Search tips
Search criteria

Results 1-25 (987366)

Clipboard (0)

Related Articles

1.  Comparison of bee products based on assays of antioxidant capacities 
Bee products (including propolis, royal jelly, and bee pollen) are popular, traditional health foods. We compared antioxidant effects among water and ethanol extracts of Brazilian green propolis (WEP or EEP), its main constituents, water-soluble royal jelly (RJ), and an ethanol extract of bee pollen.
The hydrogen peroxide (H2O2)-, superoxide anion (O2·-)-, and hydroxyl radical (HO·)- scavenging capacities of bee products were measured using antioxidant capacity assays that employed the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) or aminophenyl fluorescein (APF).
The rank order of antioxidant potencies was as follows: WEP > EEP > pollen, but neither RJ nor 10-hydroxy-2-decenoic acid (10-HDA) had any effects. Concerning the main constituents of WEP, the rank order of antioxidant effects was: caffeic acid > artepillin C > drupanin, but neither baccharin nor coumaric acid had any effects. The scavenging effects of caffeic acid were as powerful as those of trolox, but stronger than those of N-acetyl cysteine (NAC) or vitamin C.
On the basis of the present assays, propolis is the most powerful antioxidant of all the bee product examined, and its effect may be partly due to the various caffeic acids it contains. Pollen, too, exhibited strong antioxidant effects.
PMCID: PMC2664783  PMID: 19243635
2.  Brazilian Green Propolis Inhibits Inflammatory Angiogenesis in a Murine Sponge Model 
Angiogenesis and inflammation are persistent features of several pathological conditions. Propolis, a sticky material that honeybees collect from living plants, has been reported to have multiple biological effects including anti-inflammatory and anti-neoplasic activities. Here, we investigated the effects of water extract of green propolis (WEP) on angiogenesis, inflammatory cell accumulation and endogenous production of cytokines in sponge implants of mice over a 14-day period. Blood vessel formation as assessed by hemoglobin content and by morphometric analysis of the implants was reduced by WEP (500 mg kg−1 orally) compared to the untreated group. The levels of vascular endothelial growth factor (VEGF) increased progressively in the treated group but decreased after Day 10 in the control group. Accumulation of neutrophils and macrophages was determined by measuring myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAG) activities, respectively. Neutrophil accumulation was unaffected by propolis, but NAG activity was reduced by the treatment at Day 14. The levels TGF-β1 intra-implant increased progressively in both groups but were higher (40%) at Day 14 in the control implants. The pro-inflammatory levels of TNF-α peaked at Day 7 in the control implants, and at Day 14 in the propolis-treated group. Our results indicate that the anti-inflammatory/anti-angiogenic effects of propolis are associated with cytokine modulation.
PMCID: PMC3094767  PMID: 20007259
3.  Intracellular ROS Scavenging Activity and Downregulation of Inflammatory Mediators in RAW264.7 Macrophage by Fresh Leaf Extracts of Pseuderanthemum palatiferum 
Beneficial antioxidant phytochemicals are found in many medicinal plants. Pseuderanthemum palatiferum (PP), a well-known Vietnamese traditional medicinal plant in Thailand, has long been used in folk medicine for curing inflammatory diseases, often with limited support of scientific research. Therefore, this study aimed to determine antioxidant and modulation of inflammatory mediators of ethanol and water extracts of PP (EEP and WEP, resp.). WEP had significantly higher phenolic and flavonoid levels and DPPH radical scavenging activity than EEP. However, EEP exhibited greater reducing power than WEP. A greater decrease of tert-butyl hydroperoxide-induced oxidative stress in RAW264.7 macrophage cells was also observed with EEP. Modulation of inflammatory mediators of EEP and WEP was evaluated on LPS plus IFN-γ-stimulated RAW264.7 cells. EEP more potently suppressed LPS plus IFN-γ-induced nitric oxide (NO) production than WEP. Both EEP and WEP also suppressed the expression of iNOS and COX-2 protein levels. Collectively, these results suggest that PP possesses strong antioxidant and anti-inflammatory properties.
PMCID: PMC3976772  PMID: 24744809
4.  Effect of Croatian propolis on diabetic nephropathy and liver toxicity in mice 
In the present study, we examined the antioxidant effect of water soluble derivative of propolis (WSDP) and ethanolic (EEP) extract of propolis on renal and liver function in alloxan-induced diabetic mice. In addition, we examined whether different extract of propolis could prevent diabetic nephropathy and liver toxicity by inhibiting lipid peroxidation in vivo.
