Search tips
Search criteria

Results 1-25 (487665)

Clipboard (0)

Related Articles

1.  Compound DNA vaccine encoding SAG1/ SAG3 with A2/B subunit of cholera toxin as a genetic adjuvant protects BALB/c mice against Toxoplasma gondii 
Parasites & Vectors  2013;6:63.
Intracellular parasites, such as T. gondii, present a plurality of antigens because of the complexity of its life cycle. Compound DNA vaccines bring a new approach and hope for the treatment of toxoplasmosis. In this study, a DNA vaccine encoding two major surface antigens SAG1, SAG3 from T. gondii, with A2/B subunit of cholera toxin as a genetic adjuvant was constructed.
BALB/c mice were immunized intramuscularly with PBS, pcDNA3.1, pSAG1, pSAG1/SAG3 and pSAG1/SAG3-CTXA2/B three times separately. Immunized mice were tested for IgG antibody and IFN-γ and IL-4 production by ELISA. The proliferation of T cells was measured by DNA synthesis assay and the lymphocyte subsets of spleen cells by flow cytometry. All the immunized mice were challenged with 103 highly virulent RH tachyzoites of Toxoplasma gondii intraperitoneally and the survival times were recorded.
An enhanced production of IgG antibodies, antigen-specific lymphocyte proliferation and IFN-γ production from splenic cells were induced in mice immunized with pSAG1/SAG3 compared to mice immunized with pSAG1 (P<0.05). Introduction of CTXA2/B further enhanced the Th1 cell-mediated immunity with higher levels of IFN-γ, lymphocyte proliferation activity and percentage of CD8+ T-cells. When challenged with lethal doses of T. gondii (1×103), all control mice (PBS and empty plasmid group) died within 6 days. Mice immunized with pSAG1 died within 8 days. While 20% and 40% survival rate were achieved from mice immunized with pSAG1/SAG3 and pSAG1/SAG3-CTXA2/B.
This study indicates the compound DNA vaccine encoding T. gondii antigens SAG1, SAG3 with CTXA2/B gene was a promising DNA vaccine candidate against toxoplasmosis, which could effectively enhance the humoral and cellular immune response and prolong survival time in vaccinated mice.
PMCID: PMC3622580  PMID: 23497561
Toxoplasma gondii; Surface antigen; SAG1; SAG3; CTXA2/B; DNA vaccination
2.  A transfer RNAArg gene of Pelargonium chloroplasts, but not a 5S RNA gene, is efficiently transcribed after injection into Xenopus oocyte nuclei. 
Nucleic Acids Research  1984;12(21):8253-8268.
We present the primary structure of a chloroplast tRNAArgACG gene of the plant, Pelargonium zonale, and its faithful expression in Xenopus oocyte nuclei. This tRNAArg gene is located 250 bp downstream of a 5S RNA gene within a cloned 5kb long ribosomal DNA segment (Fig. 1). The Pelargonium tRNAArg gene shares 97% and 86% sequence homology with tRNAArgACG genes of Spirodela oligorhiza and Euglena gracilis chloroplasts, respectively, and also extensive homology (70%) with the corresponding gene of E. coli. It lacks an intervening sequence and, like eukaryotic tRNA genes, does not code for the 3' terminal CCA nucleotides. Moreover, the chloroplast tRNAArg gene carries all the sequence elements essential for transcription by vertebrate RNA polymerase III since it is efficiently expressed in Xenopus oocyte nuclei, even in the presence of 1 microgram/ml alpha-amanitin. In Xenopus oocyte nuclei, no transcripts of the chloroplast 5S RNA gene were detected.
PMCID: PMC320309  PMID: 6209611
3.  Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation 
Journal of Experimental Botany  2011;63(3):1315-1328.
Increased endogenous plant cytokinin (CK) content through transformation with an adenine isopentyl transferase (ipt) gene has been associated with improved plant drought tolerance. The objective of this study is to determine metabolic changes associated with elevated CK production in ipt transgenic creeping bentgrass (Agrostis stolonifera L.) with improved drought tolerance. Null transformants (NTs) and plants transformed with ipt controlled by a stress- or senescence-activated promoter (SAG12-ipt) were exposed to well-watered conditions or drought stress by withholding irrigation in an environmental growth chamber. Physiological analysis confirmed that the SAG12-ipt line (S41) had improved drought tolerance compared with the NT plants. Specific metabolite changes over the course of drought stress and differential accumulation of metabolites in SAG12-ipt plants compared with NT plants at the same level of leaf relative water content (47% RWC) were identified using gas chromatography–mass spectroscopy. The metabolite profiling analysis detected 45 metabolites differentially accumulated in response to ipt expression or drought stress, which included amino acids, carbohydrates, organic acids, and organic alcohols. The enhanced drought tolerance of SAG12-ipt plants was associated with the maintenance of accumulation of several metabolites, particularly amino acids (proline, γ-aminobutyric acid, alanine, and glycine) carbohydrates (sucrose, fructose, maltose, and ribose), and organic acids that are mainly involved in the citric acid cycle. The accumulation of these metabolites could contribute to improved drought tolerance due to their roles in the stress response pathways such as stress signalling, osmotic adjustment, and respiration for energy production.
