Search tips
Search criteria

Results 1-25 (786461)

Clipboard (0)

Related Articles

1.  Distinct and Gradient Distributions of Connexin26 and Connexin30 in the Cochlear Sensory Epithelium of Guinea Pigs 
Connexin26 (Cx26) and Cx30 are predominant isoforms of gap junction channels in the cochlea and play a critical role in hearing. In this study, the cellular distributions of Cx26 and Cx30 in the cochlear sensory epithelium of guinea pigs were examined by immunofluorescent staining and confocal microscopy in whole mounts of the cochlear sensory epithelium and dissociated cell preparations. The expression of Cx26 and Cx30 demonstrated a longitudinal gradient distribution in the epithelium and was reduced threefold from the cochlear apex to base. The reduction was more pronounced in the Deiters cells and pillar cells than in the Hensen cells. Cx26 was expressed in all types of supporting cells, but little Cx30 labeling was seen in the Hensen cells. Cx26 expression in the Hensen cells was concentrated mainly in the second and third rows, forming a distinct band along the sensory epithelium at its outer region. In the dissociated Deiters cells and pillar cells, Cx30 showed dense labeling at the cell bodies and processes in the reticular lamina. Cx26 labeling largely overlapped that of Cx30 in these regions. Cx26 and Cx30 were also coexpressed in the gap junctional plaques between Claudius cells. Neither Cx26 nor Cx30 labeling was seen in the hair cells and spiral ganglion neurons. These observations demonstrate that Cx26 and Cx30 have a longitudinal gradient distribution and distinct cellular expression in the auditory sensory epithelium. This further supports our previous reports that Cx26 and Cx30 can solely and concertedly perform different functions in the cochlea.
PMCID: PMC2553046  PMID: 16998915
gap junction; cochlear supporting cells; reticular lamina; spiral ganglion; inner ear; nonsyndromic hearing loss
2.  A Point Mutation in the Hair Cell Nicotinic Cholinergic Receptor Prolongs Cochlear Inhibition and Enhances Noise Protection 
PLoS Biology  2009;7(1):e1000018.
The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s) this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magnitude and duration of efferent cholinergic effects are increased, and we assess the consequences of this manipulation on cochlear function. We generated the Chrna9L9′T line of knockin mice with a threonine for leucine change (L9′T) at position 9′ of the second transmembrane domain of the α9 nicotinic cholinergic subunit, rendering α9-containing receptors that were hypersensitive to acetylcholine and had slower desensitization kinetics. The Chrna9L9′T allele produced a 3-fold prolongation of efferent synaptic currents in vitro. In vivo, Chrna9L9′T mice had baseline elevation of cochlear thresholds and efferent-mediated inhibition of cochlear responses was dramatically enhanced and lengthened: both effects were reversed by strychnine blockade of the α9α10 hair cell nicotinic receptor. Importantly, relative to their wild-type littermates, Chrna9L9′T/L9′T mice showed less permanent hearing loss following exposure to intense noise. Thus, a point mutation designed to alter α9α10 receptor gating has provided an animal model in which not only is efferent inhibition more powerful, but also one in which sound-induced hearing loss can be restrained, indicating the ability of efferent feedback to ameliorate sound trauma.
Author Summary
Nicotinic cholinergic receptors are essential to higher order brain function. Structurally, these operate through a myriad of ligand-gated pentameric arrangements of different homologous subunits. Here, we report progress in understanding the structural properties of a neuronal nicotinic receptor at the synapse. Receptors assembled from two nicotinic cholinergic subunits (α9 and α10) serve exclusively at the synapse between central nervous system descending fibers and cochlear hair cells. This enabled us to show direct causality between a point mutation of the α9 subunit, and predicted alterations in the synaptic strength in sensory hair cells of the cochlea of α9 point mutant mice. Furthermore, this single mutation results in profound enhancement of central nervous system feedback to the cochlea. And finally, as a consequence, mutant mice possessing this altered receptor have substantially improved resistance to traumatic sound. Thus, central neuronal feedback on cochlear hair cells provides an opportunity to define one specific role that nicotinic receptors can play in the nervous system, enabling study from biophysical to behavioral levels and promoting a target for the prevention of noise-induced hearing loss.
A point mutation in the cochlear hair cell nicotinic cholinergic receptor leads to strengthened central nervous system feedback to the cochlea and enhances protection from noise-induced hearing loss.
PMCID: PMC2628405  PMID: 19166271
3.  Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas 
PLoS ONE  2012;7(4):e36203.
The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system.
Methodology/Principal Findings
Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses.
These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects suggests that there are at least two functional pathways from the auditory cortex to the cochlea.
PMCID: PMC3340362  PMID: 22558383
4.  Localization of Synucleins in the Mammalian Cochlea 
Synucleins are widely expressed synaptic proteins within the central nervous system that have been implicated in such neurodegenerative disorders as Parkinson’s disease. In this study, an initial characterization of all three synucleins, α-, β-, and γ-synuclein, within the cochlea was undertaken. Reverse transcriptase-polymerase chain reaction (PCR) demonstrated all three synuclein mRNA species within microdissected cochlear tissue. Quantitative PCR suggests that β-synuclein is the most abundantly expressed form, followed by γ- and then α-synuclein. Western blot analysis similarly demonstrates all three synuclein proteins within microdissected cochlear tissue. Immunofluorescence localizes the three synucleins predominantly to the efferent neuronal system at the efferent outer hair cell synapse, with some additional localization within the efferent tunnel-crossing fibers (α- and γ-synuclein), spiral ganglion (β-synuclein), inner spiral bundle (γ-synuclein), and stria vascularis (α- > β-synuclein). Developmentally, γ-synuclein can be seen in the region of the outer hair cells by E19, while α- and β-synuclein do not clearly appear there until ~P10. Addi-tional studies in a null-mutant γ-synuclein mouse show no histological changes in the organ of Corti with normal hair cell and spiral ganglion cell counts, and normal ABR and DPOAE thresholds in wild-type vs mutant littermates. Together, these results localize synucleins to the efferent cholinergic neuronal auditory system, pointing to a role in normal auditory function, and raising the potential implications for their role in auditory neurodegenerative disorders. However, γ-synuclein alone is not required for the development and maintenance of normal hearing through P21. Whether overlapping roles of the other synucleins help compensate for the loss of γ-synuclein remains to be determined.
