Search tips
Search criteria

Results 1-25 (399036)

Clipboard (0)

Related Articles

1.  Do Flower Color and Floral Scent of Silene Species affect Host Preference of Hadena bicruris, a Seed-Eating Pollinator, under Field Conditions? 
PLoS ONE  2014;9(6):e98755.
Specialization in plant–insect interactions is an important driver of evolutionary divergence; yet, plant traits mediating such interactions are poorly understood. In this study, we investigated how flower color and floral scent are related to seed predation by a seed-eating pollinator. We used field-transplanted recombinant F2 hybrids between Silene latifolia and S. dioica that are the preferred and alternative hosts of the moth Hadena bicruris and crosses within these species for comparison. We scored seed predation and flower color and analyzed floral scent. Pinker S. dioica-like flowers and emission of α-pinene decreased the odds of seed predation while emission of benzyl acetate and 6-methyl-5-hepten-2-one increased the odds of seed predation. Emission of these compounds did not differ significantly between the two Silene species. Our results suggest that flower color plays an important role in the specific interaction of H. bicruris with its preferred host S. latifolia. The compounds α-pinene, benzyl acetate and 6-methyl-5-hepten-2-one could represent non-specific deterrents and attractants to ovipositing moths. Alternatively, emission of these compounds could be related to herbivory or pathogen attack and act as a signal for host quality. This would weaken the predictability of the plant's costs and benefits of the interaction and act to maintain an imperfect degree of specialization.
PMCID: PMC4048206  PMID: 24905986
2.  How to be an attractive male: floral dimorphism and attractiveness to pollinators in a dioecious plant 
Sexual selection theory predicts that males are limited in their reproductive success by access to mates, whereas females are more limited by resources. In animal-pollinated plants, attraction of pollinators and successful pollination is crucial for reproductive success. In dioecious plant species, males should thus be selected to increase their attractiveness to pollinators by investing more than females in floral traits that enhance pollinator visitation. We tested the prediction of higher attractiveness of male flowers in the dioecious, moth-pollinated herb Silene latifolia, by investigating floral signals (floral display and fragrance) and conducting behavioral experiments with the pollinator-moth, Hadena bicruris.
As found in previous studies, male plants produced more but smaller flowers. Male flowers, however, emitted significantly larger amounts of scent than female flowers, especially of the pollinator-attracting compounds. In behavioral tests we showed that naïve pollinator-moths preferred male over female flowers, but this preference was only significant for male moths.
Our data suggest the evolution of dimorphic floral signals is shaped by sexual selection and pollinator preferences, causing sexual conflict in both plants and pollinators.
PMCID: PMC2738674  PMID: 19660122
3.  Asymmetrical conspecific seed-siring advantage between Silene latifolia and S. dioica 
Annals of Botany  2010;105(4):595-605.
Background and Aims
Silene dioica and S. latifolia experience only limited introgression despite overlapping flowering phenologies, geographical distributions, and some pollinator sharing. Conspecific pollen precedence and other reproductive barriers operating between pollination and seed germination may limit hybridization. This study investigates whether barriers at this stage contribute to reproductive isolation between these species and, if so, which mechanisms are responsible.
Pollen-tube lengths for pollen of both species in styles of both species were compared. Additionally, both species were pollinated with majority S. latifolia and majority S. dioica pollen mixes; then seed set, seed germination rates and hybridity of the resulting seedlings were determined using species-specific molecular markers.
Key Results
The longest pollen tubes were significantly longer for conspecific than heterospecific pollen in both species, indicating conspecific pollen precedence. Seed set but not seed germination was lower for flowers pollinated with pure heterospecific versus pure conspecific pollen. Mixed-species pollinations resulted in disproportionately high representation of nonhybrid offspring for pollinations of S. latifolia but not S. dioica flowers.
The finding of conspecific pollen precedence for pollen-tube growth but not seed siring in S. dioica flowers may be explained by variation in pollen-tube growth rates, either at different locations in the style or between leading and trailing pollen tubes. Additionally, this study finds a barrier to hybridization operating between pollination and seed germination against S. dioica but not S. latifolia pollen. The results are consistent with the underlying cause of this barrier being attrition of S. dioica pollen tubes or reduced success of heterospecifically fertilized ovules, rather than time-variant mechanisms. Post-pollination, pre-germination barriers to hybridization thus play a partial role in limiting introgression between these species.
PMCID: PMC2850797  PMID: 20147372
Conspecific pollen precedence; hybridization; pollen tubes; reproductive isolation; Silene dioica; Silene latifolia
4.  Sex Determination in Plants 
Plant Signaling & Behavior  2007;2(3):178-179.
