Search tips
Search criteria

Results 1-25 (959924)

Clipboard (0)

Related Articles

1.  Characterization of antibodies in single-chain format against the E7 oncoprotein of the Human papillomavirus type 16 and their improvement by mutagenesis 
BMC Cancer  2007;7:25.
Human papillomaviruses (HPV) are the etiological agents of cervical cancer. The viral E7 protein plays a crucial role in viral oncogenesis. Many strategies have been explored to block the E7 oncoprotein activity. The single-chain variable antibody fragments (scFvs) are valuable tools in cancer immunotherapy and can be used as "intracellular antibodies" to knock out specific protein functions. For both in vivo and in vitro employment, the scFv intrinsic solubility and stability are important to achieve long-lasting effects. Here we report the characterization in terms of reactivity, solubility and thermal stability of three anti-HPV16 E7 scFvs. We have also analysed the scFv43 sequence with the aim of improving stability and then activity of the antibody, previously shown to have antiproliferative activity when expressed in HPV16-positive cells.
The three anti-HPV16 E7 scFv 32, 43 51 were selected from the ETH-2 "phage-display" library. Thermal stability was evaluated with ELISA by determining the residual activity of each purified scFv against the recombinant HPV16 E7, after incubation in the presence of human seroalbumine for different time-intervals at different temperatures. Sequence analysis of the scFvs was performed with BLAST and CLUSTALL programs. The scFv43 aminoacid changes were reverted back to the consensus sequence from the immunoglobuline database by site-directed mutagenesis. ScFv solubility was evaluated with Western blotting by determining their relative amounts in the soluble and insoluble fractions of both prokaryotic and eukaryotic systems.
ScFv51 was the most thermally stable scFv considered. Sequence analysis of the most reactive scFv43 has evidenced 2 amino acid changes possibly involved in molecule stability, in the VH and VL CDR3 regions respectively. By mutagenesis, two novel scFv43-derived scFvs were obtained, scFv43 M1 and M2. ScFv43 M2 showed to have improved thermal stability and solubility in comparison with the parental scFv43.
The characterization of 5 specific anti-HPV16 E7 scFvs shows features important for their activity in vivo. ScFv43 M2 shows higher thermal stability with respect to the parental scFv43, and scFv51 shows high stability and solubility. These properties make the 2 scFvs the best candidates to be tested for anti-E7 activity in vivo.
PMCID: PMC1797048  PMID: 17266749
2.  96 Recombinant SCFV Antibodies for IGE Epitope Mapping and Detection of Parvalbumins 
Parvalbumin, the major fish allergen, is responsible for IgE cross-reactivity among different fish species. We aimed to generate recombinant single chain antibody fragments (scFv) binding to epitopes responsible for IgE cross-reactivity among parvalbumins.
The parvalbumin-specific scFvs were selected from the human synthetic scFv phage library ETH-2 by alternating the parvalbumin from cod (Gad m 1), carp (Cyp c 1) and trout (Onc m 1) during 3 rounds of sequential biopanning. Based on their reactivity to parvalbumins by ELISA, 2 clones were expressed in Escherichia coli. The ability of the 2 scFv antibodies to inhibit the binding of parvalbumin-specific IgE from fish allergic patients’ sera was showed by ELISA competition experiments and the rat basophilic leukemia mediator release assay.
Based on ability to bind different parvalbumins and sequence analysis, phage clones scFv-gco9 and scFv-goo8 were selected for production of soluble scFv antibodies. We obtained 1 mg of scFv-gco9 and 1.3 mg of scFv-goo8 per litre of bacterial culture. The scFv-gco9 was able to detect all 3 parvalbumins at a concentration of 10 ng/mL. The scFv-goo8 bound to cod parvalbumin, but not to carp and trout parvalbumin. The detection limit for 1 μg/mL of the scFv-gco9 was 0.01 μg/mL of the Gad m 1 and 0.2 μg/mL of Onc m 1 or Cyp c 1. We found that scFv-gco9 dose-dependently blocked the binding of IgE to immobilized Gad m 1, Cyp c 1 and Onc m 1. At a concentration of 5 μg/mL of scFv-gco9 binding of IgE to the 3 parvalbumins was inhibited by approximately 40%, and at a concentration of 20 μg/mL the IgE binding was inhibited to ∼70%. In the case of the scFv-goo8, inhibition of IgE binding to Gad m 1 was about 15%. The inhibition of degranulation of basophils was 55% in the presence of 2 μg/mL scFv-gco9.
This work, supported by grant SFB-F01802, revealed that the scFv antibodies can be used for the standardization of protein extracts used for allergy diagnosis and for IgE epitope mapping. Epitope characterization enables the engineering of parvalbumin molecules with reduced IgE binding for allergen-specific immunotherapy.
PMCID: PMC3512664
3.  Single-chain Fv phage display propensity exhibits strong positive correlation with overall expression levels 
BMC Biotechnology  2008;8:97.
Single chain Fvs (scFvs) are widely applied in research, diagnostics and therapeutic settings. Display and selection from combinatorial libraries is the main route to their discovery and many factors influence the success of this process. They exhibit low thermodynamic stability, resulting in low levels of premature cytosolic folding or aggregation which facilitates sec YEG-mediated translocation and phage in E. coli. However, there is little data analysing how this is related to and influenced by scFv protein expression.
We characterised the relationship between overall scFv expression and display propensity for a panel of 15 anti-tetanus toxin scFvs and found a strong positive correlation (Rho = 0.88, p < 0.005) between the two parameters. Display propensity, overall expression and soluble localisation to the periplasm and extracellular fractions were clone specific characteristics which varied despite high levels of sequence homology. There was no correlation between display of scFv or its expression in non-fused (free) form with soluble scFv localisation to the periplasm or culture supernatant. This suggests that divergence in the fate of scFv-pIII and non-fused scFv after translocation to the periplasm accounts for the observed disparity. Differential degrees of periplasmic aggregation of non-fused scFv between clones may affect the partitioning of scFv in the periplasm and culture supernatant abrogating any correlation. We suggest that these factors do not apply to the scFv-pIII fusion since it remains anchored to the bacterial inner membrane as part of the innate phage packaging and budding process.
