Search tips
Search criteria

Results 1-25 (1362898)

Clipboard (0)

Related Articles

1.  The Role of Adiposity in Cardiometabolic Traits: A Mendelian Randomization Analysis 
Fall, Tove | Hägg, Sara | Mägi, Reedik | Ploner, Alexander | Fischer, Krista | Horikoshi, Momoko | Sarin, Antti-Pekka | Thorleifsson, Gudmar | Ladenvall, Claes | Kals, Mart | Kuningas, Maris | Draisma, Harmen H. M. | Ried, Janina S. | van Zuydam, Natalie R. | Huikari, Ville | Mangino, Massimo | Sonestedt, Emily | Benyamin, Beben | Nelson, Christopher P. | Rivera, Natalia V. | Kristiansson, Kati | Shen, Huei-yi | Havulinna, Aki S. | Dehghan, Abbas | Donnelly, Louise A. | Kaakinen, Marika | Nuotio, Marja-Liisa | Robertson, Neil | de Bruijn, Renée F. A. G. | Ikram, M. Arfan | Amin, Najaf | Balmforth, Anthony J. | Braund, Peter S. | Doney, Alexander S. F. | Döring, Angela | Elliott, Paul | Esko, Tõnu | Franco, Oscar H. | Gretarsdottir, Solveig | Hartikainen, Anna-Liisa | Heikkilä, Kauko | Herzig, Karl-Heinz | Holm, Hilma | Hottenga, Jouke Jan | Hyppönen, Elina | Illig, Thomas | Isaacs, Aaron | Isomaa, Bo | Karssen, Lennart C. | Kettunen, Johannes | Koenig, Wolfgang | Kuulasmaa, Kari | Laatikainen, Tiina | Laitinen, Jaana | Lindgren, Cecilia | Lyssenko, Valeriya | Läärä, Esa | Rayner, Nigel W. | Männistö, Satu | Pouta, Anneli | Rathmann, Wolfgang | Rivadeneira, Fernando | Ruokonen, Aimo | Savolainen, Markku J. | Sijbrands, Eric J. G. | Small, Kerrin S. | Smit, Jan H. | Steinthorsdottir, Valgerdur | Syvänen, Ann-Christine | Taanila, Anja | Tobin, Martin D. | Uitterlinden, Andre G. | Willems, Sara M. | Willemsen, Gonneke | Witteman, Jacqueline | Perola, Markus | Evans, Alun | Ferrières, Jean | Virtamo, Jarmo | Kee, Frank | Tregouet, David-Alexandre | Arveiler, Dominique | Amouyel, Philippe | Ferrario, Marco M. | Brambilla, Paolo | Hall, Alistair S. | Heath, Andrew C. | Madden, Pamela A. F. | Martin, Nicholas G. | Montgomery, Grant W. | Whitfield, John B. | Jula, Antti | Knekt, Paul | Oostra, Ben | van Duijn, Cornelia M. | Penninx, Brenda W. J. H. | Davey Smith, George | Kaprio, Jaakko | Samani, Nilesh J. | Gieger, Christian | Peters, Annette | Wichmann, H.-Erich | Boomsma, Dorret I. | de Geus, Eco J. C. | Tuomi, TiinaMaija | Power, Chris | Hammond, Christopher J. | Spector, Tim D. | Lind, Lars | Orho-Melander, Marju | Palmer, Colin Neil Alexander | Morris, Andrew D. | Groop, Leif | Järvelin, Marjo-Riitta | Salomaa, Veikko | Vartiainen, Erkki | Hofman, Albert | Ripatti, Samuli | Metspalu, Andres | Thorsteinsdottir, Unnur | Stefansson, Kari | Pedersen, Nancy L. | McCarthy, Mark I. | Ingelsson, Erik | Prokopenko, Inga
PLoS Medicine  2013;10(6):e1001474.
In this study, Prokopenko and colleagues provide novel evidence for causal relationship between adiposity and heart failure and increased liver enzymes using a Mendelian randomization study design.
Please see later in the article for the Editors' Summary
The association between adiposity and cardiometabolic traits is well known from epidemiological studies. Whilst the causal relationship is clear for some of these traits, for others it is not. We aimed to determine whether adiposity is causally related to various cardiometabolic traits using the Mendelian randomization approach.
Methods and Findings
We used the adiposity-associated variant rs9939609 at the FTO locus as an instrumental variable (IV) for body mass index (BMI) in a Mendelian randomization design. Thirty-six population-based studies of individuals of European descent contributed to the analyses.
Age- and sex-adjusted regression models were fitted to test for association between (i) rs9939609 and BMI (n = 198,502), (ii) rs9939609 and 24 traits, and (iii) BMI and 24 traits. The causal effect of BMI on the outcome measures was quantified by IV estimators. The estimators were compared to the BMI–trait associations derived from the same individuals. In the IV analysis, we demonstrated novel evidence for a causal relationship between adiposity and incident heart failure (hazard ratio, 1.19 per BMI-unit increase; 95% CI, 1.03–1.39) and replicated earlier reports of a causal association with type 2 diabetes, metabolic syndrome, dyslipidemia, and hypertension (odds ratio for IV estimator, 1.1–1.4; all p<0.05). For quantitative traits, our results provide novel evidence for a causal effect of adiposity on the liver enzymes alanine aminotransferase and gamma-glutamyl transferase and confirm previous reports of a causal effect of adiposity on systolic and diastolic blood pressure, fasting insulin, 2-h post-load glucose from the oral glucose tolerance test, C-reactive protein, triglycerides, and high-density lipoprotein cholesterol levels (all p<0.05). The estimated causal effects were in agreement with traditional observational measures in all instances except for type 2 diabetes, where the causal estimate was larger than the observational estimate (p = 0.001).
We provide novel evidence for a causal relationship between adiposity and heart failure as well as between adiposity and increased liver enzymes.
Please see later in the article for the Editors' Summary
Editors' Summary
Cardiovascular disease (CVD)—disease that affects the heart and/or the blood vessels—is a major cause of illness and death worldwide. In the US, for example, coronary heart disease—a CVD in which narrowing of the heart's blood vessels by fatty deposits slows the blood supply to the heart and may eventually cause a heart attack—is the leading cause of death, and stroke—a CVD in which the brain's blood supply is interrupted—is the fourth leading cause of death. Globally, both the incidence of CVD (the number of new cases in a population every year) and its prevalence (the proportion of the population with CVD) are increasing, particularly in low- and middle-income countries. This increasing burden of CVD is occurring in parallel with a global increase in the incidence and prevalence of obesity—having an unhealthy amount of body fat (adiposity)—and of metabolic diseases—conditions such as diabetes in which metabolism (the processes that the body uses to make energy from food) is disrupted, with resulting high blood sugar and damage to the blood vessels.
Why Was This Study Done?
Epidemiological studies—investigations that record the patterns and causes of disease in populations—have reported an association between adiposity (indicated by an increased body mass index [BMI], which is calculated by dividing body weight in kilograms by height in meters squared) and cardiometabolic traits such as coronary heart disease, stroke, heart failure (a condition in which the heart is incapable of pumping sufficient amounts of blood around the body), diabetes, high blood pressure (hypertension), and high blood cholesterol (dyslipidemia). However, observational studies cannot prove that adiposity causes any particular cardiometabolic trait because overweight individuals may share other characteristics (confounding factors) that are the real causes of both obesity and the cardiometabolic disease. Moreover, it is possible that having CVD or a metabolic disease causes obesity (reverse causation). For example, individuals with heart failure cannot do much exercise, so heart failure may cause obesity rather than vice versa. Here, the researchers use “Mendelian randomization” to examine whether adiposity is causally related to various cardiometabolic traits. Because gene variants are inherited randomly, they are not prone to confounding and are free from reverse causation. It is known that a genetic variant (rs9939609) within the genome region that encodes the fat-mass- and obesity-associated gene (FTO) is associated with increased BMI. Thus, an investigation of the associations between rs9939609 and cardiometabolic traits can indicate whether obesity is causally related to these traits.
What Did the Researchers Do and Find?
The researchers analyzed the association between rs9939609 (the “instrumental variable,” or IV) and BMI, between rs9939609 and 24 cardiometabolic traits, and between BMI and the same traits using genetic and health data collected in 36 population-based studies of nearly 200,000 individuals of European descent. They then quantified the strength of the causal association between BMI and the cardiometabolic traits by calculating “IV estimators.” Higher BMI showed a causal relationship with heart failure, metabolic syndrome (a combination of medical disorders that increases the risk of developing CVD), type 2 diabetes, dyslipidemia, hypertension, increased blood levels of liver enzymes (an indicator of liver damage; some metabolic disorders involve liver damage), and several other cardiometabolic traits. All the IV estimators were similar to the BMI–cardiovascular trait associations (observational estimates) derived from the same individuals, with the exception of diabetes, where the causal estimate was higher than the observational estimate, probably because the observational estimate is based on a single BMI measurement, whereas the causal estimate considers lifetime changes in BMI.
What Do These Findings Mean?
Like all Mendelian randomization studies, the reliability of the causal associations reported here depends on several assumptions made by the researchers. Nevertheless, these findings provide support for many previously suspected and biologically plausible causal relationships, such as that between adiposity and hypertension. They also provide new insights into the causal effect of obesity on liver enzyme levels and on heart failure. In the latter case, these findings suggest that a one-unit increase in BMI might increase the incidence of heart failure by 17%. In the US, this corresponds to 113,000 additional cases of heart failure for every unit increase in BMI at the population level. Although additional studies are needed to confirm and extend these findings, these results suggest that global efforts to reduce the burden of obesity will likely also reduce the occurrence of CVD and metabolic disorders.
Additional Information
Please access these websites via the online version of this summary at
The American Heart Association provides information on all aspects of cardiovascular disease and tips on keeping the heart healthy, including weight management (in several languages); its website includes personal stories about stroke and heart attacks
The US Centers for Disease Control and Prevention has information on heart disease, stroke, and all aspects of overweight and obesity (in English and Spanish)
The UK National Health Service Choices website provides information about cardiovascular disease and obesity, including a personal story about losing weight
The World Health Organization provides information on obesity (in several languages)
The International Obesity Taskforce provides information about the global obesity epidemic
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
MedlinePlus provides links to other sources of information on heart disease, on vascular disease, on obesity, and on metabolic disorders (in English and Spanish)
The International Association for the Study of Obesity provides maps and information about obesity worldwide
The International Diabetes Federation has a web page that describes types, complications, and risk factors of diabetes
PMCID: PMC3692470  PMID: 23824655
2.  Genetic Markers of Adult Obesity Risk Are Associated with Greater Early Infancy Weight Gain and Growth 
PLoS Medicine  2010;7(5):e1000284.