PMCID: PMC3276099  PMID: 22131157
Alanine; γ-aminobutyric acid (GABA); cytokinins; fructose; glycine; isopentyl transferase; maltose; metabolome; perennial grass; proline; ribose; senescence; senescence-activated promoter; sucrose; turfgrass; water stress
4.  Effects of osmotic stress on antioxidant enzymes activities in leaf discs of PSAG12-IPT modified gerbera 
Leaf senescence is often caused by water deficit and the chimeric gene PSAG12-IPT is an auto-regulated gene delaying leaf senescence. Using in vitro leaf discs culture system, the changes of contents of chlorophylls, carotenoids, soluble protein and thiobarbituric acid reactive substance (TBARS) and antioxidant enzymes activities were investigated during leaf senescence of PSAGl2-IPT modified gerbera induced by osmotic stress compared with the control plant (wild type). Leaf discs were incubated in 20%, 40% (w/v) polyethylene glycol (PEG) 6 000 nutrient solution for 20 h under continuous light [130 µmol/(m2·s)]. The results showed that the contents of chlorophylls, carotenoids and soluble protein were decreased by osmotic stress with the decrease being more pronounced at 40% PEG, but that, at the same PEG concentration the decrease in the transgenic plants was significantly lower than that in the control plant. The activities of superoxide dismutase (SOD), catalases (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and dehydroascorbate reductase (DHAR) were stimulated by PEG treatment. However, the increases were higher in PSAG12-IPT transgenic plants than in the control plants, particularly at 40% PEG treatment. Lipid peroxidation (TBARS content) was increased by PEG treatment with the increase being much lower in transgenic plant than in the control plant. It could be concluded that the increases in the activities of antioxidant enzymes including SOD, CAT, APX, GPX and DHAR were responsible for the delay of leaf senescence induced by osmotic stress.
PMCID: PMC1906590  PMID: 17610324
Antioxidant enzymes; Gerbera; Leaf disc; Leaf senescence; Osmotic stress; PSAG12-IPT
5.  Biparental inheritance of plastidial and mitochondrial DNA and hybrid variegation in Pelargonium 
Molecular Genetics and Genomics   2009;282(6):587-593.
Plastidial (pt) and mitochondrial (mt) genes usually show maternal inheritance. Non-Mendelian, biparental inheritance of plastids was first described by Baur (Z Indukt Abstamm Vererbungslehre 1:330–351, 1909) for crosses between Pelargonium cultivars. We have analyzed the inheritance of pt and mtDNA by examining the progeny from reciprocal crosses of Pelargoniumzonale and P. inquinans using nucleotide sequence polymorphisms of selected pt and mt genes. Sequence analysis of the progeny revealed biparental inheritance of both pt and mtDNA. Hybrid plants exhibited variegation: our data demonstrate that the inquinans chloroplasts, but not the zonale chloroplasts bleach out, presumably due to incompatibility of the former with the hybrid nuclear genome. Different distribution of maternal and paternal sequences could be observed in different sectors of the same leaf, in different leaves of the same plant, and in different plants indicating random segregation and sorting-out of maternal and paternal plastids and mitochondria in the hybrids. The substantial transmission of both maternal and paternal mitochondria to the progeny turns Pelargonium into a particular interesting subject for studies on the inheritance, segregation and recombination of mt genes.
PMCID: PMC2777209  PMID: 19787375
Mitochondria; Chloroplasts; Biparental inheritance; Heteroplasmy; Pelargonium
6.  Extensive changes in DNA methylation patterns accompany activation of a silent T-DNA ipt gene in Agrobacterium tumefaciens-transformed plant cells. 
Molecular and Cellular Biology  1989;9(10):4298-4303.
We crossed a male-sterile, Agrobacterium-transformed Nicotiana tabacum plant that contains a silent, hypermethylated T-DNA ipt oncogene with a normal tobacco plant and found that the methylated state of the ipt gene was stably inherited through meiosis in the offspring. However, when tissues of these plants were placed in cell culture, the ipt gene was spontaneously reactivated in a very small fraction of the cells; if 5-azacytidine was added to the culture medium, ipt gene reactivation occurred at high frequency. We analyzed the pattern of DNA methylation in a region spanning the ipt gene in a line that does not express the ipt gene, in five derivatives of this line that reexpressed the ipt gene either spontaneously or after 5-azacytidine treatment, and in tissues of a sibling of this line that reexpressed ipt spontaneously. We found that the ipt locus was highly methylated in the unexpressed state but that spontaneous or 5-azacytidine-induced reexpression always resulted in extensive demethylation of a region including 5' upstream, coding, and 3' downstream regions of the ipt gene. The role of DNA methylation in gene regulation in this system is discussed.
