPRB3007 strain, highlighting the potential of metabolic engineering to render an industrially sound strain. This is the first report on the production of 3HP and 1,3PDO as sole products using the wild-type or mutant L. reuteri strains, and has laid ground for further work on improving the productivity of the biotransformation process using resting cells.
doi:10.1186/1475-2859-13-76
PMCID: PMC4045878  PMID: 24886501
Lactobacillus reuteri; 3-hydroxypropionaldehyde; 3-hydroxypropionic acid; 1,3-propanediol; Biodiesel glycerol; Flux analysis; Biorefinery; Biochemicals
2.  Parameters Affecting Solvent Production by Clostridium pasteurianum 
The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/100 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.
PMCID: PMC195580  PMID: 16348691
3.  Improved n-butanol production by a non-acetone producing Clostridium pasteurianum DSMZ 525 in mixed substrate fermentation 
The kinetics of growth, acid and solvent production in batch culture of Clostridium pasteurianum DSMZ 525 were examined in mixed or mono-substrate fermentations. In pH-uncontrolled batch cultures, the addition of butyric acid or glucose significantly enhanced n-butanol production and the ratio of butanol/1,3-propanediol. In pH-controlled batch culture at pH = 6, butyric acid addition had a negative effect on growth and did not lead to a higher n-butanol productivity. On the other hand, mixed substrate fermentation using glucose and glycerol enhanced the growth and acid production significantly. Glucose limitation in the mixed substrate fermentation led to the reduction or inhibition of the glycerol consumption by the growing bacteria. Therefore, for the optimal growth and n-butanol production by C. pasteurianum, a limitation of either substrate should be avoided. Under optimized batch conditions, n-butanol concentration and maximum productivity achieved were 21 g/L, and 0.96 g/L × h, respectively. In comparison, mixed substrate fermentation using biomass hydrolysate and glycerol gave a n-butanol concentration of 17 g/L with a maximum productivity of 1.1 g/L × h. In terms of productivity and final n-butanol concentration, the results demonstrated that C. pasteurianum DSMZ 525 is well suitable for n-butanol production from mixed substrates of biomass hydrolysate and glycerol and represents an alternative promising production strain.
doi:10.1007/s00253-014-5588-8
PMCID: PMC3986902  PMID: 24584460
Butanol production; Clostridium pasteurianum; ABE fermentation; Mixed substrate fermentation
4.  Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum 
Background
Reducing the production cost of, and increasing revenues from, industrial biofuels will greatly facilitate their proliferation and co-integration with fossil fuels. The cost of feedstock is the largest cost in most fermentation bioprocesses and therefore represents an important target for cost reduction. Meanwhile, the biorefinery concept advocates revenue growth through complete utilization of by-products generated during biofuel production. Taken together, the production of biofuels from low-cost crude glycerol, available in oversupply as a by-product of bioethanol production, in the form of thin stillage, and biodiesel production, embodies a remarkable opportunity to advance affordable biofuel development. However, few bacterial species possess the natural capacity to convert glycerol as a sole source of carbon and energy into value-added bioproducts. Of particular interest is the anaerobe Clostridium pasteurianum, the only microorganism known to convert glycerol alone directly into butanol, which currently holds immense promise as a high-energy biofuel and bulk chemical. Unfortunately, genetic and metabolic engineering of C. pasteurianum has been fundamentally impeded due to lack of an efficient method for deoxyribonucleic acid (DNA) transfer.
Results
This work reports the development of an electrotransformation protocol permitting high-level DNA transfer to C. pasteurianum ATCC 6013 together with accompanying selection markers and vector components. The CpaAI restriction-modification system was found to be a major barrier to DNA delivery into C. pasteurianum which we overcame by in vivo methylation of the recognition site (5’-CGCG-3’) using the M.FnuDII methyltransferase. With proper selection of the replication origin and antibiotic-resistance marker, we initially electroporated methylated DNA into C. pasteurianum at a low efficiency of 2.4 × 101 transformants μg-1 DNA by utilizing conditions common to other clostridial electroporations. Systematic investigation of various parameters involved in the cell growth, washing and pulse delivery, and outgrowth phases of the electrotransformation procedure significantly elevated the electrotransformation efficiency, up to 7.5 × 104 transformants μg-1 DNA, an increase of approximately three order of magnitude. Key factors affecting the electrotransformation efficiency include cell-wall-weakening using glycine, ethanol-mediated membrane solubilization, field strength of the electric pulse, and sucrose osmoprotection.
Conclusions
C. pasteurianum ATCC 6013 can be electrotransformed at a high efficiency using appropriately methylated plasmid DNA. The electrotransformation method and tools reported here should promote extensive genetic manipulation and metabolic engineering of this biotechnologically important bacterium.
doi:10.1186/1754-6834-6-50
PMCID: PMC3658993  PMID: 23570573
Biofuels; Butanol; Biobutanol; Clostridium pasteurianum; Electroporation; Genetic engineering; Glycerol; Methylation; Restriction; Transformation
5.  Anaerobic Fermentation of Glycerol in Paenibacillus macerans: Metabolic Pathways and Environmental Determinants▿  
Applied and Environmental Microbiology  2009;75(18):5871-5883.
