Search tips
Search criteria

Results 1-25 (947422)

Clipboard (0)

Related Articles

1.  Identification of a Novel “Almost Neutral” Mu Opioid Receptor Antagonist in CHO Cells Expressing the Cloned Human Mu Opioid Receptor 
Synapse (New York, N.Y.)  2010;64(4):280-288.
The basal (constitutive) activity of G protein-coupled receptors allows for the measurement of inverse agonist activity. Some competitive antagonists turn into inverse agonists under conditions where receptors are constitutively active. In contrast, neutral antagonists have no inverse agonist activity, and they block both agonist and inverse agonist activity. The mu opioid receptor (MOR) demonstrates detectable constitutive activity only after a state of dependence is produced by chronic treatment with a MOR agonist. We therefore sought to identify novel MOR inverse agonists, and novel neutral MOR antagonists in both untreated and agonist-treated MOR cells. CHO cells expressing the cloned human mu receptor (hMOR-CHO cells) were incubated for 20 hr with medium (control) or 10 μM (2S,4aR,6aR,7R,9S,10aS,10bR)-9-(benzoyloxy)-2-(3-furanyl)dodecahydro-6a,10b-dimethyl-4,10-dioxo-2H-naphtho-[2,1-c]pyran-7-carboxylic acid methyl ester (herkinorin, HERK). HERK-treatment generates a high degree of basal signaling and enhances the ability to detect inverse agonists. [35S]-GTP-γ-S assays were conducted using established methods. We screened 21 MOR “antagonists” using membranes prepared from HERK-treated hMOR-CHO cells. All antagonists, including CTAP and 6β-naltrexol, were inverse agonists. However, LTC-2 7 4 ( (-)-3-cyclopropylmethyl-2,3,4,4aα,5,6,7,7aα-octahydro-1H-benzofuro[3,2-e]isoquinolin-9-ol)) showed the lowest efficacy as an inverse agonist, and, at concentrations less than 5 nM, had minimal effects on basal [35S]-GTP-γ-S binding. Other efforts in this study identified KC-2-009 ((+)-3-((1R,5S)-2-((Z)-3-Phenylallyl)-2-azabicyclo[3.3.1]nonan-5-yl)phenol hydrochloride) as an inverse agonist at untreated MOR cells. In HERK-treated cells, KC-2-009 had the highest efficacy as an inverse agonist. In summary, we identified a novel and selective MOR inverse agonist (KC-2-009), and a novel MOR antagonist (LTC-274) that shows the least inverse agonist activity among 21 MOR antagonists. LTC-274 is a promising lead compound for developing a true MOR neutral antagonist.
PMCID: PMC2821452  PMID: 19953652
2.  Translation of Structure-Activity Relationships from Cyclic Mixed Efficacy Opioid Peptides to Linear Analogues 
Biopolymers  2014;102(1):107-114.
Most opioid analgesics used in the treatment of pain are mu opioid receptor (MOR) agonists. While effective, there are significant drawbacks to opioid use, including the development of tolerance and dependence. However, the co-administration of a MOR agonist with a delta opioid receptor (DOR) antagonist slows the development of MOR-related side effects, while maintaining analgesia. We have previously reported a series of cyclic mixed efficacy MOR agonist/DOR antagonist ligands. Here we describe the transfer of key features from these cyclic analogs to linear sequences. Using the linear MOR/DOR agonist, Tyr-DThr-Gly-Phe-Leu-Ser-NH2 (DTLES), as a lead scaffold, we replaced Phe4 with bulkier and/or constrained aromatic residues shown to confer DOR antagonism in our cyclic ligands. These replacements failed to confer DOR antagonism in the DTLES analogs, presumably because the more flexible linear ligands can adopt binding poses that will fit in the narrow binding pocket of the active conformations of both MOR and DOR. Nonetheless, the pharmacological profile observed in this series, high affinity and efficacy for MOR and DOR with selectivity relative to KOR, has also been shown to reduce the development of unwanted side effects. We further modified our lead MOR/DOR agonist with a C-terminal glucoserine to improve bioavailability. The resulting ligand displayed high efficacy and potency at both MOR and DOR and no efficacy at KOR.
PMCID: PMC4132888  PMID: 24436042
3.  A pharmacological comparison of the cloned frog and human mu opioid receptors reveals differences in opioid affinity and function 
European journal of pharmacology  2008;599(1-3):36-43.
This study presents a direct comparison of the ligand binding and signaling profiles of a mammalian and non-mammalian mu opioid receptor. Opioid ligand binding and agonist potencies were determined for an amphibian (Rana pipiens) mu opioid receptor (rpMOR) and the human mu opioid receptor (hMOR) in transfected, intact Chinese hamster ovary (CHO) cells. Identical conditions were employed such that statistically meaningful differences between the two receptors could be determined. Identifying these differences is an important first step in understanding how evolutionary changes affect ligand binding and signaling in vertebrate opioid receptors. As expected, the rank of opioid ligand affinity for rpMOR and hMOR were consistent with the ligands’ previously characterized type-selectivity. However, most of the opioid ligands tested had significant differences in affinity for rpMOR and hMOR. For example, the mu-selective agonist, DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), had a 10.9-fold greater affinity for hMOR (Ki = 268 nM) than rpMOR (Ki = 2,914 nM). In addition, differences in signaling between these receptors were found by measuring inhibition of cAMP accumulation by morphine or DAMGO. DAMGO was significantly more potent (13.6-fold) in CHO cells expressing hMOR versus those expressing rpMOR. In addition, a significantly greater maximal inhibition was elicited by both opioid agonists in cells expressing hMOR. In summary, this study supports an ongoing effort to better understand how vertebrate evolution has shaped opioid receptor properties and function.
