PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1241005)

Clipboard (0)
None

Related Articles

1.  Detection of Antibodies to a Pathogenic Mycoplasma in American Alligators (Alligator mississippiensis), Broad-Nosed Caimans (Caiman latirostris), and Siamese Crocodiles (Crocodylus siamensis) 
Journal of Clinical Microbiology  2001;39(1):285-292.
An epidemic of pneumonia with fibrinous polyserositis and multifocal arthritis emerged in captive American alligators (Alligator mississippiensis) in Florida, United States, in 1995. Mycoplasma alligatoris sp. nov. was cultured from multiple organs, peripheral blood, synovial fluid, and cerebrospinal fluid of affected alligators. In a subsequent experimental inoculation study, the Henle-Koch-Evans postulates were fulfilled for M. alligatoris as the etiological agent of fatal mycoplasmosis of alligators. That finding was remarkable because mycoplasmal disease is rarely fatal in animals. An enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies produced by alligators in response to M. alligatoris exposure was developed by using plasma obtained from naturally infected alligators during the original epidemic. The assay was validated by using plasma obtained during an experimental dose-response study and applied to analyze plasma obtained from captive and wild crocodilian species. The ELISA reliably detected alligator seroconversion (P < 0.05) beginning 6 weeks after inoculation. The ELISA also detected seroconversion (P < 0.05) in the relatively closely related broad-nosed caiman Caiman latirostris and the relatively distantly related Siamese crocodile Crocodylus siamensis following experimental inoculation with M. alligatoris. The ELISA may be used to monitor exposure to the lethal pathogen M. alligatoris among captive, repatriated, and wild crocodilian species.
doi:10.1128/JCM.39.1.285-292.2001
PMCID: PMC87716  PMID: 11136785
2.  Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria 
Background
The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains.
Methods
Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p <0.05.
Results
Among all the tested essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively.
Conclusions
Most of the essential oils included in this study possessed good antibacterial activities against selected multi drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria.
doi:10.1186/1472-6882-13-265
PMCID: PMC3853939  PMID: 24119438
Essential oils; Multidrug resistant; Minimum inhibitory concentration; GC/MS; TLC-bioautography
3.  Crocodiles in the Sahara Desert: An Update of Distribution, Habitats and Population Status for Conservation Planning in Mauritania 
PLoS ONE  2011;6(2):e14734.
Background
Relict populations of Crocodylus niloticus persist in Chad, Egypt and Mauritania. Although crocodiles were widespread throughout the Sahara until the early 20th century, increased aridity combined with human persecution led to local extinction. Knowledge on distribution, occupied habitats, population size and prey availability is scarce in most populations. This study evaluates the status of Saharan crocodiles and provides new data for Mauritania to assist conservation planning.
Methodology/Principal Findings
A series of surveys in Mauritania detected crocodile presence in 78 localities dispersed across 10 river basins and most tended to be isolated within river basins. Permanent gueltas and seasonal tâmoûrts were the most common occupied habitats. Crocodile encounters ranged from one to more than 20 individuals, but in most localities less than five crocodiles were observed. Larger numbers were observed after the rainy season and during night sampling. Crocodiles were found dead in between water points along dry river-beds suggesting the occurrence of dispersal.
Conclusion/Significance
Research priorities in Chad and Egypt should focus on quantifying population size and pressures exerted on habitats. The present study increased in by 35% the number of known crocodile localities in Mauritania. Gueltas are crucial for the persistence of mountain populations. Oscillations in water availability throughout the year and the small dimensions of gueltas affect biological traits, including activity and body size. Studies are needed to understand adaptation traits of desert populations. Molecular analyses are needed to quantify genetic variability, population sub-structuring and effective population size, and detect the occurrence of gene flow. Monitoring is needed to detect demographical and genetical trends in completely isolated populations. Crocodiles are apparently vulnerable during dispersal events. Awareness campaigns focusing on the vulnerability and relict value of crocodiles should be implemented. Classification of Mauritanian mountains as protected areas should be prioritised.
doi:10.1371/journal.pone.0014734
PMCID: PMC3045445  PMID: 21364897
4.  Antimicrobial activity, toxicity and selectivity index of two biflavonoids and a flavone isolated from Podocarpus henkelii (Podocarpaceae) leaves 
Background
Different parts of Podocarpus henkelii have been used in many cultures around the world to treat ailments such as cholera, stomach diseases, rheumatism, cancer, canine distemper in dogs and gall sickness in cattle. The aim of this study was to evaluate the biological activity and toxicity of isolated compounds from Podocarpus henkelii after an earlier study indicated a promising activity in crude extracts against viral pathogens of veterinary importance.