Paenibacillus macerans is one of the species with the broadest metabolic capabilities in the genus Paenibacillus, able to ferment hexoses, deoxyhexoses, pentoses, cellulose, and hemicellulose. However, little is known about glycerol metabolism in this organism, and some studies have reported that glycerol is not fermented. Despite these reports, we found that several P. macerans strains are capable of anaerobic fermentation of glycerol. One of these strains, P. macerans N234A, grew fermentatively on glycerol at a maximum specific growth rate of 0.40 h−1 and was chosen for further characterization. The use of [U-13C]glycerol and further analysis of extracellular metabolites and proteinogenic amino acids via nuclear magnetic resonance (NMR) spectroscopy allowed identification of ethanol, formate, acetate, succinate, and 1,2-propanediol (1,2-PDO) as fermentation products and demonstrated that glycerol is incorporated into cellular components. A medium formulation with low concentrations of potassium and phosphate, cultivation at acidic pH, and the use of a CO2-enriched atmosphere stimulated glycerol fermentation and are proposed to be environmental determinants of this process. The pathways involved in glycerol utilization and synthesis of fermentation products were identified using NMR spectroscopy in combination with enzyme assays. Based on these studies, the synthesis of ethanol and 1,2-PDO is proposed to be a metabolic determinant of glycerol fermentation in P. macerans N234A. Conversion of glycerol to ethanol fulfills energy requirements by generating one molecule of ATP per molecule of ethanol synthesized. Conversion of glycerol to 1,2-PDO results in the consumption of reducing equivalents, thus facilitating redox balance. Given the availability, low price, and high degree of reduction of glycerol, the high metabolic rates exhibited by P. macerans N234A are of paramount importance for the production of fuels and chemicals.
doi:10.1128/AEM.01246-09
PMCID: PMC2747847  PMID: 19617389
6.  Reduced catabolic protein expression in Clostridium butyricum DSM 10702 correlate with reduced 1,3-propanediol synthesis at high glycerol loading 
AMB Express  2014;4:63.
Higher initial glycerol loadings (620 mM) have a negative effect on growth and 1,3-propanediol (1,3-PDO) synthesis in Clostridium butyricum DSM 10702 relative to lower initial glycerol concentrations (170 mM). To help understand metabolic shifts associated with elevated glycerol, protein expression levels were quantified by LC/MS/MS analyses. Thirty one (31) proteins involved in conversion of glycerol to 1,3-PDO and other by-products were analyzed by multiple reaction monitoring (MRM). The analyses revealed that high glycerol concentrations reduced cell growth. The expression levels of most proteins in glycerol catabolism pathways were down-regulated, consistent with the slower growth rates observed. However, at high initial glycerol concentrations, some of the proteins involved in the butyrate synthesis pathways such as a putative ethanol dehydrogenase (CBY_3753) and a 3-hydroxybutyryl-CoA dehydrogenase (CBY_3045) were up-regulated in both exponential and stationary growth phases. Expression levels of proteins (CBY_0500, CBY_0501 and CBY_0502) involved in the reductive pathway of glycerol to 1,3-PDO were consistent with glycerol consumption and product concentrations observed during fermentation at both glycerol concentrations, and the molar yields of 1,3-PDO were similar in both cultures. This is the first report that correlates expression levels of glycerol catabolism enzymes with synthesis of 1,3-PDO in C. butyricum. The results revealed that significant differences in the expression of a small subset of proteins were observed between exponential and stationary growth phases at both low and high glycerol concentrations.
doi:10.1186/s13568-014-0063-6
PMCID: PMC4230902  PMID: 25401066
Clostridium butyricum; 1,3-propanediol synthesis; Glycerol catabolism; Proteomics; Multiple reaction monitoring
7.  Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: characterization of an isolate that grows on glycerol without supporting supplements 
Background
Glycerol has attracted attention as a carbon source for microbial production processes due to the large amounts of crude glycerol waste resulting from biodiesel production. The current knowledge about the genetics and physiology of glycerol uptake and catabolism in the versatile industrial biotechnology production host Saccharomyces cerevisiae has been mainly based on auxotrophic laboratory strains, and carried out in the presence of growth-supporting supplements such as amino acids and nucleic bases. The latter may have resulted in ambiguous conclusions concerning glycerol growth in this species. The purpose of this study was to re-evaluate growth of S. cerevisiae in synthetic glycerol medium without the addition of supplements.
Results
Initial experiments showed that prototrophic versions of the laboratory strains CEN.PK, W303, and S288c did not exhibit any growth in synthetic glycerol medium without supporting supplements. However, a screening of 52 S. cerevisiae isolates for growth in the same medium revealed a high intraspecies diversity. Within this group significant variation with respect to the lag phase and maximum specific growth rate was observed. A haploid segregant of one good glycerol grower (CBS 6412-13A) was selected for detailed analysis. Single deletions of the genes encoding for the glycerol/H+ symporter (STL1), the glycerol kinase (GUT1), and the mitochondrial FAD+-dependent glycerol 3-phosphate dehydrogenase (GUT2) abolished glycerol growth in this strain, implying that it uses the same glycerol utilization pathway as previously identified in auxotrophic laboratory strains. Segregant analysis of a cross between CBS 6412-13A and CEN.PK113-1A revealed that the glycerol growth phenotype is a quantitative trait. Genetic linkage and reciprocal hemizygosity analysis demonstrated that GUT1 CBS 6412-13A is one of the multiple genetic loci contributing to the glycerol growth phenotype.