PMCID: PMC362510  PMID: 2479825
7.  Restoring pollen fertility in transgenic male-sterile eggplant by Cre/loxp-mediated site-specific recombination system 
Genetics and Molecular Biology  2010;33(2):298-307.
This study was designed to control plant fertility by cell lethal gene Barnase expressing at specific developmental stage and in specific tissue of male organ under the control of Cre/loxP system, for heterosis breeding, producing hybrid seed of eggplant. The Barnase-coding region was flanked by loxP recognition sites for Cre-recombinase. The eggplant inbred/pure line (‘E-38') was transformed with Cre gene and the inbred/pure line (‘E-8') was transformed with the Barnase gene situated between loxp. The experiments were done separately, by means of Agrobacterium co-culture. Four T0 -plants with the Barnase gene were obtained, all proved to be male-sterile and incapable of producing viable pollen. Flowers stamens were shorter, but the vegetative phenotype was similar to wild-type. Five T 0 -plants with the Cre gene developed well, blossomed out and set fruit normally. The crossing of male-sterile Barnase-plants with Cre expression transgenic eggplants resulted in site-specific excision with the male-sterile plants producing normal fruits. With the Barnase was excised, pollen fertility was fully restored in the hybrids. The phenotype of these restored plants was the same as that of the wild-type. Thus, the Barnase and Cre genes were capable of stable inheritance and expression in progenies of transgenic plants.
PMCID: PMC3036876  PMID: 21637486
eggplant; male sterility; Barnase gene; Cre gene; Cre/loxP system
8.  Regeneration of Transgenic Rice with Bacterial ipt Gene Driven by Senescence Specific (SAG12) Promoter by Particle Bombardment 
Transgenic rice plants were generated using particle bombardment to introduce the Agrobacterium cytokinin biosynthesis gene driven by Arabidopsis (Arabidopsis thaliana) senescence specific promoter (SAG12) for delaying leaf senescence. Using two plasmids we co-transformed one week old embryogenic calli derived from mature Japonica rice (Oryza sativa) variety Chin Guang. The selectable marker hygromycin phosphotransferase (hph) gene and the reporter gene B-ß-glucuronidase (uidA), both under the control of cauliflower mosaic virus (CaMV) 35S promoter were placed on the same co-integrate vector whereas the cytokinin biosynthesis gene, isopentenyl transferase (ipt) driven by the SAG12 promoter is supplied in another plasmid. A total of 32 transgenic rice plants were regenerated of which 27 plants were randomly selected for histochemical ß-glucuronidase (GUS) assay, PCR and Southern blot analysis. Co-integration frequencies of 88% and 69% were obtained for two linked genes (uidA and hph) and two unlinked genes (hph and ipt gene) respectively in R0 plants. Southern blot analysis confirmed the results of histochemical GUS assay and PCR amplifications. A complex integration pattern for all the transgenes including the multiple copies integration was predominantly observed.
PMCID: PMC3799406  PMID: 24575232
Co-transformation; Particle Bombardment; ipt Gene; SAG12 Promoter; Rice
9.  Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera 
Journal of Experimental Botany  2010;62(1):383-395.
Water stress reduces endogenous cytokinin (CK) content and may inhibit CK production. Maintenance of endogenous CK levels by genetic transformation with ipt in leaves and roots undergoing senescence may promote stress tolerance. This study was designed to determine the physiological effects of ipt expression on immature and mature leaves and in roots for plants exposed to different levels of water stress for creeping bentgrass (Agrostis stolonifera). Plants containing the ipt gene, encoding the enzyme adenine isopentenyl phosphotransferase for CK synthesis ligated to a senescence-activated promoter (SAG12), and wild-type ‘Penncross’ (WT) were grown hydroponically in a growth chamber and exposed to water stress by weekly additions of polyethylene glycol 8000 to reduce the growing solution osmotic potential from –0.05 to –0.3, –0.5, –0.7, –1.0, and –1.4 MPa. Immature and mature leaves and roots of SAG12-ipt creeping bentgrass were evaluated for ipt expression, CK content, leaf relative water content (RWC), chlorophyll content (Chl), photochemical efficiency (FvFm), osmotic adjustment (OA), photosynthesis rate (Pn), stomatal conductance (gs), transpiration (E), water use efficiency (WUE), carbon isotope discrimination (Δ), and root viability. Expression of ipt was detected in all plant parts and a higher CK content, primarily in the form of isopentyladenine (iPa), was found in SAG12-ipt plants but not in the WT plants under water stress. Immature leaves exhibited higher iPa and OA at all treatment levels. Mature leaves of SAG12-ipt plants maintained higher OA, Pn, Chl, WUE, and Δ, whereas gs and E were relatively unaffected compared to the WT. Roots of SAG12-ipt plants had higher levels of iPa and greater root viability than the WT. The results demonstrate that expression of ipt enhanced the tolerance of creeping bentgrass to water stress, which could be attributed to the positive effects on osmotic adjustment, efficient water use, and maintaining higher photosynthetic rate primarily for mature leaves, as well as increased root viability.