Diabetes was induced in Swiss albino mice with a single intravenous injection of alloxan (75 mg kg-1). Two days after alloxan injection, propolis preparations (50 mg kg-1 per day) were given intraperitoneally for 7 days in diabetic mice. Survival analysis and body weights as well as hematological and biochemical parameters were measured. The renal and liver oxidative stress marker malonaldehyde levels and histopathological changes were monitored in the liver and kidney of treated and control mice.
Administration of propolis to diabetic mice resulted in a significant increase of body weight, haematological and immunological parameters of blood as well as 100% survival of diabetic mice. Alloxan-injected mice showed a marked increase in oxidative stress in liver and kidney homogenate, as determined by lipid peroxidation. Histopathological observation of the liver sections of alloxan-induced diabetic mice showed several lesions including cellular vacuolization, cytoplasmic eosinophilia and lymphocyte infiltrations, but with individual variability.Treatment of diabetic mice with propolis extracts results in decreased number of vacuolized cells and degree of vacuolization; propolis treatment improve the impairment of fatty acid metabolism in diabetes. Renal histology showed corpuscular, tubular and interstitial changes in alloxan-induced diabetic mice. Test components did not improve renal histopathology in diabetic mice.
Propolis preparations are able to attenuate diabetic hepatorenal damage, probably through its anti-oxidative action and its detoxification proccess as well as the potential to minimize the deleterious effects of free radicals on tissue. The protective role of propolis against the ROS induced damages in diabetic mice gives a hope that they may have similar protective action in humans.
PMCID: PMC3551731  PMID: 22866906
Alloxan; Diabetes; Mice; Propolis; Liver; Kidney
5.  Chemical Composition and Anti-Inflammatory Effect of Ethanolic Extract of Brazilian Green Propolis on Activated J774A.1 Macrophages 
The aim of this study was to investigate the chemical composition and anti-inflammatory effect of ethanolic extract of Brazilian green propolis (EEP-B) on LPS + IFN-γ or PMA stimulated J774A.1 macrophages. The identification and quantification of phenolic compounds in green propolis extract were performed using HPLC-DAD and UPLC-Q-TOF-MS methods. The cell viability was evaluated by MTT and LDH assays. The radical scavenging ability was determined using DPPH• and ABTS•+. ROS and RNS generation was analyzed by chemiluminescence. NO concentration was detected by the Griess reaction. The release of various cytokines by activated J774A.1 cells was measured in the culture supernatants using a multiplex bead array system based on xMAP technology. Artepillin C, kaempferide, and their derivatives were the main phenolics found in green propolis. At the tested concentrations, the EEP-B did not decrease the cell viability and did not cause the cytotoxicity. EEP-B exerted strong antioxidant activity and significantly inhibited the production of ROS, RNS, NO, cytokine IL-1α, IL-1β, IL-4, IL-6, IL-12p40, IL-13, TNF-α, G-CSF, GM-CSF, MCP-1, MIP-1α, MIP-1β, and RANTES in stimulated J774A.1 macrophages. Our findings provide new insights for understanding the anti-inflammatory mechanism of action of Brazilian green propolis extract and support its application in complementary and alternative medicine.
PMCID: PMC3690241  PMID: 23840273
6.  Significance of propolis administration for homeostasis of CD4+CD25+ immunoregulatory T cells controlling hyperglycemia 
SpringerPlus  2014;3:526.
In the present study, we examined the effect of ethanolic soluble derivative of propolis (EEP) extract on immunological function in diabetic mouse models with the aim of highlighting the role of regulatory T cell, the change of cell surface molecule, and in vivo productions of IFN-γ. Murine models of diabetes mellitus (DM) were created by injecting normal mice with S961 peptide. Normal BALB/c mice were injected intraperitoneally with peptide S961 300 mg/kg body weight (BW) twice a day for eight days. On day 15, the spleen was isolated; then, cell surface molecules and regulatory T cells were analyzed using flow cytometry. The histopathological changes were monitored in the liver of treated and control mice. Afterward, we tested the ability of propolis as an immunomodulator that initiate normality metabolism and homeostasis. The propolis decreased blood sugar levels and increased the number of naïve T cells expressing CD62L molecule by suppressing the development of effector cells in diabetic mice. However, the propolis stimulated development of effector cells, which was indicated by increasing the number of CD4+CD25+ T cells in normal mice. Moreover, the propolis increased the production of IFN-γ in normal mice, whereas in mouse models of diabetes mellitus propolis tends to suppress the production of IFN-γ. The histological analysis of the liver shows that at a dose of 50–200 mg/kg BW propolis does not show a toxic effect so that the dose is categorized safe. Therefore, the ethanolic soluble derivative of propolis (EEP) extract warrant for further exploited as an antidiabetic agent that safe for human.
