PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (873672)

Clipboard (0)
None

Related Articles

1.  Comparison of bee products based on assays of antioxidant capacities 
Background
Bee products (including propolis, royal jelly, and bee pollen) are popular, traditional health foods. We compared antioxidant effects among water and ethanol extracts of Brazilian green propolis (WEP or EEP), its main constituents, water-soluble royal jelly (RJ), and an ethanol extract of bee pollen.
Methods
The hydrogen peroxide (H2O2)-, superoxide anion (O2·-)-, and hydroxyl radical (HO·)- scavenging capacities of bee products were measured using antioxidant capacity assays that employed the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) or aminophenyl fluorescein (APF).
Results
The rank order of antioxidant potencies was as follows: WEP > EEP > pollen, but neither RJ nor 10-hydroxy-2-decenoic acid (10-HDA) had any effects. Concerning the main constituents of WEP, the rank order of antioxidant effects was: caffeic acid > artepillin C > drupanin, but neither baccharin nor coumaric acid had any effects. The scavenging effects of caffeic acid were as powerful as those of trolox, but stronger than those of N-acetyl cysteine (NAC) or vitamin C.
Conclusion
On the basis of the present assays, propolis is the most powerful antioxidant of all the bee product examined, and its effect may be partly due to the various caffeic acids it contains. Pollen, too, exhibited strong antioxidant effects.
doi:10.1186/1472-6882-9-4
PMCID: PMC2664783  PMID: 19243635
2.  Brazilian Green Propolis Inhibits Inflammatory Angiogenesis in a Murine Sponge Model 
Angiogenesis and inflammation are persistent features of several pathological conditions. Propolis, a sticky material that honeybees collect from living plants, has been reported to have multiple biological effects including anti-inflammatory and anti-neoplasic activities. Here, we investigated the effects of water extract of green propolis (WEP) on angiogenesis, inflammatory cell accumulation and endogenous production of cytokines in sponge implants of mice over a 14-day period. Blood vessel formation as assessed by hemoglobin content and by morphometric analysis of the implants was reduced by WEP (500 mg kg−1 orally) compared to the untreated group. The levels of vascular endothelial growth factor (VEGF) increased progressively in the treated group but decreased after Day 10 in the control group. Accumulation of neutrophils and macrophages was determined by measuring myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAG) activities, respectively. Neutrophil accumulation was unaffected by propolis, but NAG activity was reduced by the treatment at Day 14. The levels TGF-β1 intra-implant increased progressively in both groups but were higher (40%) at Day 14 in the control implants. The pro-inflammatory levels of TNF-α peaked at Day 7 in the control implants, and at Day 14 in the propolis-treated group. Our results indicate that the anti-inflammatory/anti-angiogenic effects of propolis are associated with cytokine modulation.
doi:10.1093/ecam/nep197
PMCID: PMC3094767  PMID: 20007259
3.  Chemical Composition and Anti-Inflammatory Effect of Ethanolic Extract of Brazilian Green Propolis on Activated J774A.1 Macrophages 
The aim of this study was to investigate the chemical composition and anti-inflammatory effect of ethanolic extract of Brazilian green propolis (EEP-B) on LPS + IFN-γ or PMA stimulated J774A.1 macrophages. The identification and quantification of phenolic compounds in green propolis extract were performed using HPLC-DAD and UPLC-Q-TOF-MS methods. The cell viability was evaluated by MTT and LDH assays. The radical scavenging ability was determined using DPPH• and ABTS•+. ROS and RNS generation was analyzed by chemiluminescence. NO concentration was detected by the Griess reaction. The release of various cytokines by activated J774A.1 cells was measured in the culture supernatants using a multiplex bead array system based on xMAP technology. Artepillin C, kaempferide, and their derivatives were the main phenolics found in green propolis. At the tested concentrations, the EEP-B did not decrease the cell viability and did not cause the cytotoxicity. EEP-B exerted strong antioxidant activity and significantly inhibited the production of ROS, RNS, NO, cytokine IL-1α, IL-1β, IL-4, IL-6, IL-12p40, IL-13, TNF-α, G-CSF, GM-CSF, MCP-1, MIP-1α, MIP-1β, and RANTES in stimulated J774A.1 macrophages. Our findings provide new insights for understanding the anti-inflammatory mechanism of action of Brazilian green propolis extract and support its application in complementary and alternative medicine.