PMCID: PMC2600596  PMID: 18930720
opioid; mu opioid receptor; amphibian; ligand binding; cAMP inhibition
4.  Enhanced spontaneous activity of the mu opioid receptor by cysteine mutations: characterization of a tool for inverse agonist screening. 
BMC Pharmacology  2003;3:14.
The concept of spontaneous- or constitutive-activity has become widely accepted and verified for numerous G protein-coupled receptors and this ligand-independent activity is also acknowledged to play a role in some pathologies. Constitutive activity has been reported for the mu opioid receptor. In some cases the increase in receptor basal activity was induced by chronic morphine administration suggesting that constitutive activity may contribute to the development of drug tolerance and dependence. Constitutively active mutants represent excellent tools for gathering information about the mechanisms of receptor activation and the possible physiological relevance of spontaneous receptor activity. The high basal level of activity of these mutants also allows for easier identification of inverse agonists, defined as ligands able to suppress spontaneous receptor activity, and leads to a better comprehension of their modulatory effects as well as possible in vivo use.
Cysteines 348 and 353 of the human mu opioid receptor (hMOR) were mutated into alanines and Ala348,353 hMOR was stably expressed in HEK 293 cells. [35S] GTPγS binding experiments revealed that Ala348,353 hMOR basal activity was significantly higher when compared to hMOR, suggesting that the mutant receptor is constitutively active. [35S] GTPγS binding was decreased by cyprodime or CTOP indicating that both ligands have inverse agonist properties. All tested agonists exhibited binding affinities higher for Ala348,353 hMOR than for hMOR, with the exception of endogenous opioid peptides. Antagonist affinity remained virtually unchanged except for CTOP and cyprodime that bound the double mutant with higher affinities. The agonists DAMGO and morphine showed enhanced potency for the Ala348,353 hMOR receptor in [35S] GTPγS experiments. Finally, pretreatment with the antagonists naloxone, cyprodime or CTOP significantly increased Ala348,353 hMOR expression.
Taken together our data indicate that the double C348/353A mutation results in a constitutively active conformation of hMOR that is still activated by agonists. This is the first report of a stable CAM of hMOR with the potential to screen for inverse agonists.
PMCID: PMC317294  PMID: 14641935
ACS chemical biology  2011;6(12):1375-1381.
The development of tolerance to and dependence on opioid analgesics greatly reduces their long-term usefulness. Previous studies have demonstrated that co-administration of a mu opioid receptor (MOR) agonist and delta opioid receptor (DOR) antagonist can decrease MOR agonist induced tolerance and dependence development after chronic exposure. Clinically, a single ligand displaying multiple efficacies (e.g. MOR agonism concurrently with DOR antagonism) would be of increased value over two drugs administered simultaneously. Guided by modeling of receptor-ligand complexes we have developed a series of potent non-selective opioid tetrapeptides that have differing efficacy at MOR and DOR. In particular, our lead peptide (KSK-103) binds with equal affinity to MOR and DOR but acts as a MOR agonist with similar efficacy but greater potency than morphine and a DOR antagonist in cellular assays measuring both G protein stimulation and adenylyl cyclase inhibition.
PMCID: PMC3241856  PMID: 21958158
6.  Functional Characteristics of the Naked Mole Rat μ-Opioid Receptor 
PLoS ONE  2013;8(11):e79121.
While humans and most animals respond to µ-opioid receptor (MOR) agonists with analgesia and decreased aggression, in the naked mole rat (NMR) opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1) can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3'-5'-cyclic adenosine monophosphate (cAMP) enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR's extreme reaction to opioids.
PMCID: PMC3842265  PMID: 24312175
7.  Structure activity relationship studies of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3′-carboxamido)morphinan (NAQ) analogues as potent opioid receptor ligands: preliminary results on the role of electronic characteristics for affinity and function 
17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3′-carboxamido)morphinan (NAQ) was previously designed following the “message–address” concept and was identified as a potent and highly selective mu opioid receptor (MOR) ligand based on its pharmacological profile. We here report the preliminary structure activity relationship (SAR) studies of this novel lead compound. For the new ligands synthesized as NAQ analogues, their binding assay results showed that a longer spacer and a saturated ring system of the side chain were unfavorable for their MOR selectivity over the kappa and delta opioid receptors. In contrast, substitutions with different electronic properties at either 1′- or 4′-position of the isoquinoline ring of the side chain were generally acceptable for reasonable MOR selectivity. The majority of NAQ analogues retained low efficacy at the MOR compared to NAQ in the 35S-GTP[γS] binding assays while electron-withdrawing groups at 1′-position of the isoquinoline ring induced higher MOR stimulation than electron-donating groups did. In summary, the electronic characteristics of substituents at 1′- or 4′-position of the isoquinoline ring in NAQ seem to be critical and need to be further tuned up to achieve higher MOR selectivity and lower MOR stimulation.
PMCID: PMC3776595  PMID: 23948248
MOR; antagonists; NAQ; SAR
8.  Design, Synthesis, and Biological Evaluation of 6α- and 6β-N-Heterocyclic Substituted Naltrexamine Derivatives as μ Opioid Receptor Selective Antagonists 
Journal of medicinal chemistry  2009;52(5):1416-1427.
Opioid receptor selective antagonists are important pharmacological probes in opioid receptor structural characterization and opioid agonist functional study. Thus far, a nonpeptidyl, highly selective and reversible μ opioid receptor (MOR) antagonist is unavailable. On the basis of our modeling studies, a series of novel naltrexamine derivatives have been designed and synthesized. Among them, two compounds were identified as leads based on the results of in vitro and in vivo assays. Both of them displayed high binding affinity for the MOR (Ki = 0.37 and 0.55 nM). Compound 6 (NAP) showed over 700-fold selectivity for the MOR over the δ receptor (DOR) and more than 150-fold selectivity over the κ receptor (KOR). Compound 9 (NAQ) showed over 200-fold selectivity for the MOR over the DOR and approximately 50-fold selectivity over the KOR. Thus these two novel ligands will serve as leads to further develop more potent and selective antagonists for the MOR.