Ken Ong and colleagues genotyped children from the ALSPAC birth cohort and showed an association between greater early infancy gains in weight and length and genetic markers for adult obesity risk.
Genome-wide studies have identified several common genetic variants that are robustly associated with adult obesity risk. Exploration of these genotype associations in children may provide insights into the timing of weight changes leading to adult obesity.
Methods and Findings
Children from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort were genotyped for ten genetic variants previously associated with adult BMI. Eight variants that showed individual associations with childhood BMI (in/near: FTO, MC4R, TMEM18, GNPDA2, KCTD15, NEGR1, BDNF, and ETV5) were used to derive an “obesity-risk-allele score” comprising the total number of risk alleles (range: 2–15 alleles) in each child with complete genotype data (n = 7,146). Repeated measurements of weight, length/height, and body mass index from birth to age 11 years were expressed as standard deviation scores (SDS). Early infancy was defined as birth to age 6 weeks, and early infancy failure to thrive was defined as weight gain between below the 5th centile, adjusted for birth weight. The obesity-risk-allele score showed little association with birth weight (regression coefficient: 0.01 SDS per allele; 95% CI 0.00–0.02), but had an apparently much larger positive effect on early infancy weight gain (0.119 SDS/allele/year; 0.023–0.216) than on subsequent childhood weight gain (0.004 SDS/allele/year; 0.004–0.005). The obesity-risk-allele score was also positively associated with early infancy length gain (0.158 SDS/allele/year; 0.032–0.284) and with reduced risk of early infancy failure to thrive (odds ratio  = 0.92 per allele; 0.86–0.98; p = 0.009).
The use of robust genetic markers identified greater early infancy gains in weight and length as being on the pathway to adult obesity risk in a contemporary birth cohort.
Please see later in the article for the Editors' Summary
Editors' Summary
The proportion of overweight and obese children is increasing across the globe. In the US, the Surgeon General estimates that, compared with 1980, twice as many children and three times the number of adolescents are now overweight. Worldwide, 22 million children under five years old are considered by the World Health Organization to be overweight.
Being overweight or obese in childhood is associated with poor physical and mental health. In addition, childhood obesity is considered a major risk factor for adult obesity, which is itself a major risk factor for cancer, heart disease, diabetes, osteoarthritis, and other chronic conditions.
The most commonly used measure of whether an adult is a healthy weight is body mass index (BMI), defined as weight in kilograms/(height in metres)2. However, adult categories of obese (>30) and overweight (>25) BMI are not directly applicable to children, whose BMI naturally varies as they grow. BMI can be used to screen children for being overweight and or obese but a diagnosis requires further information.
Why Was This Study Done?
As the numbers of obese and overweight children increase, a corresponding rise in future numbers of overweight and obese adults is also expected. This in turn is expected to lead to an increasing incidence of poor health. As a result, there is great interest among health professionals in possible pathways between childhood and adult obesity. It has been proposed that certain periods in childhood may be critical for the development of obesity.
In the last few years, ten genetic variants have been found to be more common in overweight or obese adults. Eight of these have also been linked to childhood BMI and/or obesity. The authors wanted to identify the timing of childhood weight changes that may be associated with adult obesity. Knowledge of obesity risk genetic variants gave them an opportunity to do so now, without following a set of children to adulthood.
What Did the Researchers Do and Find?
The authors analysed data gathered from a subset of 7,146 singleton white European children enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC) study, which is investigating associations between genetics, lifestyle, and health outcomes for a group of children in Bristol whose due date of birth fell between April 1991 and December 1992. They used knowledge of the children's genetic makeup to find associations between an obesity risk allele score—a measure of how many of the obesity risk genetic variants a child possessed—and the children's weight, height, BMI, levels of body fat (at nine years old), and rate of weight gain, up to age 11 years.
They found that, at birth, children with a higher obesity risk allele score were not any heavier, but in the immediate postnatal period they were less likely to be in the bottom 5% of the population for weight gain (adjusted for birthweight), often termed “failure to thrive.” At six weeks of age, children with a higher obesity risk allele score tended to be longer and heavier, even allowing for weight at birth.
After six weeks of age, the obesity risk allele score was not associated with any further increase in length/height, but it was associated with a more rapid weight gain between birth and age 11 years. BMI is derived from height and weight measurements, and the association between the obesity risk allele score and BMI was weak between birth and age three-and-a-half years, but after that age the association with BMI increased rapidly. By age nine, children with a higher obesity risk allele score tended to be heavier and taller, with more fat on their bodies.
What Do These Findings Mean?
The combined obesity allele risk score is associated with higher rates of weight gain and adult obesity, and so the authors conclude that weight gain and growth even in the first few weeks after birth may be the beginning of a pathway of greater adult obesity risk.
A study that tracks a population over time can find associations but it cannot show cause and effect. In addition, only a relatively small proportion (1.7%) of the variation in BMI at nine years of age is explained by the obesity risk allele score.
The authors' method of finding associations between childhood events and adult outcomes via genetic markers of risk of disease as an adult has a significant advantage: the authors did not have to follow the children themselves to adulthood, so their findings are more likely to be relevant to current populations. Despite this, this research does not yield advice for parents how to reduce their children's obesity risk. It does suggest that “failure to thrive” in the first six weeks of life is not simply due to a lack of provision of food by the baby's caregiver but that genetic factors also contribute to early weight gain and growth.
The study looked at the combined obesity risk allele score and the authors did not attempt to identify which individual alleles have greater or weaker associations with weight gain and overweight or obesity. This would require further research based on far larger numbers of babies and children. The findings may also not be relevant to children in other types of setting because of the effects of different nutrition and lifestyles.
Additional Information
Please access these Web sites via the online version of this summary at
Further information is available on the ALSPAC study
The UK National Health Service and other partners provide guidance on establishing a healthy lifestyle for children and families in their Change4Life programme
The International Obesity Taskforce is a global network of expertise and the advocacy arm of the International Association for the Study of Obesity. It works with the World Health Organization, other NGOs, and stakeholders and provides information on overweight and obesity
The Centers for Disease Control and Prevention (CDC) in the US provide guidance and tips on maintaining a healthy weight, including BMI calculators in both metric and Imperial measurements for both adults and children. They also provide BMI growth charts for boys and girls showing how healthy ranges vary for each sex at with age
The Royal College of Paediatrics and Child Health provides growth charts for weight and length/height from birth to age 4 years that are based on WHO 2006 growth standards and have been adapted for use in the UK
The CDC Web site provides information on overweight and obesity in adults and children, including definitions, causes, and data
The CDC also provide information on the role of genes in causing obesity.
The World Health Organization publishes a fact sheet on obesity, overweight and weight management, including links to childhood overweight and obesity
Wikipedia includes an article on childhood obesity (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2876048  PMID: 20520848
3.  High Blood Pressure and Its Association with Body Weight among Children and Adolescents in the United Arab Emirates 
PLoS ONE  2014;9(1):e85129.
To estimate the prevalence of high blood pressure (BP) and its relationship with obesity among children and adolescents.
Methodology/Principal Findings
In this cross-sectional population (Emirati) representative study, we invited a random sample of 1600 students (grades 1–12) attending 23 out of all 246 schools in the Emirate of Abu Dhabi, United Arab Emirates. But analysis was restricted to Emirati nationals aged 6–17 years. We measured BP, height, weight, waist circumferences (WC), and calculated body mass index (BMI) by standard methods. BP levels ≥90th percentile but <95th percentile and ≥ 95th for age, sex, and height (CDC percentiles) were classified as pre-hypertension (pre-HTN) and hypertension (HTN), respectively. Associations between BP, age, BMI, WC, and sex, were investigated by (multiple) linear regression methods. A total of 999 (47% girls) students provided complete results. The prevalence of pre-HTN was 10.5% and 11.4% and the prevalence of HTN was 15.4% and 17.8% among boys and girls, respectively. The prevalence of systolic/diastolic HTN was 14.4%/2.5% and 14.8/7.4% among boys and girls, respectively. BMI CDC percentile was positively correlated with WC percentile (r = 0.734, p<0.01), and both systolic (r = 0.34, p<0.001) and diastolic (r = 0.21, p<0.001) standardized BP. WC percentile was less strongly correlated with standardized SBP (r = 0.255, p<0.01) and DBP (r = 0.175, p<0.01) than BMI.
The prevalence of elevated BP, notably systolic was significantly high among the Emirati children and adolescents in Abu Dhabi. High BP was strongly related to body weight, and appears more strongly associated with BMI than WC. Further studies are required to investigate the impact of childhood obesity on HTN.
PMCID: PMC3896369  PMID: 24465493
4.  Change in the Body Mass Index Distribution for Women: Analysis of Surveys from 37 Low- and Middle-Income Countries 
PLoS Medicine  2013;10(1):e1001367.
Using cross-sectional surveys, Fahad Razak and colleagues investigate how the BMI (body mass index) distribution is changing for women in low- and middle-income countries.
There are well-documented global increases in mean body mass index (BMI) and prevalence of overweight (BMI≥25.0 kg/m2) and obese (BMI≥30.0 kg/m2). Previous analyses, however, have failed to report whether this weight gain is shared equally across the population. We examined the change in BMI across all segments of the BMI distribution in a wide range of countries, and assessed whether the BMI distribution is changing between cross-sectional surveys conducted at different time points.
Methods and Findings
We used nationally representative surveys of women between 1991–2008, in 37 low- and middle-income countries from the Demographic Health Surveys ([DHS] n = 732,784). There were a total of 96 country-survey cycles, and the number of survey cycles per country varied between two (21/37) and five (1/37). Using multilevel regression models, between countries and within countries over survey cycles, the change in mean BMI was used to predict the standard deviation of BMI, the prevalence of underweight, overweight, and obese. Changes in median BMI were used to predict the 5th and 95th percentile of the BMI distribution. Quantile-quantile plots were used to examine the change in the BMI distribution between surveys conducted at different times within countries. At the population level, increasing mean BMI is related to increasing standard deviation of BMI, with the BMI at the 95th percentile rising at approximately 2.5 times the rate of the 5th percentile. Similarly, there is an approximately 60% excess increase in prevalence of overweight and 40% excess in obese, relative to the decline in prevalence of underweight. Quantile-quantile plots demonstrate a consistent pattern of unequal weight gain across percentiles of the BMI distribution as mean BMI increases, with increased weight gain at high percentiles of the BMI distribution and little change at low percentiles. Major limitations of these results are that repeated population surveys cannot examine weight gain within an individual over time, most of the countries only had data from two surveys and the study sample only contains women in low- and middle-income countries, potentially limiting generalizability of findings.