Methods
The antibacterial and antifungal activity of two biflavonoids 7, 4’, 7”, 4”’-tetramethoxy amentoflavone (TMA), isoginkgetin (IGG) and podocarpus flavone–A (PFA) isolated from the leaves of Podocarpus henkelii were determined using a serial microplate dilution method with tetrazolium violet as growth indicator. The cytotoxicity of compounds TMA and IGG were determined on different cell types using a tetrazolium-based colorimetric cellular assay (MTT). The Ames test was used to determine their mutagenic activities.
Results
TMA had reasonable antifungal activity against Aspergillus fumigatus (MIC = 30 μg/ml). IGG had a wide spectrum of activity against four bacterial and two fungal pathogens with much higher selectivity index values obtained for A. fumigatus and Cryptococcus neoformans (SI > 30). PFA had a broad spectrum of activity against Enterococcus faecalis and Pseudomonas aeruginosa (SI > 15) and less activity against the two fungal pathogens. In both the cytotoxicity assays and Ames mutagenicity test using Salmonella typhimurium strains TA98 and TA100, TMA and IGG had no deleterious effect on the different cell types and did not induce mutations in the Ames test.
Conclusion
Although the antimicrobial activities of the isolated compounds were not that exciting, the compounds had no cytotoxic activity at the highest concentration (1000 μg/ml) tested against all three cell lines. IGG was the most active against E. coli, S. aureus, A. fumigatus and C. neoformans, exhibiting both antibacterial and antifungal activity with good selectivity index values. PFA had a broad spectrum of activity against E. faecalis and P. aeruginosa. The two compounds isolated had low toxicity and no genotoxic activity in the Ames test.
doi:10.1186/1472-6882-14-383
PMCID: PMC4197215  PMID: 25293523
Selectivity index; Biflavonoids; Antimicrobial activity; Cytotoxicity; Mutagenicity
5.  Antioxidant, antibacterial and cytotoxic effects of the phytochemicals of whole Leucas aspera extract 
Objective
To investigate the antioxidant, antibacterial and cytotoxic activity of whole Leucas aspera (Labiatae) (L. aspera) alcoholic extract.
Methods
Whole L. aspera powder was extracted by absolute ethanol (99.50%). The ethanolic extract was subjected to antioxidant, antibacterial and brine shrimp lethality assay.
Results
The extract showed potent radical scavenging effect (antioxidant) with IC50 value of (99.58±1.22) µg/mL which was significant (P<0.01) in comparison to ascorbic acid with IC50 value of (1.25±0.95) µg/mL. In case of antibacterial screening, the extract showed notable antibacterial effect against the tested microbial strains. Significant (P<0.05) zone of inhibitions against Gram positive Bacillus subtilis [(12.00±1.32) mm] and Bacillus megaterium [(13.00±1.50) mm], Staphylococcus aureus [(8.00±0.50) mm] and Gram negative Salmonella typhi [(6.00±0.50) mm], Salmonella paratyphi [(8.00±1.00) mm], Shigella dysenteriae [(9.00±1.32) mm] and Vibrio cholerae [(9.00±0.66) mm] was observed. In brine shrimp lethality bioassay, the extract showed the LC50 value as (181.68±2.15) µg/mL which was statistically significant (P<0.01) compared to positive control vincristine sulfate [LC50=(0.76±0.04) µg/mL].
Conclusions
The results demonstrate that the ethanolic extract of L. aspera could be used as antibacterial, pesticidal and various pharmacologic actives.
doi:10.1016/S2221-1691(13)60062-3
PMCID: PMC3634923  PMID: 23620850
Leucas aspera; Radical scavenging; Antibacterial; Cytotoxic; Probit
6.  In vitro antibacterial evaluation of Anabaena sp. against several clinically significant microflora and HPTLC analysis of its active crude extracts 
Indian Journal of Pharmacology  2010;42(2):105-107.
The present study was conducted to evaluate the possible antibacterial activity of Anabaena extracts. Anabaena was isolated from a natural source and cultured in vitro. after suitable growth, cyanobacterial culture was harvested using different solvents. Extracts, thus prepared, were evaluated for their antibacterial potential by agar-well diffusion assay against bacterial species of clinical significance. MIC values were determined further to check the concentration ranges for significant inhibition. HPTLC analysis was done to separate the components of active crude extract in an attempt to identify the bio-active chemical entity. Methanol extract exhibited more potent activity than that of hexane and ethyl acetate extracts. No inhibitory effect was found against Pseudomonas aeruginosa, Salmonella typhi, and Klebsiella pneumoniae. Staphylococcus aureus required about 256 µg/ml of the crude methanol extract for effective inhibition. HPTLC evaluation at λ 254 nm was performed for the separation of a complex mixture of the methanol extract. The results provide evidence that Anabaena sp. extracts might indeed be potential sources of new antibacterial agents.
doi:10.4103/0253-7613.64490
PMCID: PMC2907006  PMID: 20711376
Blue-green algae; drug-resistance; biologically active substances; bacterial species
7.  The Antibacterial Activity of Cassia fistula Organic Extracts 
Background:
Cassia fistula, is a flowering plant and a member of Fabaceae family. Its leaves are compound of 4 - 8 pairs of opposite leaflets. There are many Cassia species around the world which are used in herbal medicine.