doi:10.1155/2013/976415
PMCID: PMC3690241  PMID: 23840273
4.  Comparison of Effects of the Ethanolic Extracts of Brazilian Propolis on Human Leukemic Cells As Assessed with the MTT Assay 
Propolis is a resinous product collected by honey bees. It was also reported that propolis has a wide variety of biological actions, including antimicrobial activity and antioxidant, anti-inflammatory, and suppressive effects of dioxin toxicity activities. The aim of this study was to compare the in vitro cytotoxic activities of green propolis (G12) and red propolis (G13) in human leukemia cells. These cells were incubated with different concentrations of propolis and 48 hours after the IC50 was calculated for each cell. The results showed that the red propolis has cytotoxic effect in vitro higher than green propolis. Red propolis was showed to be cytostatic in K562 cells and caused the same amount of apoptosis as its control Gleevec. In conclusion, these results showed that red propolis is more cytotoxic than the green propolis in a variety of human cell lines of leukemia. Red propolis may contain drugs capable of inhibiting cancer cell growth. Therefore, further isolation of respective chemical ingredients from the red propolis (G13) for identification of the activities is necessary.
doi:10.1155/2012/918956
PMCID: PMC3182072  PMID: 21966298
5.  Bioassay guided purification of the antimicrobial fraction of a Brazilian propolis from Bahia state 
Background
Brazilian propolis type 6 (Atlantic forest, Bahia) is distinct from the other types of propolis especially due to absence of flavonoids and presence of other non-polar, long chain compounds, but presenting good in vitro and in vivo antimicrobial activity. Several authors have suggested that fatty acids found in this propolis might be responsible for its antimicrobial activity; however, so far no evidence concerning this finding has been reported in the literature. The goals of this study were to evaluate the antibacterial activity of the main pure fatty acids in the ethanolic extract and fractions and elucidate the chemical nature of the bioactive compounds isolated from Brazilian propolis type 6.
Methods
Brazilian propolis type 6 ethanolic extract (EEP), hexane fraction (H-Fr), major fatty acids, and isolated sub-fractions were analyzed using high performance liquid chromatography (HPLC), high resolution gas chromatography with flame ionization detection (HRGC-FID), and gas chromatography-mass spectrometry (GC-MS). Three sub-fractions of H-Fr were obtained through preparative HPLC. Antimicrobial activity of EEP, H-Fr, sub-fractions, and fatty acids were tested against Staphyloccus aureus ATCC 25923 and Streptococcus mutans Ingbritt 1600 using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).
Results
EEP and H-Fr inhibited the growth of the microorganisms tested; nevertheless, no antimicrobial activity was found for the major fatty acids. The three sub-fractions (1, 2, and 3) were isolated from H-Fr by preparative HPLC and only sub-fraction 1 showed antimicrobial activity.
Conclusion
a) The major fatty acids tested were not responsible for the antimicrobial activity of propolis type 6; b) Sub-fraction 1, belonging to the benzophenone class, was responsible for the antimicrobial activity observed in the present study. The identification of the bioactive compound will improve the development of more efficient uses of this natural product.
doi:10.1186/1472-6882-9-25
PMCID: PMC2731721  PMID: 19643008
6.  Evaluating the In-vitro Antibacterial Effect of Iranian Propolis on Oral Microorganisms 
Propolis has traditionally been used in curing infections and healing wounds and burns. Current researches have shown that propolis has antibacterial, antifungal and antiviral actions however, the pharmacological activity of propolis is highly variable depending on its geographic origin. There have been few studies on the effects of Iranian propolis on the oral microorganisms. In this in-vitro study, the antimicrobial activity of the ethanolic and water extracts of the Iranian propolis (10%, w/v) from north-east area of Tehran was evaluated. Susceptibility of the oral strains tested (Streptococcus mutans ATCC 35668; Streptococcus salivarius ATCC 9222; Staphylococcus aureus ATCC 25923; Enterococcus faecalis ATCC 9854 and Lactobacillus casei ATCC 39392) was evaluated using the agar diffusion method at a concentration of 20 mg/mL of propolis and the zones of growth inhibition were measured. Antibacterial activity was determined by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) at different concentrations of propolis. The ethanolic extract showed bacteriostatic and bactericidal activity against all the strains, with MIC and MBC ranges of 250-500 µg/mL. The MIC concentration of the water extract was 500 µg/mL against S. mutans and E. faecalis. The water extract showed bactericidal activity only against S. mutans (20 mg/mL). These results indicate that the ethanolic extract is probably more useful in the control of oral biofilms and subsequent dental caries development. However, to determine the consequence of the ethanolic extract of Iranian propolis on the oral mucosa, in-vivo studies of its possible effects are needed.