PMCID: PMC2580813  PMID: 18665422
synuclein; alpha-synuclein; beta-synuclein; gamma-synuclein; α-synuclein; β-synuclein; γ-synuclein; efferent; auditory; cochlea; nicotinic acetylcholine receptor; outer hair cell; inner hair cell; hearing; synapse
5.  Expression and Dexamethasone-induced Nuclear Translocation of Glucocorticoid and Mineralocorticoid Receptors in Guinea Pig Cochlear Cells 
Hearing research  2013;299:63-78.
Glucocorticoids (GC) are powerful anti-inflammatory agents frequently used to protect the auditory organ against damage associated with a variety of conditions, including noise exposure and ototoxic drugs as well as bacterial and viral infections. In addition to glucocorticoid receptors (GC-R), natural and synthetic GC are known to bind mineralocorticoid receptors (MC-R) with great affinity. We used light and laser scanning confocal microscopy to investigate the expression of GC-R and MC-R in different cell populations of the guinea pig cochlea, and their translocation to different cell compartments after treatment with the synthetic GC dexamethasone. We found expression of both types of receptors in the cytoplasm and nucleus of sensory inner and outer hair cells as well as pillar, Hensen and Deiters cells in the organ of Corti, inner and outer sulcus cells, spiral ganglion neurons and several types of spiral ligament and spiral limbus cells; stria vascularis cells expressed mostly MC-R whereas fibrocytes type IV were positive for GC-R only. GC-R and MC-R were also localized at or near the plasma membrane of pillar cells and outer hair cells, whereas GC-R were found at or near the plasma membrane of Hensen cells only. We investigated the relative levels of receptor expression in the cytoplasm and the nucleus of Hensen cells treated with dexamethasone, and found they varied in a way suggestive of dose-induced translocation. These results suggest that the oto-protective effects of GC could be associated with the concerted activation of genomic and non-genomic, GC-R and MC-R mediated signaling pathways in different regions of the cochlea.
PMCID: PMC3633732  PMID: 23403298
glucocorticoids; glucocorticoid receptors; mineralocorticoid receptors; dexamethasone; cochlea; guinea pig
6.  Activation of Presynaptic GABAB(1a,2) Receptors Inhibits Synaptic Transmission at Mammalian Inhibitory Cholinergic Olivocochlear–Hair Cell Synapses 
The Journal of Neuroscience  2013;33(39):15477-15487.
The synapse between olivocochlear (OC) neurons and cochlear mechanosensory hair cells is cholinergic, fast, and inhibitory. The inhibitory sign of this cholinergic synapse is accounted for by the activation of Ca2+-permeable postsynaptic α9α10 nicotinic receptors coupled to the opening of hyperpolarizing Ca2+-activated small-conductance type 2 (SK2)K+ channels. Acetylcholine (ACh) release at this synapse is supported by both P/Q- and N-type voltage-gated calcium channels (VGCCs). Although the OC synapse is cholinergic, an abundant OC GABA innervation is present along the mammalian cochlea. The role of this neurotransmitter at the OC efferent innervation, however, is for the most part unknown. We show that GABA fails to evoke fast postsynaptic inhibitory currents in apical developing inner and outer hair cells. However, electrical stimulation of OC efferent fibers activates presynaptic GABAB(1a,2) receptors [GABAB(1a,2)Rs] that downregulate the amount of ACh released at the OC–hair cell synapse, by inhibiting P/Q-type VGCCs. We confirmed the expression of GABABRs at OC terminals contacting the hair cells by coimmunostaining for GFP and synaptophysin in transgenic mice expressing GABAB1–GFP fusion proteins. Moreover, coimmunostaining with antibodies against the GABA synthetic enzyme glutamic acid decarboxylase and synaptophysin support the idea that GABA is directly synthesized at OC terminals contacting the hair cells during development. Thus, we demonstrate for the first time a physiological role for GABA in cochlear synaptic function. In addition, our data suggest that the GABAB1a isoform selectively inhibits release at efferent cholinergic synapses.
PMCID: PMC3782624  PMID: 24068816
7.  L-type CaV1.2 deletion in the cochlea but not in the brainstem reduces noise vulnerability: implication for CaV1.2-mediated control of cochlear BDNF expression 
Voltage-gated L-type Ca2+ channels (L-VGCCs) like CaV1.2 are assumed to play a crucial role for controlling release of trophic peptides including brain-derived neurotrophic factor (BDNF). In the inner ear of the adult mouse, besides the well-described L-VGCC CaV1.3, CaV1.2 is also expressed. Due to lethality of constitutive CaV1.2 knock-out mice, the function of this ion channel as well as its putative relationship to BDNF in the auditory system is entirely elusive. We recently described that BDNF plays a differential role for inner hair cell (IHC) vesicles release in normal and traumatized condition. To elucidate a presumptive role of CaV1.2 during this process, two tissue-specific conditional mouse lines were generated. To distinguish the impact of CaV1.2 on the cochlea from that on feedback loops from higher auditory centers CaV1.2 was deleted, in one mouse line, under the Pax2 promoter (CaV1.2Pax2) leading to a deletion in the spiral ganglion neurons, dorsal cochlear nucleus, and inferior colliculus. In the second mouse line, the Egr2 promoter was used for deleting CaV1.2 (CaV1.2Egr2) in auditory brainstem nuclei. In both mouse lines, normal hearing threshold and equal number of IHC release sites were observed. We found a slight reduction of auditory brainstem response wave I amplitudes in the CaV1.2Pax2 mice, but not in the CaV1.2Egr2 mice. After noise exposure, CaV1.2Pax2 mice had less-pronounced hearing loss that correlated with maintenance of ribbons in IHCs and less reduced activity in auditory nerve fibers, as well as in higher brain centers at supra-threshold sound stimulation. As reduced cochlear BDNF mRNA levels were found in CaV1.2Pax2 mice, we suggest that a CaV1.2-dependent step may participate in triggering part of the beneficial and deteriorating effects of cochlear BDNF in intact systems and during noise exposure through a pathway that is independent of CaV1.2 function in efferent circuits.