Objectives:
This study was designed to examine in vitro anti-bacterial activity of methanolic and ethanolic extracts of C. fistula native to Khuzestan, Iran.
Materials and Methods:
The microbial inhibitory effect of methanolic and ethanolic extracts of C. fistula was tested on 3 Gram positive: Bacillus cereus, Staphylococcus aureus and S. epidermidis and 5 Gram negative: Salmonella Typhi, Kelebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis bacterial species using disc diffusion method at various concentrations. The minimum inhibitory and bactericidal concentrations (MIC and MBC) were measured by the tube dilution assay.
Results:
The extract of C. fistula was effective against B. cereus, S. aureus, S. epidermidis, E. coli and K. pneumoniae. The most susceptible microorganisms to ethanolic and methanolic extracts were E. coli and K. pneumoniae, respectively. Also B. cereus and S. aureus showed the least sensitivity to ethanolic and methanolic extracts, respectively. The MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) of ethanolic extracts against S. aureus, E. coli, S. epidermidis and K. pneumoniae were also determined.
Conclusions:
With respect to the obtained results and regarding to the daily increase of the resistant microbial strains to the commercial antibiotics, it can be concluded that these extracts can be proper candidates of antibacterial substance against pathogenic bacterial species especially S. aureus, E. coli, K. pneumoniae and S. epidermidis.
doi:10.5812/jjm.8921
PMCID: PMC4138669  PMID: 25147664
Cassia fistula; Anti-bacterial Activity; Disc Diffusion Antibacterial Test; Minimum Inhibitory Concentration; Minimum Bactericidal Concentration
8.  A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model 
BMC Research Notes  2012;5:546.
Background
The decoction of the aerial parts of Rhynchosia recinosa (A.Rich.) Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae), Maytenus senegalensis (Lam.) Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.)Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants.
Methods
A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholerae (clinical isolate), and Klebsiella pneumoniae (clinical isolate) using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants.
Results
The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole. Both the individual plant extracts and the mixed extracts of 5 plants exhibited weak to moderate antibacterial activity against four G-ve bacteria. Despite Ozoroa insignis being toxic to mice at doses above 1000 mg/kg body wt, the other plant extracts and the combined extract of the 5 plants were tolerated by mice up to 5000 mg/kg body wt. The brine shrimp test results showed the same pattern of toxicity with Ozoroa insignis being the most toxic (LC50 = 10.63 μg/ml). Phytochemical tests showed that the combined extract of the five plants contained tannins, saponins, steroids, cardiac glycosides, flavonoids and terpenoids. Flavonoids, tannins and terpenoids are known to have antioxidant activity.
Conclusion
The combined extract of the five plants exhibited a dose-dependent protective activity in the rat ethanol-HCl gastric ulcer model. The extracts also exhibited weak antibacterial activity against four Gram negative bacteria and low acute toxicity in mice and brine shrimps. Although the results support claims by traditional healers who use a decoction of the five plants for treatment of peptic ulcers, more models of gastric ulceration and proper animal toxicity studies are needed to validate possible clinical use of the polyherbal extract. It is also evident that the doses of the crude extracts showing protection of the gastric mucosa are too large for realistic translation to direct clinical application, but further studies using bioassay guided fractionation are important to either identify more practical fractions or active compound/s.
doi:10.1186/1756-0500-5-546
PMCID: PMC3532137  PMID: 23031266
Ozoroa insignis; Maytenus senegalensis; Entada abyssinica; Lannea schimperi; Gastroprotection; Toxicity
9.  In Vitro Antibacterial Activity of Ibuprofen and Acetaminophen 
Background:
Ibuprofen and acetaminophen are common chemical agents that have anti-inflammatory, antipyretic, and analgesic activity.
Aims:
To detect any potential antibacterial effects of ibuprofen and acetaminophen on pathogenic bacteria.
Materials and methods:
Ibuprofen and acetaminophen were tested for antibacterial activity against seven isolates of bacteria including gram positive bacteria (Staphylococci aureus and Bacillus subtilis) and gram negative bacteria (E. coli, Enterobacter aerogenes, Enterobacter cloacae, Salmonella typhi and Paracoccus yeei). Spectrophotometer assay was applied to determine the antibacterial activities of ibuprofen and acetaminophen. Three controls were included in this study: Ampicilline sodium (20 μg/ml); cefotaxime sodium (20 μg/ml) and chemical free medium.