We conclude that in the absence of premature cytosolic aggregation or folding, the propensity of a scFv to be displayed on phage is directly related to its overall expression level and is thus indirectly influenced by factors such as codon bias, mRNA abundance or putative DNA motifs affecting expression. This suggests that scFvs capable of high overall expression and display levels may not produce high yields of non phage-fused soluble protein in either the periplasmic or extracellular fractions of E. coli. This should be considered when screening clones selected from combinatorial libraries for further study.
The nucleotide and amino acid sequences of the anti-tetanus toxin scFvs have been deposited in the EMBL data base: accession numbers-C1: AM749134, C2: AM749135, C3: AM749136, C4: AM749137, C5: AM749138, N1: AM749139, N2: AM749140, N3: AM749141, N4: AM749142, N5: AM749143 J1; AM749144, J2: AM749145, J3: AM749146, J4: AM749147, J5: AM749148.
PMCID: PMC2630973  PMID: 19113995
4.  Development of Phage-Based Single Chain Fv Antibody Reagents for Detection of Yersinia pestis 
PLoS ONE  2011;6(12):e27756.
Most Yersinia pestis strains are known to express a capsule-like antigen, fraction 1 (F1). F1 is encoded by the caf1 gene located on the large 100-kb pFra plasmid, which is found in Y. pestis but not in closely related species such as Yersinia enterocolytica and Yersinia pseudotuberculosis. In order to find antibodies specifically binding to Y. pestis we screened a large single chain Fv antibody fragment (scFv) phage display library using purified F1 antigen as a selection target. Different forms of the selected antibodies were used to establish assays for recombinant F1 antigen and Y. pestis detection.
Phage antibody panning was performed against F1 in an automated fashion using the Kingfisher magnetic bead system. Selected scFvs were screened for F1-binding specificity by one-step alkaline phosphatase enzyme linked immunosorbant assay (ELISA), and assayed for binding to recombinant antigen and/or Y. pestis by flow cytometry and whole-cell ELISA.
Seven of the eight selected scFvs were shown to specifically bind both recombinant F1 and a panel of F1-positive Yersinia cells. The majority of the soluble scFvs were found to be difficult to purify, unstable and prone to cross-reactivity with F1-negative Yersinia strains, whereas phage displayed scFvs were found to be easy to purify/label and remarkably stable. Furthermore direct fluorescent labeling of phage displaying scFv allowed for an easy one-step flow cytometry assay. Slight cross-reactivity was observed when fixed cells were used in ELISA.
Our high throughput methods of selection and screening allowed for time and cost effective discovery of seven scFvs specifically binding Y. pestis F1 antigen. We describe implementation of different methods for phage-based immunoassay. Based on the success of these methods and the proven stability of phage, we indicate that the use of phage-displayed, rather than phage-free proteins, might generally overcome the shortcomings of scFv antibodies.
PMCID: PMC3234238  PMID: 22174746
5.  Differentiation of Candida albicans and Candida dubliniensis by Using Recombinant Human Antibody Single-Chain Variable Fragments Specific for Hyphae 
Journal of Clinical Microbiology  2003;41(3):1152-1160.
To identify antigens specific for the filamentous form of Candida albicans, a combinatorial phage display library expressing human immunoglobulin heavy and light chain variable regions was used to select phage clones capable of binding to the surfaces of viable C. albicans filaments. Eight distinct phage clones that bound specifically to filament surface antigens not expressed on blastoconidia were identified. Single-chain antibody variable fragments (scFv) derived from two of these phage clones (scFv5 and scFv12) were characterized in detail. Filament-specific antigen expression was detected by an indirect immunofluorescence assay. ScFv5 reacted with C. dubliniensis filaments, while scFv12 did not. Neither scFv reacted with C. glabrata, C. parapsilosis, C. rugosa, C. tropicalis, or Saccharomyces cerevisiae grown under conditions that stimulated filament formation in C. albicans and C. dubliniensis. Epitope detection by the two scFv was sensitive to proteinase K treatment but not to periodate treatment, indicating that the cognate epitopes were composed of protein. The antigens reactive with scFv5 and scFv12 were extractable from the cell surface with Zymolyase, but not with sodium dodecyl sulfate (SDS) and 2-mercaptoethanol, and migrated as polydisperse, high-molecular-weight bands on SDS-polyacrylamide gel electrophoresis gels. The epitopes were detected on clinical specimens obtained from infants with thrush and urinary candidiasis without passage of the organisms on laboratory media, confirming epitope expression in human infection. The availability of a monoclonal immunologic reagent that recognizes filaments from both C. albicans and C. dubliniensis and another specific only to C. albicans adds to the repertoire of potential diagnostic reagents for differentiation between these closely related species.
PMCID: PMC150300  PMID: 12624045
6.  Flow Cytometry-Based Methods for Assessing Soluble scFv Activities and Detecting Antigens in Solution 
Biotechnology and bioengineering  2010;105(5):973-981.
Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast-display libraries. Yeast-display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. Alimiting step in the isolation of scFv from non-immune libraries is the conversion of highly active yeast-displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast-display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeast-displayed and -secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of their ability to competitively inhibit the binding of biotinylated antigen to yeast-displayed scFv. The second is an epitope binning assay that uses secreted scFv to identify additional yeast-displayed scFv that bind non-overlapping or non-competing epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast-displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast-displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast-display libraries.
PMCID: PMC2851250  PMID: 19953671
Trypanosoma; African trypanosomiasis; antibodies; scFv; yeast-display; S. cerevisiae; invariant surface glycoproteins; ISG; flow cytometry; yeast-display; competitive inhibition
7.  Antigenic Drift of the Pandemic 2009 A(H1N1) Influenza Virus in a Ferret Model 
PLoS Pathogens  2013;9(5):e1003354.