Conclusion
The S. cerevisiae intraspecies diversity with regard to glycerol growth is a valuable starting point to identify the genetic and molecular basis of this phenotype. This knowledge can be applied for further rational strain improvement with the goal of using glycerol as a carbon source in industrial biotechnology processes based on S. cerevisiae as a production organism.
doi:10.1186/1754-6834-6-157
PMCID: PMC3835864  PMID: 24209984
Yeast; Saccharomyces cerevisiae; Glycerol; STL1; GUT1; GUT2
8.  1,3-Propanediol dehydrogenases in Lactobacillus reuteri: impact on central metabolism and 3-hydroxypropionaldehyde production 
Background
Lactobacillus reuteri metabolizes glycerol to 3-hydroxypropionaldehyde (3-HPA) and further to 1,3-propanediol (1,3-PDO), the latter step catalysed by a propanediol dehydrogenase (PDH). The last step in this pathway regenerates NAD+ and enables therefore the energetically more favourable production of acetate over ethanol during growth on glucose.
Results
A search throughout the genome of L. reuteri DSM 20016 revealed two putative PDHs encoded by ORFs lr_0030 and lr_1734. ORF lr_1734 is situated in the pdu operon encoding the glycerol conversion machinery and therefore likely involved in 1,3-PDO formation. ORF lr_0030 has not been associated with PDH-activity so far. To elucidate the role of these two PDHs, gene deletion mutant strains were constructed. Growth behaviour on glucose was comparable between the wild type and both mutant strains. However, on glucose + glycerol, the exponential growth rate of Δlr_0030 was lower compared to the wild type and the lr_1734 mutant. Furthermore, glycerol addition resulted in decreased ethanol production in the wild type and Δlr_1734, but not in Δlr_0030. PDH activity measurements using 3-HPA as a substrate revealed lower activity of Δlr_0030 extracts from exponential growing cells compared to wild type and Δlr_1734 extracts.
During biotechnological 3-HPA production using non-growing cells, the ratio 3-HPA to 1,3-PDO was approximately 7 in the wild type and Δlr_0030, whereas this ratio was 12.5 in the mutant Δlr_1734.
Conclusion
The enzyme encoded by lr_0030 plays a pivotal role in 3-HPA conversion in exponential growing L. reuteri cells. The enzyme encoded by lr_1734 is active during 3-HPA production by non-growing cells and this enzyme is a useful target to enhance 3-HPA production and minimize formation of the by-product 1,3-PDO.
doi:10.1186/1475-2859-10-61
PMCID: PMC3180264  PMID: 21812997
9.  L (+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol 
Background
Given its availability and low price, glycerol derived from biodiesel industry has become an ideal feedstock for the production of fuels and chemicals. A solution to reduce the negative environmental problems and the cost of biodiesel is to use crude glycerol as carbon source for microbial growth media in order to produce valuable organic chemicals. In the present paper, crude glycerol was used as carbon substrate for production of L (+)-lactic acid using pelletized fungus R. oryzae NRRL 395 on batch fermentation. More, the experiments were conducted on media supplemented with inorganic nutrients and lucerne green juice.
Results
Crude and pure glycerols were first used to produce the highest biomass yield of R. oryzae NRRL 395. An enhanced lactic acid production then followed up using fed-batch fermentation with crude glycerol, inorganic nutrients and lucerne green juice. The optimal crude glycerol concentration for cultivating R. oryzae NRRL 395 was 75 g l-1, which resulted in a fungal biomass yield of 0.72 g g-1 in trial without lucerne green juice addition and 0.83 g g-1 in trial with lucerne green juice. The glycerol consumption rate was 1.04 g l-1 h-1 after 48 h in trial with crude glycerol 75 g l-1 while in trial with crude glycerol 10 g l-1 the lowest rate of 0.12 g l-1 h-1 was registered. The highest L (+)-lactic acid yield (3.72 g g-1) was obtained at the crude glycerol concentration of 75 g l-1 and LGJ 25 g l-1, and the concentration of lactic acid was approximately 48 g l-1.
Conclusions
This work introduced sustainable opportunities for L (+)-lactic acid production via R. oryzae NRRL 395 fermentation on biodiesel crude glycerol media. The results showed good fungal growth on crude glycerol at 75 g l-1 concentration with lucerne green juice supplementation of 25 g l-1. Lucerne green juice provided a good source of nutrients for crude glycerol fermentation, without needs for supplementation with inorganic nutrients. Crude glycerol and lucerne green juice ratio influence the L (+)-lactic acid production, increasing the lactate productivity with the concentration of crude glycerol.
doi:10.1186/1475-2859-12-92
PMCID: PMC3832941  PMID: 24112554
10.  Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance 
Background
Butanol is a chemical with potential uses as biofuel and solvent, which can be produced by microbial fermentation. However, the end product toxicity is one of the main obstacles for developing the production process irrespective of the choice of production organism. The long-term goal of the present project is to produce 2-butanol in Saccharomyces cerevisiae. Therefore, unraveling the toxicity mechanisms of solvents such as butanol and understanding the mechanisms by which tolerant strains of S. cerevisiae adapt to them would be an important contribution to the development of a bio-based butanol production process.