PMCID: PMC3828924  PMID: 24250366
Iranian propolis; Ethanolic extracts of propolis; Water extract of propolis; Oral microorganisms
7.  Brazilian Propolis Suppresses Angiogenesis by Inducing Apoptosis in Tube-Forming Endothelial Cells through Inactivation of Survival Signal ERK1/2 
We recently reported that propolis suppresses tumor-induced angiogenesis through tube formation inhibition and apoptosis induction in endothelial cells. However, molecular mechanisms underlying such angiogenesis suppression by propolis have not been fully elucidated. The aim of this study was to investigate the effects of ethanol extract of Brazilian propolis (EEBP) on two major survival signals, extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt, and to elucidate whether changes in these signals were actually involved in antiangiogenic effects of the propolis. Detection by western blotting revealed that EEBP suppressed phosphorylation of ERK1/2, but not that of Akt. Pharmacological inhibition by U0126 demonstrated that ERK1/2 inactivation alone was enough to inhibit tube formation and induce apoptosis. It was also shown that EEBP and U0126 similarly induced activation of caspase-3 and cleavage of poly ADP-ribose polymerase (PARP) and lamin A/C, all of which are molecular markers of apoptosis. These results indicate that inhibition of survival signal ERK1/2, and subsequent induction of apoptosis, is a critical mechanism of angiogenesis suppression by EEBP.
doi:10.1093/ecam/nep024
PMCID: PMC3137750  PMID: 19351710
8.  Effect of Croatian propolis on diabetic nephropathy and liver toxicity in mice 
Background
In the present study, we examined the antioxidant effect of water soluble derivative of propolis (WSDP) and ethanolic (EEP) extract of propolis on renal and liver function in alloxan-induced diabetic mice. In addition, we examined whether different extract of propolis could prevent diabetic nephropathy and liver toxicity by inhibiting lipid peroxidation in vivo.
Methods
Diabetes was induced in Swiss albino mice with a single intravenous injection of alloxan (75 mg kg-1). Two days after alloxan injection, propolis preparations (50 mg kg-1 per day) were given intraperitoneally for 7 days in diabetic mice. Survival analysis and body weights as well as hematological and biochemical parameters were measured. The renal and liver oxidative stress marker malonaldehyde levels and histopathological changes were monitored in the liver and kidney of treated and control mice.
Results
Administration of propolis to diabetic mice resulted in a significant increase of body weight, haematological and immunological parameters of blood as well as 100% survival of diabetic mice. Alloxan-injected mice showed a marked increase in oxidative stress in liver and kidney homogenate, as determined by lipid peroxidation. Histopathological observation of the liver sections of alloxan-induced diabetic mice showed several lesions including cellular vacuolization, cytoplasmic eosinophilia and lymphocyte infiltrations, but with individual variability.Treatment of diabetic mice with propolis extracts results in decreased number of vacuolized cells and degree of vacuolization; propolis treatment improve the impairment of fatty acid metabolism in diabetes. Renal histology showed corpuscular, tubular and interstitial changes in alloxan-induced diabetic mice. Test components did not improve renal histopathology in diabetic mice.
Conclusions
Propolis preparations are able to attenuate diabetic hepatorenal damage, probably through its anti-oxidative action and its detoxification proccess as well as the potential to minimize the deleterious effects of free radicals on tissue. The protective role of propolis against the ROS induced damages in diabetic mice gives a hope that they may have similar protective action in humans.
doi:10.1186/1472-6882-12-117
PMCID: PMC3551731  PMID: 22866906
Alloxan; Diabetes; Mice; Propolis; Liver; Kidney
9.  3,4-Dicaffeoylquinic Acid, a Major Constituent of Brazilian Propolis, Increases TRAIL Expression and Extends the Lifetimes of Mice Infected with the Influenza A Virus 
Brazilian green propolis water extract (PWE) and its chemical components, caffeoylquinic acids, such as 3,4-dicaffeoylquinic acid (3,4-diCQA), act against the influenza A virus (IAV) without influencing the viral components. Here, we evaluated the anti-IAV activities of these compounds in vivo. PWE or PEE (Brazilian green propolis ethanol extract) at a dose of 200 mg/kg was orally administered to Balb/c mice that had been inoculated with IAV strain A/WSN/33. The lifetimes of the PWE-treated mice were significantly extended compared to the untreated mice. Moreover, oral administration of 3,4-diCQA, a constituent of PWE, at a dose of 50 mg/kg had a stronger effect than PWE itself. We found that the amount of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA in the mice that were administered 3,4-diCQA was significantly increased compared to the control group, while H1N1 hemagglutinin (HA) mRNA was slightly decreased. These data indicate that PWE, PEE or 3,4-diCQA possesses a novel and unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL.