PMCID: PMC3739414  PMID: 23950737
L-VGCCs; CaV1.2; inner ear; SOC; ABR; BDNF
8.  Muscarinic Signaling in the Cochlea: Presynaptic and Postsynaptic Effects on Efferent Feedback and Afferent Excitability 
The Journal of Neuroscience  2010;30(19):6751-6762.
Acetylcholine is the major neurotransmitter of the olivocochlear efferent system, which provides feedback to cochlear hair cells and sensory neurons. To study the role of cochlear muscarinic receptors, we studied receptor localization with immunohistochemistry and reverse transcription-PCR and measured olivocochlear function, cochlear responses, and histopathology in mice with targeted deletion of each of the five receptor subtypes. M2, M4, and M5 were detected in microdissected immature (postnatal days 10–13) inner hair cells and spiral ganglion cells but not outer hair cells. In the adult (6 weeks), the same transcripts were found in microdissected organ of Corti and spiral ganglion samples. M2 protein was found, by immunohistochemistry, in olivocochlear fibers in both outer and inner hair cell areas. M3 mRNA was amplified only from whole cochleas, and M1 message was never seen in wild-type ears. Auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were unaffected by loss of Gq-coupled receptors (M1, M3, or M5), as were shock-evoked olivocochlear effects and vulnerability to acoustic injury. In contrast, loss of Gi-coupled receptors (M2 and/or M4) decreased neural responses without affecting DPOAEs (at low frequencies). This phenotype and the expression pattern are consistent with excitatory muscarinic signaling in cochlear sensory neurons. At high frequencies, both ABRs and DPOAEs were attenuated by loss of M2 and/or M4, and the vulnerability to acoustic injury was dramatically decreased. This aspect of the phenotype and the expression pattern are consistent with a presynaptic role for muscarinic autoreceptors in decreasing ACh release from olivocochlear terminals during high-level acoustic stimulation and suggest that muscarinic antagonists could enhance the resistance of the inner ear to noise-induced hearing loss.
PMCID: PMC3332094  PMID: 20463237
9.  Postnatal developmental expression of the PDZ scaffolds Na+-H+ exchanger regulatory factors 1 and 2 in the rat cochlea 
Cell and tissue research  2005;323(1):53-70.
Sensory transduction in the mammalian cochlea requires the maintenance of specialized fluid compartments with distinct ionic compositions. This is achieved by the concerted action of diverse ion channels and transporters, some of which can interact with the PDZ scaffolds, Na+-H+ exchanger regulatory factors 1 and 2 (NHERF-1, NHERF-2). Here, we report that NHERF-1 and NHERF-2 are widely expressed in the rat cochlea, and that their expression is developmentally regulated. Reverse transcription/polymerase chain reaction (RT-PCR) and Western blotting initially confirmed the RNA and protein expression of NHERFs. We then performed immunohistochemistry on cochlea during various stages of postnatal development. Prior to the onset of hearing (P8), NHERF-1 immunolabeling was prominently polarized to the apical membrane of cells lining the endolymphatic compartment, including the stereocilia and cuticular plates of the inner and outer hair cells, marginal cells of the stria vascularis, Reissner’s epithelia, and tectorial membrane. With maturation (P21, P70), NHERF-1 immunolabeling was reduced in the above structures, whereas labeling increased in the apical membrane of the interdental cells of the spiral limbus and the inner and outer sulcus cells, Hensen’s cells, the inner and outer pillar cells, Deiters cells, the inner border cells, spiral ligament fibrocytes, and spiral ganglion neurons (particularly type II). NHERF-1 expression in strial basal and intermediate cells was persistent. NHERF-2 immunolabeling was similar to that for NHERF-1 during postnatal development, with the exception of expression in the synaptic regions beneath the outer hair cells. NHERF-1 and NHERF-2 co-localized with glial fibrillary acidic protein and vimentin in glia. The cochlear localization of NHERF scaffolds suggests that they play important roles in the developmental regulation of ion transport, homeostasis, and auditory neurotransmission.
PMCID: PMC1472810  PMID: 16160858
EBP50; E3KARP; ERM-binding domain; Potassium channel; Purinergic signaling; Rat (Wistar, albino)
10.  Mutation of Npr2 Leads to Blurred Tonotopic Organization of Central Auditory Circuits in Mice 
PLoS Genetics  2014;10(12):e1004823.