Results:
Staphylococcus aureus and Paracoccus yeei were susceptible to lower concentrations of ibuprofen and acetaminophen (MIC=1.25 mg/ml), while two strains of Enterobacter exhibited resistance to these agents.
Conclusions:
Ibuprofen and acetaminophen showed a potential antibacterial effect on isolated strains of bacteria. They had the same ability to inhibit bacterial growth.
doi:10.4103/0974-777X.62880
PMCID: PMC2889646  PMID: 20606962
Acetaminophen; Antibacterial; Ibuprofen
10.  Crude extract of maggots: Antibacterial effects against Escherichia coli, underlying mechanisms, separation and purification 
AIM: To investigate the antibacterial effects of a crude extract of maggots against Escherichia coli (E. coli) and the underlying mechanisms, and to separate and purify the crude extract of maggots to assess the antibacterial effects of the active ingredients in the crude extract.
METHODS: Different concentrations of the crude extract of maggots were incubated with E. coli (O157:H7) and cultured. The optical density (OD) was measured at different time points to plot the OD-T curve. The effects of different concentrations of the crude extract on bacterial membrane permeability were determined by fluorescence probe technique. The effects of different concentrations of the crude extract on plasmid DNA replication were determined by agarose gel electrophoresis. DEAE-Sepharose ion exchange chromatography and Sephacryls-200HR gel filtration chromatography were used to separate and purify the crude extract of maggots. The molecular weight of proteins in the purified crude extract was determined by SDS-PAGD electrophoresis, and its antibacterial effects were determined by turbidimetric method.
RESULTS: The antibacterial effects of the crude extract of maggots at concentrations > 0.5 mg/mL were significant. The antibacterial effects of the crude extract at concentrations of 1.0, 1.5 and 2.0 mg/mL did not differ significantly. Fluorescence probe analysis showed that the rate of membrane permeability change was 1223.1% in bacteria incubated with 2 mg/mL of the crude extract, and 1300.0% in those incubated with 80 mg/mL of the crude extract. Plasmid DNA was undetectable in E. coli incubated with 2 and 80 mg/mL of the crude extract. A low molecular weight protein band (about 15 kDa) was detected in the crude extract of maggots and eluent, but not in eluant, from DEAE-Sepharose ion exchange chromatography. The antibacterial effects of the crude extract of maggots and eluent were superior to those of eluant, with the antibacterial effects of eluents being better than those of the crude extract of maggots. Of 24 tubes of filtrates, the antibacterial effects of filtrates in tubes 4, 5 and 11 were significantly higher than those of the control. The molecular weight of the protein in filtrates in tubes 4, 5 and 11 was about 15 kDa.
CONCLUSION: The crude extract of maggots exhibits obvious, dose-dependent antibacterial effects. The crude extract exerts antibacterial effects by changing the bacterial membrane permeability and inhibiting plasmid DNA replication. The protein that has antibacterial effects in the crude extract of maggots has a molecular weight of about 15 kDa.
doi:10.3748/wjg.v21.i5.1510
PMCID: PMC4316093  PMID: 25663770
Maggots; Antibacterial peptide; Antibacterial mechanism; Escherichia coli; Colorectal
11.  Antibacterial and Antioxidant Activities of Acid and Bile Resistant Strains of Lactobacillus fermentum Isolated from Miang 
Brazilian Journal of Microbiology  2009;40(4):757-766.
Miang is a kind of traditional fermented tea leaves, widely consumed in northern Thailand as a snack. It contains several kinds of Lactobacilli spp. The aim of this study was to isolate strains of Lactobacillus fermentum from miang and to investigate their antibacterial and antioxidant activities. The agar spot and well assays were used for determination of antibacterial power. The antibacterial mechanism was investigated by cell morphologic change under scanning electron microscope (SEM). Antioxidant activity was studied by means of free radical scavenging and ferric reducing power assays. The acid and bile screening tests indicated that L. fermentum FTL2311 and L. fermentum FTL10BR presented antibacterial activity against several pathogenic bacteria: Listeria monocytogenes DMST 17303, Salmonella Typhi DMST 5784, Shigella sonnei DMST 561 (ATCC 11060) and Staphylococcus aureus subsp. aureus DMST 6512 (ATCC 6538Ptm). The results from SEM suggested that the antibacterial action was due to the destruction of cell membrane which consequently caused the pathogenic cell shrinking or cracking. The antioxidant study suggested that both L. fermentum FTL2311 and L. fermentum FTL10BR strains could liberate certain substances that possessed antioxidant activity expressed as trolox equivalent antioxidant capacity (TEAC) and equivalent concentration (EC) values for free radical scavenging and reducing mechanisms, respectively. The supernatant of L. fermentum FTL2311 broth revealed TEAC and EC values of 22.54±0.12 and 20.63±0.17 >M.mg-1 respectively, whereas that of L. fermentum FTL10BR yielded TEAC and EC values of 24.09±0.12 and 21.26±0.17 >M.mg-1 respectively. These two strains isolated from miang present high potential as promising health-promoting probiotics.