doi:10.1155/2012/946867
PMCID: PMC3163148  PMID: 21876716
10.  Beneficial effects of Brazilian propolis on type 2 diabetes in ob/ob mice 
Adipocyte  2013;2(4):227-236.
The anti-diabetic effects of Brazilian propolis were examined using ob/ob mice. Although repeated injection of an ethanol extract of Brazilian propolis (100 mg/kg, ip, twice a week for 12 weeks) did not affect body weight gain and food intake of ob/ob mice, blood glucose and plasma cholesterol levels were significantly attenuated. Moreover, the propolis extract partially restored glucose tolerance and insulin resistance, indicating anti-diabetic properties of the extract. The propolis-treated mice exhibited lower weight gain in mesenteric adipose tissue, while weight gains in inguinal and epididymal adipose tissues were not modulated. Flow cytometric and microscopic analyses suggested that the extract promoted accumulation of eosinophils into mesenteric and epididymal adipose tissues. Alternatively, the ratio of M1-like macrophages to M2-like macrophages in mesenteric adipose tissue was reduced by the propolis injection, coincident with the decrement of the number of interleukin-12A+ cells. Levels of M1 macrophage markers, such as Itgax and Il12b transcripts, were decreased in the vascular stromal fraction of mesenteric adipose tissue, whereas those of pan-macrophage markers Emr1 and Cd68 were not influenced. Microarray and subsequent gene ontology term analyses suggested that propolis attenuated immune activation in mesenteric adipose tissues. Taken together, this indicates that Brazilian propolis improves diabetes in ob/ob mice, presumably through modification of immune cells in mesenteric adipose tissues.
doi:10.4161/adip.25608
PMCID: PMC3774698  PMID: 24052898
propolis; type 2 diabetes; metaflammation; chronic inflammation; eosinophils; adipose tissue macrophage; ob/ob mouse
11.  Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro 
Background
Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds.
Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death.
Methods
Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits.
Results
All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production.
Conclusion
Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer.
doi:10.1186/1472-6882-13-184
PMCID: PMC3725165  PMID: 23870175
Antitumor activity; Colorectal cancer; Glycolytic metabolism; HCT-15 cells; Propolis
12.  Novel Antidepressant-Like Activity of Propolis Extract Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus 
Propolis is a natural product made by honeybees that has been widely used in folk medicine with a broad spectrum of biological activities. To investigate the antidepressant-like activity of propolis extract, CD-1 mice were administered an ethanol extract of propolis (50, 100, or 200 mg/kg, p.o.) prior to the behavioral test. The propolis extract-treated group showed a dose-dependent decrease in immobility time in the FST and tail suspension test without altering locomotor activity. Propolis extract decreased the limbic hypothalamic-pituitary-adrenal axis response to the FST as indicated by an attenuated corticosterone response and decreased in c-fos immunoreactive neurons in the hippocampal dentate gyrus. Western blot analysis revealed a reduction in hippocampal glucocorticoid receptor (GR) expression following the FST, which was reversed by propolis extract. Propolis extract also increased pGR(S220)/(S234) ratio by a differential phosphorylation in S220 and S234. FST-induced downregulation of cAMP-responsive element binding protein phosphorylation at S133 (pCREB) was restored by propolis extract, showing a strong and positive relationship between pCREB and pGR(S220)/(S234) ratio. These findings suggest that the propolis extract potentiates antidepressant-like activity by enhancing GR function which is one of the therapeutic mechanisms of antidepressant; thus, propolis extract may provide a novel therapy for depression.