Tonotopy is a fundamental organizational feature of the auditory system. Sounds are encoded by the spatial and temporal patterns of electrical activity in spiral ganglion neurons (SGNs) and are transmitted via tonotopically ordered processes from the cochlea through the eighth nerve to the cochlear nuclei. Upon reaching the brainstem, SGN axons bifurcate in a stereotyped pattern, innervating target neurons in the anteroventral cochlear nucleus (aVCN) with one branch and in the posteroventral and dorsal cochlear nuclei (pVCN and DCN) with the other. Each branch is tonotopically organized, thereby distributing acoustic information systematically along multiple parallel pathways for processing in the brainstem. In mice with a mutation in the receptor guanylyl cyclase Npr2, this spatial organization is disrupted. Peripheral SGN processes appear normal, but central SGN processes fail to bifurcate and are disorganized as they exit the auditory nerve. Within the cochlear nuclei, the tonotopic organization of the SGN terminal arbors is blurred and the aVCN is underinnervated with a reduced convergence of SGN inputs onto target neurons. The tonotopy of circuitry within the cochlear nuclei is also degraded, as revealed by changes in the topographic mapping of tuberculoventral cell projections from DCN to VCN. Nonetheless, Npr2 mutant SGN axons are able to transmit acoustic information with normal sensitivity and timing, as revealed by auditory brainstem responses and electrophysiological recordings from VCN neurons. Although most features of signal transmission are normal, intermittent failures were observed in responses to trains of shocks, likely due to a failure in action potential conduction at branch points in Npr2 mutant afferent fibers. Our results show that Npr2 is necessary for the precise spatial organization typical of central auditory circuits, but that signals are still transmitted with normal timing, and that mutant mice can hear even with these deficits.
Author Summary
Millions of people suffer from debilitating hearing defects, ranging from a complete inability to detect sound to more subtle changes in how sounds are encoded by the nervous system. Many forms of deafness are due to mutations in genes that impair the development or function of hair cells, which are responsible for changing sound into electrical signals that can be processed by the brain. Both mice and humans carrying these mutations fail standard hearing tests. In contrast, very little is known about the genetic basis of central auditory processing disorders, which are poorly defined and difficult to diagnose, since these patients can still detect sounds. By finding genes that are required for the normal wiring of central auditory circuits in mice, we can investigate how changes at the circuit level affect circuit function and therefore improve our understanding of central auditory processing disorders. Here, we show that the natriuretic peptide receptor Npr2 is required to establish frequency maps in the mouse central auditory system. Surprisingly, despite a dramatic change in circuit organization, Npr2 mutant mice are still able to respond to sounds with normal sensitivity and timing, underscoring the need for better hearing diagnostic methods in mice as in humans.
PMCID: PMC4256264  PMID: 25473838
11.  Dopaminergic signaling in the cochlea: receptor expression patterns and deletion phenotypes 
The Journal of Neuroscience  2012;32(1):344-355.
Pharmacological studies suggest that dopamine release from lateral olivocochlear efferent neurons suppresses spontaneous and sound-evoked activity in cochlear nerve fibers and helps control noise-induced excitotoxicity; however, the literature on cochlear expression and localization of dopamine receptors is contradictory. To better characterize cochlear dopaminergic signaling, we studied receptor localization using immunohistochemistry or RT-PCR and assessed histopathology, cochlear responses and olivocochlear function in mice with targeted deletion of each of the five receptor subtypes. In normal ears, D1, D2 and D5 receptors were detected in microdissected immature (P10–P13) spiral ganglion cells and outer hair cells but not inner hair cells. D4 was detected in spiral ganglion cells only. In whole cochlea samples from adults, transcripts for D1, D2, D4 and D5 were present, whereas D3 mRNA was never detected. D1 and D2 immunolabeling was localized to cochlear nerve fibers, near the first nodes of Ranvier (D2) and in the inner spiral bundle region (D1 and D2) where presynaptic olivocochlear terminals are found. No other receptor labeling was consistent. Cochlear function was normal in D3, D4 and D5 knockouts. D1 and D2 knockouts showed slight, but significant enhancement and suppression, respectively, of cochlear responses, both in the neural output (ABR wave 1) and in outer-hair cell function (DPOAEs). Vulnerability to acoustic injury was significantly increased in D2, D4 and D5 lines: D1 could not be tested, and no differences were seen in D3 mutants, consistent with a lack of receptor expression. The increased vulnerability in D2 knockouts was seen in DPOAEs, suggesting a role for dopamine in the OHC area. In D4 and D5 knockouts, the increased noise vulnerability was seen only in ABRs, consistent with a role for dopaminergic signaling in minimizing neural damage.
PMCID: PMC3313790  PMID: 22219295
dopamine; cochlea; hair cell; olivocochlear; acoustic injury
12.  Selective ablation of pillar and Deiters’ cells severely affects cochlear postnatal development and hearing in mice 
Mammalian auditory hair cells (HCs) are inserted into a well-structured environment of supporting cells (SCs) and acellular matrices. It has been proposed that when HCs are irreversibly damaged by noise or ototoxic drugs surrounding SCs seal the epithelial surface and likely extend the survival of auditory neurons. Because SCs are more resistant to damage than HCs the effects of primary SC loss on HC survival and hearing have received little attention. We used the Cre/loxP system in mice to specifically ablate pillar and Deiters’ cells (PCs and DCs). In Prox1CreERT2+/−;Rosa26DTA/+ (Prox1DTA) mice, CreER expression driven by the endogenous Prox1 promoter in presence of tamoxifen removes a stop-codon in the Rosa26DTA/+ allele and induces diphtheria toxin fragment A (DTA) expression. DTA produces cell-autonomous apoptosis. Prox1DTA mice injected with tamoxifen at postnatal days (P)0 and P1, show significant DC and outer PC loss at P2-P4, that reaches ~70% by one month. Outer HC loss follows at P14 and it is almost complete at one month, while inner HCs remain intact. Neural innervation to the outer HCs is disrupted in Prox1DTA mice and auditory brainstem response thresholds in adults are 40-50 dB higher than in controls. The hearing deficit correlates with loss of cochlear amplification. Remarkably, in Prox1DTA mice the auditory epithelium preserves the ability to seal the reticular lamina and spiral ganglion neuron counts are normal, a key requirement for cochlear implant success. Our results highlight that cochlear SC pools should be appropriately replenished during HC regeneration strategies.