Most dioecious plant species are believed to derive from hermaphrodite ancestors. The regulatory pathways that have been modified during evolution of the hermaphrodite ancestors and led to the emergence of dioecious species (with separate sexes) still remain unknown. Silene latifolia is a dioecious plant species harbouring XY sex chromosomes. To identify the molecular mechanisms involved in female organ suppression in male flowers of S. latifolia, we looked for genes potentially involved in the establishment of floral organ and whorl boundaries. We identified Arabidopsis thaliana homologs of SHOOTMERISTEMLESS (STM) and CUP SHAPED COTYLEDON 1 (CUC1) and CUC2 genes in S. latifolia. Our phylogenetic analyses suggest that we identified true orthologs for both types of genes. Detailed expression analyses showed a conserved expression pattern for these genes between S. latifolia and A. thaliana, suggesting a conserved function of the corresponding proteins. Both orthologs showed clear differences in their expression pattern between males and females or hermaphrodites suggesting their possible involvement in the sex determination pathway in S. latifolia.
PMCID: PMC2634050  PMID: 19704689
floral meristem; sex determination; shoot-meristemless; cup shaped cotyledon
5.  Rapid De Novo Evolution of X Chromosome Dosage Compensation in Silene latifolia, a Plant with Young Sex Chromosomes 
PLoS Biology  2012;10(4):e1001308.
Evidence for dosage compensation in Silene latifolia, a plant with 10-million-year-old sex chromosomes, reveals that dosage compensation can evolve rapidly in young XY systems and is not an animal-specific phenomenon.
Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ∼10 million years ago and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of an S. latifolia inbred line to detect sex-linked SNPs and identified more than 1,700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes.
Author Summary
The mammalian sex chromosomes originated from an ancestral pair of autosomes about 150 million years ago and the Y chromosome subsequently degenerated, losing most of its genes. During this process, a phenomenon called dosage compensation evolved to compensate for the gene loss on the Y chromosome and to equalize expression of X-linked genes in the two sexes. In humans, this is achieved by inactivating one of the two X chromosomes in females. Dosage compensation has also been reported in other animal XY systems such as fruit flies and worms, each 100 million years old or more. Here we studied dosage compensation in plants. We used high-throughput RNA sequencing in male and female Silene latifolia (white campion)—a dioecious plant whose XY chromosomes originated only about 10 million years ago—to identify hundreds of sex-linked genes. Analysis of their expression patterns in males and females revealed equal doses of sex-linked transcripts in both sexes, regardless of the degree of reduction of Y expression due to degeneration. Our results thus show that dosage compensation occurs in plants and is thus not an animal-specific phenomenon. They also reveal that proportionate dosage compensation can evolve rapidly de novo after the origin of sex chromosomes.
PMCID: PMC3328428  PMID: 22529744
6.  Demethylation of Veratrole by Cytochrome P-450 in Streptomyces setonii 
The actinomycete Streptomyces setonii 75Vi2 demethylates vanillic acid and guaiacol to protocatechuic acid and catechol, respectively, and then metabolizes the products by the β-ketoadipate pathway. UV spectroscopy showed that this strain could also metabolize veratrole (1,2-dimethoxybenzene). When grown in veratrole-containing media supplemented with 2,2′-dipyridyl to inhibit cleavage of the aromatic ring, S. setonii accumulated catechol, which was detected by both liquid chromatography and gas chromatography. Reduced cell extracts from veratrole-grown cultures, but not sodium succinate-grown cultures, produced a carbon monoxide difference spectrum with a peak at 450 nm that indicated the presence of soluble cytochrome P-450. Addition of veratrole or guaiacol to oxidized cell extracts from veratrole-grown cultures produced difference spectra that indicated that these compounds were substrates for cytochrome P-450. My results suggest that S. setonii produces a cytochrome P-450 that is involved in the demethylation of veratrole and guaiacol to catechol, which is then catabolized by the β-ketoadipate pathway.
PMCID: PMC203400  PMID: 16347120
7.  Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway 
BMC Plant Biology  2006;6:14.
Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis.
The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives.
This systems biology program combined chemical analysis, genomics and bioinformatics to elucidate the scent biosynthesis pathway and identify the relevant genes. It integrates the forward and reverse genetic approaches to knowledge discovery by which researchers can study non-model plants.