Surveillance data indicate that most circulating A(H1N1)pdm09 influenza viruses have remained antigenically similar since they emerged in humans in 2009. However, antigenic drift is likely to occur in the future in response to increasing population immunity induced by infection or vaccination. In this study, sequential passaging of A(H1N1)pdm09 virus by contact transmission through two independent series of suboptimally vaccinated ferrets resulted in selection of variant viruses with an amino acid substitution (N156K, H1 numbering without signal peptide; N159K, H3 numbering without signal peptide; N173K, H1 numbering from first methionine) in a known antigenic site of the viral HA. The N156K HA variant replicated and transmitted efficiently between naïve ferrets and outgrew wildtype virus in vivo in ferrets in the presence and absence of immune pressure. In vitro, in a range of cell culture systems, the N156K variant rapidly adapted, acquiring additional mutations in the viral HA that also potentially affected antigenic properties. The N156K escape mutant was antigenically distinct from wildtype virus as shown by binding of HA-specific antibodies. Glycan binding assays demonstrated the N156K escape mutant had altered receptor binding preferences compared to wildtype virus, which was supported by computational modeling predictions. The N156K substitution, and culture adaptations, have been detected in human A(H1N1)pdm09 viruses with N156K preferentially reported in sequences from original clinical samples rather than cultured isolates. This study demonstrates the ability of the A(H1N1)pdm09 virus to undergo rapid antigenic change to evade a low level vaccine response, while remaining fit in a ferret transmission model of immunization and infection. Furthermore, the potential changes in receptor binding properties that accompany antigenic changes highlight the importance of routine characterization of clinical samples in human A(H1N1)pdm09 influenza surveillance.
Author Summary
Infection with influenza virus leads to significant morbidity and mortality. Annual vaccination may prevent subsequent disease by inducing neutralizing antibodies to currently circulating strains in the human population. To escape this antibody response, influenza A viruses undergo continuous genetic variation as they replicate, enabling viruses with advantageous antigenic mutations to spread and cause disease in naïve or previously immune or vaccinated individuals. To date, the 2009 pandemic virus (A(H1N1)pdm09) has not undergone significant antigenic drift, with the result that the vaccine remains well-matched and should provide good protection to A(H1N1)pdm09 circulating viruses. In this study, we induced antigenic drift in an A(H1N1)pdm09 virus in the ferret model. A single amino acid mutation emerged in the dominant surface glycoprotein, hemagglutinin, which had a multifaceted effect, altering both antigenicity and virus receptor specificity. The mutant virus could not be isolated using routine cell culture methods without the virus acquiring additional amino acid changes, yet was fit in vivo. The implications for surveillance of circulating influenza virus are significant as current assays commonly used to assess vaccine mismatch, as well as to produce isolates for vaccine manufacture, are biased against identification of viruses containing only this mutation.
PMCID: PMC3649996  PMID: 23671418
8.  A simple vector system to improve performance and utilisation of recombinant antibodies 
BMC Biotechnology  2006;6:46.
Isolation of recombinant antibody fragments from antibody libraries is well established using technologies such as phage display. Phage display vectors are ideal for efficient display of antibody fragments on the surface of bacteriophage particles. However, they are often inefficient for expression of soluble antibody fragments, and sub-cloning of selected antibody populations into dedicated soluble antibody fragment expression vectors can enhance expression.
We have developed a simple vector system for expression, dimerisation and detection of recombinant antibody fragments in the form of single chain Fvs (scFvs). Expression is driven by the T7 RNA polymerase promoter in conjunction with the inducible lysogen strain BL21 (DE3). The system is compatible with a simple auto-induction culture system for scFv production. As an alternative to periplasmic expression, expression directly in the cytoplasm of a mutant strain with a more oxidising cytoplasmic environment (Origami 2™ (DE3)) was investigated and found to be inferior to periplasmic expression in BL21 (DE3) cells. The effect on yield and binding activity of fusing scFvs to the N terminus of maltose binding protein (a solubility enhancing partner), bacterial alkaline phosphatase (a naturally dimeric enzymatic reporter molecule), or the addition of a free C-terminal cysteine was determined. Fusion of scFvs to the N-terminus of maltose binding protein increased scFv yield but binding activity of the scFv was compromised. In contrast, fusion to the N-terminus of bacterial alkaline phosphatase led to an improved performance. Alkaline phosphatase provides a convenient tag allowing direct enzymatic detection of scFv fusions within crude extracts without the need for secondary reagents. Alkaline phosphatase also drives dimerisation of the scFv leading to an improvement in performance compared to monovalent constructs. This is illustrated by ELISA, western blot and immunohistochemistry.
Nine scFv expression vectors have been generated and tested. Three vectors showed utility for expression of functional scFv fragments. One vector, pSANG14-3F, produces scFv-alkaline phosphatase fusion molecules which offers a simple, convenient and sensitive way of determining the reactivity of recombinant antibody fragments in a variety of common assay systems.
PMCID: PMC1712229  PMID: 17156422
9.  Global Mortality Estimates for the 2009 Influenza Pandemic from the GLaMOR Project: A Modeling Study 
PLoS Medicine  2013;10(11):e1001558.
Lone Simonsen and colleagues use a two-stage statistical modeling approach to estimate the global mortality burden of the 2009 influenza pandemic from mortality data obtained from multiple countries.
Please see later in the article for the Editors' Summary
Assessing the mortality impact of the 2009 influenza A H1N1 virus (H1N1pdm09) is essential for optimizing public health responses to future pandemics. The World Health Organization reported 18,631 laboratory-confirmed pandemic deaths, but the total pandemic mortality burden was substantially higher. We estimated the 2009 pandemic mortality burden through statistical modeling of mortality data from multiple countries.
Methods and Findings
We obtained weekly virology and underlying cause-of-death mortality time series for 2005–2009 for 20 countries covering ∼35% of the world population. We applied a multivariate linear regression model to estimate pandemic respiratory mortality in each collaborating country. We then used these results plus ten country indicators in a multiple imputation model to project the mortality burden in all world countries. Between 123,000 and 203,000 pandemic respiratory deaths were estimated globally for the last 9 mo of 2009. The majority (62%–85%) were attributed to persons under 65 y of age. We observed a striking regional heterogeneity, with almost 20-fold higher mortality in some countries in the Americas than in Europe. The model attributed 148,000–249,000 respiratory deaths to influenza in an average pre-pandemic season, with only 19% in persons <65 y. Limitations include lack of representation of low-income countries among single-country estimates and an inability to study subsequent pandemic waves (2010–2012).
We estimate that 2009 global pandemic respiratory mortality was ∼10-fold higher than the World Health Organization's laboratory-confirmed mortality count. Although the pandemic mortality estimate was similar in magnitude to that of seasonal influenza, a marked shift toward mortality among persons <65 y of age occurred, so that many more life-years were lost. The burden varied greatly among countries, corroborating early reports of far greater pandemic severity in the Americas than in Australia, New Zealand, and Europe. A collaborative network to collect and analyze mortality and hospitalization surveillance data is needed to rapidly establish the severity of future pandemics.