doi:10.1155/2013/217853
PMCID: PMC3703885  PMID: 23853655
13.  Ethanolic Extract of Polish Propolis: Chemical Composition and TRAIL-R2 Death Receptor Targeting Apoptotic Activity against Prostate Cancer Cells 
Propolis possesses chemopreventive properties through direct anticancer and indirect immunomodulatory activities. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays a significant role in immunosurveillance and defense against cancer cells. TRAIL triggers apoptosis upon binding to TRAIL-R1 (DR4) and TRAIL-R2 (DR5) death receptors expressed on cancer cell surface. The activation of TRAIL apoptotic signaling is considered an attractive option for cancer prevention. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new strategies to overcome this resistance. The aim of this study was to investigate the chemical composition and proapoptotic mechanism of ethanolic extract of Polish propolis (EEP-P) against cancer cells. The identification and quantification of phenolic compounds in propolis extract were performed using HPLC-DAD and UPLC-Q-TOF-MS methods. TRAIL-resistant LNCaP prostate cancer cells were treated with EEP-P and TRAIL. Cytotoxicity was measured by MTT and LDH assays. Apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptors expression was analyzed using flow cytometry. Pinobanksin, chrysin, methoxyflavanone, p-coumaric acid, ferulic acid and caffeic acid were the main phenolics found in EEP-P. Propolis sensitized LNCaP cells through upregulation of TRAIL-R2. These results suggest that EEP-P supports TRAIL-mediated immunochemoprevention in prostate cancer cells.
doi:10.1155/2013/757628
PMCID: PMC3845518  PMID: 24324518
14.  Brazilian Green Propolis Protects against Retinal Damage In Vitro and In Vivo 
Propolis, a honeybee product, has gained popularity as a food and alternative medicine. Its constituents have been shown to exert pharmacological (anticancer, antimicrobial and anti-inflammatory) effects. We investigated whether Brazilian green propolis exerts neuroprotective effects in the retina in vitro and/or in vivo. In vitro, retinal damage was induced by 24 h hydrogen peroxide (H2O2) exposure, and cell viability was measured by Hoechst 33342 and YO-PRO-1 staining or by a resazurin–reduction assay. Propolis inhibited the neurotoxicity and apoptosis induced in cultured retinal ganglion cells (RGC-5, a rat ganglion cell line transformed using E1A virus) by 24 h H2O2 exposure. Propolis also inhibited the neurotoxicity induced in RGC-5 cultures by staurosporine. Regarding the possible underlying mechanism, in pig retina homogenates propolis protected against oxidative stress (lipid peroxidation), as also did trolox (water-soluble vitamin E). In mice in vivo, propolis (100 mg kg−1; intraperitoneally administered four times) reduced the retinal damage (decrease in retinal ganglion cells and in thickness of inner plexiform layer) induced by intravitreal in vivo N-methyl-d-aspartate injection. These findings indicate that Brazilian green propolis has neuroprotective effects against retinal damage both in vitro and in vivo, and that a propolis-induced inhibition of oxidative stress may be partly responsible for these neuroprotective effects.
doi:10.1093/ecam/nek005
PMCID: PMC1375228  PMID: 16550226
apoptosis; lipid peroxidation; NMDA; retinal damage; retinal ganglion cell
15.  Plant Origin of Green Propolis: Bee Behavior, Plant Anatomy and Chemistry 
Propolis, a honeybee product, has gained popularity as a food and alternative medicine. Its constituents have been shown to exert pharmacological effects, such as anti-microbial, anti-inflammatory and anticancer. Shoot apices of Baccharis dracunculifolia (alecrim plant, Asteraceae) have been pointed out as sources of resin for green propolis. The present work aimed (i) to observe the collecting behavior of bees, (ii) to test the efficacy of histological analysis in studies of propolis botanical origin and (iii) to compare the chemistries of alecrim apices, resin masses and green propolis. Bee behavior was observed, and resin and propolis were microscopically analyzed by inclusion in methacrylate. Ethanol extracts of shoot apices, resin and propolis were analyzed by gas chromatography/mass spectroscopy. Bees cut small fragments from alecrim apices, manipulate and place the resulting mass in the corbiculae. Fragments were detected in propolis and identified as alecrim vestiges by detection of alecrim structures. Prenylated and non-prenylated phenylpropanoids, terpenoids and compounds from other classes were identified. Compounds so far unreported for propolis were identified, including anthracene derivatives. Some compounds were found in propolis and resin mass, but not in shoot apices. Differences were detected between male and female apices and, among apices, resin and propolis. Alecrim apices are resin sources for green propolis. Chemical composition of alecrim apices seems to vary independently of season and phenology. Probably, green propolis composition is more complex and unpredictable than previously assumed.
doi:10.1093/ecam/neh055
PMCID: PMC1062148  PMID: 15841282
africanized Apis mellifera; anthracene derivatives; Baccharis dracunculifolia; dehydrocostus lactone; prenylated phenylpropanoids
16.  Artepillin C, a Major Ingredient of Brazilian Propolis, Induces a Pungent Taste by Activating TRPA1 Channels 
PLoS ONE  2012;7(11):e48072.