PMCID: PMC2993921  PMID: 20841349
Cytokinins; drought stress; osmotic stress; SAG12-ipt; senescence
10.  Clinical evaluation of the essential oil of Pelargonium graveolens for the treatment of denture stomatitis 
Dental Research Journal  2011;8(Suppl1):S105-S108.
Natural products are proved to play a good role as an alternative to synthetic chemicals in clinical conditions. Previous studies showed that Pelargonium graveolens has anti-inflammatory and antifungal activity against Candida albicans. The aim of this study was to evaluate the efficacy of essential oil of Pelargonium graveolens in the treatment of denture stomatitis.
Materials and Methods:
In this double-blind randomized clinical trial conducted in Isfahan (Iran), 80 (51 females and 29 males) eligible wearers of complete denture were included. According to the patients’ profiles number, they randomly divided to 2 groups of 40 patients’ case and 40 patients control treated with Pelargonium 1% gel or placebo, respectively. They were recommended to apply the gel twice daily for a 14-day course. All data were analyzed using SPSS® for windows (v.18). We have used the χ2 test for analyzing qualitative and Student t-test for quantitative data considering as P<0.05 as significant.
According to mycological data and clinical observation after treatment in the case group, 34% of patients had been improved completely, 56% partially and 10% had no improvement. In the control group, 5% of patients had complete recovery, 25% partial recovery, and 70% no improvement. A significant reduction in fungal growth was observed in case group rather than the control group (P value<0.0001).
It seems that the application of a 1% Geranium oil topical gel formulation is more effective than placebo in the treatment of denture stomatitis.
PMCID: PMC3556280  PMID: 23372587
Candida albicans; denture stomatitis; Pelargonium graveolens
11.  Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis 
Journal of Experimental Botany  2011;62(15):5311-5333.
Cytokinins (CKs) may be involved in the regulation of plant adaptation to drought stress. The objectives of the study were to identify proteomic changes in leaves and roots in relation to improved drought tolerance in transgenic creeping bentgrass (Agrostis stolonifera) containing a senescence-activated promoter (SAG12) and the isopentyl transferase (ipt) transgene that increases endogenous CK content. Leaves of SAG12-ipt bentgrass exhibited less severe senescence under water stress, as demonstrated by maintaining lower electrolyte leakage and lipid peroxidation, and higher photochemical efficiency (Fv/Fm), compared with the null transformant (NT) plants. SAG12-ipt plants had higher root/shoot ratios and lower lipid peroxidation in leaves under water stress than the NT plants. The suppression of drought-induced leaf senescence and root dieback in the transgenic plants was associated with the maintenance of greater antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase). The SAG12-ipt and NT plants exhibited differential protein expression patterns under well-watered and drought conditions in both leaves and roots. Under equivalent leaf water deficit (47% relative water content), SAG12-ipt plants maintained higher abundance of proteins involved in (i) energy production within both photosynthesis and respiration [ribulose 1,5-bisphosphate carboxylase (RuBisCO) and glyceraldehyde phosphate dehydrogenase (GAPDH)]; (ii) amino acid synthesis (methionine and glutamine); (iii) protein synthesis and destination [chloroplastic elongation factor (EF-Tu) and protein disulphide isomerases (PDIs)]; and (iv) antioxidant defence system (catalase and peroxidase) than the NT plants. These results suggest that increased endogenous CKs under drought stress may directly or indirectly regulate protein abundance and enzymatic activities involved in the above-mentioned metabolic processes, thereby enhancing plant drought tolerance.
PMCID: PMC3223035  PMID: 21831843
Cytokinins; drought stress; isopentyl transferase; perennial grass; proteome; senescence; senescence-activated promoter; turfgrass
12.  Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species 
Journal of Experimental Botany  2010;61(12):3273-3289.