PMCID: PMC4179640  PMID: 25279317
Diabetes; Mice; Propolis; S961 Peptide; Regulatory T cells
7.  Brazilian green propolis modulates inflammation, angiogenesis and fibrogenesis in intraperitoneal implant in mice 
Chronic inflammatory processes in the peritoneal cavity develop as a result of ischemia, foreign body reaction, and trauma. Brazilian green propolis, a beeswax product, has been shown to exhibit multiple actions on inflammation and tissue repair. Our aim was to investigate the effects of this natural product on the inflammatory, angiogenic, and fibrogenic components of the peritoneal fibroproliferative tissue induced by a synthetic matrix.
Chronic inflammation was induced by placing polyether-polyurethane sponge discs in the abdominal cavity of anesthetized Swiss mice. Oral administration of propolis (500/mg/kg/day) by gavage started 24 hours after injury for four days. The effect of propolis on peritoneal permeability was evaluated through fluorescein diffusion rate 4 days post implantation. The effects of propolis on the inflammatory (myeloperoxidase and n-acetyl-β-D-glucosaminidase activities and TNF-α levels), angiogenic (hemoglobin content-Hb), and fibrogenic (TGF-β1 and collagen deposition) components of the fibrovascular tissue in the implants were determined 5 days after the injury.
Propolis was able to decrease intraperitoneal permeability. The time taken for fluorescence to peak in the systemic circulation was 20 ± 1 min in the treated group in contrast with 15 ± 1 min in the control group. In addition, the treatment was shown to down-regulate angiogenesis (Hb content) and fibrosis by decreasing TGF-β1 levels and collagen deposition in fibroproliferative tissue induced by the synthetic implants. Conversely, the treatment up-regulated inflammatory enzyme activities, TNF-α levels and gene expression of NOS2 and IFN-γ (23 and 7 fold, respectively), and of FIZZ1 and YM1 (8 and 2 fold) when compared with the untreated group.
These observations show for the first time the effects of propolis modulating intraperitoneal inflammatory angiogenesis in mice and disclose important action mechanisms of the compound (downregulation of angiogenic components and activation of murine macrophage pathways).
PMCID: PMC4061536  PMID: 24886376
Water extract propolis; Cytokines; Macrophage activation; Fibrosis
8.  Effect of the water extracts of propolis on stimulation and inhibition of different cells 
Cytotechnology  2007;54(1):49-56.
The water extracts of propolis (WEP) could inhibit growth of different cell lines namely McCoy, HeLa, SP2/0, HEp-2, and BHK21 and stimulate growth of normal cell named human lymphocyte, rat kidney, rat liver, and rat spleen. In these experiments 1 and 2 mg of WEP were added to 1 ml RPMI media with 5% FCS. Cell counts and cell viability of propolis-treated and propolis-free cells were assessed by Trypan blue dye exclusion test and MTT assay. The results showed that in case of McCoy, HeLa, SP20, HEp-2, and BHK21 cell lines, the water extracts of propolis could inhibit cell growth as well as reduction on size of the cells. In contrast the same amount of WEP could stimulate growth of normal cells up to 60% with the same concentration used for cell lines. Thus our study indicates that although WEP consists only of the soluble part of propolis, it enables to inhibit different cell lines and increase growth of normal cells. This indicates also that WEP contains the specific compounds with bioactivity against cell lines. Although propolis contain different number of compounds it is clear that WEP has enough biological compounds useful for the treatment of some diseases, medical and related applications.
PMCID: PMC2267516  PMID: 19003017
Cell line; Cell stimulation; MTT tests; Normal cells; Propolis; Water extracts of propolis (WEP)
9.  Aqueous Extract of Brazilian Green Propolis: Primary Components, Evaluation of Inflammation and Wound Healing by Using Subcutaneous Implanted Sponges 
Propolis is a chemically complex resinous bee product which has gained worldwide popularity as a means to improve health condition and prevent diseases. The main constituents of an aqueous extract of a sample of green propolis from Southeast Brazil were shown by high performance liquid chromatography/mass spectroscopy/mass spectroscopy to be mono- and di-O-caffeoylquinic acids; phenylpropanoids known as important constituents of alcohol extracts of green propolis, such as artepillin C and drupanin were also detected in low amounts in the aqueous extract. The anti-inflammatory activity of this extract was evaluated by determination of wound healing parameters. Female Swiss mice were implanted subcutaneously with polyesther-polyurethane sponge discs to induce wound healing responses, and administered orally with green propolis (500 mg kg−1). At 4, 7 and 14 days post-implantation, the fibrovascular stroma and deposition of extracellular matrix were evaluated by histopathologic and morphometric analyses. In the propolis-treated group at Days 4 and 7 the inflammatory process in the sponge was reduced in comparison with control. A progressive increase in cell influx and collagen deposition was observed in control and propolis-treated groups during the whole period. However, these effects were attenuated in the propolis-treated group at Days 4 and 7, indicating that key factors of the wound healing process are modulated by propolis constituents.