PMCID: PMC2880636  PMID: 19199782
9.  Design, Synthesis, and Validation of a β-Turn Mimetic Library Targeting Protein–Protein and Peptide–Receptor Interactions 
Journal of the American Chemical Society  2011;133(26):10184-10194.
The design and synthesis of a β-turn mimetic library as a key component of a small molecule library targeting the major recognition motifs involved in protein–protein interactions is described. Analysis of a geometric characterization of 10,245 β-turns in the protein data bank (PDB) suggested that trans-pyrrolidine-3,4-dicarboxamide could serve as an effective and synthetically accessible library template. This was confirmed by initially screening select compounds against a series of peptide-activated GPCRs that recognize a β-turn structure in their endogenous ligands. This validation study was highlighted by identification of both nonbasic and basic small molecules with high affinities (Ki = 390 nM and 23 nM, respectively) for the κ-opioid receptor (KOR). Consistent with the screening capabilities of collaborators and following the design validation, the complete library was assembled as 210 mixtures of 20 compounds, providing a total of 4,200 compounds designed to mimic all possible permutations of 3 of the 4 residues in a naturally occurring β-turn. Unique to the design and because of the C2 symmetry of the template, a typical 20 × 20 × 20-mix (8,000 compounds prepared as 400 mixtures of 20 compounds) needed to represent 20 variations in the side chains of three amino acid residues reduces to a 210 × 20-mix, thereby simplifying the library synthesis and subsequent screening. The library was prepared using a solution-phase synthetic protocol with liquid–liquid or liquid–solid extractions for purification and conducted on a scale that insures its long-term availability for screening campaigns. Screening the library against the human opioid receptors (KOR, MOR, and DOR) identified not only the activity of library members expected to mimic the opioid receptor peptide ligands, but also additional side chain combinations that provided enhanced receptor binding selectivities (>100-fold) and affinities (as low as Ki = 80 nM for KOR). A key insight to emerge from the studies is that the phenol of Tyr in endogenous ligands bearing the H-Tyr-Pro-Trp/Phe-Phe-NH2 β-turn is important for MOR binding, but may not be important for KOR (accommodated, but not preferred) and that the resulting selectivity for KOR observed with its removal can be increased by replacing the phenol OH with a chlorine substituent further enhancing KOR affinity.
PMCID: PMC3134394  PMID: 21609016
10.  A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism 
Molecular Pain  2010;6:33.
Opioids are the most widely used analgesics for the treatment of clinical pain. They produce their therapeutic effects by binding to μ-opioid receptors (MORs), which are 7 transmembrane domain (7TM) G-protein-coupled receptors (GPCRs), and inhibiting cellular activity. However, the analgesic efficacy of opioids is compromised by side-effects such as analgesic tolerance, dependence and opioid-induced hyperalgesia (OIH). In contrast to opioid analgesia these side effects are associated with cellular excitation. Several hypotheses have been advanced to explain these phenomena, yet the molecular mechanisms underlying tolerance and OIH remain poorly understood.
We recently discovered a new human alternatively spliced isoform of MOR (MOR1K) that is missing the N-terminal extracellular and first transmembrane domains, resulting in a 6TM GPCR variant. To characterize the pattern of cellular transduction pathways activated by this human MOR1K isoform, we conducted a series of pharmacological and molecular experiments. Results show that stimulation of MOR1K with morphine leads to excitatory cellular effects. In contrast to stimulation of MOR1, stimulation of MOR1K leads to increased Ca2+ levels as well as increased nitric oxide (NO) release. Immunoprecipitation experiments further reveal that unlike MOR1, which couples to the inhibitory Gαi/o complex, MOR1K couples to the stimulatory Gαs complex.
The major MOR1 and the alternative MOR1K isoforms mediate opposite cellular effects in response to morphine, with MOR1K driving excitatory processes. These findings warrant further investigations that examine animal and human MORK1 expression and function following chronic exposure to opioids, which may identify MOR1K as a novel target for the development of new clinically effective classes of opioids that have high analgesic efficacy with diminished ability to produce tolerance, OIH, and other unwanted side-effects.
PMCID: PMC2894766  PMID: 20525224
11.  Analysis of multiple compound–protein interactions reveals novel bioactive molecules 
The authors use machine learning of compound-protein interactions to explore drug polypharmacology and to efficiently identify bioactive ligands, including novel scaffold-hopping compounds for two pharmaceutically important protein families: G-protein coupled receptors and protein kinases.
We have demonstrated that machine learning of multiple compound–protein interactions is useful for efficient ligand screening and for assessing drug polypharmacology.This approach successfully identified novel scaffold-hopping compounds for two pharmaceutically important protein families: G-protein-coupled receptors and protein kinases.These bioactive compounds were not detected by existing computational ligand-screening methods in comparative studies.The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes.
The discovery of novel bioactive molecules advances our systems-level understanding of biological processes and is crucial for innovation in drug development. Perturbations of biological systems by chemical probes provide broader applications not only for analysis of complex systems but also for intentional manipulations of these systems. Nevertheless, the lack of well-characterized chemical modulators has limited their use. Recently, chemical genomics has emerged as a promising area of research applicable to the exploration of novel bioactive molecules, and researchers are currently striving toward the identification of all possible ligands for all target protein families (Wang et al, 2009). Chemical genomics studies have shown that patterns of compound–protein interactions (CPIs) are too diverse to be understood as simple one-to-one events. There is an urgent need to develop appropriate data mining methods for characterizing and visualizing the full complexity of interactions between chemical space and biological systems. However, no existing screening approach has so far succeeded in identifying novel bioactive compounds using multiple interactions among compounds and target proteins.