PMCID: PMC1540424  PMID: 16836766
8.  Molecular and Quantitative Genetic Differentiation in European Populations of Silene latifolia (Caryophyllaceae) 
Annals of Botany  2007;100(1):119-127.
Background and Aims
Among-population differentiation in phenotypic traits and allelic variation is expected as a consequence of isolation, drift, founder effects and local selection. Therefore, investigating molecular and quantitative genetic divergence is a pre-requisite for studies of local adaptation in response to selection under variable environmental conditions.
Among- and within-population variation were investigated in six geographically separated European populations of the white campion, Silene latifolia, both for molecular variation at six newly developed microsatellite loci and for quantitative variation in morphological and life-history traits. To avoid confounding effects of the maternal environment, phenotypic traits were measured on greenhouse-reared F1 offspring. Tests were made for clinal variation, and the correlations among molecular, geographic and phenotypic distances were compared with Mantel tests.
Key Results
The six populations of Silene latifolia investigated showed significant molecular and quantitative genetic differentiation. Geographic and phenotypic distances were significantly associated. Age at first flowering increased significantly with latitude and exhibited a Qst value of 0·17 in females and 0·10 in males, consistent with adaptation to local environmental conditions. By contrast, no evidence of isolation-by-distance and no significant association between molecular and phenotypic distances were found.
Significant molecular genetic divergence among populations of Silene latifolia, from the European native range is consistent with known limited seed and pollen flow distances, while significant quantitative genetic divergence among populations and clinal variation for age at first flowering suggest local adaptation.
PMCID: PMC2735300  PMID: 17565967
Silene alba; white campion; microsatellite DNA; population differentiation; population structure; clinal variation; life-history traits
9.  Floral dimorphism in plant populations with combined versus separate sexes 
Annals of Botany  2011;108(4):765-776.
Background and Aims
Dimorphism among floral traits can evolve through variation in selection intensity between female and male performance, especially when sex functions are separated between flowers on a plant (monoecy), or between individuals (dioecy). In animal-pollinated species, male floral traits are predicted to be larger because competition for pollinators should favour larger displays. Floral dimorphism may be greater in dioecious than monoecious populations because of trade-offs between female and male function and opportunities for selfing in hermaphrodites.
These predictions were tested by surveying flower size, total flowers per inflorescence and daily display size in the insect-pollinated Sagittaria latifolia (Alismataceae). This species is useful for comparative analysis because populations are mostly either monoecious or dioecious. We examined floral dimorphism in 13 monoecious and 16 dioecious populations in eastern North America.
Key Results
Male flowers were significantly larger than female flowers in monoecious and dioecious populations, but there was no evidence for greater flower size dimorphism in dioecious populations despite their larger flower sizes overall. Although inflorescences in both dioecious and monoecious populations produced more male flowers, daily floral displays were significantly larger for female than male function due to more synchronous female flower opening. Daily floral display dimorphism was significantly greater in dioecious populations, due to greater female daily floral displays. There was a positive relationship between mean flower size and total flowers per inflorescence for both sexes in dioecious populations, but no relationship for either sex function in monoecious populations. Flower size dimorphism was positively correlated with the frequencies of females in dioecious populations.
The increased size and number of male flowers and protracted male floral displays in S. latifolia are probably shaped by sexual selection for more effective pollen dispersal.
PMCID: PMC3170149  PMID: 21385777
Sexual dimorphism; flower size; daily floral display; sexual selection; sex ratios; monoecy; dioecy; Sagittaria latifolia
10.  Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees 
Annals of Botany  2011;107(8):1377-1390.
Background and Aims
Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined.
Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles.
Key Results
Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps.
Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.
PMCID: PMC3101143  PMID: 21498566
Vaccinium corymbosum; honey bees; bumble bees; volatile organic compounds; diurnal rhythm; nectar production; site of emission
11.  A White Campion (Silene latifolia) floral expressed sequence tag (EST) library: annotation, EST-SSR characterization, transferability, and utility for comparative mapping 
BMC Genomics  2009;10:243.
Expressed sequence tag (EST) databases represent a valuable resource for the identification of genes in organisms with uncharacterized genomes and for development of molecular markers. One class of markers derived from EST sequences are simple sequence repeat (SSR) markers, also known as EST-SSRs. These are useful in plant genetic and evolutionary studies because they are located in transcribed genes and a putative function can often be inferred from homology searches. Another important feature of EST-SSR markers is their expected high level of transferability to related species that makes them very promising for comparative mapping. In the present study we constructed a normalized EST library from floral tissue of Silene latifolia with the aim to identify expressed genes and to develop polymorphic molecular markers.