Results
A butanol tolerant S. cerevisiae was achieved through a series of sequential batch cultures with gradual increase of 2-butanol concentration. The final mutant (JBA-mut) tolerates all different alcohols tested at higher concentrations compared to the wild type (JBA-wt). Proteomics analysis of the two strains grown under mild butanol-stress revealed 46 proteins changing their expression by more than 1.5-fold in JBA-mut, 34 of which were upregulated. Strikingly, 21 out of the 34 upregulated proteins were predicted constituents of mitochondria. Among the non-mitochondrial up-regulated proteins, the minor isoform of Glycerol-3-phosphatase (Gpp2) was the most notable, since it was the only tested protein whose overexpression was found to confer butanol tolerance.
Conclusion
The study demonstrates several differences between the butanol tolerant mutant and the wild type. Upregulation of proteins involved in the mitochondrial ATP synthesizing machinery constituents and glycerol biosynthesis seem to be beneficial for a successful adaptation of yeast cells to butanol stress.
doi:10.1186/1754-6834-6-101
PMCID: PMC3729582  PMID: 23855998
Saccharomyces cerevisiae; Butanol; Tolerance; Proteomics
11.  1,3-propanediol production with Citrobacter werkmanii DSM17579: effect of a dhaD knock-out 
Background
1,3-propanediol (PDO) is a substantially industrial metabolite used in the polymer industry. Although several natural PDO production hosts exist, e.g. Klebsiella sp., Citrobacter sp. and Clostridium sp., the PDO yield on glycerol is insufficient for an economically viable bio-process. Enhancing this yield via strain improvement can be achieved by disconnecting the production and growth pathways. In the case of PDO formation, this approach results in a microorganism metabolizing glycerol strictly for PDO production, while catabolizing a co-substrate for growth and maintenance. We applied this strategy to improve the PDO production with Citrobacter werkmanii DSM17579.
Results
Genetic tools were developed and used to create Citrobacter werkmanii DSM17579 ∆dhaD in which dhaD, encoding for glycerol dehydrogenase, was deleted. Since this strain was unable to grow on glycerol anaerobically, both pathways were disconnected. The knock-out strain was perturbed with 13 different co-substrates for growth and maintenance. Glucose was the most promising, although a competition between NADH-consuming enzymes and 1,3-propanediol dehydrogenase emerged.
Conclusion
Due to the deletion of dhaD in Citrobacter werkmanii DSM17579, the PDO production and growth pathway were split. As a consequence, the PDO yield on glycerol was improved 1,5 times, strengthening the idea that Citrobacter werkmanii DSM17579 could become an industrially interesting host for PDO production.
doi:10.1186/1475-2859-13-70
PMCID: PMC4031495  PMID: 24885849
Citrobacter werkmanii DSM17579 ∆dhaD; Glycerol dehydrogenase; 3-hydroxypropionaldehyde; 1,3-propanediol; Yield
12.  A permease encoded by STL1 is required for active glycerol uptake by Candida albicans 
Microbiology  2009;155(Pt 5):1547-1557.
Candida albicans accumulates large amounts of the polyols glycerol and d-arabitol when the cells are exposed to physiological conditions relevant to stress and virulence in animals. Intracellular concentrations of glycerol are determined by rates of glycerol production and catabolism and of glycerol uptake and efflux through the plasma membrane. We and others have studied glycerol production in C. albicans, but glycerol uptake by C. albicans has not been studied. In the present study, we found that [14C]glycerol uptake by C. albicans SC5314 was (i) accumulative; (ii) dependent on proton-motive force; (iii) unaffected by carbon source; and (iv) unaffected by large molar excesses of d-arabitol or other polyols. The respective Km and Vmax values were 2.1 mM and 460 μmol h−1 (g dry wt)−1 in glucose medium and 2.6 mM and 268 μmol h−1 (g dry wt)−1 in glycerol medium. To identify the C. albicans glycerol uptake protein(s), we cloned the C. albicans homologues of the Saccharomyces cerevisiae genes GUP1 and STL1, both of which are known to be involved in glycerol transport. When multicopy plasmids encoding C. albicans STL1, C. albicans STL2 and C. albicans GUP1 were introduced into the corresponding S. cerevisiae null mutants, the transformants all acquired the ability to grow on minimal glycerol medium; however, only S. cerevisiae stl1 null mutants transformed with C. albicans STL1 actively took up extracellular [14C]glycerol. When both chromosomal alleles of C. albicans STL1 were deleted from C. albicans BWP17, the resulting stl1 null mutants grew poorly on minimal glycerol medium, and their ability to transport [14C]glycerol into the cell was markedly reduced. In contrast, deletion of both chromosomal alleles of C. albicans STL2 or of C. albicans GUP1 had no significant effects on [14C]glycerol uptake or the ability to grow on minimal glycerol medium. Northern blot analysis indicated that C. albicans STL1 was expressed in both glucose and glycerol media, conditions under which we detected wild-type active glycerol uptake. Furthermore, STL1 was highly expressed in salt-stressed cells; however, the stl1 null mutant was no more sensitive to salt stress than wild-type controls. We also detected high levels of STL2 expression in glycerol-grown cells, even though deletion of this gene did not influence glycerol uptake activity in glycerol-grown cells. We conclude from the results above that a plasma-membrane H+ symporter encoded by C. albicans STL1 actively transports glycerol into C. albicans cells.