PMCID: PMC3137525  PMID: 19690045
10.  Novel Antidepressant-Like Activity of Propolis Extract Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus 
Propolis is a natural product made by honeybees that has been widely used in folk medicine with a broad spectrum of biological activities. To investigate the antidepressant-like activity of propolis extract, CD-1 mice were administered an ethanol extract of propolis (50, 100, or 200 mg/kg, p.o.) prior to the behavioral test. The propolis extract-treated group showed a dose-dependent decrease in immobility time in the FST and tail suspension test without altering locomotor activity. Propolis extract decreased the limbic hypothalamic-pituitary-adrenal axis response to the FST as indicated by an attenuated corticosterone response and decreased in c-fos immunoreactive neurons in the hippocampal dentate gyrus. Western blot analysis revealed a reduction in hippocampal glucocorticoid receptor (GR) expression following the FST, which was reversed by propolis extract. Propolis extract also increased pGR(S220)/(S234) ratio by a differential phosphorylation in S220 and S234. FST-induced downregulation of cAMP-responsive element binding protein phosphorylation at S133 (pCREB) was restored by propolis extract, showing a strong and positive relationship between pCREB and pGR(S220)/(S234) ratio. These findings suggest that the propolis extract potentiates antidepressant-like activity by enhancing GR function which is one of the therapeutic mechanisms of antidepressant; thus, propolis extract may provide a novel therapy for depression.
PMCID: PMC3703885  PMID: 23853655
11.  Laxative effects of Salecan on normal and two models of experimental constipated mice 
BMC Gastroenterology  2013;13:52.
Constipation is one of the most common gastrointestinal complaints with a highly prevalent and often chronic functional gastrointestinal disorder affecting health-related quality of life. The aim of the present study was to evaluate the effects of Salecan on fecal output and small intestinal transit in normal and two models of drug-induced constipation mice.
ICR mice were administrated intragastrically (i.g.) by gavage with 100, 200 and 300 mg/kg body weight (BW) of Salecan while the control mice were received saline. The constipated mice were induced by two types of drugs, loperamide (5 mg/kg BW, i.g.) and clonidine (200 μg/kg BW, i.g.), after Salecan treatment while the control mice were received saline. Number, weight and water content of feces were subsequently measured. Small intestinal transit was monitored by phenol red marker meal.
Salecan (300 mg/kg BW) significantly increased the number and weight of feces in normal mice. In two models of drug-induced constipation, Salecan dose-dependently restored the fecal number and fecal weight. The water content of feces was markedly affected by loperamide, but not by clonidine. Treatment with Salecan significantly raised the fecal water content in loperamide-induced constipation mice. Moreover, Salecan markedly stimulated the small intestinal transit in both loperamide- and clonidine-induced constipation model mice.
These results suggest that Salecan has a potential to be used as a hydrophilic laxative for constipation.
PMCID: PMC3607894  PMID: 23514598
Salecan; Constipation; Intestinal motility; Loperamide; Clonidine
12.  Influence of the Toothpaste with Brazilian Ethanol Extract Propolis on the Oral Cavity Health 
Propolis-based therapeutic agents represent this potential for the development of new drugs in dental care. The aim of a clinical-cohort study was to determine the influence of application of toothpaste enriched with Brazilian extract of propolis (EEP) on health status of oral cavity. Laboratory analysis was conducted in order to assess the chemical composition of EEP including total phenolic compounds, the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, ABTS radical cation scavenging activity, and FRAP assay. Clinical research involved two groups of subjects comprising 32 adult patients, with assessment based on the preliminary evaluation of the state of their marginal periodontium. The investigation of oral health indices API, OHI, and SBI and microbiological examination of oral microflora were also carried out. Results obtained indicated time-dependent microbial action of EEP at 50 mg/L concentration, with antimicrobial activity against Gram-positive bacteria. The total decrease of API, OHI, and SBI mean values was observed. Hygienic preparations with 3% content of Brazilian ethanol extract of green propolis (EEP) efficiently support removal of dental plaque and improve the state of marginal periodontium.
PMCID: PMC3687592  PMID: 23861699
13.  Aqueous extracts of Liriope platyphylla induced significant laxative effects on loperamide-induced constipation of SD rats 
Liriope platyphylla has long been reported as a therapeutic drug for treatment of various human chronic diseases including inflammation, diabetes, neurodegenerative disorders, obesity, and atopic dermatitis. To investigate the laxative effects of L. platyphylla, alterations in excretion parameters, histological structure, mucin secretion, and related protein levels were investigated in rats with loperamide (Lop)-induced constipation after treatment with aqueous extract of L. platyphylla (AEtLP).