We obtained a total of 3662 high quality sequences from a normalized Silene cDNA library. These represent 3105 unigenes, with 73% of unigenes matching genes in other species. We found 255 sequences containing one or more SSR motifs. More than 60% of these SSRs were trinucleotides. A total of 30 microsatellite loci were identified from 106 ESTs having sufficient flanking sequences for primer design. The inheritance of these loci was tested via segregation analyses and their usefulness for linkage mapping was assessed in an interspecific cross. Tests for crossamplification of the EST-SSR loci in other Silene species established their applicability to related species.
The newly characterized genes and gene-derived markers from our Silene EST library represent a valuable genetic resource for future studies on Silene latifolia and related species. The polymorphism and transferability of EST-SSR markers facilitate comparative linkage mapping and analyses of genetic diversity in the genus Silene.
PMCID: PMC2689282  PMID: 19467153
12.  Identification of Internal Reference Genes for Gene Expression Normalization between the Two Sexes in Dioecious White Campion 
PLoS ONE  2014;9(3):e92893.
Quantitative real time (qRT)-PCR is a precise and efficient method for studying gene expression changes between two states of interest, and is frequently used for validating interesting gene expression patterns in candidate genes initially identified in genome-wide expression analyses, such as RNA-seq experiments. For an adequate normalisation of qRT-PCR data, it is essential to have reference genes available whose expression intensities are constant among the different states of interest. In this study we present and validate a catalogue of traditional and newly identified reference genes that were selected from RNA-seq data from multiple individuals from the dioecious plant Silene latifolia with the aim of studying gene expression differences between the two sexes in both reproductive and vegetative tissues. The catalogue contains more than 15 reference genes with both stable expression intensities and a range of expression intensities in flower buds and leaf tissues. These reference genes were used to normalize expression differences between reproductive and vegetative tissues in eight candidate genes with sex-biased expression. Our results suggest a trend towards a reduced sex-bias in sex-linked gene expression in vegetative tissues. In this study, we report on the systematic identification and validation of internal reference genes for adequate normalization of qRT-PCR-based analyses of gene expression differences between the two sexes in S. latifolia. We also show how RNA-seq data can be used efficiently to identify suitable reference genes in a wide diversity of species.
PMCID: PMC3968030  PMID: 24675788
13.  A new plant sex-linked gene with high sequence diversity and possible introgression of the X copy 
Heredity  2010;106(2):339-347.
We describe patterns of DNA sequence diversity in a newly identified sex linked gene, SlX9/SlY9, in Silene latifolia (Caryophyllaceae). The copies on both sex chromosomes appear to be functional, and each maps close to the respective X- and Y-linked copy of another sex-linked gene pair, SlCypX/SlCypY. The Y-linked copy has low diversity, similar to what has been found for several other Y-linked genes in S. latifolia, and consistent with the theoretical expectations of hitch-hiking processes occurring on a non-recombining chromosome. However, SlX9 has higher diversity than other genes on the S. latifolia X chromosome. We evaluate the hypothesis of introgression from the closely related species S. dioica as an explanation for the high sequence diversity observed.
PMCID: PMC3044453  PMID: 20551975
Silene latifolia; sex chromosomes; introgression; SlX9
14.  A new plant sex-linked gene with high sequence diversity and possible introgression of the X copy 
Heredity  2010;106(2):339-347.
We describe patterns of DNA sequence diversity in a newly identified sex-linked gene, SlX9/SlY9, in Silene latifolia (Caryophyllaceae). The copies on both sex chromosomes seem to be functional, and each maps close to the respective X- and Y-linked copy of another sex-linked gene pair, SlCypX/SlCypY. The Y-linked copy has low diversity, similar to what has been found for several other Y-linked genes in S. latifolia, and consistent with the theoretical expectations of hitch-hiking processes occurring on a non-recombining chromosome. However, SlX9 has higher diversity than other genes on the S. latifolia X chromosome. We evaluate the hypothesis of introgression from the closely related species S. dioica as an explanation for the high sequence diversity observed.
PMCID: PMC3044453  PMID: 20551975
Silene latifolia; sex chromosomes; introgression; SlX9
15.  Narrowing Down the Mapping of Plant Sex-Determination Regions Using New Y-Chromosome-Specific Markers and Heavy-Ion Beam Irradiation-Induced Y-Deletion Mutants in Silene latifolia 
G3: Genes|Genomes|Genetics  2012;2(2):271-278.