Mean changes in BMI, or in single parameters such as percent overweight, do not capture the divergence in the degree of weight gain occurring between BMI at low and high percentiles. Population weight gain is occurring disproportionately among groups with already high baseline BMI levels. Studies that characterize population change should examine patterns of change across the entire distribution and not just average trends or single parameters.
Please see later in the article for the Editors' Summary
Editors' Summary
The number of obese people (individuals who have an excessive amount of body fat) is rapidly increasing in many countries. Globally, there were about 200 million obese adults in 1995; by 2010, 475 million adults were obese and another billion were classified as overweight. Obesity is defined as having a body mass index (BMI, an indicator of body fat calculated by dividing a person's weight in kilograms by their height in meters squared) of more than 30.0 kg/m2. Compared to people with a healthy weight (a BMI between 18.5 and 24.9 kg/m2), obese individuals and overweight individuals (who have a BMI between 25.0 and 29.9 kg/m2) have an increased risk of developing diabetes, heart disease and stroke, and tend to die younger. At the same time in many developing countries substantial numbers of people are underweight (BMI <18.5 kg/m2) or have chronic energy deficiency (BMI <16.0 kg/m2) and are at risk of increased risk of dying due to infectious disease or respiratory problems.
Why Was This Study Done?
The global obesity epidemic is usually described in terms of increases in the average BMI or in the prevalence of obesity (the proportion of the population whose BMI is above 30.0 kg/m2). Such descriptions assume that the BMIs of fat and thin people are increasing at the same rate and that the shape of the population's BMI distribution curve remains constant. However, as average BMI and the prevalence of obesity can increase it is unclear how the prevalence of underweight changes. This is potentially important for the health of the population because underweight individuals, like obese individuals, tend to die younger than healthy weight individuals, particularly in low-income countries. In this study, the researchers use repeated cross-sectional survey data collected from low- and middle-income countries in the Demographic and Health Surveys (DHS) to examine changes in BMI in women across the BMI distribution between 1991 and 2008. Repeated cross-sectional surveys collect data from a population at multiple time points from different individuals drawn from the same population, DHS are a data collection and surveillance project that help developing countries track health and population trends.
What Did the Researchers Do and Find?
The researchers used statistical models to analyze data from DHS surveys of more than 730,000 women living in 37 low- and middle-income countries (two to five surveys per country). Increasing average BMI was associated with an increase in the standard deviation of BMI (a measure of the dispersion of BMI in the population) both across and within countries over time. With increasing average BMI, the BMI at both the 5th and 95th percentile increased; 90% of the BMIs in a population lie between these percentiles so these BMI values indicate the spread of the BMI distribution. However, the BMI at the 95th percentile increased about 2.5 times faster than the BMI at the 5th percentile. Moreover, with increasing average BMI, the prevalence of overweight and obesity increased faster than the decline in the prevalence of underweight. Finally, quantile-quantile plots for each country (a graphical method that compares two distributions) revealed a consistent pattern of unequal weight gain across the BMI distribution as average BMI increased, with pronounced weight gains at the obese end of the distribution and little change at the underweight end.
What Do These Findings Mean?
These findings show that increases in average BMI are associated with an increased spread of BMI across and within populations. Consequently, changes in average BMI or single measurements such as the prevalence of overweight do not capture the divergence in the degree of weight gain occurring between that part of the population that has a low BMI and that part that has a high BMI. In other words, at least for the low- and middle-income countries included in this study, population weight gain is occurring disproportionately among groups with high baseline BMI levels. The researchers suggest, therefore, that the characterization of the BMI of populations over time should examine the patterns of change across the whole BMI distribution. Moreover, rather than a single broad population strategy for weight control, optimum health outcomes, they suggest, might be achieved by a strategy that includes targeted interventions to reduce weight in high BMI segments of the population and to increase weight in low BMI segments.
Additional Information
Please access these Web sites via the online version of this summary at
The US Centers for Disease Control and Prevention provides information on all aspects of overweight and obesity (in English and Spanish)
The World Health Organization provides information on obesity (in several languages); Malri's story describes the health risks faced by an obese child
The UK National Health Service Choices website also provides detailed information about obesity and a link to a personal story about losing weight
The International Obesity Taskforce provides information about the global obesity epidemic
The US Department of Agriculture's website provides a personal healthy eating plan; the Weight-control Information Network is an information service provided for the general public and health professionals by the US National Institute of Diabetes and Digestive and Kidney Diseases (in English and Spanish)
MedlinePlus has links to further information about obesity (in English and Spanish)
PMCID: PMC3545870  PMID: 23335861
5.  Using BMI to Determine Cardiovascular Risk in Childhood: How Do the BMI Cutoffs Fare? 
Pediatrics  2009;124(5):e905-e912.
Although adverse health outcomes are increased among children with BMI above the 85th (overweight) and 95th (obese) percentiles, previous studies have not clearly defined the BMI percentile at which adverse health outcomes begin to increase. We examined whether the existing BMI percentile cutoffs are optimal for defining increased risk for dyslipidemia, dysglycemia, and hypertension.
This was a cross-sectional analysis of the National Health and Nutrition Examination Survey from 2001 to 2006. Studied were 8216 children aged 6 to 17 years, representative of the US population. BMI was calculated by using measured height and weight and converted to percentiles for age in months and gender. Outcome measures (dyslipidemia, dysglycemia, and hypertension) were based on laboratory and physical examination results; these were analyzed as both continuous and categorical outcomes.
Significant increases for total cholesterol values and prevalence of abnormal cholesterol begin at the 80th percentile. Significant increases in glycohemoglobin values and prevalence of abnormal values begin at the 99th percentile. Consistent significant increases in the prevalence of high or borderline systolic blood pressure begin at the 90th percentile.
Intervening for overweight children and their health requires clinical interventions that target the right children. On the basis of our data, a judicious approach to screening could include consideration of lipid screening for children beginning at the 80th percentile but for dysglycemia at the 99th percentile. Current definitions of overweight and obese may be more useful for general recognition of potential health problems and discussions with parents and children about the need to address childhood obesity. WHAT'S KNOWN ON THIS SUBJECT: Previous research has shown that cardiovascular risk factors are related to the currently used definitions of obesity in children but has not specified the BMI percentiles at which risk increases.WHAT THIS STUDY ADDS: Nationally representative data indicate greater risk for abnormal lipid values in children who are not considered overweight by current definitions, risk for diabetes only in very obese children, and risk for hypertension at the 90th percentile of BMI.
PMCID: PMC2909481  PMID: 19858150
obesity; overweight; cardiovascular risk; children
6.  Association between obesity and high blood pressure among Lithuanian adolescents: a cross-sectional study 
Most epidemiological studies have shown that the prevalence of high blood pressure (BP) has significantly increased among children and adolescents in various countries of the world.
The aim of this study was to examine the associations between overweight, obesity, abdominal obesity and prehypertension and hypertension among Lithuanian adolescents aged 12–15 years.
The subjects with increased BP (≥90th percentile) were screened on two separate occasions. Data on the body mass index (BMI), waist circumference (WC), and BP were analysed in 7,457 adolescents aged 12–15 years. Adjusted odds ratios (aORs) with 95% confidence intervals (CI) for the associations were estimated using multivariate logistic regression models.
After two screenings, the study participants were categorised as prehypertensive (12.8%), hypertensive (22.2%), and normotensive (65%). The overall prevalence of overweight, obesity, and abdominal obesity (if WC was in the ≥75th percentile) were 12.1%, 2.4%, and 9%, respectively. After adjusting for age and sex, significant associations were found between overweight and obesity and high BP, namely, prehypertension (overweight: aOR = 2.62; 95% CI 2.13–3.23; obesity: aOR = 4.81; 95% CI 3.08–7.52) and hypertension (overweight: aOR = 3.56; 95% CI 3.02–4.19; obesity: aOR = 6.64; 95% CI 4.65–9.49). Prehypertension was found to be significantly associated with WC in the 75th– < 90th percentiles (aOR = 3.16; 95% CI 2.43–4.10) and WC in the ≥90th percentile (aOR = 4.08; 95% CI 2.35–7.10). For hypertension, significant associations were detected with WC in the 75th– < 90th percentiles (aOR = 3.92; 95% CI 3.18–4.82) and WC in the ≥90th percentile (aOR = 7.41; 95% CI 4.97–11.05).
Overweight, obesity, and abdominal obesity were associated with prehypertension and hypertension.
PMCID: PMC4265335  PMID: 25492217
Blood pressure; Prehypertension; Hypertension; Overweight; Obesity; Abdominal obesity; Adolescents
7.  Severe obesity in children: prevalence, persistence and relation to hypertension 
Newer approaches for classifying gradations of pediatric obesity by level of body mass index (BMI) percentage above the 95th percentile have recently been recommended in the management and tracking of obese children. Examining the prevalence and persistence of severe obesity using such methods along with the associations with other cardiovascular risk factors such as hypertension is important for characterizing the clinical significance of severe obesity classification methods.
This retrospective study was conducted in an integrated healthcare delivery system to characterize obesity and obesity severity in children and adolescents by level of body mass index (BMI) percentage above the 95th BMI percentile, to examine tracking of obesity status over 2–3 years, and to examine associations with blood pressure. Moderate obesity was defined by BMI 100-119% of the 95th percentile and severe obesity by BMI ≥120% × 95th percentile. Hypertension was defined by 3 consecutive blood pressures ≥95th percentile (for age, sex and height) on separate days and was examined in association with obesity severity.
Among 117,618 children aged 6–17 years with measured blood pressure and BMI at a well-child visit during 2007–2010, the prevalence of obesity was 17.9% overall and was highest among Hispanics (28.9%) and blacks (20.5%) for boys, and blacks (23.3%) and Hispanics (21.5%) for girls. Severe obesity prevalence was 5.6% overall and was highest in 12–17 year old Hispanic boys (10.6%) and black girls (9.5%). Subsequent BMI obtained 2–3 years later also demonstrated strong tracking of severe obesity. Stratification of BMI by percentage above the 95th BMI percentile was associated with a graded increase in the risk of hypertension, with severe obesity contributing to a 2.7-fold greater odds of hypertension compared to moderate obesity.
Severe obesity was found in 5.6% of this community-based pediatric population, varied by gender and race/ethnicity (highest among Hispanics and blacks) and showed strong evidence for persistence over several years. Increasing gradation of obesity was associated with higher risk for hypertension, with a nearly three-fold increased risk when comparing severe to moderate obesity, underscoring the heightened health risk associated with severe obesity in children and adolescents.