High-throughput screening (HTS) and computational screening have greatly aided in the identification of early lead compounds for drug discovery. However, the large number of assays required for HTS to identify drugs that target multiple proteins render this process very costly and time-consuming. Therefore, interest in using in silico strategies for screening has increased. The most common computational approaches, ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS; Oprea and Matter, 2004; Muegge and Oloff, 2006; McInnes, 2007; Figure 1A), have been used for practical drug development. LBVS aims to identify molecules that are very similar to known active molecules and generally has difficulty identifying compounds with novel structural scaffolds that differ from reference molecules. The other popular strategy, SBVS, is constrained by the number of three-dimensional crystallographic structures available. To circumvent these limitations, we have shown that a new computational screening strategy, chemical genomics-based virtual screening (CGBVS), has the potential to identify novel, scaffold-hopping compounds and assess their polypharmacology by using a machine-learning method to recognize conserved molecular patterns in comprehensive CPI data sets.
The CGBVS strategy used in this study was made up of five steps: CPI data collection, descriptor calculation, representation of interaction vectors, predictive model construction using training data sets, and predictions from test data (Figure 1A). Importantly, step 1, the construction of a data set of chemical structures and protein sequences for known CPIs, did not require the three-dimensional protein structures needed for SBVS. In step 2, compound structures and protein sequences were converted into numerical descriptors. These descriptors were used to construct chemical or biological spaces in which decreasing distance between vectors corresponded to increasing similarity of compound structures or protein sequences. In step 3, we represented multiple CPI patterns by concatenating these chemical and protein descriptors. Using these interaction vectors, we could quantify the similarity of molecular interactions for compound–protein pairs, despite the fact that the ligand and protein similarity maps differed substantially. In step 4, concatenated vectors for CPI pairs (positive samples) and non-interacting pairs (negative samples) were input into an established machine-learning method. In the final step, the classifier constructed using training sets was applied to test data.
To evaluate the predictive value of CGBVS, we first compared its performance with that of LBVS by fivefold cross-validation. CGBVS performed with considerably higher accuracy (91.9%) than did LBVS (84.4%; Figure 1B). We next compared CGBVS and SBVS in a retrospective virtual screening based on the human β2-adrenergic receptor (ADRB2). Figure 1C shows that CGBVS provided higher hit rates than did SBVS. These results suggest that CGBVS is more successful than conventional approaches for prediction of CPIs.
We then evaluated the ability of the CGBVS method to predict the polypharmacology of ADRB2 by attempting to identify novel ADRB2 ligands from a group of G-protein-coupled receptor (GPCR) ligands. We ranked the prediction scores for the interactions of 826 reported GPCR ligands with ADRB2 and then analyzed the 50 highest-ranked compounds in greater detail. Of 21 commercially available compounds, 11 showed ADRB2-binding activity and were not previously reported to be ADRB2 ligands. These compounds included ligands not only for aminergic receptors but also for neuropeptide Y-type 1 receptors (NPY1R), which have low protein homology to ADRB2. Most ligands we identified were not detected by LBVS and SBVS, which suggests that only CGBVS could identify this unexpected cross-reaction for a ligand developed as a target to a peptidergic receptor.
The true value of CGBVS in drug discovery must be tested by assessing whether this method can identify scaffold-hopping lead compounds from a set of compounds that is structurally more diverse. To assess this ability, we analyzed 11 500 commercially available compounds to predict compounds likely to bind to two GPCRs and two protein kinases. Functional assays revealed that nine ADRB2 ligands, three NPY1R ligands, five epidermal growth factor receptor (EGFR) inhibitors, and two cyclin-dependent kinase 2 (CDK2) inhibitors were concentrated in the top-ranked compounds (hit rate=30, 15, 25, and 10%, respectively). We also evaluated the extent of scaffold hopping achieved in the identification of these novel ligands. One ADRB2 ligand, two NPY1R ligands, and one CDK2 inhibitor exhibited scaffold hopping (Figure 4), indicating that CGBVS can use this characteristic to rationally predict novel lead compounds, a crucial and very difficult step in drug discovery. This feature of CGBVS is critically different from existing predictive methods, such as LBVS, which depend on similarities between test and reference ligands, and focus on a single protein or highly homologous proteins. In particular, CGBVS is useful for targets with undefined ligands because this method can use CPIs with target proteins that exhibit lower levels of homology.
In summary, we have demonstrated that data mining of multiple CPIs is of great practical value for exploration of chemical space. As a predictive model, CGBVS could provide an important step in the discovery of such multi-target drugs by identifying the group of proteins targeted by a particular ligand, leading to innovation in pharmaceutical research.
The discovery of novel bioactive molecules advances our systems-level understanding of biological processes and is crucial for innovation in drug development. For this purpose, the emerging field of chemical genomics is currently focused on accumulating large assay data sets describing compound–protein interactions (CPIs). Although new target proteins for known drugs have recently been identified through mining of CPI databases, using these resources to identify novel ligands remains unexplored. Herein, we demonstrate that machine learning of multiple CPIs can not only assess drug polypharmacology but can also efficiently identify novel bioactive scaffold-hopping compounds. Through a machine-learning technique that uses multiple CPIs, we have successfully identified novel lead compounds for two pharmaceutically important protein families, G-protein-coupled receptors and protein kinases. These novel compounds were not identified by existing computational ligand-screening methods in comparative studies. The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes.