Silene latifolia is a well-studied model system for plant XY sex determination. Three maleness factors are thought to function on the Y chromosome, gynoecium suppression factor (GSF), stamen-promoting factor (SPF), and male fertility factor (MFF), and their deletions result in hermaphrodites, anther defects, and pollen defects, respectively. Although a framework map of the Y chromosome exists, the sex determination genes have not been identified, and no markers close enough to potentially be used for BAC library screening are yet available. The analysis of Y deletion mutants by Y-chromosome-specific STS markers is an efficient way to isolate sex determination regions, but more Y-specific STS markers are needed to accelerate the exploration of sex determination factors. Herein, we report a marker design method that uses simple sequence repeats, which is especially effective on the Y chromosome of S. latifolia because it contains many simple sequence repeats. Six new Y-chromosome-specific STS markers were obtained, SmicSy1–6. These were used to detect relatively small Y deletion sites in heavy-ion beam irradiation-induced mutants. The mapping of male sex determination regions was narrowed down by using more markers and smaller-sized Y deletion mutants. One new marker, SmicSy6, is a proximal marker to SPF and, thus, a second index for SPF. The region including SPF is thought to be located between two SPF proximal markers. The flower phenotype correlates with the deletion size of SPF using SPF proximal markers. These findings represent new progress in isolating the sex determination factor, which has been studied for more than 50 years.
PMCID: PMC3284334  PMID: 22384405
Silene latifolia; XY; sex chromosomes; STS marker; simple sequence repeat
16.  Flower development, pollen fertility and sex expression analyses of three sexual phenotypes of Coccinia grandis 
BMC Plant Biology  2014;14(1):325.
Coccinia grandis is a dioecious species of Cucurbitaceae having heteromorphic sex chromosomes. The chromosome constitution of male and female plants is 22 + XY and 22 + XX respectively. Y chromosome of male sex is conspicuously large and plays a decisive role in determining maleness. Sex modification has been studied in hypogynous Silene latifolia (Caryophyllaceae) but there is no such report in epigynous Coccinia grandis. Moreover, the role of organ identity genes during sex expression in Coccinia has not been evaluated earlier. Investigations on sexual phenotypes of C. grandis including a rare gynomonoecious (GyM) form and AgNO3 mediated sex modification have added a new dimension to the understanding of sex expression in dioecious flowering plants.
Morphometric analysis showed the presence of staminodes in pistillate flowers and histological study revealed the absence of carpel initials in male flowers. Though GyM plant had XX sex chromosomes, the development of stamens occurred in hermaphrodite flowers but the pollens were not fertile. Silver nitrate (AgNO3) application enhanced stamen growth in wild type female flowers like that of GyM plant but here also the pollens were sterile. Differential expression of CgPI could be involved in the development of different floral phenotypes.
The three principle factors, Gynoecium Suppression (SuF), Stamen Promoting Factor (SPF) and Male Fertility (mF) that control sex expression in dioecious C. grandis assumed to be located on Y chromosome, play a decisive role in determining maleness. However, the characteristic development of stamens in hermaphrodite flowers of GyM plant having XX sex chromosomes indicates that Y-linked SPF regulatory pathway is somehow bypassed. Our experimental findings together with all other previous chromosomal and molecular cytogenetical data strongly support the view that C. grandis could be used as a potential model system to study sex expression in dioecious flowering plant.
Electronic supplementary material
The online version of this article (doi:10.1186/s12870-014-0325-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4255441  PMID: 25430000
Coccinia grandis; Hypogynous; Epigynous; Dioecious; Gynomonoecy; Heteromorphic sex chromosomes; Sex modification; Organ identity genes; Silver nitrate
17.  Dioecious Silene latifolia plants show sexual dimorphism in the vegetative stage 
BMC Plant Biology  2010;10:208.
Prior to this study, no differences in gene expression between male and female dioecious plants in the vegetative state had been detected. Among dioecious plants displaying sexual dimorphism, Silene latifolia is one of the most studied species. Although many sexually dimorphic traits have been described in S. latifolia, all of them are quantitative, and they usually become apparent only after the initiation of flowering.
We present RT-PCR-based evidence that in S. latifolia, sexual dimorphism in gene expression is present long before the initiation of flowering. We describe three ESTs that show sex-specific (two male specific and one female specific) transcription at the rosette stage before the first flowering season.
To our knowledge, this study provides the first molecular evidence of early pre-flowering sexual dimorphism in angiosperms.
PMCID: PMC2956557  PMID: 20854681
18.  Comparative analysis of a plant pseudoautosomal region (PAR) in Silene latifolia with the corresponding S. vulgaris autosome 
BMC Genomics  2012;13:226.