doi:10.1590/S1517-83822009000400005
PMCID: PMC3768562  PMID: 24031422
Lactobacillus fermentum; miang; bile resistance; antibacterial activity; antioxidant activity
12.  Simultaneous, specific and real-time detection of biothreat and frequently encountered food-borne pathogens 
Journal of food protection  2012;75(4):660-670.
The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia and Francisella include important food safety and biothreat agents causing food-related and other human illnesses worldwide. We aimed to develop rapid methods with the capability to simultaneously and differentially detect all six pathogens in one run. Our initial experiments to use previously reported sets of primers revealed non-specificity of some of the sequences when tested against a broader array of pathogens, or proved not optimal for simultaneous detection parameters. By extensive mining of the whole genome and protein databases of diverse closely and distantly related bacterial species and strains, we have identified unique genome regions, which we utilized to develop a detection platform. Twelve of the specific genomic targets we have identified to design the primers in F. tularensis ssp. tularensis, F. tularensis ssp. novicida, S. dysentriae, S. typhimurium, V. cholera, Y. pestis, and Y. pseudotuberculosis contained either hypothetical or putative proteins, the functions of which have not been clearly defined. Corresponding primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in-silico PCR against whole genome sequences of different species, sub-species, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (E.coli O157:H7 strain EDL 933, Shigella dysentriae, Salmonella typhi, Francisella tularensis ssp. tularensis, Vibrio cholera, and Yersinia pestis) and six foodborne pathogens (Salmonella typhimurium, Salmonella saintpaul, Shigella sonnei, Francisella novicida, Vibrio parahemolytica and Yersinia pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed using purified DNA showed the lowest detection limit of 640 fg DNA/µl for F. tularensis. A preliminary test done to detect Shigella organisms in a milk matrix showed that 6–60 colony forming units of the bacterium per milliliter of milk could be detected in about an hour. Therefore, we have developed a platform to simultaneously detect foodborne pathogen and biothreat agents specifically and in real-time. Such a platform could enable rapid detection or confirmation of contamination by these agents.
doi:10.4315/0362-028X.JFP-11-480
PMCID: PMC3524339  PMID: 22488053
Biothreat agents; PCR; food-borne pathogens
13.  Temporal Fluctuation of Multidrug Resistant Salmonella Typhi Haplotypes in the Mekong River Delta Region of Vietnam 
Background
Typhoid fever remains a public health problem in Vietnam, with a significant burden in the Mekong River delta region. Typhoid fever is caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. Typhi), which is frequently multidrug resistant with reduced susceptibility to fluoroquinolone-based drugs, the first choice for the treatment of typhoid fever. We used a GoldenGate (Illumina) assay to type 1,500 single nucleotide polymorphisms (SNPs) and analyse the genetic variation of S. Typhi isolated from 267 typhoid fever patients in the Mekong delta region participating in a randomized trial conducted between 2004 and 2005.
Principal Findings
The population of S. Typhi circulating during the study was highly clonal, with 91% of isolates belonging to a single clonal complex of the S. Typhi H58 haplogroup. The patterns of disease were consistent with the presence of an endemic haplotype H58-C and a localised outbreak of S. Typhi haplotype H58-E2 in 2004. H58-E2-associated typhoid fever cases exhibited evidence of significant geo-spatial clustering along the Sông H u branch of the Mekong River. Multidrug resistance was common in the established clone H58-C but not in the outbreak clone H58-E2, however all H58 S. Typhi were nalidixic acid resistant and carried a Ser83Phe amino acid substitution in the gyrA gene.
Significance
The H58 haplogroup dominates S. Typhi populations in other endemic areas, but the population described here was more homogeneous than previously examined populations, and the dominant clonal complex (H58-C, -E1, -E2) observed in this study has not been detected outside Vietnam. IncHI1 plasmid-bearing S. Typhi H58-C was endemic during the study period whilst H58-E2, which rarely carried the plasmid, was only transient, suggesting a selective advantage for the plasmid. These data add insight into the outbreak dynamics and local molecular epidemiology of S. Typhi in southern Vietnam.