PMCID: PMC3976673  PMID: 24580759
Obesity; Children; Adolescents; Blood pressure
8.  Blood pressure and associated factors in a North African adolescent population. a national cross-sectional study in Tunisia 
BMC Public Health  2012;12:98.
In southern and eastern Mediterranean countries, changes in lifestyle and the increasing prevalence of excess weight in childhood are risk factors for high blood pressure (BP) during adolescence and adulthood. The aim of this study was to evaluate the BP status of Tunisian adolescents and to identify associated factors.
A cross-sectional study in 2005, based on a national, stratified, random cluster sample of 1294 boys and 1576 girls aged 15-19 surveyed in home visits. The socio-economic and behavioral characteristics of the adolescents were recorded. Overweight/obesity were assessed by Body Mass Index (BMI) from measured height and weight (WHO, 2007), abdominal obesity by waist circumference (WC). BP was measured twice during the same visit. Elevated BP was systolic (SBP) or diastolic blood pressure (DBP) ≥ 90th of the international reference or ≥ 120/80 mm Hg for 15-17 y., and SBP/DBP ≥ 120/80 mm Hg for 18-19 y.; hypertension was SBP/DBP ≥ 95th for 15-17 y. and ≥ 140/90 mm Hg for 18-19 y. Adjusted associations were assessed by logistic regression.
The prevalence of elevated BP was 35.1%[32.9-37.4]: higher among boys (46.1% vs. 33.3%; P < 0.0001); 4.7%[3.8-5.9] of adolescents had hypertension. Associations adjusted for all covariates showed independent relationships with BMI and WC: - obesity vs. no excess weight increased elevated BP (boys OR = 2.1[1.0-4.2], girls OR = 2.3[1.3-3.9]) and hypertension (boys OR = 3.5[1.4-8.9], girls OR = 5.4[2.2-13.4]), - abdominal obesity (WC) was also associated with elevated BP in both genders (for boys: 2nd vs. 1st tertile OR = 1.7[1.3-2.3], 3rd vs.1st tertile OR = 2.8[1.9-4.2]; for girls: 2nd vs. 1st tertile OR = 1.6[1.2-2.1], 3rd vs.1st tertile OR = 2.1[1.5-3.0]) but only among boys for hypertension. Associations with other covariates were weaker: for boys, hypertension increased somewhat with sedentary lifestyle, while elevated BP was slightly more prevalent among urban girls and those not attending school.
Within the limits of BP measurement on one visit only, these results suggest that Tunisian adolescents of both genders are likely not spared from early elevated BP. Though further assessment is likely needed, the strong association with overweight/obesity observed suggests that interventions aimed at changing lifestyles to reduce this main risk factor may also be appropriate for the prevention of elevated BP.
PMCID: PMC3331812  PMID: 22305045
Adolescent; Blood pressure; Tunisia; Prevalence; Risk factors
9.  TV Viewing and Physical Activity Are Independently Associated with Metabolic Risk in Children: The European Youth Heart Study 
PLoS Medicine  2006;3(12):e488.
TV viewing has been linked to metabolic-risk factors in youth. However, it is unclear whether this association is independent of physical activity (PA) and obesity.
Methods and Findings
We did a population-based, cross-sectional study in 9- to 10-y-old and 15- to 16-y-old boys and girls from three regions in Europe (n = 1,921). We examined the independent associations between TV viewing, PA measured by accelerometry, and metabolic-risk factors (body fatness, blood pressure, fasting triglycerides, inverted high-density lipoprotein (HDL) cholesterol, glucose, and insulin levels). Clustered metabolic risk was expressed as a continuously distributed score calculated as the average of the standardized values of the six subcomponents. There was a positive association between TV viewing and adiposity (p = 0.021). However, after adjustment for PA, gender, age group, study location, sexual maturity, smoking status, birth weight, and parental socio-economic status, the association of TV viewing with clustered metabolic risk was no longer significant (p = 0.053). PA was independently and inversely associated with systolic and diastolic blood pressure, fasting glucose, insulin (all p < 0.01), and triglycerides (p = 0.02). PA was also significantly and inversely associated with the clustered risk score (p < 0.0001), independently of obesity and other confounding factors.
TV viewing and PA may be separate entities and differently associated with adiposity and metabolic risk. The association between TV viewing and clustered metabolic risk is mediated by adiposity, whereas PA is associated with individual and clustered metabolic-risk indicators independently of obesity. Thus, preventive action against metabolic risk in children may need to target TV viewing and PA separately.
A study of over 1,900 European children showed that TV viewing and physical activity in children are separately associated with obesity and metabolic risk.
Editors' Summary
Childhood obesity is a rapidly growing problem. Twenty-five years ago, overweight children were rare. Now, 155 million of the world's children are overweight, and 30–45 million are obese. Both conditions are diagnosed by comparing a child's body mass index (BMI; weight divided by height squared) with the average BMI for their age and sex. Being overweight during childhood is worrying because it is one of the so-called metabolic-risk factors that increase the chances of developing diabetes, heart problems, or strokes later in life. Other metabolic-risk factors are fatness around the belly, blood-fat disorders, high blood pressure, and problems with how the body uses insulin and blood sugar. Until recently, like obesity, these other metabolic-risk factors were seen only in adults, but now they are becoming increasingly common in children. In the US, 1 in 20 adolescents has metabolic syndrome—three or more of these risk factors. Environmental and behavioural changes have probably contributed to the increase in metabolic syndrome in children. As a group, they tend to be less physically active nowadays and they eat bigger portions of energy-dense foods more often. Increased TV viewing during childhood (and the use of other media such as computer games) has also been linked to increased obesity and to poorer health as an adult.
Why Was This Study Done?
One popular theory is that TV viewing may affect obesity and other metabolic-risk factors by displacing PA. Instead of playing in the yard after school, the theory suggests, children laze about in front of the TV. However, there is limited evidence to support this idea, and health professionals need to know whether TV viewing and PA are related, and how they affect metabolic-risk factors, in order to improve children's health. In this study, the researchers examined the associations between TV viewing, PA, and metabolic-risk factors in European children.
What Did the Researchers Do and Find?
The researchers enrolled nearly 2,000 children in two age groups from three areas in Europe. They measured the children's height and weight, estimated how fat they were by measuring skin fold thickness, measured their blood pressure, and examined the levels of glucose, insulin, and different fats in their blood. The children completed a computer questionnaire about the lengths of time for which they watched TV and how often they ate while doing so, and their PA was measured using a device called an accelerometer that each child wore for four days. When these data were analyzed statistically, the researchers found that TV viewing was slightly associated with clustered metabolic risk (the average of the individual metabolic-risk factors). This association was due to an association between TV viewing and obesity—the children who watched most TV tended to be the fattest children. However, TV viewing was not related to PA. The most active children were not necessarily those who watched least TV. Most importantly, PA was related to all individual risk factors except for obesity and with clustered metabolic risk. These associations were independent of obesity.
What Do These Findings Mean?
These results suggest that TV viewing does not damage children's health by displacing PA as popularly believed. The finding that the association between TV viewing and clustered metabolic-risk factors is mediated by obesity suggests that targeting behaviours like eating while watching TV might be a good way to improve children's health. Indeed, the researchers provide some evidence that eating while watching TV is associated with being overweight, but the results of this post hoc analysis—one that was not planned in advance—need to be confirmed. Another limitation of the study is the possibility that the children inaccurately reported their TV watching habits. Also, because measurements of metabolic-risk factors were made only once, it is impossible to say whether TV viewing or lack of PA actually causes an increase in metabolic-risk factors.
Nevertheless, these results strongly suggest that promoting PA is beneficial in relation to metabolic-risk factors, but less so in relation to obesity in childhood. TV viewing and PA should be treated as separate targets in programs designed to reverse the obesity and metabolic-syndrome epidemic in children.
Additional Information.
Please access these Web sites via the online version of this summary at
US Centers for Disease Control and Prevention, information on overweight and obesity
International Obesity Taskforce, information on obesity and its prevention, particularly in childhood
Global Prevention Alliance, details of international efforts to halt the obesity epidemic and its associated chronic diseases
American Heart Association, information for patients and professionals on metabolic syndrome and children's health
PMCID: PMC1705825  PMID: 17194189
10.  The prevalence of hypertension, obesity and dyslipidemia in individuals of over 30 years of age belonging to minorities from the pasture area of Xinjiang 
BMC Public Health  2010;10:91.
The prevalence of population-wide hypertension, obesity and dyslipidemia has not been well studied in the pasture area of Xinjiang. The present epidemiological study was performed to determine the prevalence of hypertension, obesity and dyslipidemia in minority populations from the pasture area of Xinjiang and to discuss the potential risk factors for hypertension.
A population-based, cross-sectional study in the Xinjiang pasture area was performed which included 2251 participants aged over 30 years (90.33% participation rate) of whom 71.26% were Kazaks. Several risk factors were considered: hypertension (defined as systolic or diastolic blood pressure or both of at least 140/90 mmHg measured on one occasion or treatment for hypertension) overweight/obesity (body mass index ≥ 25 kg/m2) alcohol intake, smoking/tobacco use and dyslipidemia. Outcomes were prevalence of hypertension, obesity and dyslipidemia and the associated risk factors of hypertension detected by multivariate logistic regression analysis taking into account various metabolic and lifestyle characteristics.
The prevalence of hypertension, overweight/obesity and dyslipidemia in all participants from the pasture area of Xinjiang was 51.9%, 47.9% and 49.2% respectively. Independently, the prevalence and awareness of hypertension was 52.6% and 15.3% among Kazaks (n = 1604), 54.6% and 14.1% among Uygurs (n = 418), 39.5% and 16.1% among Mongolians (n = 81) and 43.9% and 18.2% among non-Xinjiang-born Han immigrants (n = 148). The prevalence of overweight/obesity in Kazaks, Uygurs, Mongolians and Han immigrants was 46.7%, 48.9%, 62.5% and 50.3%, respectively. The prevalence of dyslipidemia in the four ethnic groups mentioned was 53.5%, 34.8%, 49.3% and 47.3%, respectively. The mean blood pressure in all participants was 136/86 mmHg (pre-hypertensive), the mean BMI was 24.7 kg/m2. Based on multiple logistic regression analysis, the significant risk factors for hypertension were age [1.07(1.06-1.09), P < 0.0001], overweight/obesity [overweight: 1.61(1.22-2.13), p = 0.0007; obesity: 1.95 (1.33-2.87), p = 0.0007], hypercholesterolemia [1.30(1.15-1.47), p < 0.0001] and an alcohol intake of over 30 g/day [2.22(1.43-3.45), p = 0.0004].