doi:10.1099/mic.0.023457-0
PMCID: PMC2889416  PMID: 19383674
13.  Expansion of the genetic toolkit for metabolic engineering of Clostridium pasteurianum: chromosomal gene disruption of the endogenous CpaAI restriction enzyme 
Biotechnology for Biofuels  2014;7(1):163.
Background
Clostridium pasteurianum is one of the most promising biofuel producers within the genus Clostridium owing to its unique metabolic ability to ferment glycerol into butanol. Although an efficient means is available for introducing foreign DNA to C. pasteurianum, major genetic tools, such as gene knockout, knockdown, or genome editing, are lacking, preventing metabolic engineering of C. pasteurianum.
Results
Here we present a methodology for performing chromosomal gene disruption in C. pasteurianum using the programmable lactococcus Ll.ltrB group II intron. Gene disruption was initially found to be impeded by inefficient electrotransformation of Escherichia coli-C. pasteurianum shuttle vectors, presumably due to host restriction. By assessing the ability of various vector deletion derivatives to electrotransform C. pasteurianum and probing the microorganism’s methylome using next-generation sequence data, we identified a new C. pasteurianum Type I restriction-methylation system, CpaAII, with a predicted recognition sequence of 5′-AAGNNNNNCTCC-3′ (N = A, C, G, or T). Following rescue of high-level electrotransformation via mutation of the sole CpaAII site within the shuttle vectors, we retargeted the intron to the cpaAIR gene encoding the CpaAI Type II restriction endonuclease (recognition site of 5′-CGCG-3′). Intron insertion was potentially hindered by low retrohoming efficiency, yet this limitation could be overcome by a procedure for enrichment of the intron insertion. The resulting ΔcpaAIR mutant strain was efficiently electrotransformed with M.FnuDII-unmethylated plasmid DNA.
Conclusions
The markerless and plasmidless ΔcpaAIR mutant strain of C. pasteurianum developed in this study can serve as a general host strain for future genetic and metabolic manipulation. Further, the associated gene disruption protocol should not only serve as a guide for chromosomal gene inactivation studies involving mobile group II introns, but also prove invaluable for applying metabolic engineering strategies to C. pasteurianum.
doi:10.1186/s13068-014-0163-1
PMCID: PMC4245778  PMID: 25431621
Biofuel; Clostridium; Gene disruption; Intron; Metabolic engineering; Restriction-modification
14.  Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes 
AMB Express  2012;2:20.
The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC.
In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production.
doi:10.1186/2191-0855-2-20
PMCID: PMC3350409  PMID: 22455837
Enterobacter aerogenes; Ethanol; Glycerol; Biodiesel; Fermentation
15.  Interaction of sn-glycerol 3-phosphorothioate with Escherichia coli: effect on cell growth and metabolism. 
Journal of Bacteriology  1983;156(2):789-799.
sn-Glycerol 3-phosphorothioate was found to be bacteriocidal to strains of Escherichia coli which have a functional sn-glycerol 3-phosphate transport system. This effect was manifest in strains 7 and 8, which are constitutive mutants for the utilization and transport of sn-glycerol 3-phosphate (glpRc2). Strain E15, which is considered to be wild type for the glycerol phosphate functional units, was affected by the phosphorothioate analog only under conditions that are known to induce the transport system for sn-glycerol 3-phosphate. In addition, another strain of E. coli, strain 6, which is isogenic with strain E15 but has an impaired sn-glycerol 3-phosphate transport system (glpT13), was not affected by similar concentrations of sn-glycerol 3-phosphorothioate. Transport studies in which [3H]glycerol phosphate and its phosphorothioate analog were used demonstrated that the latter compound was taken up via the specific active transport system for sn-glycerol 3-phosphate; the Km values were 9 and 11 microM, respectively. The rates of macromolecular synthesis were found to be inhibited severely by sn-glycerol 3-phosphorothioate at a concentration at which sn-glycerol 3-phosphate had no effect (5 microM). At a lower concentration of the analog (0.5 microM), the rates of protein synthesis and RNA synthesis (52 and 58% below control values after 90 min, respectively) were more sensitive than the rates of DNA synthesis and cell wall synthesis (18% below control values after 3 h for DNA; transient decrease in the cell wall values after 90 min). The levels of the nucleoside triphosphates were not affected by the presence of the phospholipid precursor or its analog at a concentration of 5 microM. The phospholipid composition was significantly altered in the presence of bacteriocidal concentrations (5 microM) of sn-glycerol 3-phosphorothioate. The amount of phosphatidylglycerol in the membranes decreased from 13.5 to 3.5%. Concomitant with this decrease in phosphatidylglycerol content was a fourfold increase in the 32P content of cardiolipin (from 6.8 to 24.2%), whereas the phosphatidylethanolamine content showed only a minor reduction (8%) after 3 h. The rates of synthesis of all of the phospholipids decreased in the presence of 5 microM sn-glycerol 3-phosphorothioate, with the most significant effects observed for phosphatidylglycerol (63% after 3 h). Phosphatidylglycerol showed increased rates of turnover after 90 min (21%) and 3 h (11%), with concomitant increases in the levels of cardiolipin of more than twofold.(ABSTRACT TRUNCATED AT 400 WORDS)
PMCID: PMC217897  PMID: 6355065
16.  From Waste to Plastic: Synthesis of Poly(3-Hydroxypropionate) in Shimwellia blattae 
Applied and Environmental Microbiology  2013;79(12):3582-3589.