Author Summary
Typhoid fever remains a serious public health issue in some parts of Vietnam, including the Mekong delta region. Typhoid is caused by the bacterium Salmonella Typhi, which is frequently multidrug resistant and shows reduced susceptibility to fluoroquinolone-based drugs. We assayed single nucleotide variation in the genomes of S. Typhi organisms isolated from 267 patients with typhoid fever in the Mekong delta between 2004 and 2005, and identified genetically distinct S. Typhi strains. We also detected the presence of genes or mutations that confer drug resistance in those strains. We found that the vast majority of typhoid cases were caused by one of two subgroups of H58 S. Typhi, referred to as H58-C and H58-E2. The H58-E2 group appeared to cause an outbreak in 2004, affecting patients living in a small zone near the Mekong River. The other group, H58-C, was present throughout the study period and affected patients living in a broader area of the Mekong River delta. Most of the H58-C strains were resistant to multiple drugs and carried a plasmid encoding multiple resistance genes. However very few H58-E2 strains were multidrug resistant, which may explain why the strain did not persist after the initial outbreak.
doi:10.1371/journal.pntd.0000929
PMCID: PMC3014949  PMID: 21245916
14.  Evaluation of susceptibility of gram-positive and -negative bacteria to human defensins by using radial diffusion assay. 
Antimicrobial Agents and Chemotherapy  1996;40(10):2280-2284.
Defensins are small cationic bactericidal peptides present abundantly in the granules of polymorphonuclear neutrophils (PMNs). Human PMNs contain four defensins termed HNP-1 to HNP-4. We used a new assay system in agar plates, the radial diffusion assay, to evaluate the effects of human defensins against gram-positive and -negative bacteria. A crude mixture of HNP-1, -2, and -3 (crude HNPs) was purified from human PMN extracts by reversed-phase high-pressure liquid chromatography (RP-HPLC). The different components were later separated by RP-HPLC and gel permeation chromatography. We compared the antibacterial activities of purified HNP-1, -2, and -3 against Escherichia coli, Pseudomonas aeruginosa, methicillin-susceptible Staphylococcus aureus, and methicillin-resistant S. aureus strains using the radial diffusion assay. The antibacterial activities of HNP-1 and HNP-2 against all strains tested were similar to those of the crude HNPs, but the activity of HNP-3 was less than those of the other defensins. To quantitate the activities of HNPs against different bacteria, we defined the minimal dose of crude HNPs forming a detectable clear zone around the bacteria as the minimal inhibitory dose (MID) and determined the MIDs for 10 strains of E. coli, 12 strains of P. aeruginosa, 10 strains of methicillin-susceptible S. aureus, and 12 strains of methicillin-resistant S. aureus isolates, including clinical isolates. In general, the MIDs of the HNPs were similar against similar bacterial species. However, the MIDs for P. aeruginosa were higher than those for the other organisms tested. The radial diffusion assay is suitable as a screening test for measuring the susceptibilities of isolates to defensins, because it is sensitive and simple and has good reproducibility.
PMCID: PMC163519  PMID: 8891130
15.  Studies on bioprospecting potential of a gastropod mollusc Cantharus tranquebaricus (Gmelin, 1791) 
Objective
To study the biological activities of the tissue extract of Cantharus tranquebaricus (C. tranquebaricus).
Methods
Crude extract of gastropod was tested for inhibition of bacterial growth. Antibacterial assay was carried out by disc diffusion method and the activity was measured accordingly based on the inhibition zone around the disc impregnated with gastropod extract. Molecular weight of the extract was determined by using SDS-PAGE. Plasma coagulation, Fibrin plate assay and substrate SDS-PAGE were used to determine the effect of sample on plasma coagulation, fibrin (ogen) olytic and proteolytic activity.
Results
The maximum inhibition zone (10 mm) was observed against Vibrio cholera (V. cholera) and minimum inhibition zone (2 mm) was noticed against Proteus mirablis (P. mirablis). The molecular weight was determined as 47-106 kDa. The tissue extract shows proteolytic activity above 48 kDa. SDS-PAGE analysis of fibrinogen after incubation with the tissue extract showed fibrinogenolytic activity. In plasma coagulation assay C. tranquebaricus tissue extract showed procoagulant property and it coagulated chicken plasma within 150 s, while control took 5 min to clot. The 9 HU hemolytic units were found against chicken blood and also exhibit high level of brine shrimp lethality.
Conclusions
This study suggests that C. tranquebaricus could be used as potential source for isolating bioactive compounds, since it is explored first time and found with promising results.
doi:10.1016/S2221-1691(12)60225-1
PMCID: PMC3609219  PMID: 23569843
Antimicrobial; Proteolytic; Fibrinolytic; Hemolytic; Brine shrimp lethality; Cantharus tranquebaricus; Plasma coagulation
16.  Interferon-γ and Proliferation Responses to Salmonella enterica Serotype Typhi Proteins in Patients with S. Typhi Bacteremia in Dhaka, Bangladesh 
Background
Salmonella enterica serotype Typhi is a human-restricted intracellular pathogen and the cause of typhoid fever. Cellular immune responses are required to control and clear Salmonella infection. Despite this, there are limited data on cellular immune responses in humans infected with wild type S. Typhi.