Please see later in the article for the Editors' Summary
Editors' Summary
Every winter, millions of people catch influenza—a viral infection of the airways—and hundreds of thousands of people (mainly elderly individuals) die as a result. These seasonal epidemics occur because small but frequent changes in the influenza virus mean that the immune response produced by infection with one year's virus provides only partial protection against the next year's virus. Influenza viruses also occasionally emerge that are very different. Human populations have virtually no immunity to these new viruses, which can start global epidemics (pandemics) that kill millions of people. The most recent influenza pandemic, which was first recognized in Mexico in March 2009, was caused by the 2009 influenza A H1N1 pandemic (H1N1pdm09) virus. This virus spread rapidly, and on 11 June 2009, the World Health Organization (WHO) declared that an influenza pandemic was underway. H1N1pdm09 caused a mild disease in most people it infected, but by the time WHO announced that the pandemic was over (10 August 2010), there had been 18,632 laboratory-confirmed deaths from H1N1pdm09.
Why Was This Study Done?
The modest number of laboratory-confirmed H1N1pdm09 deaths has caused commentators to wonder whether the public health response to H1N1pdm09 was excessive. However, as is the case with all influenza epidemics, the true mortality (death) burden from H1N1pdm09 is substantially higher than these figures indicate because only a minority of influenza-related deaths are definitively diagnosed by being confirmed in laboratory. Many influenza-related deaths result from secondary bacterial infections or from exacerbation of preexisting chronic conditions, and are not recorded as related to influenza infection. A more complete assessment of the impact of H1N1pdm09 on mortality is essential for the optimization of public health responses to future pandemics. In this modeling study (the Global Pandemic Mortality [GLaMOR] project), researchers use a two-stage statistical modeling approach to estimate the global mortality burden of the 2009 influenza pandemic from mortality data obtained from multiple countries.
What Did the Researchers Do and Find?
The researchers obtained weekly virology data from the World Health Organization FluNet database and national influenza centers to identify influenza active periods, and obtained weekly national underlying cause-of-death time series for 2005–2009 from collaborators in more than 20 countries (35% of the world's population). They used a multivariate linear regression model to measure the numbers and rates of pandemic influenza respiratory deaths in each of these countries. Then, in the second stage of their analysis, they used a multiple imputation model that took into account country-specific geographical, economic, and health indicators to project the single-country estimates to all world countries. The researchers estimated that between 123,000 and 203,000 pandemic influenza respiratory deaths occurred globally from 1 April through 31 December 2009. Most of these deaths (62%–85%) occurred in people younger than 65 years old. There was a striking regional heterogeneity in deaths, with up to 20-fold higher mortality in Central and South American countries than in European countries. Finally, the model attributed 148,000–249,000 respiratory deaths to influenza in an average pre-pandemic season. Notably, only 19% of these deaths occurred in people younger than 65 years old.
What Do These Findings Mean?
These findings suggest that respiratory mortality from the 2009 influenza pandemic was about 10-fold higher than laboratory-confirmed mortality. The true total mortality burden is likely to be even higher because deaths that occurred late in the winter of 2009–2010 and in later pandemic waves were missed in this analysis, and only pandemic influenza deaths that were recorded as respiratory deaths were included. The lack of single-country estimates from low-income countries may also limit the accuracy of these findings. Importantly, although the researchers' estimates of mortality from H1N1pdm09 and from seasonal influenza were of similar magnitude, the shift towards mortality among younger people means that more life-years were lost during the 2009 influenza pandemic than during an average pre-pandemic influenza season. Although the methods developed by the GLaMOR project can be used to make robust and comparable mortality estimates in future influenza pandemics, the lack of timeliness of such estimates needs to be remedied. One potential remedy, suggest the researchers, would be to establish a collaborative network that analyzes timely hospitalization and/or mortality data provided by sentinel countries. Such a network should be able to provide the rapid and reliable data about the severity of pandemic threats that is needed to guide public health policy decisions.
Additional Information
Please access these websites via the online version of this summary at
The US Centers for Disease Control and Prevention provides information about influenza for patients and professionals, including archived information on H1N1pdm09, a US government website, provides access to information on seasonal and pandemic influenza H1N1pdm09
The World Health Organization provides information on influenza and on the global response to H1N1pdm09, including a publication on the evolution of H1N1pdm09 (some information in several languages). Information on FluNet, a global tool for influenza surveillance, is also available
Public Health England provides information on pandemic influenza and archived information on H1N1pdm09
More information for patients about H1N1pdm09 is available through Choices, an information resource provided by the UK National Health Service
More information about the GLaMOR project is available
PMCID: PMC3841239  PMID: 24302890
10.  Toward Low-Cost Affinity Reagents: Lyophilized Yeast-scFv Probes Specific for Pathogen Antigens 
PLoS ONE  2012;7(2):e32042.
The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv) in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2–3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.
PMCID: PMC3282784  PMID: 22363793
11.  An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification 
mAbs  2012;4(4):542-550.
Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene.
In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles.
PMCID: PMC3499348  PMID: 22692130
SOE-PCR; independent strand amplification; phage display library; scFv assembly
12.  Construction and Characterization of Single-Chain Variable Fragment Antibodies Directed against the Bordetella pertussis Surface Adhesins Filamentous Hemagglutinin and Pertactin▿  
Infection and Immunity  2007;75(11):5476-5482.