The sex chromosomes of Silene latifolia are heteromorphic as in mammals, with females being homogametic (XX) and males heterogametic (XY). While recombination occurs along the entire X chromosome in females, recombination between the X and Y chromosomes in males is restricted to the pseudoautosomal region (PAR). In the few mammals so far studied, PARs are often characterized by elevated recombination and mutation rates and high GC content compared with the rest of the genome. However, PARs have not been studied in plants until now. In this paper we report the construction of a BAC library for S. latifolia and the first analysis of a > 100 kb fragment of a S. latifolia PAR that we compare to the homologous autosomal region in the closely related gynodioecious species S. vulgaris.
Six new sex-linked genes were identified in the S. latifolia PAR, together with numerous transposable elements. The same genes were found on the S. vulgaris autosomal segment, with no enlargement of the predicted coding sequences in S. latifolia. Intergenic regions were on average 1.6 times longer in S. latifolia than in S. vulgaris, mainly as a consequence of the insertion of transposable elements. The GC content did not differ significantly between the PAR region in S. latifolia and the corresponding autosomal region in S. vulgaris.
Our results demonstrate the usefulness of the BAC library developed here for the analysis of plant sex chromosomes and indicate that the PAR in the evolutionarily young S. latifolia sex chromosomes has diverged from the corresponding autosomal region in the gynodioecious S. vulgaris mainly with respect to the insertion of transposable elements. Gene order between the PAR and autosomal region investigated is conserved, and the PAR does not have the high GC content observed in evolutionarily much older mammalian sex chromosomes.
PMCID: PMC3431222  PMID: 22681719
BAC library; Pseudoautosomal region; PAR; Silene latifolia; Sex chromosome; Evolution
19.  Marcescent corollas as functional structures: effects on the fecundity of two insect-pollinated plants 
Annals of Botany  2010;106(4):659-662.
Background and aims
Persistence of withered corollas after anthesis (‘corolla marcescence’) is widespread in angiosperms, yet its functional significance does not seem to have been explored for any species. This note reports the results of experiments assessing the fecundity effects of marcescent corollas in two southern Spanish insect-pollinated plants, Lavandula latifolia (Lamiaceae) and Viola cazorlensis (Violaceae).
The effect of marcescent corollas on seed production was evaluated experimentally on wild-growing plants. Newly open flowers were randomly assigned to either control or treatment groups in experimental plants. After anthesis, withered corollas of treatment flowers were removed and those in control flowers were left in place. Fruits produced by treatment and control flowers were collected shortly before dehiscence and the number of seeds counted.
Key Results
In V. cazorlensis, removal of withered corollas had no effect on percentage of fruit set, but mean seeds per fruit increased from 9·5 to 11·4. In L. latifolia, corolla removal had no effect on the number of seeds per fruit, but reduced the proportion of flowers ripening fruit from 60 % to 40 %. The detrimental effect of corolla removal on L. latifolia fecundity resulted from the drastic increase in fruit infestation by seed-predatory cecidomyiid larvae, which occurred in 4 % and 34 % of control and treatment fruits, respectively.
Because of their potential effects on plant fecundity, marcescent corollas should not be dismissed a priori as biologically irrelevant leftovers from past floral functions. The simplicity of the experimental layout required to test for short-term fecundity effects of corolla marcescence should help to achieve a better understanding of the ecological and evolutionary correlates of this widespread but poorly understood trait.
PMCID: PMC2944983  PMID: 20870656
Corolla marcescence; fecundity; Lavandula latifolia (Lamiaceae); seed predation; Viola cazorlensis (Violaceae)
20.  Fine-scale spatial genetic structure and gene dispersal in Silene latifolia 
Heredity  2010;106(1):13-24.
Plants are sessile organisms, often characterized by limited dispersal. Seeds and pollen are the critical stages for gene flow. Here we investigate spatial genetic structure, gene dispersal and the relative contribution of pollen vs seed in the movement of genes in a stable metapopulation of the white campion Silene latifolia within its native range. This short-lived perennial plant is dioecious, has gravity-dispersed seeds and moth-mediated pollination. Direct measures of pollen dispersal suggested that large populations receive more pollen than small isolated populations and that most gene flow occurs within tens of meters. However, these studies were performed in the newly colonized range (North America) where the specialist pollinator is absent. In the native range (Europe), gene dispersal could fall on a different spatial scale. We genotyped 258 individuals from large and small (15) subpopulations along a 60 km, elongated metapopulation in Europe using six highly variable microsatellite markers, two X-linked and four autosomal. We found substantial genetic differentiation among subpopulations (global FST=0.11) and a general pattern of isolation by distance over the whole sampled area. Spatial autocorrelation revealed high relatedness among neighboring individuals over hundreds of meters. Estimates of gene dispersal revealed gene flow at the scale of tens of meters (5–30 m), similar to the newly colonized range. Contrary to expectations, estimates of dispersal based on X and autosomal markers showed very similar ranges, suggesting similar levels of pollen and seed dispersal. This may be explained by stochastic events of extensive seed dispersal in this area and limited pollen dispersal.