In recent years, glycerol has become an attractive carbon source for microbial processes, as it accumulates massively as a by-product of biodiesel production, also resulting in a decline of its price. A potential use of glycerol in biotechnology is the synthesis of poly(3-hydroxypropionate) [poly(3HP)], a biopolymer with promising properties which is not synthesized by any known wild-type organism. In this study, the genes for 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2, and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16 were cloned and expressed in the 1,3-propanediol producer Shimwellia blattae. In a two-step cultivation process, recombinant S. blattae cells accumulated up to 9.8% ± 0.4% (wt/wt [cell dry weight]) poly(3HP) with glycerol as the sole carbon source. Furthermore, the engineered strain tolerated the application of crude glycerol derived from biodiesel production, yielding a cell density of 4.05 g cell dry weight/liter in a 2-liter fed-batch fermentation process.
doi:10.1128/AEM.00161-13
PMCID: PMC3675910  PMID: 23542629
17.  Glycerol Kinase, the Pacemaker for the Dissimilation of Glycerol in Escherichia coli1 
Journal of Bacteriology  1970;102(3):753-759.
The activity of glycerol kinase is rate-limiting in the metabolism of glycerol by cells of Escherichia coli. A mutant strain producing a glycerol kinase resistant to inhibition by fructose-1,6-diphosphate grows faster than its wild-type parent on glycerol as the sole source of carbon and energy. The amount of intracellular fructose-1,6-diphosphate was determined for wild-type cells growing exponentially on glycerol. The water content of such cells was also determined, allowing calculation of the intracellular concentration of fructose-1,6-diphosphate. This value, 1.7 mm, is adequate to exert substantial inhibition on the wild-type glycerol kinase. The desensitization of glycerol kinase to feedback inhibition also enhances the power of glycerol to exert catabolite repression, both on the enzymes of the glycerol system itself and on those of the lactose system. However, desensitization of glycerol kinase alone does not eliminate the phenomenon of diauxic growth in a glucose-glycerol medium. Biphasic growth in such a medium is abolished if the altered enzyme is produced constitutively. The constitutive production of the mutant kinase at high levels, however, renders the cells vulnerable to glycerol. Thus, when the cells have been grown on a carbon source with a low power for catabolite repression, e.g., succinate, sudden exposure to glycerol leads to overconsumption of the nutrient and cell death.
PMCID: PMC247623  PMID: 4914079
18.  Getting lipids from glycerol: new perspectives on biotechnological exploitation of Candida freyschussii 
Background
Microbial lipids represent a valuable alternative feedstock for biodiesel production when oleaginous microbes are cultured with inexpensive substrates in processes exhibiting high yield and productivity. In this perspective, crude glycerol is among the most promising raw materials for lipid production, because it is the costless residual of biodiesel production. Thus, cultivation of oleaginous yeasts in glycerol-based media is attracting great interest and natural biodiversity is increasingly explored to identify novel oleaginous species recycling this carbon source for growth and lipid production.
Results
Thirty-three yeasts strains belonging to 19 species were screened for the ability to grow and produce intracellular lipids in a pure glycerol-based medium with high C/N ratio. A minority of them consumed most of the glycerol and generated visible lipid bodies. Among them, Candida freyschussii ATCC 18737 was selected, because it exhibited the highest lipid production and glycerol conversion yield. Lipid production in this strain was positively affected by the increase of C/N ratio, but growth was inhibited by glycerol concentration higher than 40 g/L. In batch cultures, the highest lipid production (4.6 g/L), lipid content of biomass (33% w/w), and lipid volumetric productivity (0.15 g/L/h) were obtained with 40 g/L glycerol, during the course of a 30-h process. Fed-batch cultivation succeeded in preventing substrate inhibition and in achieving a high cell-density culture. The improved lipid production and volumetric productivity reached the remarkable high level of 28 g/L and 0.28 g/L/h, respectively. The lipids accumulated by C. freyschussii ATCC 18737 have similar fatty acid composition of plant oil indicating their potential use as biodiesel feedstock. Calculated physicochemical properties of a biodiesel produced with the lipids from C. freyschussii ATCC 18737 are expected to meet the European and American standards, being equal to those of rapeseed and palm biodiesel.