Alterations on constipation phenotypes were measured in rats with Lop-induced constipation after treatment with AEtLP using excretion parameter analysis, histological analysis, RT-PCR, western blot and transmission electron microscope (TEM) analysis.
The amounts of stool and urine excretion were significantly higher in the Lop + AEtLP-treated group than in the Lop + vehicle-treated group, whereas food intake and water consumption were maintained at constant levels. AEtLP treatment also induced an increase in villus length, crypt layer, and muscle thickness in the constipation model. Total mucin secretion was higher in the Lop + AEtLP-treated group than in the Lop + vehicle-treated group, although mucin secretion per crypt was very similar among all groups. Furthermore, RT-PCR and western blot revealed a dramatic reduction of key factors level on the muscarinic acetylcholine receptors (mAChRs) signaling pathway in the Lop + AEtLP-treated group relative to the Lop + vehicle-treated group. Especially, the accumulation of lipid droplets in enterocytes of crypts following Lop treatment was improved to the level of the No-treated group in response to AEtLP treatment.
These results suggest that AEtLP improves constipation induced by Lop treatment through an increase in crypt layer and stimulation of lipid droplet secretions. These data are the first to show that the laxative effects of AEtLP are closely related to the down-regulation of mAchRs and their downstream signals.
PMCID: PMC4222752  PMID: 24274470
14.  Laxative effect of peanut sprout extract 
Nutrition Research and Practice  2013;7(4):262-266.
Certain phenolic compounds are known to exhibit laxative properties. Seed sprouts, such as those of peanut, are known to promote de novo biosynthesis of phenolic compounds. This study was conducted to examine the potential laxative properties of 80% (v/v) ethanolic extract of peanut sprout (PSE), which contains a high concentration of phenolic compounds such as resveratrol. For this, SD rats were orally administered PSE while a control group was incubated with saline. Laxative effects were examined in both groups of rats. Constipation induced by loperamide in SD rats was improved by administration of PSE. Constipated rats showed increased intestinal movement of BaSO4 upon administration of PSE compared to the control, and the groups administered 100 or 1,000 mg PSE/kg bw were not significantly different in transit time of the indicator. However, colon length was not statistically different among the experimental groups, although it was longer in the group incubated with 1 g PSE/kg bw compared to other groups. Further, there was no significant difference in stool number among the experimental groups. Taken together, these findings show that PSE has a laxative effect in a rat model of loperamide-induced constipation.
PMCID: PMC3746159  PMID: 23964312
Peanut sprout; laxative effect; constipation
15.  Brazilian Green Propolis Protects against Retinal Damage In Vitro and In Vivo 
Propolis, a honeybee product, has gained popularity as a food and alternative medicine. Its constituents have been shown to exert pharmacological (anticancer, antimicrobial and anti-inflammatory) effects. We investigated whether Brazilian green propolis exerts neuroprotective effects in the retina in vitro and/or in vivo. In vitro, retinal damage was induced by 24 h hydrogen peroxide (H2O2) exposure, and cell viability was measured by Hoechst 33342 and YO-PRO-1 staining or by a resazurin–reduction assay. Propolis inhibited the neurotoxicity and apoptosis induced in cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed using E1A virus) by 24 h H2O2 exposure. Propolis also inhibited the neurotoxicity induced in RGC-5 cultures by staurosporine. Regarding the possible underlying mechanism, in pig retina homogenates propolis protected against oxidative stress (lipid peroxidation), as also did trolox (water-soluble vitamin E). In mice in vivo, propolis (100 mg kg−1; intraperitoneally administered four times) reduced the retinal damage (decrease in retinal ganglion cells and in thickness of inner plexiform layer) induced by intravitreal in vivo N-methyl-d-aspartate injection. These findings indicate that Brazilian green propolis has neuroprotective effects against retinal damage both in vitro and in vivo, and that a propolis-induced inhibition of oxidative stress may be partly responsible for these neuroprotective effects.
PMCID: PMC1375228  PMID: 16550226
apoptosis; lipid peroxidation; NMDA; retinal damage; retinal ganglion cell
16.  Beneficial effects of Brazilian propolis on type 2 diabetes in ob/ob mice 
Adipocyte  2013;2(4):227-236.