The considerably high prevalence of hypertension, overweight/obesity and dyslipidemia among the minority population aged over 30 from the pasture area of Xinjiang calls for effective preventive measures. Age, increased body mass index, hypercholesterolemia and ≥30 g/d alcohol intake can be counted as risk factors for hypertension, but further genetic or environmental clarification would be desirable to explain the unusually high prevalence of the conditions mentioned above.
PMCID: PMC2838812  PMID: 20178648
11.  Prevalence of hypertension in overweight and obese children from a large school-based population in Shanghai, China 
BMC Public Health  2013;13:24.
The ongoing rise in the prevalence of hypertension in children and adolescents is considered to be accompanied with the epidemic of childhood overweight and obesity. In this study, we established a large scale cross-sectional study in Shanghai, China, which presented a new evidence for the correlation of hypertension prevalence with overweight and obesity stages in Chinese children and adolescents.
A school-based cross-sectional study was conducted during February to December 2009 in Shanghai, China, including total 78,114 children and adolescents. Body weight, height, waist circumference (WC) and blood pressure (BP) were measured. Overweight and obesity were defined according to sex- and age- specific Chinese reference data.
Both SBP and DBP were very significantly increased in overweight (OW) and obese (OB) groups. With age and sex controlled, BMI and WC were independently positively correlated with SBP and DBP. The prevalence of high SBP, DBP and hypertension were markedly higher among OW and OB children than normal weight (NW) group. Odds ratios (ORs) for high SBP, high DBP and high BP were significantly greater in OW and OB children than NW group, and showed a trend increase correlating with obesity stages (all P <0.0001). According to the increasing OR with different combination of obese status of BMI and WC, WC has a stronger influence on hypertension. The combination of BMI and WC obese shows substantially higher ORs compared with those for either BMI or WC obese alone.
In this study on a large school-based population in Shanghai, China, BMI and WC are positively correlated with SBP and DBP. Being overweight or obese greatly increased the risk of hypertension in Chinese children and adolescents, in which WC is considered as a more sensitive indicator than BMI.
PMCID: PMC3556073  PMID: 23305064
Obesity; Overweight; Hypertension; Children and adolescents; China
12.  Pre-hypertension in Uganda: a cross-sectional study 
Persons with a systolic blood pressure (BP) of 120 to < 140 or diastolic BP of 80 to < 90 mm hg are classified as having pre-hypertension. Pre-hypertension is associated with cardiovascular disease (CVD) risk factors, incident CVD and CVD mortality. Understanding determinants of pre-hypertension especially in low income countries is a pre-requisite for improved prevention and control.
Data were analyzed for 4142 persons aged 18 years and older with BP measured in a community cross sectional survey in Uganda. The prevalence of pre-hypertension was estimated and a number of risk factors e.g. smoking, use of alcohol, overweight, obesity, physical activity, sex, age, marital status, place of residence, and consumption of vegetables and fruits were compared among different groups (normotension, pre-hypertension, and hypertension) using bivariate and multivariable logistic regression.
The age standardized prevalence of normal blood pressure was 37.6%, pre-hypertension 33.9%, hypertension 28.5% and raised blood pressure 62%. There was no difference between the prevalence of hypertension among women compared to men (28.9% versus 27.9%). However, the prevalence of pre-hypertension was higher among men (41.6%) compared to women (29.4%). Compared to people with normal blood pressure, the risk of pre-hypertension was increased by being 40 years and above, smoking, consumption of alcohol, not being married, being male and being overweight or obese. Compared to pre-hypertension, hypertension was more likely if one was more than 40 years, had infrequent or no physical activity, resided in an urban area, and was obese or overweight.
More than one in three of adults in this population had pre-hypertension. Preventive and public health interventions that reduce the prevalence of raised blood pressure need to be implemented.
PMCID: PMC3833647  PMID: 24228945
Cardiovascular diseases; Non communicable diseases; Low income countries; Risk factors; Prevalence
13.  Weight Status in Childhood as a Predictor of Becoming Overweight or Hypertensive in Early Adulthood 
Obesity research  2005;13(1):163-169.
To assess the extent to which weight status in childhood or adolescence predicts becoming overweight or hypertensive by young adulthood.
Research Methods and Procedures
We conducted a prospective study of 314 children, who were 8 to 15 years old at baseline, and were followed up 8 to 12 years later. Weight, height, and blood pressure were measured by trained research staff. Incident overweight was defined as BMI ≥ 25 kg/m2 among participants who had not been overweight as children.
More male subjects (48.3%) than female subjects (23.5%) became overweight or obese between their first childhood visit and the young adult follow-up (p < 0.001). Being in the upper one half of the normal weight range (i.e., BMI between the 50th and 84th percentiles for age and gender in childhood) was a good predictor of becoming overweight as a young adult. Compared with children with a BMI <50th percentile, girls and boys between the 50th and 74th percentiles of BMI were ~5 times more likely [boys, odds ratio (OR) = 5.3, p = 0.002; girls, OR = 4.8, p = 0.07] and those with a BMI between the 75th and 84th percentiles were up to 20 times more likely (boys, OR = 4.3, p = 0.02; girls, OR = 20.2, p = 0.001) to become overweight. The incidence of high blood pressure was greater among the male subjects (12.3% vs. 1.9%). Compared with boys who had childhood BMI below the 75th percentile, boys between the 75th and 85th percentiles of BMI as children were four times more likely (OR = 3.6) and those at above the 85th percentile were five times more likely (OR = 5.1) to become hypertensive.
High normal weight status in childhood predicted becoming overweight or obese as an adult. Also, among the boys, elevated BMI in childhood predicted risk of hypertension in young adulthood.
PMCID: PMC1989681  PMID: 15761176
BMI; children; overweight; incidence; hypertension
14.  Pregnancy Weight Gain and Childhood Body Weight: A Within-Family Comparison 
PLoS Medicine  2013;10(10):e1001521.
David Ludwig and colleagues examine the within-family relationship between pregnancy weight gain and the offspring's childhood weight gain, thereby reducing the influence of genes and environment.
Please see later in the article for the Editors' Summary
Excessive pregnancy weight gain is associated with obesity in the offspring, but this relationship may be confounded by genetic and other shared influences. We aimed to examine the association of pregnancy weight gain with body mass index (BMI) in the offspring, using a within-family design to minimize confounding.
Methods and Findings
In this population-based cohort study, we matched records of all live births in Arkansas with state-mandated data on childhood BMI collected in public schools (from August 18, 2003 to June 2, 2011). The cohort included 42,133 women who had more than one singleton pregnancy and their 91,045 offspring. We examined how differences in weight gain that occurred during two or more pregnancies for each woman predicted her children's BMI and odds ratio (OR) of being overweight or obese (BMI≥85th percentile) at a mean age of 11.9 years, using a within-family design. For every additional kg of pregnancy weight gain, childhood BMI increased by 0.0220 (95% CI 0.0134–0.0306, p<0.0001) and the OR of overweight/obesity increased by 1.007 (CI 1.003–1.012, p = 0.0008). Variations in pregnancy weight gain accounted for a 0.43 kg/m2 difference in childhood BMI. After adjustment for birth weight, the association of pregnancy weight gain with childhood BMI was attenuated but remained statistically significant (0.0143 kg/m2 per kg of pregnancy weight gain, CI 0.0057–0.0229, p = 0.0007).
High pregnancy weight gain is associated with increased body weight of the offspring in childhood, and this effect is only partially mediated through higher birth weight. Translation of these findings to public health obesity prevention requires additional study.
Please see later in the article for the Editors' Summary
Editors' Summary
Childhood obesity has become a worldwide epidemic. For example, in the United States, the number of obese children has more than doubled in the past 30 years. 7% of American children aged 6–11 years were obese in 1980, compared to nearly 18% in 2010. Because of the rising levels of obesity, the current generation of children may have a shorter life span than their parents for the first time in 200 years.
Childhood obesity has both immediate and long-term effects on health. The initial problems are usually psychological. Obese children often experience discrimination, leading to low self-esteem and depression. Their physical health also suffers. They are more likely to be at risk of cardiovascular disease from high cholesterol and high blood pressure. They may also develop pre-diabetes or diabetes type II. In the long-term, obese children tend to become obese adults, putting them at risk of premature death from stroke, heart disease, or cancer.
There are many factors that lead to childhood obesity and they often act in combination. A major risk factor, especially for younger children, is having at least one obese parent. The challenge lies in unravelling the complex links between the genetic and environmental factors that are likely to be involved.
Why Was This Study Done?
Several studies have shown that a child's weight is influenced by his/her mother's weight before pregnancy and her weight gain during pregnancy. An obese mother, or a mother who puts on more pregnancy weight than average, is more likely to have an obese child.
One explanation for the effects of pregnancy weight gain is that the mother's overeating directly affects the baby's development. It may change the baby's brain and metabolism in such a way as to increase the child's long-term risk of obesity. Animal studies have confirmed that the offspring of overfed rats show these kinds of physiological changes. However, another possible explanation is that mother and baby share a similar genetic make-up and environment so that a child becomes obese from inheriting genetic risk factors, and growing up in a household where being overweight is the norm.
The studies in humans that have been carried out to date have not been able to distinguish between these explanations. Some have given conflicting results. The aim of this study was therefore to look for evidence of links between pregnancy weight gain and children's weight, using an approach that would separate the impact of genetic and environmental factors from a direct effect on the developing baby.
What Did the Researchers Do and Find?
The researchers examined data from the population of the US state of Arkansas recorded between 2003 and 2011. They looked at the health records of over 42,000 women who had given birth to more than one child during this period. This gave them information about how much weight the women had gained during each of their pregnancies. The researchers also looked at the school records of the children, over 91,000 in total, which included the children's body mass index (BMI, which factors in both height and weight). They analyzed the data to see if there was a link between the mothers' pregnancy weight gain and the child's BMI at around 12 years of age. Most importantly, they looked at these links within families, comparing children born to the same mother. The rationale for this approach was that these children would share a similar genetic make-up and would have grown up in similar environments. By taking genetics and environment into account in this manner, any remaining evidence of an impact of pregnancy weight gain on the children's BMI would have to be explained by other factors.
The results showed that the amount of weight each mother gained in pregnancy predicted her children's BMI and the likelihood of her children being overweight or obese. For every additional kg the mother gained during pregnancy, the children's BMI increased by 0.022. The children of mothers who put on the most weight had a BMI that was on average 0.43 higher than the children whose mothers had put on the least weight.
The study leaves some questions unanswered, including whether the mother's weight before pregnancy makes a difference to their children's BMI. The researchers were not able to obtain these measurements, nor the weight of the fathers. There may have also been other factors that weren't measured that might explain the links that were found.