PMCID: PMC3094066  PMID: 21364574
chemical genomics; data mining; drug discovery; ligand screening; systems chemical biology
12.  MOR Is Not Enough: Identification of Novel mu-Opioid Receptor Interacting Proteins Using Traditional and Modified Membrane Yeast Two-Hybrid Screens 
PLoS ONE  2013;8(6):e67608.
The mu-opioid receptor (MOR) is the G-protein coupled receptor primarily responsible for mediating the analgesic and rewarding properties of opioid agonist drugs such as morphine, fentanyl, and heroin. We have utilized a combination of traditional and modified membrane yeast two-hybrid screening methods to identify a cohort of novel MOR interacting proteins (MORIPs). The interaction between the MOR and a subset of MORIPs was validated in pulldown, co-immunoprecipitation, and co-localization studies using HEK293 cells stably expressing the MOR as well as rodent brain. Additionally, a subset of MORIPs was found capable of interaction with the delta and kappa opioid receptors, suggesting that they may represent general opioid receptor interacting proteins (ORIPS). Expression of several MORIPs was altered in specific mouse brain regions after chronic treatment with morphine, suggesting that these proteins may play a role in response to opioid agonist drugs. Based on the known function of these newly identified MORIPs, the interactions forming the MOR signalplex are hypothesized to be important for MOR signaling and intracellular trafficking. Understanding the molecular complexity of MOR/MORIP interactions provides a conceptual framework for defining the cellular mechanisms of MOR signaling in brain and may be critical for determining the physiological basis of opioid tolerance and addiction.
PMCID: PMC3695902  PMID: 23840749
13.  Effect of Iboga Alkaloids on µ-Opioid Receptor-Coupled G Protein Activation 
PLoS ONE  2013;8(10):e77262.
The iboga alkaloids are a class of small molecules defined structurally on the basis of a common ibogamine skeleton, some of which modify opioid withdrawal and drug self-administration in humans and preclinical models. These compounds may represent an innovative approach to neurobiological investigation and development of addiction pharmacotherapy. In particular, the use of the prototypic iboga alkaloid ibogaine for opioid detoxification in humans raises the question of whether its effect is mediated by an opioid agonist action, or if it represents alternative and possibly novel mechanism of action. The aim of this study was to independently replicate and extend evidence regarding the activation of μ-opioid receptor (MOR)-related G proteins by iboga alkaloids.
Ibogaine, its major metabolite noribogaine, and 18-methoxycoronaridine (18-MC), a synthetic congener, were evaluated by agonist-stimulated guanosine-5´-O-(γ-thio)-triphosphate ([35S]GTPγS) binding in cells overexpressing the recombinant MOR, in rat thalamic membranes, and autoradiography in rat brain slices.
Results And Significance
In rat thalamic membranes ibogaine, noribogaine and 18-MC were MOR antagonists with functional Ke values ranging from 3 uM (ibogaine) to 13 uM (noribogaine and 18MC). Noribogaine and 18-MC did not stimulate [35S]GTPγS binding in Chinese hamster ovary cells expressing human or rat MORs, and had only limited partial agonist effects in human embryonic kidney cells expressing mouse MORs. Ibogaine did not did not stimulate [35S]GTPγS binding in any MOR expressing cells. Noribogaine did not stimulate [35S]GTPγS binding in brain slices using autoradiography. An MOR agonist action does not appear to account for the effect of these iboga alkaloids on opioid withdrawal. Taken together with existing evidence that their mechanism of action also differs from that of other non-opioids with clinical effects on opioid tolerance and withdrawal, these findings suggest a novel mechanism of action, and further justify the search for alternative targets of iboga alkaloids.
PMCID: PMC3818563  PMID: 24204784
14.  RACK1 Identified as the PCBP1-Interacting Protein with a Novel Functional Role on the Regulation of Human MOR Gene Expression 
Journal of neurochemistry  2012;124(4):466-477.
PCBP1 is an expressional regulator of the mu-opioid receptor (MOR) gene. We hypothesized the existence of a PCBP1 co-regulator modifying human MOR gene expression by protein-protein interaction with PCBP1. A human brain cDNA library was screened using the two-hybrid system with PCBP1 as the bait. RACK1 protein, containing seven WD domains, was identified. PCBP1-RACK1 interaction was confirmed via in vivo validation using the two-hybrid system, and by co-immunoprecipitation with anti-PCBP1 antibody and human neuronal NMB cell lysate, endogenously expressing PCBP1 and RACK1. Further co-immunoprecipitation suggested that RACK1-PCBP1 interaction occurred in cytosol alone. Single and serial WD domain deletion analyses demonstrated that WD7 of RACK1 is the key domain interacting with PCBP1. RACK1 overexpression resulted in a dose-dependent decrease of MOR promoter activity using p357 plasmid containing human MOR promoter and luciferase reporter gene. Knock-down analysis showed that RACK1 siRNA decreased the endogenous RACK1 mRNA level in NMB, and elevated MOR mRNA level as indicated by RT-PCR. Likewise, a decrease of RACK1 resulted in an increase of MOR proteins, verified by 3H-diprenorphine binding assay. Collectively, this study reports a novel role of RACK1, physically interacting with PCBP1 and participating in the regulation of human MOR gene expression in neuronal NMB cells.
PMCID: PMC3569494  PMID: 23173782
RACK1; PCBP1; physical interaction; hMOR gene; expression modulation; human NMB cells
15.  In Vitro Membrane Permeation Studies and in Vivo Antinociception of Glycosylated Dmt1-DALDA Analogues 
ACS medicinal chemistry letters  2014;5(4):352-357.