The anti-diabetic effects of Brazilian propolis were examined using ob/ob mice. Although repeated injection of an ethanol extract of Brazilian propolis (100 mg/kg, ip, twice a week for 12 weeks) did not affect body weight gain and food intake of ob/ob mice, blood glucose and plasma cholesterol levels were significantly attenuated. Moreover, the propolis extract partially restored glucose tolerance and insulin resistance, indicating anti-diabetic properties of the extract. The propolis-treated mice exhibited lower weight gain in mesenteric adipose tissue, while weight gains in inguinal and epididymal adipose tissues were not modulated. Flow cytometric and microscopic analyses suggested that the extract promoted accumulation of eosinophils into mesenteric and epididymal adipose tissues. Alternatively, the ratio of M1-like macrophages to M2-like macrophages in mesenteric adipose tissue was reduced by the propolis injection, coincident with the decrement of the number of interleukin-12A+ cells. Levels of M1 macrophage markers, such as Itgax and Il12b transcripts, were decreased in the vascular stromal fraction of mesenteric adipose tissue, whereas those of pan-macrophage markers Emr1 and Cd68 were not influenced. Microarray and subsequent gene ontology term analyses suggested that propolis attenuated immune activation in mesenteric adipose tissues. Taken together, this indicates that Brazilian propolis improves diabetes in ob/ob mice, presumably through modification of immune cells in mesenteric adipose tissues.
PMCID: PMC3774698  PMID: 24052898
propolis; type 2 diabetes; metaflammation; chronic inflammation; eosinophils; adipose tissue macrophage; ob/ob mouse
17.  Evaluating the In-vitro Antibacterial Effect of Iranian Propolis on Oral Microorganisms 
Propolis has traditionally been used in curing infections and healing wounds and burns. Current researches have shown that propolis has antibacterial, antifungal and antiviral actions however, the pharmacological activity of propolis is highly variable depending on its geographic origin. There have been few studies on the effects of Iranian propolis on the oral microorganisms. In this in-vitro study, the antimicrobial activity of the ethanolic and water extracts of the Iranian propolis (10%, w/v) from north-east area of Tehran was evaluated. Susceptibility of the oral strains tested (Streptococcus mutans ATCC 35668; Streptococcus salivarius ATCC 9222; Staphylococcus aureus ATCC 25923; Enterococcus faecalis ATCC 9854 and Lactobacillus casei ATCC 39392) was evaluated using the agar diffusion method at a concentration of 20 mg/mL of propolis and the zones of growth inhibition were measured. Antibacterial activity was determined by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) at different concentrations of propolis. The ethanolic extract showed bacteriostatic and bactericidal activity against all the strains, with MIC and MBC ranges of 250-500 µg/mL. The MIC concentration of the water extract was 500 µg/mL against S. mutans and E. faecalis. The water extract showed bactericidal activity only against S. mutans (20 mg/mL). These results indicate that the ethanolic extract is probably more useful in the control of oral biofilms and subsequent dental caries development. However, to determine the consequence of the ethanolic extract of Iranian propolis on the oral mucosa, in-vivo studies of its possible effects are needed.
PMCID: PMC3828924  PMID: 24250366
Iranian propolis; Ethanolic extracts of propolis; Water extract of propolis; Oral microorganisms
18.  Potent Antioxidative and UVB Protective Effect of Water Extract of Eclipta prostrata L. 
The Scientific World Journal  2014;2014:759039.
Oxidative stress, including Ultraviolet (UV) irradiation-induced skin damage, is involved in numerous diseases. This study demonstrates that water extract of Eclipta prostrata L. (WEP) has a potent effect in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), superoxide radicals, and chelating ferrous ion, exhibiting IC50 values of 0.23 mg/mL, 0.48 mg/mL, and 1.25 mg/mL, respectively. The WEP total phenol content was 176.45 mg gallic acid equivalents (GAE)/g sample. Chlorogenic acid, a component of the plant's active ingredients, was determined by HPLC and antioxidative assay. However, no caffeic acid, stigmasterol, or wedelolactone was present in WEP. WEP absorbs both UVA and UVB irradiation, and furthermore, the extract shows a dose-dependent response in the protection of HaCaT human keratinocytes and mouse fibroblasts 3T3 cells against UVB-induced cytotoxicity, which may result from a synergistic effect between chlorogenic acid and other active components present in WEP.