What Do These Findings Mean?
This study shows that mothers who gain excessive weight during pregnancy increase the risk of their child becoming obese. This appears to be partly due to a direct effect on the developing baby.
These results represent a significant public health concern, even though the impact on an individual basis is relatively small. They could contribute to several hundred thousand cases of childhood obesity worldwide. Importantly, they also suggest that some cases could be prevented by measures to limit excessive weight gain during pregnancy. Such an approach could prove effective, as most mothers will not want to damage their child's health, and might therefore be highly motivated to change their behavior. However, because inadequate weight gain during pregnancy can also adversely affect the developing fetus, it will be essential for women to receive clear information about what constitutes optimal weight gain during pregnancy.
Additional Information
Please access these websites via the online version of this summary at
The US Centers for Disease Control and Prevention provide Childhood Obesity Facts
The UK National Health Service article “How much weight will I put on during my pregnancy?” provides information on pregnancy and weight gain and links to related resources
PMCID: PMC3794857  PMID: 24130460
15.  Adolescent Obesity, Change in Weight Status and Hypertension; Racial/Ethnic Variations 
Hypertension  2012;61(2):290-295.
We sought to determine whether change in weight status between adolescence and young adulthood was associated with the risk of developing hypertension among adolescents and whether gender and racial/ethnic group differences existed in the National Longitudinal Study of Adolescent Health. The sample was restricted to participants who self-identified as African-American, Hispanic or White Non-Hispanic (N=8543). Height and weight were measured in adolescence (mean 16yrs), and again in adulthood (mean 29yrs). We categorized the participants weight into four groups: stayed normal weight; gained weight (normal weight in adolescence and obese in adulthood); lost weight (overweight/obese in adolescence non-obese in adulthood); chronically overweight/obese. Hypertension was defined as measured systolic blood pressure of at least 140mmHg or diastolic blood pressure of at least 90mmHG measured in adulthood, or use of antihypertensive medications. A higher risk of hypertension was noted for all gender and racial/ethnic groups who became obese in adulthood. Furthermore, those who were chronically overweight/obese were at higher risk of hypertension for all groups with odds ratios ranging from 2.7 in Hispanic men to 6.5 in Hispanic women. Except for African-American men, those who lost weight during follow up had no significant increased risk compared to those who maintained normal weight. Overall, there was an increased risk of hypertension for those who gained weight in adulthood and among those who remained obese from adolescence to young adulthood. These data give further evidence for prevention strategies that begin earlier in life to reduce or delay the onset of chronic disease in young adults.
PMCID: PMC3938160  PMID: 23248147
obesity; blood pressure; adolescence; hypertension; life course; racial/ethnic disparities
16.  Increasing blood pressure and its associated factors in Canadian children and adolescents from the Canadian Health Measures Survey 
BMC Public Health  2012;12:388.
Canada is facing a childhood obesity epidemic. Elevated blood pressure (BP) is a major complication of obesity. Reports on the impact of excess adiposity on BP in children and adolescents have varied significantly across studies. We evaluated the independent effects of obesity, physical activity, family history of hypertension, and socioeconomic status on BP in a nationally representative sample of children and adolescents.
We analysed cross-sectional data for 1850 children aged 6 to 17 years who participated in the Canadian Health Measures Survey, Cycle 1, 2007–2009. Systolic BP (SBP) and diastolic BP (DBP) were age-, sex-, and height-adjusted to z-scores (SBPZ and DBPZ). Body mass index (BMI) z-scores were calculated based on World Health Organization growth standards. Multivariate linear regression was used to evaluate the independent effects of relevant variables on SBPZ and DBPZ.
For most age/sex groups, obesity was positively associated with SBP. Being obese was associated with higher DBP in adolescent boys only. The BP effect of obesity showed earlier in young girls than boys. Obese adolescents were estimated to have an average 7.6 mmHg higher SBP than normal weight adolescents. BMI had the strongest effect on BP among obese children and adolescents. Moderately active adolescent boys had higher SBP (3.9 mmHg) and DBP (4.9 mmHg) than physically active boys. Family history of hypertension showed effects on SBP and DBP in younger girls and adolescent boys. Both family income and parent education demonstrated independent associations with BP in young children.
Our findings demonstrate the early impact of excess adiposity, insufficient physical activity, family history of hypertension, and socioeconomic inequalities on BP. Early interventions to reduce childhood obesity can, among other things, reduce exposure to prolonged BP elevation and the future risk of cardiovascular disease.
PMCID: PMC3395567  PMID: 22642714
17.  The Relation of Body Mass Index and Blood Pressure in Iranian Children and Adolescents Aged 7–18 Years Old 
Iranian Journal of Public Health  2010;39(4):126-134.
The obesity and hypertension are the major risk factors of several life threatening diseases. The present study was aimed to investigate the relation between body mass index (BMI) the validated index of adiposity and different aspect of blood pressure (BP).
Systolic and diastolic blood pressures and also weight and height of 7 to 18 years old children and adolescent collected in 2002 and 2004 respectively. Data was consisted of 14865 schoolchildren and adolescents from representative sample of country. BMI was classified according to CDC 2000 standards into normal (BMI<85th percentile), at risk of overweight (BMI≥85th and <95th percentile) and overweight (BMI≥95th percentile). Then, age-sex specific prevalence of being overweight was derived. ANOVA was used to investigate the effect of BMI on systolic blood pressure and diastolic blood pressure and mean arterial pressure of participants.
Mean systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP) significantly increased with BMI (P< 0.0001) and age groups (P< 0.0001), and was significantly (P< 0.0001) higher in boys than girls especially in older ages. (P< 0.0001, interaction of age and BMI level). The proportion of being overweight was significantly higher in boys than girls was (7.4% vs. 3.6%; P< 0.0001).
There is an association between BP and BMI in children and adolescence. SBP, DBP and MAP are associated with rise in BMI and age, which was lower in girls. This data can provide basics for public health policy makers and primary prevention policies in the country.
PMCID: PMC3481696  PMID: 23113046
Blood pressure; Body mass index (BMI); Relation; Children; Adolescents
18.  Association between Class III Obesity (BMI of 40–59 kg/m2) and Mortality: A Pooled Analysis of 20 Prospective Studies 
PLoS Medicine  2014;11(7):e1001673.
In a pooled analysis of 20 prospective studies, Cari Kitahara and colleagues find that class III obesity (BMI of 40–59) is associated with excess rates of total mortality, particularly due to heart disease, cancer, and diabetes.
Please see later in the article for the Editors' Summary
The prevalence of class III obesity (body mass index [BMI]≥40 kg/m2) has increased dramatically in several countries and currently affects 6% of adults in the US, with uncertain impact on the risks of illness and death. Using data from a large pooled study, we evaluated the risk of death, overall and due to a wide range of causes, and years of life expectancy lost associated with class III obesity.
Methods and Findings
In a pooled analysis of 20 prospective studies from the United States, Sweden, and Australia, we estimated sex- and age-adjusted total and cause-specific mortality rates (deaths per 100,000 persons per year) and multivariable-adjusted hazard ratios for adults, aged 19–83 y at baseline, classified as obese class III (BMI 40.0–59.9 kg/m2) compared with those classified as normal weight (BMI 18.5–24.9 kg/m2). Participants reporting ever smoking cigarettes or a history of chronic disease (heart disease, cancer, stroke, or emphysema) on baseline questionnaires were excluded. Among 9,564 class III obesity participants, mortality rates were 856.0 in men and 663.0 in women during the study period (1976–2009). Among 304,011 normal-weight participants, rates were 346.7 and 280.5 in men and women, respectively. Deaths from heart disease contributed largely to the excess rates in the class III obesity group (rate differences = 238.9 and 132.8 in men and women, respectively), followed by deaths from cancer (rate differences = 36.7 and 62.3 in men and women, respectively) and diabetes (rate differences = 51.2 and 29.2 in men and women, respectively). Within the class III obesity range, multivariable-adjusted hazard ratios for total deaths and deaths due to heart disease, cancer, diabetes, nephritis/nephrotic syndrome/nephrosis, chronic lower respiratory disease, and influenza/pneumonia increased with increasing BMI. Compared with normal-weight BMI, a BMI of 40–44.9, 45–49.9, 50–54.9, and 55–59.9 kg/m2 was associated with an estimated 6.5 (95% CI: 5.7–7.3), 8.9 (95% CI: 7.4–10.4), 9.8 (95% CI: 7.4–12.2), and 13.7 (95% CI: 10.5–16.9) y of life lost. A limitation was that BMI was mainly ascertained by self-report.
Class III obesity is associated with substantially elevated rates of total mortality, with most of the excess deaths due to heart disease, cancer, and diabetes, and major reductions in life expectancy compared with normal weight.
Please see later in the article for the Editors' Summary
Editors' Summary
The number of obese people (individuals with an excessive amount of body fat) is increasing rapidly in many countries. Worldwide, according to the Global Burden of Disease Study 2013, more than a third of all adults are now overweight or obese. Obesity is defined as having a body mass index (BMI, an indicator of body fat calculated by dividing a person's weight in kilograms by their height in meters squared) of more than 30 kg/m2 (a 183-cm [6-ft] tall man who weighs more than 100 kg [221 lbs] is obese). Compared to people with a healthy weight (a BMI between 18.5 and 24.9 kg/m2), overweight and obese individuals (who have a BMI between 25.0 and 29.9 kg/m2 and a BMI of 30 kg/m2 or more, respectively) have an increased risk of developing diabetes, heart disease, stroke, and some cancers, and tend to die younger. Because people become unhealthily fat by consuming food and drink that contains more energy (kilocalories) than they need for their daily activities, obesity can be prevented or treated by eating less food and by increasing physical activity.
Why Was This Study Done?
Class III obesity (extreme, or morbid, obesity), which is defined as a BMI of more than 40 kg/m2, is emerging as a major public health problem in several high-income countries. In the US, for example, 6% of adults are now morbidly obese. Because extreme obesity used to be relatively uncommon, little is known about the burden of disease, including total and cause-specific mortality (death) rates, among individuals with class III obesity. Before we can prevent and treat class III obesity effectively, we need a better understanding of the health risks associated with this condition. In this pooled analysis of prospective cohort studies, the researchers evaluate the risk of total and cause-specific death and the years of life lost associated with class III obesity. A pooled analysis analyzes the data from several studies as if the data came from one large study; prospective cohort studies record the characteristics of a group of participants at baseline and follow them to see which individuals develop a specific condition.
What Did the Researchers Do and Find?