Cytokinins (CKs) are known to regulate leaf senescence and affect heat tolerance, but mechanisms underlying CK regulation of heat tolerance are not well understood. A comprehensive proteomic study was conducted to identify proteins altered by the expression of the adenine isopentenyl transferase (ipt) gene controlling CK synthesis and associated with heat tolerance in transgenic plants for a C3 perennial grass species, Agrostis stolonifera. Transgenic plants with two different inducible promoters (SAG12 and HSP18) and a null transformant (NT) containing the vector without ipt were exposed to 20 °C (control) or 35 °C (heat stress) in growth chambers. Two-dimensional electrophoresis and mass spectrometry analysis were performed to identify protein changes in leaves and roots in response to ipt expression under heat stress. Transformation with ipt resulted in protein changes in leaves and roots involved in multiple functions, particularly in energy metabolism, protein destination and storage, and stress defence. The abundance levels of six leaf proteins (enolase, oxygen-evolving enhancer protein 2, putative oxygen-evolving complex, Rubisco small subunit, Hsp90, and glycolate oxidase) and nine root proteins (Fd-GOGAT, nucleotide-sugar dehydratase, NAD-dependent isocitrate dehydrogenase, ferredoxin-NADP reductase precursor, putative heterogeneous nuclear ribonucleoprotein A2, ascorbate peroxidase, dDTP-glucose 4–6-dehydratases-like protein, and two unknown proteins) were maintained or increased in at least one ipt transgenic line under heat stress. The diversity of proteins altered in transgenic plants in response to heat stress suggests a regulatory role for CKs in various metabolic pathways associated with heat tolerance in C3 perennial grass species.
PMCID: PMC2905195  PMID: 20547565
Cytokinins; high temperature; HSP18-ipt; SAG12-ipt; senescence
13.  Overexpression of the AtSHI Gene in Poinsettia, Euphorbia pulcherrima, Results in Compact Plants 
PLoS ONE  2013;8(1):e53377.
Euphorbia pulcherrima, poinsettia, is a non-food and non-feed vegetatively propagated ornamental plant. Appropriate plant height is one of the most important traits in poinsettia production and is commonly achieved by application of chemical growth retardants. To produce compact poinsettia plants with desirable height and reduce the utilization of growth retardants, the Arabidopsis SHORT INTERNODE (AtSHI) gene controlled by the cauliflower mosaic virus 35S promoter was introduced into poinsettia by Agrobacterium-mediated transformation. Three independent transgenic lines were produced and stable integration of transgene was verified by PCR and Southern blot analysis. Reduced plant height (21–52%) and internode lengths (31–49%) were obtained in the transgenic lines compared to control plants. This correlates positively with the AtSHI transcript levels, with the highest levels in the most dwarfed transgenic line (TL1). The indole-3-acetic acid (IAA) content appeared lower (11–31% reduction) in the transgenic lines compared to the wild type (WT) controls, with the lowest level (31% reduction) in TL1. Total internode numbers, bract numbers and bract area were significantly reduced in all transgenic lines in comparison with the WT controls. Only TL1 showed significantly lower plant diameter, total leaf area and total dry weight, whereas none of the AtSHI expressing lines showed altered timing of flower initiation, cyathia abscission or bract necrosis. This study demonstrated that introduction of the AtSHI gene into poinsettia by genetic engineering can be an effective approach in controlling plant height without negatively affecting flowering time. This can help to reduce or avoid the use of toxic growth retardants of environmental and human health concern. This is the first report that AtSHI gene was overexpressed in poinsettia and transgenic poinsettia plants with compact growth were produced.
PMCID: PMC3538768  PMID: 23308204
14.  Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants 
Journal of Experimental Botany  2010;62(1):125-140.
Salinity limits crop productivity, in part by decreasing shoot concentrations of the growth-promoting and senescence-delaying hormones cytokinins. Since constitutive cytokinin overproduction may have pleiotropic effects on plant development, two approaches assessed whether specific root-localized transgenic IPT (a key enzyme for cytokinin biosynthesis) gene expression could substantially improve tomato plant growth and yield under salinity: transient root IPT induction (HSP70::IPT) and grafting wild-type (WT) shoots onto a constitutive IPT-expressing rootstock (WT/35S::IPT). Transient root IPT induction increased root, xylem sap, and leaf bioactive cytokinin concentrations 2- to 3-fold without shoot IPT gene expression. Although IPT induction reduced root biomass (by 15%) in control (non-salinized) plants, in salinized plants (100 mM NaCl for 22 d), increased cytokinin concentrations delayed stomatal closure and leaf senescence and almost doubled shoot growth (compared with WT plants), with concomitant increases in the essential nutrient K+ (20%) and decreases in the toxic ion Na+ (by 30%) and abscisic acid (by 20–40%) concentrations in transpiring mature leaves. Similarly, WT/35S::IPT plants (scion/rootstock) grown with 75 mM NaCl for 90 d had higher fruit trans-zeatin concentrations (1.5- to 2-fold) and yielded 30% more than WT/non-transformed plants. Enhancing root cytokinin synthesis modified both shoot hormonal and ionic status, thus ameliorating salinity-induced decreases in growth and yield.