A single-chain variable fragment (scFv) antibody library against Bordetella pertussis was constructed using M13 phage display. The library was enriched for phages surface displaying functional scFv by biopanning against B. pertussis immobilized on polystyrene plates. Two hundred eighty-eight individual clones from the enriched library were screened for binding to B. pertussis cells, filamentous hemagglutinin (FHA), and pertactin (PRN) in enzyme-linked immunosorbent assays (ELISAs). Based on the binding ability, the clones were put into eight groups. The scFv DNA inserts from the 288 clones were digested with BstOI, and 18 unique restriction patterns, named types 1 to 18, were found. Eight clones (types 1 to 7 and 18) were selected for further testing against FHA, PRN, and B. pertussis by ELISA. The results showed that types 1, 5, 7, and 18 bound strongly to B. pertussis cells as well as FHA and PRN. Type 3 bound strongly to the cells and FHA but weakly to PRN. Types 4 and 6 bound FHA only, and type 2 did not bind to the cells or antigens. The ability of the eight clones to inhibit B. pertussis from binding to HEp-2 cells was assayed. Types 1, 5, and 7, but not the remaining clones, inhibited the adherence of B. pertussis to HEp-2 cells. The scFvs were sequenced, and the deduced amino acid sequence showed that the scFvs were different antibodies. Maltose-binding protein (MBP) fusion proteins composed of three different regions of FHA (heparin-binding domain, carbohydrate recognition domain, and the RGD triplet motif) were constructed. The three fusion proteins and Mal85 (MBP-FHA type I domain) were used to map the binding sites for scFvs of types 1, 5, and 7 by ELISA. The results showed that all three scFvs bound to the heparin-binding domain fusion protein but not the other fusion proteins. BALB/c mice who received recombinant phage-treated B. pertussis had reduced bacterial counts in the nasal cavity, trachea, and lungs compared to the control groups.
PMCID: PMC2168280  PMID: 17724067
13.  An improved phage-display panning method to produce an HM-1 killer toxin anti-idiotypic antibody 
BMC Biotechnology  2009;9:99.
Phage-display panning is an integral part of biomedical research. Regular panning methods are sometimes complicated by inefficient detachment of the captured phages from the antigen-coated solid supports, which prompted us to modify. Here, we produce an efficient antigen-specific single chain fragment variable (scFv) antibody by using a target-related molecule that favored selection ofrecombinant antibodies.
To produce more selective and specific anti-idiotypic scFv-antibodies from a cDNA library, constructed from HM-1 killer toxin (HM-1)-neutralizing monoclonal antibodies (nmAb-KT), the method was modified by using an elution buffer supplemented with HM-1 that shares structural and functional similarities with the active site of the scFv antibody. Competitive binding of HM-1 to nmAb-KT allowed easy and quick dissociation of scFv-displayed phages from immobilized nmAb-KT to select specific anti-idiotypic scFv antibodies of HM-1. After modified panning, 80% clones (40/50) showed several times higher binding affinity to nmAb-KT than regular panning. The major populations (48%) of these clones (scFv K1) were genotypically same and had strong cytocidal activity against Saccharomyces and Candida species. The scFv K1 (Kd value = 4.62 × 10-8 M) had strong reactivity toward nmAb-KT, like HM-1 (Kd value = 6.74 × 10-9 M) as judged by SPR analysis.
The scFv antibodies generated after modified subtractive panning appear to have superior binding properties and cytocidal activity than regular panning. A simple modification of the elution condition in the phage-display panning protocol makes a large difference in determining success. Our method offers an attractive platform to discover potential therapeutic candidates.
PMCID: PMC2801674  PMID: 20003392
14.  Intraspecific Epitopic Variation in a Carbohydrate Antigen Exposed on the Surface of Trichostrongylus colubriformis Infective L3 Larvae 
PLoS Pathogens  2009;5(9):e1000597.
The carbohydrate larval antigen, CarLA, is present on the exposed surface of all strongylid nematode infective L3 larvae tested, and antibodies against CarLA can promote rapid immune rejection of incoming Trichostrongylus colubriformis larvae in sheep. A library of ovine recombinant single chain Fv (scFv) antibody fragments, displayed on phage, was prepared from B cell mRNA of field-immune sheep. Phage displaying scFvs that bind to the surface of living exsheathed T. colubriformis L3 larvae were identified, and the majority of worm-binding scFvs recognized CarLA. Characterization of greater than 500 worm surface binding phage resulted in the identification of nine different anti-CarLA scFvs that recognized three distinct T. colubriformis CarLA epitopes based on blocking and additive ELISA. All anti-CarLA scFvs were specific to the T. colubriformis species of nematode. Each of the three scFv epitope classes displayed identical Western blot recognition patterns and recognized the exposed surface of living T. colubriformis exsheathed L3 larvae. Surprisingly, each of the anti-CarLA scFvs was able to bind to only a subset of worms. Double-labelling indirect immunofluorescence revealed that the three classes of anti-CarLA scFvs recognize distinct, non-overlapping, T. colubriformis sub-populations. These results demonstrate that individual T. colubriformis L3 larvae display only one of at least three distinct antigenic forms of CarLA on their surface at any given time, and suggest that antigenic variation within CarLA is likely a mechanism of immune evasion in strongylid nematodes.
Author Summary
Strongylid nematode worm parasites currently infect hundreds of millions of people, and most farmed animals, causing enormous morbidity and economic loss. These parasites commonly produce chronic gastrointestinal infections that are highly refractory to immune clearance mechanisms. Mucosal antibodies against a carbohydrate surface antigen (CarLA) can cause rapid expulsion of incoming larval nematodes. Sheep develop strong anti-strongylid immunity following long-term grazing on contaminated pasture. From these sheep, we identified and characterized recombinant antibodies that recognize CarLA on living L3 stage infective larvae of the strongylid parasite, Trichostrongylus colubriformis. The selected antibodies are specific only to larvae of the T. colubriformis species and, surprisingly, recognize only a subset of these worms. Three different anti-CarLA antibody classes were found and each recognizes different, non-overlapping subsets of worms which, together, comprise virtually the entire population. These results are the first demonstration of “intraspecific epitopic variation” within strongylid nematodes and suggest that these parasites have a mechanism that permits the surface presentation of at least three different antigenic forms of CarLA to avoid immune clearance.
PMCID: PMC2742895  PMID: 19779563
15.  Construction and Characterization of Single-Chain Variable Fragment Antibody Library Derived from Germline Rearranged Immunoglobulin Variable Genes 
PLoS ONE  2011;6(11):e27406.