PMCID: PMC3567488  PMID: 23345230
13.  Identification and characterization of Pannexin expression in the mammalian cochlea 
The gap junction in vertebrates is encoded by the connexin gene family. Recently, a new gene family termed pannexin (Panx) has been identified in vertebrates and found to encode gap junctional proteins as well. To date, three pannexin isoforms (Panx1, 2 and 3) have been cloned from mouse and human genomes. In this study, expression of pannexins in the mouse and rat cochlea was investigated. PCR and Western blot analysis showed that all three pannexin isoforms were expressed in the cochlea. Immunofluorescent staining showed that Panx1 expression was extensive. In the organ of Corti, Panx1 labeling was found in supporting cells, including pillar cells, Hensen cells, Claudius cells and Boettcher cells. Both surface plaque-like punctate labeling and diffuse-cytoplasmic labeling were visible. However, the labeling was weak and rare in Deiters cells. No labeling was found in the hair cells. Intense labeling for Panx1 was also observed in the interdental cells in the spiral limbus, the inner and outer sulcus cells, and the type II fibrocytes in the spiral prominence and central region in the cochlear lateral wall. However, no overlapping labeling was observed. In addition, Panx1 labeling was detectable in the Reissner's membrane and strial blood vessel cells. Panx2 labeling was restricted to the basal cells in the stria vascularis and was also detectable in the spiral ganglion neurons. However, no overlapping labeling for Panx1 and Panx2 was observed. Finally, Panx3 labeling was exclusively observed in the cochlear bone. Thus, Panx1, 2 and 3 are abundantly expressed in the mammalian cochlea and demonstrate distinct cellular distributions. Like connexins, they may play an important role in hearing.
PMCID: PMC2630187  PMID: 19009624
Gap junction; hemichannel; cochlea; connexin; intercellular communication; deafness
14.  Loss of GABAB Receptors in Cochlear Neurons: Threshold Elevation Suggests Modulation of Outer Hair Cell Function by Type II Afferent Fibers 
Despite pharmacological and immunohistochemical evidence for GABA as a neurotransmitter in the olivocochlear efferent bundle, a clear functional role of GABA in the inner ear has not emerged. To explore the role of metabotropic GABAB receptors, we characterized the cochlear phenotype of mice with targeted deletion of the GABAB1 subunit and determined its tissue localization using a mouse line expressing a GFP-tagged GABAB1 subunit under the endogenous promoter. Immunostaining revealed GABAB1 expression in both type I and type II ganglion cells and in their synaptic terminals under inner and outer hair cells, respectively. No GABAB1 expression was observed in hair cells. Mean cochlear thresholds, measured via both auditory brainstem responses and distortion product otoacoustic emissions (DPOAEs), were elevated by ∼10 dB in GABAB1-deficient mice, consistent with outer hair cell dysfunction. Olivocochlear efferent function, assessed via DPOAE suppression during efferent electrical stimulation, was unaffected by GABAB1 deletion. GABAB1-deficient mice showed increased resistance to permanent acoustic injury, with mean threshold shifts ∼25 dB smaller than wild-types after exposure to 8–16-kHz noise at 100 dB for 2 h. In contrast, there was no vulnerability difference to temporary acoustic injury following exposure to the same noise at 94 dB for 15 min. Our results suggest that GABAergic signaling in type II afferent neurons may be required for normal outer hair cell amplifier function at low sound levels and may also modulate outer hair cell responses to high-level sound.
PMCID: PMC2644393  PMID: 18925381
inner ear; feedback; efferent
15.  Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy 
PLoS ONE  2012;7(5):e36467.
The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ.
PMCID: PMC3364260  PMID: 22666322
16.  Melanocortin-4 receptor expression in a vago-vagal circuitry involved in postprandial functions 
Vagal afferents regulate energy balance by providing a link between the brain and postprandial signals originating from the gut. In the current study, we investigated melanocortin-4 receptor (MC4R) expression in the nodose ganglion, where the cell bodies of vagal sensory afferents reside. Using a line of mice expressing Green Fluorescent Protein (GFP) under the control of the MC4R promoter, we found GFP expression in approximately one third of nodose ganglion neurons. Using immunohistochemistry combined with in situ hybridization, we also demonstrated that ∼20% of GFP-positive neurons coexpressed cholecystokinin receptor A. In addition, we found that the GFP is transported to peripheral tissues by both vagal sensory afferents and motor efferents, which allowed us to assess the sites innervated by MC4R-GFP neurons. GFP-positive efferents that co-expressed choline acetyltransferase specifically terminated in the hepatic artery and the myenteric plexus of the stomach and duodenum. In contrast, GFP-positive afferents that did not express cholinergic or sympathetic markers terminated in the submucosal plexus and mucosa of the duodenum. Retrograde tracing experiments confirmed the innervation of the duodenum by GFP-positive neurons located in the nodose ganglion. Our findings support the hypothesis that MC4R signaling in vagal afferents may modulate the activity of fibers sensitive to satiety signals such as cholecystokinin, and that MC4R signaling in vagal efferents may contribute to the control of the liver and gastrointestinal tract.