The researchers included 20 prospective (mainly US) cohort studies from the National Cancer Institute Cohort Consortium (a partnership that studies cancer by undertaking large-scale collaborations) in their pooled analysis. After excluding individuals who had ever smoked and people with a history of chronic disease, the analysis included 9,564 adults who were classified as class III obese based on self-reported height and weight at baseline and 304,011 normal-weight adults. Among the participants with class III obesity, mortality rates (deaths per 100,000 persons per year) during the 30-year study period were 856.0 and 663.0 in men and women, respectively, whereas the mortality rates among normal-weight men and women were 346.7 and 280.5, respectively. Heart disease was the major contributor to the excess death rate among individuals with class III obesity, followed by cancer and diabetes. Statistical analyses of the pooled data indicate that the risk of all-cause death and death due to heart disease, cancer, diabetes, and several other diseases increased with increasing BMI. Finally, compared with having a normal weight, having a BMI between 40 and 59 kg/m2 resulted in an estimated loss of 6.5 to 13.7 years of life.
What Do These Findings Mean?
These findings indicate that class III obesity is associated with a substantially increased rate of death. Notably, this death rate increase is similar to the increase associated with smoking among normal-weight people. The findings also suggest that heart disease, cancer, and diabetes are responsible for most of the excess deaths among people with class III obesity and that having class III obesity results in major reductions in life expectancy. Importantly, the number of years of life lost continues to increase for BMI values above 50 kg/m2, and beyond this point, the loss of life expectancy exceeds that associated with smoking among normal-weight people. The accuracy of these findings is limited by the use of self-reported height and weight measurements to calculate BMI and by the use of BMI as the sole measure of obesity. Moreover, these findings may not be generalizable to all populations. Nevertheless, these findings highlight the need to develop more effective interventions to combat the growing public health problem of class III obesity.
Additional Information
Please access these websites via the online version of this summary at
The US Centers for Disease Control and Prevention provides information on all aspects of overweight and obesity (in English and Spanish)
The World Health Organization provides information on obesity (in several languages); Malri's story describes the health risks faced by an obese child
The UK National Health Service Choices website provides information about obesity, including a personal story about losing weight
The Global Burden of Disease Study website provides the latest details about global obesity trends
The US Department of Agriculture's website provides a personal healthy eating plan; the Weight-Control Information Network is an information service provided for the general public and health professionals by the US National Institute of Diabetes and Digestive and Kidney Diseases (in English and Spanish)
MedlinePlus provides links to other sources of information on obesity (in English and Spanish)
PMCID: PMC4087039  PMID: 25003901
19.  Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study 
BMC Pediatrics  2010;10:73.
Body Mass Index (BMI) is widely used to assess the impact of obesity on cardiometabolic risk in children but it does not always relate to central obesity and varies with growth and maturation. Waist-to-Height Ratio (WHtR) is a relatively constant anthropometric index of abdominal obesity across different age, sex or racial groups. However, information is scant on the utility of WHtR in assessing the status of abdominal obesity and related cardiometabolic risk profile among normal weight and overweight/obese children, categorized according to the accepted BMI threshold values.
Cross-sectional cardiometabolic risk factor variables on 3091 black and white children (56% white, 50% male), 4-18 years of age were used. Based on the age-, race- and sex-specific percentiles of BMI, the children were classified as normal weight (5th - 85th percentiles) and overweight/obese (≥ 85th percentile). The risk profiles of each group based on the WHtR (<0.5, no central obesity versus ≥ 0.5, central obesity) were compared.
9.2% of the children in the normal weight group were centrally obese (WHtR ≥0.5) and 19.8% among the overweight/obese were not (WHtR < 0.5). On multivariate analysis the normal weight centrally obese children were 1.66, 2.01, 1.47 and 2.05 times more likely to have significant adverse levels of LDL cholesterol, HDL cholesterol, triglycerides and insulin, respectively. In addition to having a higher prevalence of parental history of type 2 diabetes mellitus, the normal weight central obesity group showed a significantly higher prevalence of metabolic syndrome (p < 0.0001). In the overweight/obese group, those without central obesity were 0.53 and 0.27 times less likely to have significant adverse levels of HDL cholesterol and HOMA-IR, respectively (p < 0.05), as compared to those with central obesity. These overweight/obese children without central obesity also showed significantly lower prevalence of parental history of hypertension (p = 0.002), type 2 diabetes mellitus (p = 0.03) and metabolic syndrome (p < 0.0001).
WHtR not only detects central obesity and related adverse cardiometabolic risk among normal weight children, but also identifies those without such conditions among the overweight/obese children, which has implications for pediatric primary care practice.
PMCID: PMC2964659  PMID: 20937123
20.  Weight status and hypertension among adolescent girls in Argentina and Norway: Data from the ENNyS and HUNT studies 
BMC Public Health  2009;9:398.
To provide data on overweight, obesity and hypertension among adolescent girls in Norway and Argentina.
Data was obtained from two population-based, cross-sectional and descriptive studies containing anthropometric and blood pressure measurements of 15 to 18 year old girls. The study included 2,156 adolescent girls from Norway evaluated between 1995 and 1997, and 669 from Argentina evaluated between 2004 and 2005.
Around 15% of adolescent girls in Norway and 19% in Argentina are overweight or obese. Body mass index (BMI) distribution in these two countries is similar, with a low percentage (< 1%) of girls classified as thin. Norwegian adolescents show a height mean value 8 cm taller than the Argentinean. Obesity is strongly associated with systolic hypertension in both populations, with odds ratios of 11.4 [1.6; 82.0] and 28.3 [11.8; 67.7] in Argentina and Norway, respectively. No direct association between BMI and systolic hypertension was found, and only extreme BMI values (above 80th - 90th percentile) were associated with hypertension.
This study confirms a current world health problem by showing the high prevalence of obesity in adolescents and its association with hypertension in two different countries (one developed and one in transition).
PMCID: PMC2775744  PMID: 19878550
21.  Bariatric Surgery 
Executive Summary
To conduct an evidence-based analysis of the effectiveness and cost-effectiveness of bariatric surgery.
Obesity is defined as a body mass index (BMI) of at last 30 kg/m2.1 Morbid obesity is defined as a BMI of at least 40 kg/m2 or at least 35 kg/m2 with comorbid conditions. Comorbid conditions associated with obesity include diabetes, hypertension, dyslipidemias, obstructive sleep apnea, weight-related arthropathies, and stress urinary incontinence. It is also associated with depression, and cancers of the breast, uterus, prostate, and colon, and is an independent risk factor for cardiovascular disease.
Obesity is also associated with higher all-cause mortality at any age, even after adjusting for potential confounding factors like smoking. A person with a BMI of 30 kg/m2 has about a 50% higher risk of dying than does someone with a healthy BMI. The risk more than doubles at a BMI of 35 kg/m2. An expert estimated that about 160,000 people are morbidly obese in Ontario. In the United States, the prevalence of morbid obesity is 4.7% (1999–2000).
In Ontario, the 2004 Chief Medical Officer of Health Report said that in 2003, almost one-half of Ontario adults were overweight (BMI 25–29.9 kg/m2) or obese (BMI ≥ 30 kg/m2). About 57% of Ontario men and 42% of Ontario women were overweight or obese. The proportion of the population that was overweight or obese increased gradually from 44% in 1990 to 49% in 2000, and it appears to have stabilized at 49% in 2003. The report also noted that the tendency to be overweight and obese increases with age up to 64 years. BMI should be used cautiously for people aged 65 years and older, because the “normal” range may begin at slightly above 18.5 kg/m2 and extend into the “overweight” range.
The Chief Medical Officer of Health cautioned that these data may underestimate the true extent of the problem, because they were based on self reports, and people tend to over-report their height and under-report their weight. The actual number of Ontario adults who are overweight or obese may be higher.
Diet, exercise, and behavioural therapy are used to help people lose weight. The goals of behavioural therapy are to identify, monitor, and alter behaviour that does not help weight loss. Techniques include self-monitoring of eating habits and physical activity, stress management, stimulus control, problem solving, cognitive restructuring, contingency management, and identifying and using social support. Relapse, when people resume old, unhealthy behaviour and then regain the weight, can be problematic.
Drugs (including gastrointestinal lipase inhibitors, serotonin norepinephrine reuptake inhibitors, and appetite suppressants) may be used if behavioural interventions fail. However, estimates of efficacy may be confounded by high rates of noncompliance, in part owing to the side effects of the drugs. In addition, the drugs have not been approved for indefinite use, despite the chronic nature of obesity.
The Technology
Morbidly obese people may be eligible for bariatric surgery. Bariatric surgery for morbid obesity is considered an intervention of last resort for patients who have attempted first-line forms of medical management, such as diet, increased physical activity, behavioural modification, and drugs.
There are various bariatric surgical procedures and several different variations for each of these procedures. The surgical interventions can be divided into 2 general types: malabsorptive (bypassing parts of the gastrointestinal tract to limit the absorption of food), and restrictive (decreasing the size of the stomach so that the patient is satiated with less food). All of these may be performed as either open surgery or laparoscopically. An example of a malabsorptive technique is Roux-en-Y gastric bypass (RYGB). Examples of restrictive techniques are vertical banded gastroplasty (VBG) and adjustable gastric banding (AGB).
The Ontario Health Insurance Plan (OHIP) Schedule of Benefits for Physician Services includes fee code “S120 gastric bypass or partition, for morbid obesity” as an insured service. The term gastric bypass is a general term that encompasses a variety of surgical methods, all of which involve reconfiguring the digestive system. The term gastric bypass does not include AGB. The number of gastric bypass procedures funded and done in Ontario, and funded as actual out-of-country approvals,2 is shown below.
Number of Gastric Bypass Procedures by Fiscal Year: Ontario and Actual Out-of-Country (OOC) Approvals
Data from Provider Services, MOHLTC
Courtesy of Provider Services, Ministry of Health and Long Term Care
Review Strategy
The Medical Advisory Secretariat reviewed the literature to assess the effectiveness, safety, and cost-effectiveness of bariatric surgery to treat morbid obesity. It used its standard search strategy to retrieve international health technology assessments and English-language journal articles from selected databases. The interventions of interest were bariatric surgery and, for the controls, either optimal conventional management or another type of bariatric procedure. The outcomes of interest were improvement in comorbid conditions (e.g., diabetes, hypertension); short- and long-term weight loss; quality of life; adverse effects; and economic analysis data. The databases yielded 15 international health technology assessments or systematic reviews on bariatric surgery.