Antibody repertoires for library construction are conventionally harvested from mRNAs of immune cells. To examine whether germline rearranged immunoglobulin (Ig) variable region genes could be used as source of antibody repertoire, an immunized phage-displayed scFv library was prepared using splenocytic genomic DNA as template. In addition, a novel frame-shifting PCR (fsPCR) step was introduced to rescue stop codon and to enhance diversity of the complementarity-determining region 3 (CDR3). The germline scFv library was initially characterized against the hapten antigen phenyloxazolone (phOx). Sequence analysis of the phOx-selective scFvs indicated that the CDRs consisted of novel as well as conserved motifs. In order to illustrate that the diversity of CDR3 was increased by the fsPCR step, a second scFv library was constructed using a single scFv clone L3G7C as a template. Despite showing similar binding characteristics towards phOx, the scFv clones that were obtained from the L3G7C-derived antibody library gave a lower non-specific binding than that of the parental L3G7C clone. To determine whether germline library represented the endogenous immune status, specific scFv clones for nucleocapsid (N) protein of SARS-associated coronavirus (SCoV) were obtained both from naïve and immunized germline scFv libraries. Both libraries yielded specific anti-N scFvs that exhibited similar binding characteristics towards recombinant N protein, except the immunized library gave a larger number of specific anti-N scFv, and clones with identical nucleotide sequences were found. In conclusion, highly diversified antibody library can be efficiently constructed using germline rearranged immunoglobulin variable genes as source of antibody repertoires and fsPCR to diversify the CDR3.
PMCID: PMC3214059  PMID: 22096568
16.  High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells 
BMC Biotechnology  2013;13:52.
The demand of monospecific high affinity binding reagents, particularly monoclonal antibodies, has been steadily increasing over the last years. Enhanced throughput of antibody generation has been addressed by optimizing in vitro selection using phage display which moved the major bottleneck to the production and purification of recombinant antibodies in an end-user friendly format. Single chain (sc)Fv antibody fragments require additional tags for detection and are not as suitable as immunoglobulins (Ig)G in many immunoassays. In contrast, the bivalent scFv-Fc antibody format shares many properties with IgG and has a very high application compatibility.
In this study transient expression of scFv-Fc antibodies in human embryonic kidney (HEK) 293 cells was optimized. Production levels of 10-20 mg/L scFv-Fc antibody were achieved in adherent HEK293T cells. Employment of HEK293-6E suspension cells expressing a truncated variant of the Epstein Barr virus (EBV) nuclear antigen (EBNA) 1 in combination with production under serum free conditions increased the volumetric yield up to 10-fold to more than 140 mg/L scFv-Fc antibody. After vector optimization and process optimization the yield of an scFv-Fc antibody and a cytotoxic antibody-RNase fusion protein further increased 3-4-fold to more than 450 mg/L. Finally, an entirely new mammalian expression vector was constructed for single step in frame cloning of scFv genes from antibody phage display libraries. Transient expression of more than 20 different scFv-Fc antibodies resulted in volumetric yields of up to 600 mg/L and 400 mg/L in average.
Transient production of recombinant scFv-Fc antibodies in HEK293-6E in combination with optimized vectors and fed batch shake flasks cultivation is efficient and robust, and integrates well into a high-throughput recombinant antibody generation pipeline.
PMCID: PMC3699382  PMID: 23802841
Recombinant Antibodies; Single Chain Fv; scFv-Fc; ImmunoRNase; Transient Mammalian Protein Production; Serum-free medium
17.  Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection 
BMC Biotechnology  2008;8:34.
The Rho GTPases A, B and C proteins, members of the Rho family whose activity is regulated by GDP/GTP cycling, function in many cellular pathways controlling proliferation and have recently been implicated in tumorigenesis. Although overexpression of Rho GTPases has been correlated with tumorigenesis, only their GTP-bound forms are able to activate the signalling pathways implicated in tumorigenesis. Thus, the focus of much recent research has been to identify biological tools capable of quantifying the level of cellular GTP-bound Rho, or determining the subcellular location of activation. However useful, these tools used to study the mechanism of Rho activation still have limitations. The aim of the present work was to employ phage display to identify a conformationally-specific single chain fragment variable (scFv) that recognizes the active, GTP-bound, form of Rho GTPases and is able to discriminate it from the inactive, GDP-bound, Rho in endogenous settings.
After five rounds of phage selection using a constitutively activated mutant of RhoB (RhoBQ63L), three scFvs (A8, C1 and D11) were selected for subsequent analysis. Further biochemical characterization was pursued for the single clone, C1, exhibiting an scFv structure. C1 was selective for the GTP-bound form of RhoA, RhoB, as well as RhoC, and failed to recognize GTP-loaded Rac1 or Cdc42, two other members of the Rho family. To enhance its production, soluble C1 was expressed in fusion with the N-terminal domain of phage protein pIII (scFv C1-N1N2), it appeared specifically associated with GTP-loaded recombinant RhoA and RhoB via immunoprecipitation, and endogenous activated Rho in HeLa cells as determined by immunofluorescence.
We identified an antibody, C1-N1N2, specific for the GTP-bound form of RhoB from a phage library, and confirmed its specificity towards GTP-bound RhoA and RhoC, as well as RhoB. The success of C1-N1N2 in discriminating activated Rho in immunofluorescence studies implies that this new tool, in collaboration with currently used RhoA and B antibodies, has the potential to analyze Rho activation in cell function and tumor development.
PMCID: PMC2323369  PMID: 18377644
18.  Radiosensitization and growth inhibition of cancer cells mediated by an scFv antibody gene against DNA-PKcs in vitro and in vivo 
Overexpression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is commonly occurred in cancers and causes radioresistance and poor prognosis. In present study, the single-chain variable antibody fragments (scFv) targeting DNA-PKcs was developed for the application of radiosensitization in vitro and in vivo. A humanized semisynthetic scFv library and the phage-display antibodies technology were employed to screen DNA-PKcs scFv antibody.
DNA-PKcs epitopes were predicted and cloned. A humanized semisynthetic scFv library and the phage-display antibodies technology were employed to screen DNA-PKcs scFv antibody. DNA damage repair was analyzed by comet assay and immunofluorescence detection of γH2AX foci. The radiosensitization in vivo was determined on Balb/c athymic mice transplanted tumours of HeLa cells.
Four epitopes of DNA-PKcs have been predicted and expressed as the antigens, and a specific human anti-DNA-PKcs scFv antibody gene, anti-DPK3-scFv, was obtained by screening the phage antibody library using the DNA-PKcs peptide DPK3. The specificity of anti-DPK3-scFv was verified, in vitro. Transfection of HeLa cells with the anti-DPK3-scFv gene resulted in an increased sensitivity to IR, decreased repair capability of DNA double-strand breaks (DSB) detected by comet assay and immunofluorescence detection of γH2AX foci. Moreover, the kinase activity of DNA-PKcs was inhibited by anti-DPK3-scFv, which was displayed by the decreased phosphorylation levels of its target Akt/S473 and the autophosphorylation of DNA-PKcs on S2056 induced by radiation. Measurement of the growth and apoptosis rates showed that anti-DPK3-scFv enhanced the sensitivity of tumours transplanted in Balb/c athymic mice to radiation therapy.