PMCID: PMC2857345  PMID: 19882715
cholecystokinin; Green fluorescent protein; satiety; vagus nerve
17.  TrkA-Immunoreactive Profiles in the Central Nervous System: Colocalization With Neurons Containing p75 Nerve Growth Factor Receptor, Choline Acetyltransferase, and Serotonin 
The present investigation used an antibody directed against the extracellular domain of the signal transducing nerve growth factor receptor, trkA, to reveal immunoreactive perikarya or fibers within the olfactory bulb and tubercle, cingulate cortex, nucleus accumbens, striatum, endopiriform nucleus, septal/diagonal band complex, nucleus basalis, hippocampal complex, thalamic paraventricular and reunions nuclei, periventricular hypothalamus, interpeduncular nucleus, mesencephalic nucleus of the fifth nerve, dorsal nucleus of the lateral lemniscus, prepositus hypoglossal nucleus, ventral cochlear nucleus, ventral lateral tegmentum, medial vestibular nucleus, spinal trigeminal nucleus oralis, nucleus of the solitary tract, raphe nuclei, and spinal cord. Colocalization experiments revealed that virtually all striatal trkA-immunoreactive neurons (> 99%) coexpressed choline acetyltransferase (ChAT) but not p75 nerve growth factor receptor (NGFR). Within the septal/diagonal band complex virtually all trkA neurons (>95%) coexpressed both ChAT and p75 NGFR. More caudally, dual stained sections revealed numerous trkA/ChAT (> 80%) and trkA/p75 NGFR (> 95%) immunoreactive neurons within the nucleus basalis. In the brainstem, raphe serotonergic neurons (45%) coexpressed trkA. Sections stained with a pan-trk antibody that recognizes primarily trkA, as well as trkB and trkC, labeled neurons within all of these regions as well as within the hypothalamic arcuate, supramammilary, and supraoptic nuclei, hippocampus, inferior and superior colliculus, substantia nigra, ventral tegmental area of T’sai, and cerebellar Purkinje cells. Virtually all of these other regions with the exception of the cerebellum also expressed pan-trk immunoreactivity in the monkey. The widespread expression of trkA throughout the central neural axis suggests that this receptor may play a role in signal transduction mechanisms linked to NGF-related substances in cholinergic basal forebrain and non-cholinergic systems. These findings suggest that pharmacological use of ligands for trkA could have beneficial effects on the multiple neuronal systems that are affected in such disorders as Alzheimer’s disease.
PMCID: PMC2710128  PMID: 7890832
tyrosine kinase receptors; nerve growth factor; basal forebrain; rat; monkey
18.  Ca2+ and Ca2+-activated K+ channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse 
In the mammalian auditory system, the synapse between efferent olivocochlear (OC) neurons and sensory cochlear hair cells is cholinergic, fast and inhibitory. This efferent synapse is mediated by the nicotinic α9α10 receptor coupled to the activation of SK2 Ca2+-activated K+ channels that hyperpolarize the cell. So far, the ion channels that support and/or modulate neurotransmitter release from the OC terminals remain unknown. To identify these channels, we used an isolated mouse cochlear preparation and monitored transmitter release from the efferent synaptic terminals in inner hair cells (IHCs) voltage-clamped in the whole-cell recording configuration. Acetylcholine (ACh) release was evoked by electrically stimulating the efferent fibers that make axosomatic contacts with IHCs before the onset of hearing. Using the specific antagonists for P/Q-and N-type voltage-gated calcium channels (VGCCs), ω-agatoxin IVA and ω-conotoxin GVIA, respectively, we show that Ca2+ entering through both types of VGCCs support the release process at this synapse. Interestingly, we found that Ca2+ entering through the dihydropiridine-sensitive L-type VGCCs exerts a negative control on transmitter release. Moreover, using immunostaining techniques combined with electrophysiology and pharmacology, we show that BK Ca2+-activated K+ channels are transiently expressed at the OC efferent terminals contacting IHCs and that their activity modulates the release process at this synapse. The effects of dihydropiridines combined with iberiotoxin, a specific BK channel antagonist, strongly suggest that L-type VGCCs negatively regulate the release of ACh by fueling BK channels which are known to curtail the duration of the terminal action potential in several types of neurons.
PMCID: PMC2963083  PMID: 20826678
Synaptic transmission; Calcium channels; BK channels; cochlea; hair cells; efferent
19.  The Multiple Functions of T Stellate/Multipolar/Chopper Cells in the Ventral Cochlear Nucleus 
Hearing research  2010;276(1-2):61-69.
Acoustic information is brought to the brain by auditory nerve fibers, all of which terminate in the cochlear nuclei, and is passed up the auditory pathway through the principal cells of the cochlear nuclei. A population of neurons variously known as T stellate, type I multipolar, planar multipolar, or chopper cells forms one of the major ascending auditory pathways through the brain stem. T Stellate cells are sharply tuned; as a population they encode the spectrum of sounds. In these neurons, phasic excitation from the auditory nerve is made more tonic by feed forward excitation, coactivation of inhibitory with excitatory inputs, relatively large excitatory currents through NMDA receptors, and relatively little synaptic depression. The mechanisms that make firing tonic also obscure the fine structure of sounds that is represented in the excitatory inputs from the auditory nerve and account for the characteristic chopping response patterns with which T stellate cells respond to tones. In contrast with other principal cells of the ventral cochlear nucleus (VCN), T stellate cells lack a low-voltage-activated potassium conductance and are therefore sensitive to small, steady, neuromodulating currents. The presence of cholinergic, serotonergic and noradrenergic receptors allows the excitability of these cells to be modulated by medial olivocochlear efferent neurons and by neuronal circuits associated with arousal. T Stellate cells deliver acoustic information to the ipsilateral dorsal cochlear nucleus (DCN), ventral nucleus of the trapezoid body (VNTB), periolivary regions around the lateral superior olivary nucleus (LSO), and to the contralateral ventral lemniscal nuclei (VNLL) and inferior colliculus (IC). It is likely that T stellate cells participate in feedback loops through both medial and lateral olivocochlear efferent neurons and they may be a source of ipsilateral excitation of the LSO.