PMCID: PMC2993914  PMID: 20959628
ABA; cytokinins; grafting; IPT; root zone temperature; root to shoot signalling; salinity; Solanum lycopersicum
15.  An Internal Ribosome Entry Site Directs Translation of the 3′-Gene from Pelargonium Flower Break Virus Genomic RNA: Implications for Infectivity 
PLoS ONE  2011;6(7):e22617.
Pelargonium flower break virus (PFBV, genus Carmovirus) has a single-stranded positive-sense genomic RNA (gRNA) which contains five ORFs. The two 5′-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 3′-proximal ORF encodes a polypeptide (p37) which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 5′-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 3′-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES). Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.
PMCID: PMC3144232  PMID: 21818349
16.  A Petunia Homeodomain-Leucine Zipper Protein, PhHD-Zip, Plays an Important Role in Flower Senescence 
PLoS ONE  2014;9(2):e88320.
Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.
PMCID: PMC3925126  PMID: 24551088
17.  Water-Deficit Inducible Expression of a Cytokinin Biosynthetic Gene IPT Improves Drought Tolerance in Cotton 
PLoS ONE  2013;8(5):e64190.
Water-deficit stress is a major environmental factor that limits agricultural productivity worldwide. Recent episodes of extreme drought have severely affected cotton production in the Southwestern USA. There is a pressing need to develop cotton varieties with improved tolerance to water-deficit stress for sustainable production in water-limited regions. One approach to engineer drought tolerance is by delaying drought-induced senescence via up-regulation of cytokinin biosynthesis. The isopentenyltransferase gene (IPT) that encodes a rate limiting enzyme in cytokinin biosynthesis, under the control of a water-deficit responsive and maturation specific promoter PSARK was introduced into cotton and the performance of the PSARK::IPT transgenic cotton plants was analyzed in the greenhouse and growth chamber conditions. The data indicate that PSARK::IPT-transgenic cotton plants displayed delayed senescence under water deficit conditions in the greenhouse. These plants produced more root and shoot biomass, dropped fewer flowers, maintained higher chlorophyll content, and higher photosynthetic rates under reduced irrigation conditions in comparison to wild-type and segregated non-transgenic lines. Furthermore, PSARK::IPT-transgenic cotton plants grown in growth chamber condition also displayed greater drought tolerance. These results indicate that water-deficit induced expression of an isopentenyltransferase gene in cotton could significantly improve drought tolerance.
PMCID: PMC3651191  PMID: 23675526
18.  Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice 
BMC Biotechnology  2010;10:52.
Codon optimization and subcellular targeting were studied with the aim to increase the expression levels of the SAG178-322 antigen of Toxoplasma gondii in tobacco leaves. The expression of the tobacco-optimized and native versions of the SAG1 gene was explored by transient expression from the Agrobacterium tumefaciens binary expression vector, which allows targeting the recombinant protein to the endoplasmic reticulum (ER) and the apoplast. Finally, mice were subcutaneously and orally immunized with leaf extracts-SAG1 and the strategy of prime boost with rSAG1 expressed in Escherichia coli was used to optimize the oral immunization with leaf extracts-SAG1.
Leaves agroinfiltrated with an unmodified SAG1 gene accumulated 5- to 10-fold more than leaves agroinfiltrated with a codon-optimized SAG1 gene. ER localization allowed the accumulation of higher levels of native SAG1. However, no significant differences were observed between the mRNA accumulations of the different versions of SAG1. Subcutaneous immunization with leaf extracts-SAG1 (SAG1) protected mice against an oral challenge with a non-lethal cyst dose, and this effect could be associated with the secretion of significant levels of IFN-γ. The protection was increased when mice were ID boosted with rSAG1 (SAG1+boost). This group elicited a significant Th1 humoral and cellular immune response characterized by high levels of IFN-γ. In an oral immunization assay, the SAG1+boost group showed a significantly lower brain cyst burden compared to the rest of the groups.
Transient agroinfiltration was useful for the expression of all of the recombinant proteins tested. Our results support the usefulness of endoplasmic reticulum signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The results showed that this plant-produced protein has potential for use as vaccine and provides a potential means for protecting humans and animals against toxoplasmosis.
PMCID: PMC2920232  PMID: 20633272
19.  Evidence for the Presence of 1,3-Dimethylamylamine (1,3-DMAA) in Geranium Plant Materials 
1,3-Dimethylamylamine (1,3-DMAA) is an aliphatic amine with stimulant properties that are reportedly found naturally only in geranium plants (Pelargonium graveolens). The presence of 1,3-DMAA in geranium plants was first reported in a paper published in 1996, but some have questioned the identification of 1,3-DMAA in that study. Since then, a number of additional studies have been published, largely reporting the absence of 1,3-DMAA in geranium plants and commercial geranium oils. However, in two recent studies, 1,3-DMAA was detected in geranium plant tissues and a geranium oil sample using a simplified extraction approach on tissues and oil sourced from China. Whether or not 1,3-DMAA is found naturally in plants has significant implications as to how commercial products containing 1,3-DMAA are regulated by the US Food and Drug Administration. In this paper, differences in source materials, extraction procedures, and analytical approaches are reviewed in an attempt to rationalize the apparently conflicting evidence for the presence of 1,3-DMAA in geranium plant materials.