PMCID: PMC3934447  PMID: 24683358
19.  Plant Origin of Green Propolis: Bee Behavior, Plant Anatomy and Chemistry 
Propolis, a honeybee product, has gained popularity as a food and alternative medicine. Its constituents have been shown to exert pharmacological effects, such as anti-microbial, anti-inflammatory and anticancer. Shoot apices of Baccharis dracunculifolia (alecrim plant, Asteraceae) have been pointed out as sources of resin for green propolis. The present work aimed (i) to observe the collecting behavior of bees, (ii) to test the efficacy of histological analysis in studies of propolis botanical origin and (iii) to compare the chemistries of alecrim apices, resin masses and green propolis. Bee behavior was observed, and resin and propolis were microscopically analyzed by inclusion in methacrylate. Ethanol extracts of shoot apices, resin and propolis were analyzed by gas chromatography/mass spectroscopy. Bees cut small fragments from alecrim apices, manipulate and place the resulting mass in the corbiculae. Fragments were detected in propolis and identified as alecrim vestiges by detection of alecrim structures. Prenylated and non-prenylated phenylpropanoids, terpenoids and compounds from other classes were identified. Compounds so far unreported for propolis were identified, including anthracene derivatives. Some compounds were found in propolis and resin mass, but not in shoot apices. Differences were detected between male and female apices and, among apices, resin and propolis. Alecrim apices are resin sources for green propolis. Chemical composition of alecrim apices seems to vary independently of season and phenology. Probably, green propolis composition is more complex and unpredictable than previously assumed.
PMCID: PMC1062148  PMID: 15841282
africanized Apis mellifera; anthracene derivatives; Baccharis dracunculifolia; dehydrocostus lactone; prenylated phenylpropanoids
20.  Concentration-Dependent Protection by Ethanol Extract of Propolis against γ-Ray-Induced Chromosome Damage in Human Blood Lymphocytes 
Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP), including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL−1 and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL−1 of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation.
PMCID: PMC2964485  PMID: 20981159
21.  Opiate-induced constipation related to activation of small intestine opioid μ2-receptors 
AIM: To investigate the role of opioid μ-receptor subtype in opiate-induced constipation (OIC).
METHODS: The effect of loperamide on intestinal transit was investigated in mice. Ileum strips were isolated from 12-wk-old male BALB/c mice for identification of isometric tension. The ileum strips were precontracted with 1 μmol/L acetylcholine (ACh). Then, decrease in muscle tone (relaxation) was characterized after cumulative administration of 0.1-10 μmol/L loperamide into the organ bath, for a concentration-dependent study. Specific blockers or antagonists were used for pretreatment to compare the changes in loperamide-induced relaxation.
RESULTS: In addition to the delay in intestinal transit, loperamide produced a marked relaxation in isolated ileum precontracted with ACh, in a dose-dependent manner. This relaxation was abolished by cyprodime, a selective opioid μ-receptor antagonist, but not modified by naloxonazine at a dose sufficient to block opioid μ-1 receptors. Also, treatment with opioid μ-1 receptor agonist failed to modify the muscle tone. Moreover, the relaxation by loperamide was attenuated by glibenclamide at a dose sufficient to block ATP-sensitive K+ (KATP) channels, and by protein kinase A (PKA) inhibitor, but was enhanced by an inhibitor of phosphodiesterase for cyclic adenosine monophosphate (cAMP).
CONCLUSION: Loperamide induces intestinal relaxation by activation of opioid μ-2 receptors via the cAMP-PKA pathway to open KATP channels, relates to OIC.
PMCID: PMC3319967  PMID: 22493554
ATP-sensitive K+ channels; Isometric tension; Loperamide; Opioid μ-receptors; Small intestine
22.  Bioassay guided purification of the antimicrobial fraction of a Brazilian propolis from Bahia state 
Brazilian propolis type 6 (Atlantic forest, Bahia) is distinct from the other types of propolis especially due to absence of flavonoids and presence of other non-polar, long chain compounds, but presenting good in vitro and in vivo antimicrobial activity. Several authors have suggested that fatty acids found in this propolis might be responsible for its antimicrobial activity; however, so far no evidence concerning this finding has been reported in the literature. The goals of this study were to evaluate the antibacterial activity of the main pure fatty acids in the ethanolic extract and fractions and elucidate the chemical nature of the bioactive compounds isolated from Brazilian propolis type 6.
Brazilian propolis type 6 ethanolic extract (EEP), hexane fraction (H-Fr), major fatty acids, and isolated sub-fractions were analyzed using high performance liquid chromatography (HPLC), high resolution gas chromatography with flame ionization detection (HRGC-FID), and gas chromatography-mass spectrometry (GC-MS). Three sub-fractions of H-Fr were obtained through preparative HPLC. Antimicrobial activity of EEP, H-Fr, sub-fractions, and fatty acids were tested against Staphyloccus aureus ATCC 25923 and Streptococcus mutans Ingbritt 1600 using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).
EEP and H-Fr inhibited the growth of the microorganisms tested; nevertheless, no antimicrobial activity was found for the major fatty acids. The three sub-fractions (1, 2, and 3) were isolated from H-Fr by preparative HPLC and only sub-fraction 1 showed antimicrobial activity.
a) The major fatty acids tested were not responsible for the antimicrobial activity of propolis type 6; b) Sub-fraction 1, belonging to the benzophenone class, was responsible for the antimicrobial activity observed in the present study. The identification of the bioactive compound will improve the development of more efficient uses of this natural product.