PMCID: PMC3078527  PMID: 21056098
ventral cochlear nucleus; brainstem auditory pathways; ion channels; patch-clamp recording
20.  An eGFP-expressing subpopulation of growth hormone secretagogue receptor cells are distinct from kisspeptin, tyrosine hydroxylase, and RFamide-related peptide neurons in mice 
Peptides  2013;47:45-53.
Ghrelin acts on the growth hormone secretagogue receptor (GHSR) in the brain to elicit changes in physiological functions. It is associated with the neural control of appetite and metabolism, however central ghrelin also affects fertility. Central ghrelin injection in rats suppresses luteinizing hormone (LH) concentrations and pulse frequency. Although ghrelin suppresses LH and regulates kisspeptin mRNA in the anteroventral periventricular/periventricular nucleus (AVPV/PeN), there is no neuroanatomical evidence linking GHSR neural circuits to kisspeptin neurons. In this study, we first determined coexpression of GHSR and GnRH neurons using a GHSR-eGFP reporter mouse line. Using dual-label immunohistochemistry, we saw no coexpression. GHSR-eGFP expressing cells were present in the AVPV/PeN and over 90% of these expressed estrogen receptor-α (ERα). Despite this, we observed no evidence of GHSR-eGFP/kisspeptin coexpressing neurons in the AVPV/PeN. To further examine the phenotype of GHSR-eGFP cells in the AVPV/PeN, we determined coexpression with tyrosine hydroxylase (TH) and showed virtually no coexpression in the AVPV/PeN (<2%). We also observed no coexpression of GHSR-eGFP and RFamide-related peptide-3 (RFRP3) neurons in the dorsomedial hypothalamic nucleus. Importantly, we observed that approximately half of the GHSR-eGFP cells in the AVPV coexpressed Ghsr mRNA (as determined by in situ hybridization) so these data should be interpreted accordingly. Although ghrelin influences the hypothalamic reproductive axis, our data using a GHSR-eGFP reporter suggests ghrelin regulates neurons expressing ERα but does not directly act on GnRH, kisspeptin, TH, or RFRP3 neurons, as little or no GHSR-eGFP coexpression was observed.
PMCID: PMC3762877  PMID: 23831041
ghrelin; GHSR; GFP; Kisspeptin; AgRP; reproduction
21.  Noise-induced hearing loss is correlated with alterations in the expression of GABAB receptors and PKC gamma in the murine cochlear nucleus complex 
Noise overexposure may induce permanent noise-induced hearing loss (NIHL). The cochlear nucleus complex (CNC) is the entry point for sensory information in the central auditory system. Impairments in gamma-aminobutyric acid (GABA)—mediated synaptic transmission in the CNC have been implicated in the pathogenesis of auditory disorders. However, the role of protein kinase C (PKC) signaling pathway in GABAergic inhibition in the CNC in NIHL remains elusive. Thus, we investigated the alterations of glutamic acid decarboxylase 67 (GAD67, the chemical marker for GABA-containing neurons), PKC γ subunit (PKCγ) and GABAB receptor (GABABR) expression in the CNC using transgenic GAD67-green fluorescent protein (GFP) knock-in mice, BALB/c mice and C57 mice. Immunohistochemical results indicate that the GFP-labeled GABAergic neurons were distributed in the molecular layer (ML) and fusiform cell layer (FCL) of the dorsal cochlear nucleus (DCN). We found that 69.91% of the GFP-positive neurons in the DCN were immunopositive for both PKCγ and GABABR1. The GAD67-positive terminals made contacts with PKCγ/GABABR1 colocalized neurons. Then we measured the changes of auditory thresholds in mice after noise exposure for 2 weeks, and detected the GAD67, PKCγ, and GABABR expression at mRNA and protein levels in the CNC. With noise over-exposure, there was a reduction in GABABR accompanied by an increase in PKCγ expression, but no significant change in GAD67 expression. In summary, our results demonstrate that alterations in the expression of PKCγ and GABABRs may be involved in impairments in GABAergic inhibition within the CNC and the development of NIHL.
PMCID: PMC3726868  PMID: 23908607
CNC; GABA; GABABR; PKCγ; GAD67-GFP knock-in mice
22.  Dynamic expression pattern of sonic hedgehog in developing cochlear spiral ganglion neurons 
Sonic hedgehog (Shh) signaling plays important roles in the formation of the auditory epithelium. However, little is known about the detailed expression pattern of Shh and the cell sources from which Shh is secreted. By analyzing ShhCreEGFP/+ mice, we found that Shh was first expressed in all cochlear spiral ganglion neurons by embryonic day 13.5, after which its expression gradually decreased from base to apex. By postnatal day 0, it was not detected in any spiral ganglion neurons. Genetic cell fate mapping results also confirmed that Shh was exclusively expressed in all spiral ganglion neurons and not in surrounding glia cells. The basal-to-apical wave of Shh declining strongly resembles that of hair cell differentiation, supporting the idea that Shh signaling inhibits hair cell differentiation. Furthermore, this ShhCreEGFP/+ mouse is a useful Cre line in which to delete floxed genes specifically in spiral ganglion neurons of the developing cochlea.
PMCID: PMC2963025  PMID: 20503364
Sonic Hedgehog (Shh); cochlear duct; hair cell; spiral ganglion neuron; differentiation
23.  Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell terminal mitosis. 