PMCID: PMC3682735  PMID: 23843687
DMAA; geranium; Pelargonium graveolens; natural products
20.  Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana 
Plant Signaling & Behavior  2010;5(6):733-735.
The NAC domain transcription factor ANAC092 plays a central role in leaf senescence in Arabidopsis thaliana. We recently identified 170 genes whose expression increases upon activation of ANAC092 in a chemically (estradiol) controlled experimental set-up, 78 of which are known senescence-associated genes (SAGs). In accordance with the well-known phenomenon that salt stress promotes early leaf senescence in many plant species, we previously observed salt stress-enhanced expression of many SAGs of the ANAC092 regulon. Global expression profiling now revealed that 36 genes, representing 46% of all ANAC092 downstream SAGs, are induced by long-term (4 days) salt stress in shoots of Arabidopsis, whereas short-term stress (6 hours) only slightly affects gene expression. Expression analysis also showed that 14 of the 36 genes are induced by hydrogen peroxide (H2O2) treatment. Additionally, 15 senescence-associated NAC genes (senNACs), including ANAC092, respond to H2O2 exposure. Our data support the model that salt-triggered senescence is at least partly mediated through the ANAC092 gene regulatory network. Other senNACs most likely contribute to the coordination of this process, potentially in concert with H2O2-mediated signaling.
PMCID: PMC3001574  PMID: 20404534
ANAC092; binding site; hydrogen peroxide; longevity; NAC transcription factor; ORE1; reactive oxygen species; regulon; salt stress; senescence
21.  Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii surface antigen 1 (SAG1) and 14-3-3 protein in BALB/c mice 
Parasites & Vectors  2012;5:273.
Toxoplasmosis, caused by an obligate intracellular protozoan parasite Toxoplasma gondii, has been a serious clinical and veterinary problem. Effective DNA vaccines against T. gondii can prevent and control the spread of toxoplasmosis, which is important for both human health and the farming industry. The T. gondii 14-3-3 protein has been proved to be antigenic and immunogenic and was a potential vaccine candidate against toxoplasmosis. In this study, we evaluated the immune responses induced by recombinant plasmids encoding T. gondii surface antigen 1 (SAG1) and 14-3-3 protein by immunizing BALB/c mice intramuscularly.
In the present study, BALB/c mice were randomly divided into five groups, including three experimental groups (pSAG1, p14-3-3 and pSAG1/14-3-3) and two control groups (PBS and pBudCE4.1), and were immunized intramuscularly three times. The levels of IgG antibodies and cytokine production in mouse sera were determined by enzyme-linked immunosorbent assays (ELISA). Two weeks after the last immunization, all mice were challenged intraperitoneally (i.p.) with 1×104 tachyzoites of T. gondii and the survival time of mice was observed and recorded every day.
Mice vaccinated with pSAG1, p14-3-3 or pSAG1/14-3-3 developed high levels of IgG2a and gamma interferon (IFN-γ) and low levels of interleukin-4 (IL-4) and interleukin-10 (IL-10) compared to control groups (PBS or pBudCE4.1), which suggested a modulated Th1 type immune response (P<0.05). After intraperitoneal challenge with 1×104 tachyzoites of T. gondii (RH strain), the survival time of mice in experimental groups was longer than control groups (P<0.05). Mouse immunized with pSAG1/14-3-3 induced a higher level of IgG antibody response and significantly prolonged the survival time when compared with pSAG1 or p14-3-3 (P<0.05).
The study suggested that T. gondii 14-3-3 protein can induce effective immune responses in BALB/c mice and was a novel DNA vaccine candidate against toxoplasmosis, and the immune protective efficacy elicited by SAG1 gene was also demonstrated. Our results also showed multi-gene vaccine significantly enhanced immune responses and protective efficacy and was superior to the single-gene vaccine.
PMCID: PMC3547689  PMID: 23181694
Toxoplasma gondii; SAG1; 14-3-3; DNA vaccine; Immunity; BALB/c mice
22.  Effects of Engineered Sinorhizobium meliloti on Cytokinin Synthesis and Tolerance of Alfalfa to Extreme Drought Stress 
Applied and Environmental Microbiology  2012;78(22):8056-8061.