The antiproliferation and radiosensitizing effects of anti-DPK3-scFv via targeting DNA-PKcs make it very appealing for the development as a novel biological radiosensitizer for cancer therapeutic potential.
PMCID: PMC2927608  PMID: 20704701
19.  Construction of a Single-Chain Variable-Fragment Antibody against the Superantigen Staphylococcal Enterotoxin B ▿  
Applied and Environmental Microbiology  2010;76(24):8184-8191.
Staphylococcal food poisoning (SFP) is one of the most prevalent causes of food-borne illness throughout the world. SFP is caused by 21 different types of staphylococcal enterotoxins produced by Staphylococcus aureus. Among these, staphylococcal enterotoxin B (SEB) is the most potent toxin and is a listed biological warfare (BW) agent. Therefore, development of immunological reagents for detection of SEB is of the utmost importance. High-affinity and specific monoclonal antibodies are being used for detection of SEB, but hybridoma clones tend to lose their antibody-secreting ability over time. This problem can be overcome by the use of recombinant antibodies produced in a bacterial system. In the present investigation, genes from a hybridoma clone encoding monoclonal antibody against SEB were immortalized using antibody phage display technology. A murine phage display library containing single-chain variable-fragment (ScFv) antibody genes was constructed in a pCANTAB 5E phagemid vector. Phage particles displaying ScFv were rescued by reinfection of helper phage followed by four rounds of biopanning for selection of SEB binding ScFv antibody fragments by using phage enzyme-linked immunosorbent assay (ELISA). Soluble SEB-ScFv antibodies were characterized from one of the clones showing high affinity for SEB. The anti-SEB ScFv antibody was highly specific, and its affinity constant was 3.16 nM as determined by surface plasmon resonance (SPR). These results demonstrate that the recombinant antibody constructed by immortalizing the antibody genes from a hybridoma clone is useful for immunodetection of SEB.
PMCID: PMC3008221  PMID: 20952642
20.  Construction of non-covalent single-chain Fv dimers for hepatocellular carcinoma and their biological functions 
World Journal of Hepatology  2010;2(5):185-191.
AIM: To create new diabodies with improved binding activity to antigen of the variable light - variable heavy (VH-VL) oriented single-chain Fv dimers genes (scFv).
METHODS: The linker between VH and VL genes was shortened to 3-5 amino acid residues and cloned into the vector pCANTAB5E. The recombinant plasmids were transformed into TG1 cells and sequenced. The positive transformed cells were infected by M13K07 helper phage to form human recombinant phage antibodies. Expressed products were identified by SDS-PAGE, Western blotting, size exclusion gel chromatography (SEC), ELISA and immunohistochemistry.
RESULTS: Three scFv (scFv-3, scFv-4, scFv-5) were constructed successfully with binding ability to hepatocellular carcinoma 3.5-6 fold greater than their parental scFv. The single-chain Fv dimer (scFv-5, termed BDM3) with the best binding ability was successfully expressed in Yeast pichlia, as shown by. SDS-PAGE and Western blotting. SEC results suggested the molecular weight of the expressed products was about 61 kDa. Expressed products showed significantly stronger binding to hepatocellular carcinoma cells than scFv, still having 50% binding activity even after 16 h incubation as 37°C. The purified dimers were bound specifically to the tumor antigen of HCC.
CONCLUSION: we have generated scFv dimers by shortening a series of linkers to 3-5 amino acid residues in VH-linker-VL orientation, resulting in highly stable and affinity-improved dimeric molecules. These will become an attractive targeting moiety in immunotherapeutic and diagnostic applications for HCC.
PMCID: PMC2998965  PMID: 21160994
Diabody; Antibody-targeted; Specificity; Affinity; Stability
21.  The influence of antibody fragment format on phage display based affinity maturation of IgG 
mAbs  2013;6(1):204-218.
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.
In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab.
PMCID: PMC3929444  PMID: 24262918
phage display; antibody engineering; scFv fragment; scFab fragment; affinity maturation; therapeutic antibody; mutagenesis; CD30; Hodgkin lymphoma; antibody library
22.  Cross-Reactive T Cells Are Involved in Rapid Clearance of 2009 Pandemic H1N1 Influenza Virus in Nonhuman Primates 
PLoS Pathogens  2011;7(11):e1002381.
In mouse models of influenza, T cells can confer broad protection against multiple viral subtypes when antibodies raised against a single subtype fail to do so. However, the role of T cells in protecting humans against influenza remains unclear. Here we employ a translational nonhuman primate model to show that cross-reactive T cell responses play an important role in early clearance of infection with 2009 pandemic H1N1 influenza virus (H1N1pdm). To “prime” cellular immunity, we first infected 5 rhesus macaques with a seasonal human H1N1 isolate. These animals made detectable cellular and antibody responses against the seasonal H1N1 isolate but had no neutralizing antibodies against H1N1pdm. Four months later, we challenged the 5 “primed” animals and 7 naive controls with H1N1pdm. In naive animals, CD8+ T cells with an activated phenotype (Ki-67+ CD38+) appeared in blood and lung 5–7 days post inoculation (p.i.) with H1N1pdm and reached peak magnitude 7–10 days p.i. In contrast, activated T cells were recruited to the lung as early as 2 days p.i. in “primed” animals, and reached peak frequencies in blood and lung 4–7 days p.i. Interferon (IFN)-γ Elispot and intracellular cytokine staining assays showed that the virus-specific response peaked earlier and reached a higher magnitude in “primed” animals than in naive animals. This response involved both CD4+ and CD8+ T cells. Strikingly, “primed” animals cleared H1N1pdm infection significantly earlier from the upper and lower respiratory tract than the naive animals did, and before the appearance of H1N1pdm-specific neutralizing antibodies. Together, our results suggest that cross-reactive T cell responses can mediate early clearance of an antigenically novel influenza virus in primates. Vaccines capable of inducing such cross-reactive T cells may help protect humans against severe disease caused by newly emerging pandemic influenza viruses.