In this study the μ opioid receptor (MOR) ligands DALDA (Tyr-d-Arg-Phe-Lys-NH2) and Dmt1-DALDA (Dmt-d-Arg-Phe-Lys-NH2, Dmt = 2′,6′-dimethyltyrosine) were glycosylated at the N- or C-terminus. Subsequently, the modified peptides were subjected to in vitro and in vivo evaluation. In contrast to the N-terminally modified peptide (3), all peptide analogues derivatized at the C-terminus (4–7) proved to possess high affinity and agonist potency at both MOR and DOR (δ opioid receptor). Results of the Caco-2 monolayer permeation, as well as in vitro blood–brain barrier model experiments, showed that, in the case of compound 4, the glycosylation only slightly diminished the lumen-to-blood and blood-to-lumen transport. Altogether, these experiments were indicative of transcellular transport but not active transport. In vivo assays demonstrated that the peptides were capable of (i) crossing the blood–brain barrier (BBB) and (ii) activating both the spinal ascending as well as the descending opioid pathways, as determined by the tail-flick and hot-plate assays, respectively. In contrast to the highly selective MOR agonist Dmt1-DALDA 1, compounds 4–7 are mixed MOR/DOR agonists, expected to produce reduced opioid-related side effects.
PMCID: PMC4023695  PMID: 24839540
Opioid peptides; glycosylation; in vivo antinociception; Dmt1-DALDA
16.  Opioid Peptidomimetics: Leads for the Design of Bioavailable Mixed Efficacy Mu Opioid Receptor (MOR) Agonist/Delta Opioid Receptor (DOR) Antagonist Ligands 
Journal of medicinal chemistry  2013;56(5):2139-2149.
We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a mu opioid receptor (MOR) agonist, delta opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood brain barrier. Here we describe the transfer of structural features that evoked MOR agonist/DOR antagonist behavior in the cyclic peptides to the tetrahydroquinoline scaffold and show that the resulting peptidomimetics maintain the desired pharmacological profile. Further, the 4R diastereomer of 1 was fully efficacious and approximately equipotent to morphine in the mouse warm water tail withdrawal assay following intraperitoneal administration and thus a promising lead for the development of opioid analgesics with reduced tolerance.
PMCID: PMC3618660  PMID: 23419026
17.  Dual single-scission event analysis of constitutive transferrin receptor (TfR) endocytosis and ligand-triggered β2-adrenergic receptor (β2AR) or Mu-opioid receptor (MOR) endocytosis 
Molecular Biology of the Cell  2014;25(19):3070-3080.
The endocytosis of the transferrin receptor (TfR) and β2-adrenergic receptor or Mu-opioid receptor by individual endocytic vesicles was imaged in live cells. Ligand-triggered endocytosis of GPCR has little effect on TfR endocytosis dynamics, and there is little evidence for coated-pit specialization.
The dynamic relationship between constitutive and ligand-triggered clathrin-mediated endocytosis is only poorly characterized, and it remains controversial whether clathrin-coated pits specialize to internalize particular receptor cargo. Here we analyzed the ligand-triggered endocytosis of the model G-protein–coupled receptors (GPCRs) β2-adrenergic receptor (β2AR) and Mu-opioid receptor (MOR) at the level of individual endocytic events using a total internal reflection fluorescence microscopy (TIRFM)–based assay. Similar to the constitutive endocytosis of transferrin receptor (TfR), ligand- triggered endocytosis of β2AR occurs via quantized scission events hosted by clathrin spots and plaques of variable size and persistence. To address whether clathrin-coated structures (CCSs) specialize to internalize particular GPCRs, we adapted the TIRFM imaging assay to simultaneously quantify the internalization of TfR and the ligand- triggered endocytosis of the β2AR or MOR. Agonist-triggered β2AR or MOR endocytosis extended the maturation time of CCSs, as shown previously, but did not affect the rate of constitutive TfR endocytosis or loading of TfR into individual endocytic vesicles. Both the β2AR and the MOR receptors entered cells in the same vesicles as TfR, and the overall evidence for CCS specialization was weak. These data support a simple model in which different cargoes internalize through common CCSs.
PMCID: PMC4230595  PMID: 25079691
18.  Analgesic tolerance of opioid agonists in mutant mu-opioid receptors expressed in sensory neurons following intrathecal plasmid gene delivery 
Molecular Pain  2013;9:63.
Phosphorylation sites in the C-terminus of mu-opioid receptors (MORs) are known to play critical roles in the receptor functions. Our understanding of their participation in opioid analgesia is mostly based on studies of opioid effects on mutant receptors expressed in in vitro preparations, including cell lines, isolated neurons and brain slices. The behavioral consequences of the mutation have not been fully explored due to the complexity in studies of mutant receptors in vivo. To facilitate the determination of the contribution of phosphorylation sites in MOR to opioid-induced analgesic behaviors, we expressed mutant and wild-type human MORs (hMORs) in sensory dorsal root ganglion (DRG) neurons, a major site for nociceptive (pain) signaling and determined morphine- and the full MOR agonist, DAMGO,-induced effects on heat-induced hyperalgesic behaviors and potassium current (IK) desensitization in these rats.
A mutant hMOR DNA with the putative phosphorylation threonine site at position 394 replaced by an alanine (T394A), i.e., hMOR-T, or a plasmid containing wild type hMOR (as a positive control) was intrathecally delivered. The plasmid containing GFP or saline was used as the negative control. To limit the expression of exogenous DNA to neurons of DRGs, a neuron-specific promoter was included in the plasmid. Following a plasmid injection, hMOR-T or hMOR receptors were expressed in small and medium DRG neurons. Compared with saline or GFP rats, the analgesic potency of morphine was increased to a similar extent in hMOR-T and hMOR rats. Morphine induced minimum IK desensitization in both rat groups. In contrast, DAMGO increased analgesic potency and elicited IK desensitization to a significantly less extent in hMOR-T than in hMOR rats. The development and extent of acute and chronic tolerance induced by repeated morphine or DAMGO applications were not altered by the T394A mutation.