PMCID: PMC2731721  PMID: 19643008
23.  Ethanolic Extract of Polish Propolis: Chemical Composition and TRAIL-R2 Death Receptor Targeting Apoptotic Activity against Prostate Cancer Cells 
Propolis possesses chemopreventive properties through direct anticancer and indirect immunomodulatory activities. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays a significant role in immunosurveillance and defense against cancer cells. TRAIL triggers apoptosis upon binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors expressed on cancer cell surface. The activation of TRAIL apoptotic signaling is considered an attractive option for cancer prevention. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new strategies to overcome this resistance. The aim of this study was to investigate the chemical composition and proapoptotic mechanism of ethanolic extract of Polish propolis (EEP-P) against cancer cells. The identification and quantification of phenolic compounds in propolis extract were performed using HPLC-DAD and UPLC-Q-TOF-MS methods. TRAIL-resistant LNCaP prostate cancer cells were treated with EEP-P and TRAIL. Cytotoxicity was measured by MTT and LDH assays. Apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptors expression was analyzed using flow cytometry. Pinobanksin, chrysin, methoxyflavanone, p-coumaric acid, ferulic acid and caffeic acid were the main phenolics found in EEP-P. Propolis sensitized LNCaP cells through upregulation of TRAIL-R2. These results suggest that EEP-P supports TRAIL-mediated immunochemoprevention in prostate cancer cells.
PMCID: PMC3845518  PMID: 24324518
24.  Propolis Reduces Phosphatidylcholine-Specific Phospholipase C Activity and Increases Annexin a7 Level in Oxidized-LDL-Stimulated Human Umbilical Vein Endothelial Cells 
To understand the mechanisms underlying the regulating dyslipidemia action of Chinese propolis and Brazilian green propolis, we investigated their effects on phosphatidylcholine-specific phospholipase C (PC-PLC) activity and annexin a7 (ANXA7) level which play crucial roles in the control of the progress of atherosclerosis. Furthermore, active oxygen species (ROS) levels, nuclear factor-KappaB p65 (NF-κB p65), and mitochondrial membrane potential (MMP) were also investigated in oxidized-LDL- (ox-LDL-) stimulated human umbilical vein endothelial cells (HUVECs). Our data indicated that the treatment of both types of propolis 12.5 μg/mL significantly increased cell viability and attenuated apoptosis rate, increased ANXA7 level, and decreased PC-PLC activity. Both types of propolis also inhibited ROS generation as well as the subsequent MMP collapse, and NF-κB p65 activation induced by ox-LDL in HUVECs. Our results also indicated that Chinese propolis and Brazilian green propolis had similar biological activities and prevented ox-LDL induced cellular dysfunction in HUVECs.
PMCID: PMC4016937  PMID: 24864152
25.  Laxative effects of agarwood on low-fiber diet-induced constipation in rats 
Agarwood (Aquilaria sinensis), well known as incense in Southeast Asia, has been used as a digestive in traditional medicine. We investigated the laxative effects of an ethanol extract of agarwood leaves (EEA) in a rat model of low-fiber diet-induced constipation.
A set of rats was bred on a normal diet while another set was placed on a low-fiber diet to induce constipation. The laxative effect of agarwood was then investigated on both sets of rats.
Pretreatment of normal rats with single dose of EEA (600 mg/kg, p.o.) significantly increased frequency and weight of stools. Also, treatments with EEA (300 and 600 mg/kg, p.o.) for 14 days caused a significant increase in stool frequency and weight. Feeding of the animals with a low-fiber diet resulted in a decrease in stool weight, frequency, and water content and also delayed carmine egestion. A single treatment with EEA (600 mg/kg) or senna (150 and 300 mg/kg) significantly increased stool frequency, weight, and water content and also accelerated carmine egestion in the model rats. Once daily administrations of EEA (150 mg/kg), for 14 days, caused a significant increase in water content of stools. The higher doses of EEA (300 and 600 mg/kg) significantly increased frequency, weight, and water content of the stools while accelerating carmine egestion in the constipated rats. Senna (150 and 300 mg/kg) produced similar effect as the higher doses of EEA but, in addition, induced severe diarrhea.
These findings indicate that EEA has a laxative effect, without causing diarrhea, in a rat model of low-fiber diet-induced constipation. These findings suggest that EEA may be highly effective on constipation as a complementary medicine in humans suffering from life style-induced constipation.
PMCID: PMC2995776  PMID: 21078136

Results 1-25 (987366)