Subsequently, the Medical Advisory Secretariat searched MEDLINE and EMBASE from April 2004 to December 2004, after the search cut-off date of April, 2004, for the most recent systematic reviews on bariatric surgery. Ten studies met the inclusion criteria. One of those 10 was the Swedish Obese Subjects study, which started as a registry and intervention study, and then published findings on people who had been enrolled for at least 2 years or at least 10 years. In addition to the literature review of economic analysis data, the Medical Advisory Secretariat also did an Ontario-based economic analysis.
Summary of Findings
Bariatric surgery generally is effective for sustained weight loss of about 16% for people with BMIs of at least 40 kg/m2 or at least 35 kg/m2 with comorbid conditions (including diabetes, high lipid levels, and hypertension). It also is effective at resolving the associated comorbid conditions. This conclusion is largely based on level 3a evidence from the prospectively designed Swedish Obese Subjects study, which recently published 10-year outcomes for patients who had bariatric surgery compared with patients who received nonsurgical treatment. (1)
Regarding specific procedures, there is evidence that malabsorptive techniques are better than other banding techniques for weight loss and resolution of comorbid illnesses. However, there are no published prospective, long-term, direct comparisons of these techniques available.
Surgery for morbid obesity is considered an intervention of last resort for patients who have attempted first-line forms of medical management, such as diet, increased physical activity, behavioural modification, and drugs. In the absence of direct comparisons of active nonsurgical intervention via caloric restriction with bariatric techniques, the following observations are made:
A recent systematic review examining the efficacy of major commercial and organized self-help weight loss programs in the United States concluded that the evidence to support the use of such programs was suboptimal, except for one trial on Weight Watchers. Furthermore, the programs were associated with high costs, attrition rates, and probability of regaining at least 50% of the lost weight in 1 to 2 years. (2)
A recent randomized controlled trial reported 1-year outcomes comparing weight loss and metabolic changes in severely obese patients assigned to either a low-carbohydrate diet or a conventional weight loss diet. At 1 year, weight loss was similar for patients in each group (mean, 2–5 kg). There was a favourable effect on triglyceride levels and glycemic control in the low-carbohydrate diet group. (3)
A decision-analysis model showed bariatric surgery results in increased life expectancy in morbidly obese patients when compared to diet and exercise. (4)
A cost-effectiveness model showed bariatric surgery is cost-effective relative to nonsurgical management. (5)
Extrapolating from 2003 data from the United States, Ontario would likely need to do 3,500 bariatric surgeries per year. It currently does 508 per year, including out-of-country surgeries.
PMCID: PMC3382415  PMID: 23074460
22.  Obesity & Diabetes: An experience at a public sector tertiary care hospital 
Objective: To detect the frequency of Obesity in type 2 diabetic patients.
Methods: It was a Cross Sectional study carried out at Diabetes Clinic, Medical Unit III, Jinnah Postgraduate Medical Centre Karachi from 1st Jan 2012 to 30th June 2012. Three hundred and eighty seven (387) type II diabetic patients of either sex and any age were included in the study. Non-purposive convenience sampling technique was used to enroll patients in the study. History regarding diabetes, hypertension (HTN), Cerebrovascular Accidents (CVA), smoking and other tobacco exposure was taken. Physical examination was carried out and height, weight, body mass index (BMI), blood pressure, peripheral pulses and ankle-brachial index (ABI) was calculated. Categorical variables such as Gender, Age groups, BMI groups, HTN, smoking, hyperlipidemia and ABI were expressed as frequencies and proportions. Means with standard deviations were calculated for continuous variables such as age, duration of diabetes, BMI, duration of HTN and duration dyslipidemia. For categorical variables, differences between patients were tested using the chi-square test. P value of ≤ 0.05 was considered significant.
Results: Males were 128 in number (33%) and female were 259 in number (67%). Mean age was 52 yrs (+/- 9.67) and the mean duration of diabetes was 9.36 yrs (+/- 6.39). Hypertension was seen in 210 people (54%). 49(12.7%) were smokers and 39(10%) chewed tobacco. Normal BMI was seen in 62 patients (16%), 44 (11.4%) were overweight and 281(72.6%) was obese. Obesity was much more prevalent amongst the female gender that is 208(80%) versus male which was 73 (57%) and this was statistically significant (p-value 0.001). Hypertension was also more prevalent in obese patients and was statistically significant (p-value 0.04). Statistically significant lower mean BMI was found in smokers, tobacco chewers and/or had exposure to tobacco (0.001, 0.04, and 0.001 respectively).
Conclusion: The study shows that there is a strong association of diabetes with obesity. Female gender had relatively higher BMI. Hypertension was more prevalent in obese diabetic subjects. Smoking and nicotine exposure was associated with significantly lower BMI.
PMCID: PMC3955547  PMID: 24639836
Diabetes; Obesity; Hypertension; Smoking
American journal of hypertension  2007;20(4):370-377.
Although obesity is known to increase the risk of hypertension, few studies have prospectively evaluated body mass index (BMI) across the range of normal weight and overweight as a primary risk factor.
In this prospective cohort, we evaluated the association between BMI and risk of incident hypertension. We studied 13,563 initially healthy, non-hypertensive men who participated in the Physicians’ Health Study. We calculated BMI from self-reported weight and height and defined hypertension as self-reported systolic blood pressure (BP) ≥140 mmHg, diastolic BP ≥90 mmHg, or new antihypertensive medication use.
After a median 14.5 years, 4920 participants developed hypertension. Higher baseline BMI, even within the “normal” range, was consistently associated with increased risk of hypertension. Compared to participants in the lowest BMI quintile (<22.4 kg/m2), the relative risks (95% confidence interval) of developing hypertension for men with a BMI of 22.4–23.6, 23.7–24.7, 24.8–26.4, and >26.4 kg/m2 were 1.20 (1.09–1.32), 1.31 (1.19–1.44), 1.56 (1.42–1.72), and 1.85 (1.69–2.03), respectively (P for trend, <0.0001). Further adjustment for diabetes, high cholesterol, and baseline BP did not substantially alter these results. We found similar associations using other BMI categories and after excluding men with smoking history, those who developed hypertension in the first 2 years, and those with diabetes, obesity, or high cholesterol at baseline.
In this large cohort, we found a strong gradient between higher BMI and increased risk of hypertension, even among men within the “normal” and mildly “overweight” BMI range. Approaches to reduce the risk of developing hypertension may include prevention of overweight and obesity.
PMCID: PMC1920107  PMID: 17386342
hypertension; obesity; body mass index
24.  Hypertension and Obesity as Cardiovascular Risk Factors among HIV Seropositive Patients in Western Kenya 
PLoS ONE  2011;6(7):e22288.
There is increased risk of cardiovascular disease among HIV seropositive individuals. The prevalence of HIV is highest in sub-Saharan Africa; however, HIV-related cardiovascular risk research is largely derived from developed country settings. Herein, we describe the prevalence of hypertension and obesity in a large HIV treatment program in Kenya.
We performed a retrospective analysis of the electronic medical records of a large HIV treatment program in Western Kenya between 2006 and 2009. We calculated the prevalence of hypertension and obesity among HIV+ adults as well as utilized multiple logistic regression analyses to examine the relationship between clinical characteristics, HIV-related characteristics, and hypertension.
Our final sample size was 12,194. The median systolic/diastolic blood pressures were similar for both sexes (male: 110/70 mmHg, female: 110/70 mmHg). The prevalence of hypertension among men and women were 11.2% and 7.4%, respectively. Eleven percent of men and 22.6% of women were overweight/obese (body mass index ≥25 kg/m2). Ordinal logistic regression analyses showed that overweight/obesity was more strongly associated with hypertension among HIV+ men (OR 2.41, 95% CI 1.88–3.09) than a higher successive age category (OR 1.62, 95% CI 1.40–1.87 comparing 16–35, 36–45 and >45 years categories). Among women, higher age category and overweight/obesity were most strongly associated with hypertension (age category: OR 2.21, 95% CI 1.95–2.50, overweight/obesity: OR 1.80, 95% CI 1.50–2.16). Length of time on protease inhibitors was not found to be related to hypertension for men (OR 1.62, 95% CI 0.42–6.20) or women (OR 1.17, 95% CI 0.37–2.65) after adjustment for CD4 count, age and BMI.
In Western Kenya, there is a high prevalence of hypertension and overweight/obesity among HIV+ patients with differences observed between men and women. The care of HIV+ patients in sub-Saharan Africa should also include both identification and management of associated cardiovascular risk factors.
PMCID: PMC3136516  PMID: 21779407
25.  The association between obesity and blood pressure in Thai public school children 
BMC Public Health  2014;14:729.
The prevalence of obesity has substantially increased in the past 3 decades in both developed and developing countries and may lead to an increase in high blood pressure (BP) at an early age. This study aimed to determine the prevalence of obesity and its association with blood pressure among primary school children in central Thailand.
A cross-sectional study was conducted in two public schools in Bangkok in 2012. A total of 693 students (317 boys and 376 girls) aged 8–12 years participated voluntarily. Anthropometric measurements of weight, height, waist circumference (WC) and BP were collected. Fasting venous blood samples were obtained for biochemical analysis of fasting plasma glucose (FPG) and lipid parameters. Child nutritional status was defined by body mass index (BMI) for age based on the 2000 Center for Diseases Control and Prevention growth charts. The cutoff for abdominal obesity was WC at the 75 percentile or greater. Hypertension was defined according to the 2004 Pediatrics US blood pressure reference. Multinomial logistic regression was used to examine the relationship between high BP and obesity after controlling for other covariates.
The prevalence of obese children was 30.6% for boys and 12.8% for girls (mean prevalence 20.9%). Pre-hypertension (Pre-HT) was 5.7% and 2.7% for boys and girls and hypertension (HT) was 4.7% for boys and 3.2% for girls, respectively. Children with pre-HT and HT had significantly higher body weight, height, WC, BMI, SBP, DBP, TG, and TC/HDL-C levels but lower HDL-C levels than those children with normotension. After controlling for age, sex, glucose and lipid parameters, child obesity was significantly associated with pre-HT and HT (odds rations (ORs) = 9.00, 95% CI: 3.20-25.31 for pre-HT and ORs = 10.60, 95% CI: 3.75-30.00 for HT). So also was WC (abdominal obesity) when considered alone (ORs = 6.20, 95% CI: 2.60-14.81 for pre-HT and ORs = 13.73, 95% CI: 4.85-38.83 for HT) (p-value < 0.001).
Obesity among school children was positively associated with higher BP. Prevention of childhood obesity should be strengthened to prevent the risk of early high BP including cardiovascular risk factors.
PMCID: PMC4223408  PMID: 25034700
Child obesity; High blood pressure; School children; Waist circumference

Results 1-25 (1362898)