Methodology/Principal Findings
For this work, we used an automated approach to purify a subset of S. Typhi proteins identified in previous antibody-based immuno-affinity screens and antigens known to be expressed in vivo, including StaF-putative fimbrial protein-STY0202, StbB-fimbrial chaperone-STY0372, CsgF-involved in curli production-STY1177, CsgD- putative regulatory protein-STY1179, OppA-periplasmic oligopeptide binding protein precursor-STY1304, PagC-outer membrane invasion protein-STY1878, and conserved hypothetical protein-STY2195; we also generated and analyzed a crude membrane preparation of S. Typhi (MP). In comparison to samples collected from uninfected Bangladeshi and North American participants, we detected significant interferon-γ responses in PBMCs stimulated with MP, StaF, StbB, CsgF, CsgD, OppA, STY2195, and PagC in patients bacteremic with S. Typhi in Bangladesh. The majority of interferon-γ expressing T cells were CD4 cells, although CD8 responses also occurred. We also assessed cellular proliferation responses in bacteremic patients, and confirmed increased responses in infected individuals to MP, StaF, STY2195, and PagC in convalescent compared to acute phase samples and compared to controls. StaF is a fimbrial protein homologous to E. coli YadK, and contains a Pfam motif thought to be involved in cellular adhesion. PagC is expressed in vivo under the control of the virulence-associated PhoP-regulon required for intra-macrophage survival of Salmonella. STY2195 is a conserved hypothetical protein of unknown function.
Conclusion/Significance
This is the first analysis of cellular immune responses to purified S. Typhi antigens in patients with typhoid fever. These results indicate that patients generate significant CD4 and CD8 interferon-γ responses to specific S. Typhi antigens during typhoid fever, and that these responses are elevated at the time of clinical presentation. These observations suggest that an interferon-γ based detection system could be used to diagnose individuals with typhoid fever during the acute stage of illness.
Author Summary
Salmonella enterica serotype Typhi infection is a significant global public health problem and the cause of typhoid fever. Salmonella are intracellular pathogens, and cellular immune responses are required to control and clear Salmonella infections. Despite this, there are limited data on cellular immune responses during wild type S. Typhi infection in humans. Here we report the assessment of cellular immune responses in humans with S. Typhi bacteremia through a screening approach that permitted us to evaluate interferon-γ and proliferation responses to a number of S. Typhi antigens. We detected significant interferon-γ CD4 and CD8 responses, as well as proliferative responses, to a number of recombinantly purified S. Typhi proteins as well as membrane preparation in infected patients. Antigen-specific interferon-γ responses were present at the time of clinical presentation in patients and absent in healthy controls. These observations could assist in the development of interferon-γ-based diagnostic assays for typhoid fever.
doi:10.1371/journal.pntd.0001193
PMCID: PMC3110156  PMID: 21666798
17.  Apoptosis of human cholangiocarcinoma cells induced by ESC-3 from Crocodylus siamensis bile 
AIM: To investigate the effects of ESC-3 isolated from crocodile bile on the growth and apoptosis induction of human cholangiocarcinoma cells.
METHODS: ESC-3 was isolated from crocodile bile by Sephadex LH-20 and RP-18 reversed-phase column. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was conducted to determine the effects of ESC-3 on the proliferation of human cholangiocarcinoma cell lines (QBC939, Sk-ChA-1 and MZ-ChA-1). Giemsa staining, Hoechst 33258 and acridine orange/ethidium bromide staining showed the morphological changes of Mz-ChA-1 cells exposed to ESC-3 at different concentrations. Flow cytometry with regular propidium iodide (PI) staining was performed to analyze the cell cycle distribution of Mz-ChA-1 cells and to assess apoptosis by annexin v-fluorescein isothiocyanate (V-FITC)/PI staining. Rh123 staining was used to detect the alteration of mitochondrial membrane potential (ΔΨm). The protein levels of Bax, Bcl-2, Cdk2, cytochrome c and caspase-3 were further confirmed by Western blotting.