These results indicate that phosphorylation of T394 plays a critical role in determining the potency of DAMGO-induced analgesia and IK desensitization, but has limited effect on morphine-induced responses. On the other hand, the mutation contributes minimally to both DAMGO- and morphine-induced behavioral tolerance. Furthermore, the study shows that plasmid gene delivery of mutant receptors to DRG neurons is a useful strategy to explore nociceptive behavioral consequences of the mutation.
PMCID: PMC3906983  PMID: 24304623
Opioid tolerance; Opioid receptors; T394A mutation; Dorsal root ganglion; Nociception; Plasmid DNA injection
19.  Interaction of the mu-opioid receptor with GPR177 (Wntless) inhibits Wnt secretion: potential implications for opioid dependence 
BMC Neuroscience  2010;11:33.
Opioid agonist drugs produce analgesia. However, long-term exposure to opioid agonists may lead to opioid dependence. The analgesic and addictive properties of opioid agonist drugs are mediated primarily via the mu-opioid receptor (MOR). Opioid agonists appear to alter neuronal morphology in key brain regions implicated in the development of opioid dependence. However, the precise role of the MOR in the development of these neuronal alterations remains elusive. We hypothesize that identifying and characterizing novel MOR interacting proteins (MORIPs) may help to elucidate the underlying mechanisms involved in the development of opioid dependence.
GPR177, the mammalian ortholog of Drosophila Wntless/Evi/Sprinter, was identified as a MORIP in a modified split ubiquitin yeast two-hybrid screen. GPR177 is an evolutionarily conserved protein that plays a critical role in mediating Wnt protein secretion from Wnt producing cells. The MOR/GPR177 interaction was validated in pulldown, coimmunoprecipitation, and colocalization studies using mammalian tissue culture cells. The interaction was also observed in rodent brain, where MOR and GPR177 were coexpressed in close spatial proximity within striatal neurons. At the cellular level, morphine treatment caused a shift in the distribution of GPR177 from cytosol to the cell surface, leading to enhanced MOR/GPR177 complex formation at the cell periphery and the inhibition of Wnt protein secretion.
It is known that chronic morphine treatment decreases dendritic arborization and hippocampal neurogenesis, and Wnt proteins are essential for these processes. We therefore propose that the morphine-mediated MOR/GPR177 interaction may result in decreased Wnt secretion in the CNS, resulting in atrophy of dendritic arbors and decreased neurogenesis. Our results demonstrate a previously unrecognized role for GPR177 in regulating cellular response to opioid drugs.
PMCID: PMC2841195  PMID: 20214800
20.  Mu-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling 
PLoS ONE  2010;5(6):e11278.
In periaqueductal grey (PAG) matter, cross-talk between the Mu-opioid receptor (MOR) and the glutamate N-methyl-D-Aspartate receptor (NMDAR)-CaMKII pathway supports the development of analgesic tolerance to morphine. In neurons, histidine triad nucleotide binding protein 1 (HINT1) connects the regulators of G protein signaling RGSZ1 and RGSZ2 to the C terminus of the MOR. In response to morphine, this HINT1-RGSZ complex binds PKCγ, and afterwards, the interplay between PKCγ, Src and Gz/Gi proteins leads to sustained potentiation of NMDAR-mediated glutamate responses.
Methodology/Principal Findings
Following an intracerebroventricular (icv) injection of 10 nmol morphine, Akt was recruited to the synaptosomal membrane and activated by Thr308 and Ser473 phosphorylation. The Akt activation was immediately transferred to neural Nitric Oxide Synthase (nNOS) Ser1417. Afterwards, nitric oxide (NO)-released zinc ions recruited PKCγ to the MOR to promote the Src-mediated phosphorylation of the Tyr1325 NMDAR2A subunit. This action increased NMDAR calcium flux and CaMKII was activated in a calcium-calmodulin dependent manner. CaMKII then acted on nNOS Ser847 to produce a sustained reduction in NO levels. The activation of the Akt-nNOS pathway was also reduced by the binding of these proteins to the MOR-HINT1 complex where they remained inactive. Tolerance to acute morphine developed as a result of phosphorylation of MOR cytosolic residues, uncoupling from the regulated G proteins which are transferred to RGSZ2 proteins. The diminished effect of morphine was prevented by LNNA, an inhibitor of nNOS function, and naltrindole, a delta-opioid receptor antagonist that also inhibits Akt.
Analysis of the regulatory phosphorylation of the proteins included in the study indicated that morphine produces a transient activation of the Akt/PKB-nNOS pathway. This activation occurs upstream of PKCγ and Src mediated potentiation of NMDAR activity, ultimately leading to morphine tolerance. In summary, the Akt-nNOS pathway acts as a primer for morphine-triggered events which leads to the sustained potentiation of the NMDAR-CaMKII pathway and MOR inhibition.
PMCID: PMC2890584  PMID: 20585660
21.  Structural and Biological Exploration of Phe3–Phe4-Modified Endomorphin-2 Peptidomimetics 
ACS Medicinal Chemistry Letters  2013;4(8):795-799.
This study reports on our ongoing investigation on hybrid EM-2 analogues, in which the great potential of β-amino acids was exploited to generate multiple conformational modifications at the key positions 3 and 4 of the parent peptide. The effect on the opioid binding affinity was evaluated, by means of ligand stimulated binding assays, which indicated a high nanomolar affinity toward the μ-receptor, with appreciable μ/δ selectivity, for some of the new compounds. The three-dimensional properties of the high affinity μ opioid receptor (MOR) ligands were investigated by proton nuclear magnetic resonance, molecular dynamics, and docking studies. In solution, the structures showed extended conformations, which are in agreement with the commonly accepted pharmacophore model for EM-2. From docking studies on an active form of the MOR model, different ligand–receptor interactions have been identified, thus confirming the ability of active compounds to assume a biologically active conformation.