Author Summary
Antibodies against influenza target the highly mutable proteins on the virus surface. Influenza pandemics are caused by novel viruses whose surface proteins are so different from previously circulating viruses as to be unrecognizable by most individuals' antibodies. We hypothesized that T cells might be capable of reducing the severity of infection with pandemic influenza viruses, against which antibodies are ineffective. Experiments in mice have supported this idea, but the ability of T cells to protect humans against influenza has remained unclear. We therefore tested our hypothesis in macaque monkeys, whose physiology and immune systems closely resemble those of humans. We used a seasonal virus to “prime” macaques to make immune responses against influenza and found that these animals were able to control infection with 2009 H1N1 pandemic influenza viruses more effectively than animals that had not been “primed.” Protection was associated with T cell responses, but not antibodies, that were quickly “recalled” after challenge with the pandemic virus. Our results suggest that “cross-reactive” T cells could play an important role in controlling influenza in humans. Vaccines designed to induce strong T cell responses in addition to antibodies could offer enhanced protection against emerging influenza viruses.
PMCID: PMC3213121  PMID: 22102819
23.  Production in yeast of pseudotype virus-like particles harboring functionally active antibody fragments neutralizing the cytolytic activity of vaginolysin 
Recombinant antibodies can be produced in different formats and different expression systems. Single chain variable fragments (scFvs) represent an attractive alternative to full-length antibodies and they can be easily produced in bacteria or yeast. However, the scFvs exhibit monovalent antigen-binding properties and short serum half-lives. The stability and avidity of the scFvs can be improved by their multimerization or fusion with IgG Fc domain. The aim of the current study was to investigate the possibilities to produce in yeast high-affinity scFv-Fc proteins neutralizing the cytolytic activity of vaginolysin (VLY), the main virulence factor of Gardnerella vaginalis.
The scFv protein derived from hybridoma cell line producing high-affinity neutralizing antibodies against VLY was fused with human IgG1 Fc domain. Four different variants of anti-VLY scFv-Fc fusion proteins were constructed and produced in yeast Saccharomyces cerevisiae. The non-tagged scFv-Fc and hexahistidine-tagged scFv-Fc proteins were found predominantly as insoluble aggregates and therefore were not suitable for further purification and activity testing. The addition of yeast α-factor signal sequence did not support secretion of anti-VLY scFv-Fc but increased the amount of its intracellular soluble form. However, the purified protein showed a weak VLY-neutralizing capability. In contrast, the fusion of anti-VLY scFv-Fc molecules with hamster polyomavirus-derived VP2 protein and its co-expression with VP1 protein resulted in an effective production of pseudotype virus-like particles (VLPs) that exhibited strong VLY-binding activity. Recombinant scFv-Fc molecules displayed on the surface of VLPs neutralized VLY-mediated lysis of human erythrocytes and HeLa cells with high potency comparable to that of full-length antibody.
Recombinant scFv-Fc proteins were expressed in yeast with low efficiency. New approach to display the scFv-Fc molecules on the surface of pseudotype VLPs was successful and allowed generation of multivalent scFv-Fc proteins with high VLY-neutralizing potency. Our study demonstrated for the first time that large recombinant antibody molecule fused with hamster polyomavirus VP2 protein and co-expressed with VP1 protein in the form of pseudotype VLPs was properly folded and exhibited strong antigen-binding activity. The current study broadens the potential of recombinant VLPs as a highly efficient carrier for functionally active complex proteins.
PMCID: PMC3266213  PMID: 22171920
Recombinant antibodies; virus-like particles; vaginolysin
24.  Selection of functional human antibodies from retroviral display libraries 
Nucleic Acids Research  2005;33(4):e35.
Antibody library technology represents a powerful tool for the discovery and design of antibodies with high affinity and specificity for their targets. To extend the technique to the expression and selection of antibody libraries in an eukaryotic environment, we provide here a proof of concept that retroviruses can be engineered for the display and selection of variable single-chain fragment (scFv) libraries. A retroviral library displaying the repertoire obtained after a single round of selection of a human synthetic scFv phage display library on laminin was generated. For selection, antigen-bound virus was efficiently recovered by an overlay with cells permissive for infection. This approach allowed more than 103-fold enrichment of antigen binders in a single selection cycle. After three selection cycles, several scFvs were recovered showing similar laminin-binding activities but improved expression levels in mammalian cells as compared with a laminin-specific scFv selected by the conventional phage display approach. Thus, translational problems that occur when phage-selected antibodies have to be transferred onto mammalian expression systems to exert their therapeutic potential can be avoided by the use of retroviral display libraries.
PMCID: PMC549574  PMID: 15731328
25.  High-level secretion of recombinant monomeric murine and human single-chain Fv antibodies from Drosophila S2 cells 
Single-chain variable fragment (scFvs) antibodies are small polypeptides (∼26 kD) containing the heavy (VH) and light (VL) immunoglobulin domains of a parent antibody connected by a flexible linker. In addition to being frequently used in diagnostics and therapy for an increasing number of human diseases, scFvs are important tools for structural biology as crystallization chaperones. Although scFvs can be expressed in many different organisms, the expression level of an scFv strongly depends on its particular amino acid sequence. We report here a system allowing for easy and efficient cloning of (i) scFvs selected by phage display and (ii) individual heavy and light chain sequences from hybridoma cDNA into expression plasmids engineered for secretion of the recombinant fragment produced in Drosophila S2 cells. We validated the method by producing five scFvs derived from human and murine parent antibodies directed against various antigens. The production yields varied between 5 and 12 mg monomeric scFv per liter of supernatant, indicating a relative independence on the individual sequences. The recombinant scFvs bound their cognate antigen with high affinity, comparable with the parent antibodies. The suitability of the produced recombinant fragments for structural studies was demonstrated by crystallization and structure determination of one of the produced scFvs, derived from a broadly neutralizing antibody against the major glycoprotein E2 of the hepatitis C virus. Structural comparison with the Protein Data Bank revealed the typical spatial organization of VH and VL domains, further validating the here-reported expression system.
PMCID: PMC3258843  PMID: 22160929
crystallization; Drosophila S2; expression system; monomeric; scFv

Results 1-25 (959924)