Brazilian green propolis is a popular health supplement because of its various biological properties. The ethanol extract of Brazilian green propolis (EEBP) is characteristic for its herb-like smell and unique pungent taste. However, the ingredients responsible for its pungency have not yet been identified. This study provides the first evidence that artepillin C is the main pungent ingredient in EEBP and that it potently activates human transient receptor potential ankyrin 1 (TRPA1) channels. EEBP was fractionated using column chromatography with a step gradient elution of an ethanol-water solution, and the fractions having the pungent taste were determined by sensory tests. HPLC analysis revealed that the pungent fraction was composed primarily of artepillin C, a prenylated derivative of cinnamic acid. Artepillin C was also identified as the pungent compound of EEBP by organoleptic examiners. Furthermore, the effects of artepillin C and other cinnamic acids found in EEBP on TRPA1 channels were examined by calcium imaging and plate reader-based assays in human TRPA1-expressing cells to investigate the molecular mechanisms underlying their pungent tastes. Artepillin C and baccharin activated the TRPA1 channel strongly, whereas drupanin caused a slight activation and p-coumaric acid showed no activation. Because the EC50 values of artepillin C, baccharin, and allyl isothiocyanate were 1.8 µM, 15.5 µM, and 6.2 µM, respectively, artepillin C was more potent than the typical TRPA1 agonist allyl isothiocyanate. These findings strongly indicate that artepillin C is the main pungent ingredient in EEBP and stimulates a pungent taste by activating TRPA1 channels.
doi:10.1371/journal.pone.0048072
PMCID: PMC3487895  PMID: 23133611
17.  The Beginnings of Modern Research on Propolis in Poland 
Propolis studies in Poland were initiated by Professor Stan Scheller in the 1960s. It was a team of Polish researchers who developed a method of introducing hydrophobic ethanol extracts of propolis (EEP) into aqueous solutions, which enabled the study of their biological properties. The studies performed in Poland showed that EEP possesses antioxidant, radioprotective, and immunostimulating properties. It was possible to demonstrate antibacterial activity of propolis on Gram-positive bacteria, virulent Mycobacterium tuberculosis, and protozoa as well as stimulating activity of aqueous extracts of propolis on proliferation of cells in vitro. Polish investigators showed that propolis stimulates regeneration of tissue, acts as antioxidant and radioprotector, has strong immunostimulative properties, affects animals' life span by extending it, and improves intellectual and life functions of the elderly.
doi:10.1155/2013/983974
PMCID: PMC3706025  PMID: 23864903
18.  Concentration-Dependent Protection by Ethanol Extract of Propolis against γ-Ray-Induced Chromosome Damage in Human Blood Lymphocytes 
Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP), including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL−1 and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL−1 of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation.
doi:10.1155/2011/174853
PMCID: PMC2964485  PMID: 20981159
19.  In vitro antibacterial effects of glass-ionomer cement containing ethanolic extract of propolis on Streptococcus mutans 
European Journal of Dentistry  2012;6(4):428-433.
Objective:
The aim of this study was to evaluate the antibacterial property of glass-ionomer cement (GIC) containing propolis against Streptococcus mutans and its effect on the in vitro S. mutans biofilm formation.
Methods:
Ethanolic extract of propolis (EEP) was prepared at two concentrations as 25 and 50%. Three different experimental GIC disks were prepared using pure liquid and liquid solutions diluted with 25 and 50 percent of EEP concentrations. Minimum inhibitory concentration (MIC) of EEP on the growth of S. mutans ATCC 25175 was determined by using agar dilution method. Agar diffusion test and an in vitro S. mutans biofilm assay for GIC disks with and without EEP were performed.
Results:
MIC values of Turkish propolis for S. mutans ATCC 25175 was found as 25 μg/mL. Experimental GICs containing propolis exhibited inhibition zones and their dry biofilm weights were less than the pure GIC. The bacterial density was lower in the GIC containing 50% EEP.
Conclusions:
A distinct antibacterial and antibiofilm efficacy of propolis containing GIC on S. mutans has been observed. Although further research is needed to show clinical results, antibacterial GIC containing propolis would be a promising material for restoration.