Conclusions
C. freyschussii ATCC 18737 could be considered an interesting microorganism for utilization in biofuel industry. Cultivation of this yeast in media containing crude glycerol should be investigated deeper in order to evaluate whether it may find application in the valorization of the waste of biodiesel manufacturing.
doi:10.1186/1475-2859-13-83
PMCID: PMC4064286  PMID: 24906383
19.  Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum 
Scientific Reports  2014;4:6961.
Although microbes directly accepting electrons from a cathode have been applied for CO2 reduction to produce multicarbon-compounds, a high electron demand and low product concentration are critical limitations. Alternatively, the utilization of electrons as a co-reducing power during fermentation has been attempted, but there must be exogenous mediators due to the lack of an electroactive heterotroph. Here, we show that Clostridium pasteurianum DSM 525 simultaneously utilizes both cathode and substrate as electron donors through direct electron transfer. In a cathode compartment poised at +0.045 V vs. SHE, a metabolic shift in C. pasteurianum occurs toward NADH-consuming metabolite production such as butanol from glucose (20% shift in terms of NADH consumption) and 1,3-propandiol from glycerol (21% shift in terms of NADH consumption). Notably, a small amount of electron uptake significantly induces NADH-consuming pathways over the stoichiometric contribution of the electrons as reducing equivalents. Our results demonstrate a previously unknown electroactivity and metabolic shift in the biochemical-producing heterotroph, opening up the possibility of efficient and enhanced production of electron-dense metabolites using electricity.
doi:10.1038/srep06961
PMCID: PMC4223642  PMID: 25376371
20.  Scale-up of anaerobic 1,3-propanediol production by Clostridium butyricum DSP1 from crude glycerol 
BMC Microbiology  2014;14:45.
Background
As the production of biofuels from raw materials continuously increases, optimization of production processes is necessary. A very important issue is the development of wasteless methods of biodiesel production. One way of utilization of glycerol generated in biodiesel production is its microbial conversion to 1,3-PD (1,3-propanediol).
Results
The study investigated the scale-up of 1,3-PD synthesis from crude glycerol by Clostridium butyricum. Batch fermentations were carried out in 6.6 L, 42 L and 150 L bioreactors. It was observed that cultivation of C. butyricum on a pilot scale did not decrease the efficiency of 1,3-PD production. The highest concentrations of 1,3-PD, 37 g/L for batch fermentation and 71 g/L for fed-batch fermentation, were obtained in the 6.6 L bioreactor. The kinetic parameters of 1,3-PD synthesis from crude glycerol established for batch fermentation were similar regarding all three bioreactor capacities. During fed-batch fermentation, the concentration of 1,3-PD in the 150 L bioreactor was lower and the substrate was not completely utilized. That suggested the presence of multifunctional environmental stresses in the 150 L bioreactor, which was confirmed by protein analysis.
Conclusion
The values of effectivity parameters for 1,3-PD synthesis in batch fermentations carried out in 6.6 L, 42 L and 150 L bioreactors were similar. The parameters obtained during fed-batch fermentations in the 150 L bioreactor differed in the rate and percentage of substrate utilization. The analysis of cell proteins demonstrated that a number of multifunctional stresses occurred during fed-batch fermentations in the 150 L bioreactor, which suggests the possibility of identifying the key stages in the biochemical process where inhibition of 1,3-PD synthesis pathways can be observed.
doi:10.1186/1471-2180-14-45
PMCID: PMC3974118  PMID: 24555775
Batch culture; Clostridium butyricum; Glycerol; Fed-batch fermentation; Scale-up; 1,3-Propanediol
21.  System Development for Linked-Fermentation Production of Solvents from Algal Biomass 
Five species of the genus Dunaliella (D. tertiolecta, D. primolecta, D. parva, D. bardawil, and D. salina) were examined for glycerol accumulation, growth rate, cell density, and protein and chlorophyll content. The suitability of each algal species for use as a fermentation substrate was judged according to glycerol accumulation and quantities of neutral solvents produced after sequential bacterial fermentations. When grown in 2 M NaCl, with 24 mM NaHCO3 or 3% CO2 at 28°C and with 10,000 to 15,000 lx of incident light on two sides of a glass aquarium, four of the five species tested produced ca. 10 to 20 mg of glycerol per liter of culture. Clostridium pasteurianum was found to convert an algal biomass mixture supplemented with 4% glycerol to ca. 16 g of mixed solvents (n-butanol, 1,3-propanediol, and ethanol) per liter. Acetone was not detected. Additionally, it has been demonstrated that Dunaliella concentrates of up to 300-fold can be directly fermented to an identical pattern of mixed solvents. Overall solvent yields were reduced by >50% when fermentations were performed in the presence of 2% NaCl. These results are discussed in terms of practical application in tropical coastal zones.
PMCID: PMC239513  PMID: 16346410
22.  Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process 
Background
Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH). Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP) fed-batch process.