We investigated whether co-expression of Neurog1 and Atoh1 in common neurosensory precursors could explain the loss of hair cells in Neurog1 null mice. Analysis of terminal mitosis, using BrdU, supports previous findings regarding timing of exit from cell cycle. Specifically, we show that cell cycle exit occurs in spiral sensory neurons in a base to apex progression followed by cell cycle exit of hair cells in the organ of Corti in an apex to base progression, with some overlap of cell cycle exit in the apex for both hair cells and spiral sensory neurons. Hair cells in Neurog1 null mice show cell cycle exit in an apex to base progression about 1–2 days earlier. Atoh1 is expressed in an apex to base progression rather then a base to apex progression as in wildtype littermates. We tested the possible expression of Atoh1 in neurosensory precursors using two Atoh1-Cre lines. We show Atoh1-Cre mediated β-galactosidase expression in delaminating sensory neuron precursors as well as undifferentiated epithelial cells at E12.5. PCR analysis shows expression of Atoh1 in the otocyst as early as E10.5, prior to any histology based detection techniques. Combined, these data suggest that low levels of Atoh1 exist much earlier in precursors of hair cells and sensory neurons, possibly including neurosensory precursors. Analysis of Atoh1-Cre expression in E18.5 embryos and P31 mice reveal β-galactosidase stain in all hair cells but also in vestibular and cochlear sensory neurons and some supporting cells. A similar expression of Atoh1-LacZ exists in postnatal and adult vestibular and cochlear sensory neurons, and Atoh1 expression in vestibular sensory neurons is confirmed with RT-PCR. We propose that absence of NEUROG1 protein leads to loss of sensory neuron formation through a phenotypic switch of cycling neurosensory precursors from sensory neuron to hair cell fate. Neurog1 null mice show a truncation of clonal expansion of hair cell precursors through temporally altered terminal mitosis, thereby resulting in smaller sensory epithelia.
PMCID: PMC1343505  PMID: 16145671
hair cells; sensory neurons; inner ear; neurotrophins; cell fate; terminal mitosis
24.  Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation 
BMC Neuroscience  2003;4:2.
Ears of Brn3c null mutants develop immature hair cells, identifiable only by certain molecular markers, and undergo apoptosis in neonates. This partial development of hair cells could lead to enough neurotrophin expression to sustain sensory neurons through embryonic development. We have therefore investigated in these mutants the patterns of innervation and of expression of known neurotrophins.
At birth there is a limited expression of BDNF and NT-3 in the mutant sensory epithelia and DiI tracing shows no specific reduction of afferents or efferents that resembles neurotrophin null mutations. At postnatal day 7/8 (P7/8), innervation is severely reduced both qualitatively and quantitatively. 1% of myosin VIIa-positive immature hair cells are present in the mutant cochlea, concentrated in the base. Around 20% of immature hair cells exist in the mutant vestibular sensory epithelia. Despite more severe loss of hair cells (1% compared to 20%), the cochlea retains many more sensory neurons (46% compared to 15%) than vestibular epithelia. Even 6 months old mutant mice have some fibers to all vestibular sensory epithelia and many more to the cochlear apex which lacks MyoVIIa positive hair cells. Topologically organized central cochlea projections exist at least until P8, suggesting that functional hair cells are not required to establish such projections.
The limited expression of neurotrophins in the cochlea of Brn3c null mice suffices to support many sensory neurons, particularly in the cochlea, until birth. The molecular nature of the long term survival of apical spiral neurons remains unclear.
PMCID: PMC149366  PMID: 12585968
ear development; POU factors and hair cells; afferent ear innervation; efferent ear innervation
25.  Assembly of the Auditory Circuitry by a Hox Genetic Network in the Mouse Brainstem 
PLoS Genetics  2013;9(2):e1003249.
Rhombomeres (r) contribute to brainstem auditory nuclei during development. Hox genes are determinants of rhombomere-derived fate and neuronal connectivity. Little is known about the contribution of individual rhombomeres and their associated Hox codes to auditory sensorimotor circuitry. Here, we show that r4 contributes to functionally linked sensory and motor components, including the ventral nucleus of lateral lemniscus, posterior ventral cochlear nuclei (VCN), and motor olivocochlear neurons. Assembly of the r4-derived auditory components is involved in sound perception and depends on regulatory interactions between Hoxb1 and Hoxb2. Indeed, in Hoxb1 and Hoxb2 mutant mice the transmission of low-level auditory stimuli is lost, resulting in hearing impairments. On the other hand, Hoxa2 regulates the Rig1 axon guidance receptor and controls contralateral projections from the anterior VCN to the medial nucleus of the trapezoid body, a circuit involved in sound localization. Thus, individual rhombomeres and their associated Hox codes control the assembly of distinct functionally segregated sub-circuits in the developing auditory brainstem.
Author Summary
Sound perception and sound localization are controlled by two distinct circuits in the central nervous system. However, the cellular and molecular determinants underlying their development are poorly understood. Here, we show that a spatially restricted region of the brainstem, the rhombomere 4, and two members of the Hox gene family, Hoxb1 and Hoxb2, are directly implicated in the development of the circuit leading to sound perception and sound amplification. In the absence of Hoxb1 and Hoxb2 function, we found severe morphological defects in the hair cell population implicated in transducing the acoustic signal, leading ultimately to severe hearing impairments in adult mutant mice. In contrast, the expression in the cochlear nucleus of another Hox member, Hoxa2, regulates the guidance receptor Rig1 and contralateral connectivity in the sound localization circuit. Some of the auditory dysfunctions described in our mouse models resemble pathological hearing conditions in humans, in which patients have an elevated hearing threshold sensitivity, as recorded in audiograms. Thus, this study provides mechanistic insight into the genetic and functional regulation of Hox genes during development and assembly of the auditory system.
PMCID: PMC3567144  PMID: 23408898

Results 1-25 (786461)