PMCID: PMC3183859  PMID: 20389310
isolation by distance; gene flow; microsatellites; seed dispersal; spatial autocorrelation; pollen dispersal
21.  Effects of pollination timing on seed paternity and seed mass in Silene latifolia (Caryophyllaceae) 
Annals of Botany  2009;104(4):767-773.
Background and Aims
Competition among genetically different pollen donors within one recipient flower may play an important role in plant populations, increasing offspring genetic diversity and vigour. However, under field conditions stochastic pollen arrival times may result in disproportionate fertilization success of the first-arriving pollen, even to the detriment of the recipient plant's and offspring fitness. It is therefore critical to evaluate the relative importance of arrival times of pollen from different donors in determining siring success.
Hand pollinations and genetic markers were used to investigate experimentally the effect of pollination timing on seed paternity, seed mass and stigmatic wilting in the the dioecious plant Silene latifolia. In this species, high prevalence of multiply-sired fruits in natural populations suggests that competition among different donors may often take place (at fertilization or during seed development); however, the role of variation due to pollen arrival times is not known.
Key Results
First-arriving pollen sired significantly more seeds than later-arriving pollen. This advantage was expressed already before the first pollen tubes could reach the ovary. Simultaneously with pollen tube growth, the stigmatic papillae wilted visibly. Individual seeds were heavier in fruits where one donor sired most seeds than in fruits where both donors had more even paternity shares.
In field populations of S. latifolia, fruits are often multiply-sired. Because later-arriving pollen had decreased chances of fertilizing the ovules, this implies that open-pollinated flowers often benefit from pollen carry-over or pollinator visits within short time intervals, which may contribute to increase offspring genetic diversity and fitness.
PMCID: PMC2729624  PMID: 19567418
Reproduction; reproductive success; pollen; siring success; microsatellite DNA; paternity; pollen tube growth; seed mass; Silene alba; stigma wilting
22.  SlWUS1; An X-linked Gene Having No Homologous Y-Linked Copy in Silene latifolia 
G3: Genes|Genomes|Genetics  2012;2(10):1269-1278.
The dioecious plant Silene latifolia has heteromorphic sex chromosomes, and comparison of the positions of sex-linked genes indicates that at least three large inversions have occurred during the evolution of the Y chromosome. In this article, we describe the isolation of a new sex-linked gene from S. latifolia, which provides new information on the evolution of this plant’s young sex chromosomes. By using reverse-transcription polymerase chain reaction degenerate primers based on the Arabidopsis thaliana sequence of WUSCHEL, a flower-development gene, we found two copies in S. latifolia, which we named SlWUS1 and SlWUS2. Southern blot and genetic segregation analysis showed that SlWUS1 is located on the X chromosome and SlWUS2 is autosomal. No Y-linked copy of SlWUS1 was found by either Southern blot analysis under low-stringency conditions or polymerase chain reaction with degenerate primers, so we conclude that SlWUS1 probably has no Y-linked homolog. It is unknown whether the Y chromosome lost the SlWUS1 copy by degeneration of this individual gene or whether deletion of a larger genome region was involved. Several tests lead us to conclude that dosage compensation has not evolved for this sex-linked gene. We mapped the ortholog in the nondioecious relative S. vulgaris (SvWUS1), to compare the location in a species that has no history of having sex chromosomes. SvWUS1 maps to the same linkage group as other fully X-linked genes, indicating that it was not added to the X, but was lost from the Y. Its location differs in the maps from the two species, raising the possibility that the X chromosome, as well as the Y, may have been rearranged.
PMCID: PMC3464119  PMID: 23050237
dioecious plant; Silene latifolia; X-linkage; genetic degeneration; WUSCHEL
23.  Genome Size, Quantitative Genetics and the Genomic Basis for Flower Size Evolution in Silene latifolia 
Annals of Botany  2005;95(1):247-254.