Results
The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g L-1), growth-inhibiting ethanol concentration (87 ± 3 g L-1) and volumetric ethanol productivity (2.1 ± 0.15 g l-1 h-1) measured in wild-type remained virtually unchanged in the engineered strains.
Conclusions
This work demonstrates the power of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Under the conditions used in this study (VHEP fed-batch), the two strains with "fine-tuned" GPD1 expression in a gpd2Δ background showed slightly better ethanol yield improvement than previously achieved with the single deletion strains gpd1Δ or gpd2Δ. Although glycerol reduction is known to be even higher in a gpd1Δ gpd2Δ double deletion strain, our strains could much better cope with process stress as reflected by better growth and viability.
doi:10.1186/1475-2859-9-36
PMCID: PMC2887396  PMID: 20492645
23.  Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste 
The considerable increase in biodiesel production worldwide in the last 5 years resulted in a stoichiometric increased coproduction of crude glycerol. As an excess of crude glycerol has been produced, its value on market was reduced and it is becoming a “waste-stream” instead of a valuable “coproduct”. The development of biorefineries, i.e. production of chemicals and power integrated with conversion processes of biomass into biofuels, has been singled out as a way to achieve economically viable production chains, valorize residues and coproducts, and reduce industrial waste disposal. In this sense, several alternatives aimed at the use of crude glycerol to produce fuels and chemicals by microbial fermentation have been evaluated. This review summarizes different strategies employed to produce biofuels and chemicals (1,3-propanediol, 2,3-butanediol, ethanol, n-butanol, organic acids, polyols and others) by microbial fermentation of glycerol. Initially, the industrial use of each chemical is briefly presented; then we systematically summarize and discuss the different strategies to produce each chemical, including selection and genetic engineering of producers, and optimization of process conditions to improve yield and productivity. Finally, the impact of the developments obtained until now are placed in perspective and opportunities and challenges for using crude glycerol to the development of biodiesel-based biorefineries are considered. In conclusion, the microbial fermentation of glycerol represents a remarkable alternative to add value to the biodiesel production chain helping the development of biorefineries, which will allow this biofuel to be more competitive.
doi:10.1186/1754-6834-5-48
PMCID: PMC3467170  PMID: 22809320
Glycerol; Fermentation; Biofuels; Metabolic engineering; Biodiesel
24.  Presence of glucose, xylose, and glycerol fermenting bacteria in the deep biosphere of the former Homestake gold mine, South Dakota 
Eight fermentative bacterial strains were isolated from mixed enrichment cultures of a composite soil sample collected at 1.34 km depth from the former Homestake gold mine in Lead, SD, USA. Phylogenetic analysis of their 16S rRNA gene sequences revealed that these isolates were affiliated with the phylum Firmicutes belonging to genera Bacillus and Clostridium. Batch fermentation studies demonstrated that isolates had the ability to ferment glucose, xylose, or glycerol to industrially valuable products such as ethanol and 1,3-propanediol (PDO). Ethanol was detected as the major fermentation end product in glucose-fermenting cultures at pH 10 with yields of 0.205–0.304 g of ethanol/g of glucose. While a xylose-fermenting strain yielded 0.189 g of ethanol/g of xylose and 0.585 g of acetic acid/g of xylose at the end of fermentation. At pH 7, glycerol-fermenting isolates produced PDO (0.323–0.458 g of PDO/g of glycerol) and ethanol (0.284–0.350 g of ethanol/g of glycerol) as major end products while acetic acid and succinic acid were identified as minor by-products in fermentation broths. These results suggest that the deep biosphere of the former Homestake gold mine harbors bacterial strains which could be used in bio-based production of ethanol and PDO.
doi:10.3389/fmicb.2013.00018
PMCID: PMC3573265  PMID: 23919089
bioenergy; bioethanol; biofuels; fermentation; gold mine; 1,3-propanediol
25.  Butanol Production by a Butanol-Tolerant Strain of Clostridium acetobutylicum in Extruded Corn Broth 
By employing serial enrichment, a derivative of Clostridium acetobutylicum ATCC 824 was obtained which grew at concentrations of butanol that prevented growth of the wild-type strain. The parent strain demonstrated a negative growth rate at 15 g of butanol/liter, whereas the SA-1 mutant was still able to grow at a rate which was 66% of the uninhibited control. SA-1 produced consistently higher concentrations of butanol (from 5 to 14%) and lower concentrations of acetone (12.5 to 40%) than the wild-type strain in 4 to 20% extruded corn broth (ECB). Although the highest concentration of butanol was produced by SA-1 and the wild-type strain in 14% ECB, the best solvent ratio with respect to optimizing butanol and decreasing acetone occurred between 4 and 8% ECB for SA-1. SA-1 demonstrated higher conversion efficiency to butanol than the wild-type strain at every concentration of ECB tested. Characterization of the wild-type and SA-1 strain in 6% ECB demonstrated the superiority of the latter in terms of growth rate, time of onset of butanol production, carbohydrate utilization, pH resistance, and final butanol concentration in the fermentation broth.
PMCID: PMC242398  PMID: 16346258

Results 1-25 (772708)