Cytokinin is required for the initiation of leguminous nitrogen fixation nodules elicited by rhizobia and the delay of the leaf senescence induced by drought stress. A few free-living rhizobia have been found to produce cytokinin. However, the effects of engineered rhizobia capable of synthesizing cytokinin on host tolerance to abiotic stresses have not yet been described. In this study, two engineered Sinorhizobium strains overproducing cytokinin were constructed. The tolerance of inoculated alfalfa plants to severe drought stress was assessed. The engineered strains, which expressed the Agrobacterium ipt gene under the control of different promoters, synthesized more zeatins than the control strain under free-living conditions, but their own growth was not affected. After a 4-week inoculation period, the effects of engineered strains on alfalfa growth and nitrogen fixation were similar to those of the control strain under nondrought conditions. After being subjected to severe drought stress, most of the alfalfa plants inoculated with engineered strains survived, and the nitrogenase activity in their root nodules showed no apparent change. A small elevation in zeatin concentration was observed in the leaves of these plants. The expression of antioxidant enzymes increased, and the level of reactive oxygen species decreased correspondingly. Although the ipt gene was transcribed in the bacteroids of engineered strains, the level of cytokinin in alfalfa nodules was identical to that of the control. These findings suggest that engineered Sinorhizobium strains synthesizing more cytokinin could improve the tolerance of alfalfa to severe drought stress without affecting alfalfa nodulation or nitrogen fixation.
PMCID: PMC3485951  PMID: 22961897
23.  A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid 
Plant Methods  2008;4:28.
Salicylic acid (SA) is an important signalling molecule in plant defenses against biotrophic pathogens. It is also involved in several other processes such as heat production, flowering, and germination. SA exists in the plant as free SA and as an inert glucose conjugate (salicylic acid 2-O-β-D-glucoside or SAG). Recently, Huang et al. developed a bacterial biosensor that responds to free SA but not SAG, designated as Acinetobacter sp. ADPWH_lux. In this paper we describe an improved methodology for Acinetobacter sp. ADPWH_lux-based free SA quantification, enabling high-throughput analysis, and present an approach for the quantification of SAG from crude plant extracts.
On the basis of the original biosensor-based method, we optimized extraction and quantification. SAG content was determined by treating crude extracts with β-glucosidase, then measuring the released free SA with the biosensor. β-glucosidase treatment released more SA in acetate buffer extract than in Luria-Bertani (LB) extract, while enzymatic hydrolysis in either solution released more free SA than acid hydrolysis. The biosensor-based method detected higher amounts of SA in pathogen-infected plants than did a GC/MS-based method. SA quantification of control and pathogen-treated wild-type and sid2 (SA induction-deficient) plants demonstrated the efficacy of the method described. Using the methods detailed here, we were able to detect as little as 0.28 μg SA/g FW. Samples typically had a standard deviation of up to 25% of the mean.
The ability of Acinetobacter sp. ADPWH_lux to detect SA in a complex mixture, combined with the enzymatic hydrolysis of SAG in crude extract, allowed the development of a simple, rapid, and inexpensive method to simultaneously measure free and glucose-conjugated SA. This approach is amenable to a high-throughput format, which would further reduce the cost and time required for biosensor-based SA quantification. Possible applications of this approach include characterization of enzymes involved in SA metabolism, analysis of temporal changes in SA levels, and isolation of mutants with aberrant SA accumulation.
PMCID: PMC2654556  PMID: 19117519
24.  Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions 
Journal of Experimental Botany  2012;64(1):229-240.
Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested.
PMCID: PMC3528034  PMID: 23162120
Anthocyanin; Arabidopsis; flavonoid; growth; light; nitrogen; stress.
25.  Insights into the Selective Pressures Restricting Pelargonium Flower Break Virus Genome Variability: Evidence for Host Adaptation 
Journal of Virology  2006;80(16):8124-8132.
The molecular diversity of Pelargonium flower break virus (PFBV) was assessed using a collection of isolates from different geographical origins, hosts, and collecting times. The genomic region examined was 1,828 nucleotides (nt) long and comprised the coding sequences for the movement (p7 and p12) and the coat (CP) proteins, as well as flanking segments including the entire 3′ untranslated region (3′ UTR). Some constraints limiting viral heterogeneity could be inferred from sequence analyses, such as the conservation of the amino acid sequences of p7 and of the shell domain of the CP, the maintenance of a leucine zipper motif in p12, and the preservation of a particular folding in the 3′ UTR. A remarkable covariation, involving five specific amino acid sites, was found in the CP of isolates largely propagated in the local lesion host Chenopodium quinoa and in the progeny of a PFBV variant subjected to serial passages in this host. Concomitant with this covariation, up to 30 nucleotide substitutions in a 1,428-nt region of the viral RNA could be attributable to C. quinoa-specific adaptation, representing one of the most outstanding cases of host-driven genome variation for a plant virus. Globally, the results indicate that the selective pressures exerted by the host play a critical role in shaping PFBV populations and that these populations are likely being selected for at both protein and RNA levels.
PMCID: PMC1563836  PMID: 16873268

Results 1-25 (487665)