• Background and Aims The overall goal of this paper is to construct an overview of the genetic basis for flower size evolution in Silene latifolia. It aims to examine the relationship between the molecular bases for flower size and the underlying assumption of quantitative genetics theory that quantitative variation is ultimately due to the impact of a number of structural genes.
• Scope Previous work is reviewed on the quantitative genetics and potential for response to selection on flower size, and the relationship between flower size and nuclear DNA content in S. latifolia. These earlier findings provide a framework within which to consider more recent analyses of a joint quantitative trait loci (QTL) analysis of flower size and DNA content in this species.
• Key Results Flower size is a character that fits the classical quantitative genetics model of inheritance very nicely. However, an earlier finding that flower size is correlated with nuclear DNA content suggested that quantitative aspects of genome composition rather than allelic substitution at structural loci might play a major role in the evolution of flower size. The present results reported here show that QTL for flower size are correlated with QTL for DNA content, further corroborating an earlier result and providing additional support for the conclusion that localized variations in DNA content underlie evolutionary changes in flower size.
• Conclusions The search image for QTL should be broadened to include overall aspects of genome regulation. As we prepare to enter the much-heralded post-genomic era, we also need to revisit our overall models of the relationship between genotype and phenotype to encompass aspects of genome structure and composition beyond structural genes.
PMCID: PMC4246723  PMID: 15596472
Silene latifolia; genome size; quantitative genetics; QTL; AFLP; evolutionary genomics; floral evolution
24.  A key role for floral scent in a wasp-pollination system in Eucomis (Hyacinthaceae) 
Annals of Botany  2008;103(5):715-725.
Background and Aims
Floral scent may play a key role as a selective attractant in plants with specialized pollination systems, particularly in cases where floral morphology does not function as a filter of flower visitors. The pollination systems of two African Eucomis species (E. autumnalis and E. comosa) were investigated and a test was made of the importance of scent and visual cues as floral attractants.
Methods and Key Results
Visitor observations showed that E. autumnalis and E. comosa are visited primarily by pompilid wasps belonging to the genus Hemipepsis. These wasps carry considerably more Eucomis pollen and are more active on flowers than other visiting insects. Furthermore, experiments involving virgin flowers showed that these insects are capable of depositing pollen on the stigmas of E. autumnalis, and, in the case of E. comosa, pollen deposited during a single visit is sufficient to result in seed set. Experimental hand-pollinations showed that both species are genetically self-incompatible and thus reliant on pollinators for seed set. Choice experiments conducted in the field and laboratory with E. autumnalis demonstrated that pompilid wasps are attracted to flowers primarily by scent and not visual cues. Measurement of spectral reflectance by flower petals showed that flowers are cryptically coloured and are similar to the background vegetation. Analysis of headspace scent samples using coupled gas chromatography–mass spectrometry revealed that E. autumnalis and E. comosa scents are dominated by aromatic and monoterpene compounds. One hundred and four volatile compounds were identified in the floral scent of E. autumnalis and 83 in the floral scent of E. comosa, of which 57 were common to the scents of both species.
This study showed that E. autumnalis and E. comosa are specialized for pollination by pompilid wasps in the genus Hemipepsis and achieve specialization through cryptic colouring and the use of scent as a selective floral attractant.
PMCID: PMC2707869  PMID: 19116433
Eucomis; Pompilidae; wasp pollination; breeding system; pollination syndrome; pollinator shift; floral volatile; floral filter
25.  The effects of inbreeding, genetic dissimilarity and phenotype on male reproductive success in a dioecious plant 
Pollen fate can strongly affect the genetic structure of populations with restricted gene flow and significant inbreeding risk. We established an experimental population of inbred and outbred Silene latifolia plants to evaluate the effects of (i) inbreeding depression, (ii) phenotypic variation and (iii) relatedness between mates on male fitness under natural pollination. Paternity analysis revealed that outbred males sired significantly more offspring than inbred males. Independently of the effects of inbreeding, male fitness depended on several male traits, including a sexually dimorphic (flower number) and a gametophytic trait (in vitro pollen germination rate). In addition, full-sib matings were less frequent than randomly expected. Thus, inbreeding, phenotype and genetic dissimilarity simultaneously affect male fitness in this animal-pollinated plant. While inbreeding depression might threaten population persistence, the deficiency of effective matings between sibs and the higher fitness of outbred males will reduce its occurrence and counter genetic erosion.
PMCID: PMC3223646  PMID: 21561968
inbreeding; fitness; pollen; plant; relatedness

Results 1-25 (399036)