PMCID: PMC3474559  PMID: 23077424
Propolis; Streptococcus mutans; glass-ionomer cement; biofilm formation; antibacterial effect
20.  Assessment of the Mutagenic Activity of Extracts of Brazilian Propolis in Topical Pharmaceutical Formulations on Mammalian Cells In Vitro and In Vivo 
Propolis possesses various biological activities such as antibacterial, antifungal, anti-inflammatory, anesthetic and antioxidant properties. A topically applied product based on Brazilian green propolis was developed for the treatment of burns. For such substance to be used more safely in future clinical applications, the present study evaluated the mutagenic potential of topical formulations supplemented with green propolis extract (1.2, 2.4 and 3.6%) based on the analysis of chromosomal aberrations and of micronuclei. In the in vitro studies, 3-h pulse (G1 phase of the cell cycle) and continuous (20 h) treatments were performed. In the in vivo assessment, the animals were injured on the back and then submitted to acute (24 h), subacute (7 days) and subchronic (30 days) treatments consisting of daily dermal applications of gels containing different concentrations of propolis. Similar frequencies of chromosomal aberrations were observed for cultures submitted to 3-h pulse and continuous treatment with gels containing different propolis concentrations and cultures not submitted to any treatment. However, in the continuous treatment cultures treated with the 3.6% propolis gel presented significantly lower mitotic indices than the negative control. No statistically significant differences in the frequencies of micronuclei were observed between animals treated with gels containing different concentrations of propolis and the negative control for the three treatment times. Under the present conditions, topical formulations containing different concentrations of green propolis used for the treatment of burns showed no mutagenic effect in either test system, but 3.6% propolis gel was found to be cytotoxic in the in vitro test.
doi:10.1093/ecam/nen049
PMCID: PMC3135258  PMID: 18955353
21.  In vitro Cytotoxic Effect of Brazilian Green Propolis on Human Laryngeal Epidermoid Carcinoma (HEp-2) Cells 
Propolis is a sticky dark-colored material showing a very complex chemical composition that honeybees collect from plants. It has been used in folk medicine since ancient times, due to several biological properties, such as antimicrobial, anti-inflammatory, antioxidant and immunomodulatory activities, among others. Its antitumor action in vivo and in vitro has also been reported, using propolis extracts or its isolated compounds. The goal of this work was to evaluate propolis's cytotoxic action in vitro on human laryngeal epidermoid carcinoma (Hep-2) cells. These cells were incubated with different concentrations of this bee product for different time periods, and morphology and the number of viable HEp-2 cells analyzed. Data showed that propolis exhibited a cytotoxic effect in vitro against HEp-2 cells, in a dose- and time-dependent way. Propolis solvent had no effects on morphology and number of viable cells, proving that the cytotoxic effects were exclusively due to propolis components. Since humans have been using propolis for a long time, further assays will provide a better comprehension of propolis's antitumor action.
doi:10.1093/ecam/nem147
PMCID: PMC2781777  PMID: 18955250
antitumor action; HEp-2 cells; propolis
22.  Evaluation of a Propolis Water Extract Using a Reliable RP-HPLC Methodology and In Vitro and In Vivo Efficacy and Safety Characterisation 
Since the beginning of propolis research, several groups have studied its antibacterial, antifungal, and antiviral properties. However, most of these studies have only employed propolis ethanolic extract (PEE) leading to little knowledge about the biological activities of propolis water extract (PWE). Based on this, in a previous study, we demonstrated the anti-inflammatory and immunomodulatory activities of PWE. In order to better understand the equilibrium between effectiveness and toxicity, which is essential for a new medicine, the characteristics of PWE were analyzed. We developed and validated an RP-HPLC method to chemically characterize PWE and PEE and evaluated the in vitro antioxidant/antimicrobial activity for both extracts and the safety of PWE via determining genotoxic potential using in vitro and in vivo mammalian micronucleus assays. We have concluded that the proposed analytical methodology was reliable, and both extracts showed similar chemical composition. The extracts presented antioxidant and antimicrobial effects, while PWE demonstrated higher antioxidant activity and more efficacious for the most of the microorganisms tested than PEE. Finally, PWE was shown to be safe using micronucleus assays.