PMCID: PMC4027508  PMID: 24900748
Peptidomimetics; opioid receptors; β-amino acids; conformational analysis; docking studies
22.  Spinal Synthesis of Estrogen and Concomitant Signaling by Membrane Estrogen Receptors Regulate Spinal κ- and μ-Opioid Receptor Heterodimerization and Female-Specific Spinal Morphine Antinociception 
The Journal of Neuroscience  2011;31(33):11836-11845.
We previously demonstrated that the spinal cord κ-opioid receptor (KOR) and μ-opioid receptor (MOR) form heterodimers (KOR/MOR). KOR/MOR formation and the associated KOR dependency of spinal morphine antinociception are most robust during proestrus. Using Sprague Dawley rats, we now demonstrate that (1) spinal synthesis of estrogen is critical to these processes, and (2) blockade of either estrogen receptor (ER) α-, β-, or G-protein-coupled ER1 or progesterone receptor (PR) substantially reduces KOR/MOR and eliminates mediation by KOR of spinal morphine antinociception. Effects of blocking ERs were manifest within 15 min, whereas those of PR blockade were manifest after 18 h, indicating the requirement for rapid signaling by estrogen and transcriptional effects of progesterone. Individual or combined blockade of ERs produced the same magnitude of effect, suggesting that they work in tandem as part of a macromolecular complex to regulate KOR/MOR formation. Consistent with this inference, we found that KOR and MOR were coexpressed with ERα and G-protein-coupled ER1 in the spinal dorsal horn. Reduction of KOR/MOR by ER or PR blockade or spinal aromatase inhibition shifts spinal morphine antinociception from KOR dependent to KOR independent. This indicates a sex steroid-dependent plasticity of spinal KOR functionality, which could explain the greater analgesic potency of KOR agonists in women versus men. We suggest that KOR/MOR is a molecular switch that shifts the function of KOR and thereby endogenous dynorphin from pronociceptive to antinociceptive. KOR/MOR could thus serve as a novel molecular target for pain management in women.
PMCID: PMC3321927  PMID: 21849544
23.  Anti-Analgesic Effect of the Mu/Delta Opioid Receptor Heteromer Revealed by Ligand-Biased Antagonism 
PLoS ONE  2013;8(3):e58362.
Delta (DOR) and mu opioid receptors (MOR) can complex as heteromers, conferring functional properties in agonist binding, signaling and trafficking that can differ markedly from their homomeric counterparts. Because of these differences, DOR/MOR heteromers may be a novel therapeutic target in the treatment of pain. However, there are currently no ligands selective for DOR/MOR heteromers, and, consequently, their role in nociception remains unknown. In this study, we used a pharmacological opioid cocktail that selectively activates and stabilizes the DOR/MOR heteromer at the cell surface by blocking its endocytosis to assess its role in antinociception. We found that mice treated chronically with this drug cocktail showed a significant right shift in the ED50 for opioid-mediated analgesia, while mice treated with a drug that promotes degradation of the heteromer did not. Furthermore, promoting degradation of the DOR/MOR heteromer after the right shift in the ED50 had occurred, or blocking signal transduction from the stabilized DOR/MOR heteromer, shifted the ED50 for analgesia back to the left. Taken together, these data suggest an anti-analgesic role for the DOR/MOR heteromer in pain. In conclusion, antagonists selective for DOR/MOR heteromer could provide an avenue for alleviating reduced analgesic response during chronic pain treatment.
PMCID: PMC3598907  PMID: 23554887
24.  Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity 
Journal of Medicinal Chemistry  2013;56(8):3207-3216.
Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [35S]GTPγS assay are predictive of the in vivo profile.
PMCID: PMC3646402  PMID: 23438330
25.  Neurokinin1 receptors regulate morphine-induced endocytosis and desensitization of mu opioid receptors in CNS neurons 
Mu opioid receptors (MORs) are G protein-coupled receptors (GPCRs) that mediate the physiological effects of endogenous opioid neuropeptides and opiate drugs such as morphine. MORs are co-expressed with neurokinin 1 receptors (NK1Rs) in several regions of the central nervous system (CNS) that control opioid dependence and reward. NK1R activation affects opioid reward specifically, however, and the cellular basis for this specificity is unknown. We found that ligand-induced activation of NK1Rs produces a cell autonomous and non-reciprocal inhibition of MOR endocytosis induced by diverse opioids. Studies using epitope-tagged receptors expressed in cultured striatal neurons and a neuroblastoma cell model indicated that this heterologous regulation is mediated by NK1R-dependent sequestration of arrestins on endosome membranes. First, endocytic inhibition mediated by wild type NK1Rs was overcome in cells over-expressing β-arrestin2, a major arrestin isoform expressed in striatum. Second, NK1R activation promoted sequestration of β-arrestin2 on endosomes, whereas MOR activation did not. Third, heterologous inhibition of MOR endocytosis was prevented by mutational disruption of β-arrestin2 sequestration by NK1Rs. NK1R-mediated regulation of MOR trafficking was associated with reduced opioid-induced desensitization of adenylyl cyclase signaling in striatal neurons. Further, heterologous regulation of MOR trafficking was observed in both amygdala and locus coeruleus neurons that naturally co-express these receptors. These results identify a cell autonomous mechanism that may underlie the highly specific effects of NK1R on opioid signaling and suggest, more generally, that receptor-specific trafficking of arrestins may represent a fundamental mechanism for coordinating distinct GPCR-mediated signals at the level of individual CNS neurons.
PMCID: PMC2775560  PMID: 19129399
trafficking; opioid; arrestin; morphine; endocytosis; neurokinin

Results 1-25 (947422)