doi:10.1155/2013/670451
PMCID: PMC3655582  PMID: 23710228
23.  Molecular Mechanisms Underlying the In Vitro Anti-Inflammatory Effects of a Flavonoid-Rich Ethanol Extract from Chinese Propolis (Poplar Type) 
China produces the greatest amount of propolis but there is still lack of basic studies on its pharmacological mechanisms. Our previous study found that ethanol extract from Chinese propolis (EECP) exerted excellent anti-inflammatory effects in vivo but mechanisms of action were elusive. To further clarify the possible mechanisms underlying the anti-inflammatory effects of Chinese propolis (poplar type), we utilized EECP to analyze its chemical composition and evaluated its potential anti-inflammatory effects in vitro. High-performance liquid chromatography (HPLC) profile indicated that EECP contained abundant flavonoids, including rutin, myricetin, quercetin, kaempferol, apigenin, pinocembrin, chrysin, and galangin. Next we found that EECP could significantly inhibit the production of NO, IL-1β, and IL-6 in lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells and suppress mRNA expression of iNOS, IL-1β, and IL-6 in a time- and dose-dependent manner. Furthermore, we found that EECP could suppress the phosphorylation of IκBα and AP-1 but did not affect IκBα's degradation. In addition, using a reporter assay, we found that EECP could block the activation of NF-κB in TNF-α-stimulated HEK 293T cells. Our findings give new insights for understanding the mechanisms involved in the anti-inflammatory effects by Chinese propolis and provide additional references for using propolis in alternative and complementary therapies.
doi:10.1155/2013/127672
PMCID: PMC3562570  PMID: 23401705
24.  Effect of Australian Propolis from Stingless Bees (Tetragonula carbonaria) on Pre-Contracted Human and Porcine Isolated Arteries 
PLoS ONE  2013;8(11):e81297.
Bee propolis is a mixture of plant resins and bee secretions. While bioactivity of honeybee propolis has been reported previously, information is limited on propolis from Australian stingless bees (Tetragonula carbonaria). The aim of this study was to investigate possible vasomodulatory effects of propolis in KCl-precontracted porcine coronary arteries using an ex vivo tissue bath assay. Polar extracts of propolis produced a dose-dependent relaxant response (EC50=44.7±7.0 μg/ml), which was unaffected by endothelial denudation, suggesting a direct effect on smooth muscle. Propolis markedly attenuated a contractile response to Ca2+ in vessels that were depolarised with 60 mM KCl, in Ca2+-free Krebs solution. Propolis (160 µg/ml) reduced vascular tone in KCl pre-contracted vessels to near-baseline levels over 90 min, and this effect was partially reversible with 6h washout. Some loss in membrane integrity, but no loss in mitochondrial function was detected after 90 min exposure of human cultured umbilical vein endothelial cells to 160 µg/ml propolis. We conclude that Australian stingless bee (T. carbonaria) propolis relaxes porcine coronary artery in an endothelial-independent manner that involves inhibition of voltage-gated Ca2+ channels. This effect is partially and slowly reversible upon washout. Further studies are required to determine the therapeutic potential of Australian stingless bee propolis for conditions in which vascular supply is compromised.
doi:10.1371/journal.pone.0081297
PMCID: PMC3829943  PMID: 24260567
25.  Brazilian Green Propolis: Effects In Vitro and In Vivo on Trypanosoma cruzi 
The composition of a Brazilian green propolis ethanolic extract (Et-Bra) and its effect on Trypanosoma cruzi trypomastigotes and other pathogenic microorganisms have already been reported. Here, we further investigated Et-Bra targets in T. cruzi and its effect on experimental infection of mice. The IC50/4 days for inhibition of amastigote proliferation was 8.5 ± 1.8 μg mL−1, with no damage to the host cells. In epimastigotes Et-Bra induced alterations in reservosomes, Golgi complex and mitochondrion. These effects were confirmed by flow cytometry analysis. In trypomastigotes, Et-Bra led to the loss of plasma membrane integrity. The in vitro studies indicate that Et-Bra interferes in the functionality of the plasma membrane in trypomastigotes and of reservosomes and mitochondrion in epimastigotes. Acutely infected mice were treated orally with Et-Bra and the parasitemia, mortality and GPT, GOT, CK and urea levels were monitored. The extract (25–300 mg kg−1 body weight/day for 10 days) reduced the parasitemia, although not at significant levels; increased the survival of the animals and did not induce any hepatic, muscular lesion or renal toxicity. Since Et-Bra was not toxic to the animals, it could be assayed in combination with other drugs. Et-Bra could be a potential metacyclogenesis blocker, considering its effect on reservosomes, which are an important energy source during parasite differentiation.
doi:10.1093/ecam/nep014
PMCID: PMC3094871  PMID: 19213854

Results 1-25 (873672)