RESULTS: ESC-3 significantly inhibited the growth of three human cholangiocarcinoma cell lines and arrested Mz-ChA-1 cell cycle at G0/G1 phase. Mz-ChA-1 cells showed typical apoptotic morphological changes after treated with ESC-3 (10 μg/mL) for 48 h. Cell death assay indicated that Mz-ChA-1 cells underwent apoptosis in a dose-dependent manner induced by ESC-3. In addition, ESC-3 treatment could downregulate the protein level of Bcl-2 and upregulate the Bax, leading to the increase in the ratio of Bax to Bcl-2 in Mz-ChA-1 cells. Meanwhile, cytochrome c was released from the mitochondria into the cytosol, which subsequently initiated the activation of caspase-3. All these events were associated with the collapse of the mitochondrial membrane potential.
CONCLUSION: ESC-3, the active ingredient of crocodile bile, induced apoptosis in Mz-ChA-1 cells through the mitochondria-dependent pathway and may be a potential chemotherapeutic drug for the treatment of cholangiocarcinoma.
doi:10.3748/wjg.v18.i7.704
PMCID: PMC3281230  PMID: 22363144
Crocodylus siamensis bile; Cholangiocarcinoma; Antiproliferation; Apoptosis; Mitochondria
18.  In vitro antibacterial potency of Butea monosperma Lam. against 12 clinically isolated multidrug resistant bacteria 
Objective
To investigate the antibacterial activity, using cold and hot extraction procedures with five solvents, petroleum ether, acetone, ethanol, methanol and water to validate medicinal uses of Butea monosperma Lam (B. monosperma) in controlling infections; and to qualitatively estimate phytochemical constituents of leaf-extracts of the plant.
Methods
The antibacterial activity of leaf-extracts was evaluated by the agar-well diffusion method against clinically isolated 12 Gram-positive and -negative multidrug resistant (MDR) pathogenic bacteria in vitro. Values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of leaf-extracts against each bacterium were obtained in a 96-well micro-titre plate, by broth dilution micro-titre plate technique.
Results
The presence of tannins, flavonoids, starch, glycosides and carbohydrates in different leaf extracts was established. Pathogenic bacteria used were, Acinetobacter sp., Chromobacterium violaceum, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella sp., Enterococcus sp., Staphylococcus aureus (S. aureus), methicillin resistant S. aureus and vancomycin resistant S. aureus, along with standard bacterial strains. These MDR bacteria had been recorded to have significant inhibitions by leaf extracts, obtained by cold and hot extraction procedures with five solvents. In addition, the hot aqueous extract against Enterococcus sp. had the highest inhibition zone-size (21 mm). Ciprofloxacin 30 µg/disc was the positive/reference control and the diluting solvent, 10% dimethyl sulphoxide was the negative control. Recorded MIC values of different extracts ranged between 0.23 and 13.30 mg/mL, and MBC values were 0.52 to 30.00 mg/mL, for these bacteria.
Conclusions
Leaf-extracts with hot water and ethanol had shown significant antibacterial activity against all bacteria. B. monosperma leaf-extract could be used in treating infectious diseases, caused by the range of tested bacteria, as complementary and alternate medicine.
doi:10.1016/S2222-1808(13)60044-4
PMCID: PMC4027298
Butea monosperma; Gram-positive bacteria; Gram-negative bacteria; Multidrug resistant bacteria; Minimum inhibitory concentration; Antibacterial activity; Phytochemical constituents
19.  RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42 
A genome wide RNAi screen identifies 72 host cell genes affecting S. Typhimurium entry, including actin regulators and COPI. This study implicates COPI-dependent cholesterol and sphingolipid localization as a common mechanism of infection by bacterial and viral pathogens.
Genome-scale RNAi screen identifies 72 host genes affecting S. Typhimurium host cell invasion.Step-specific follow-up assays assign the phenotypes to specific steps of the invasion process.COPI effects on host cell binding, ruffling and invasion were traced to a key role of COPI in membrane targeting of cholesterol, sphingolipids, Rac1 and Cdc42.This new role of COPI explains why COPI is required for host cell infection by numerous bacterial and viral pathogens.
Pathogens are not only a menace to public health, but they also provide excellent tools for probing host cell function. Thus, studying infection mechanisms has fueled progress in cell biology (Ridley et al, 1992; Welch et al, 1997). In the presented study, we have performed an RNAi screen to identify host cell genes required for Salmonella host cell invasion. This screen identified proteins known to contribute to Salmonella-induced actin rearrangements (e.g., Cdc42 and the Arp2/3 complex; reviewed in Schlumberger and Hardt, 2006) and vesicular traffic (e.g., Rab7) as well as unexpected hits, such as the COPI complex. COPI is a known organizer of Golgi-to-ER vesicle transport (Bethune et al, 2006; Beck et al, 2009). Here, we show that COPI is also involved in plasma membrane targeting of cholesterol, sphingolipids and the Rho GTPases Cdc42 and Rac1, essential host cell factors required for Salmonella invasion. This explains why COPI depletion inhibits infection by S. Typhimurium and illustrates how combining bacterial pathogenesis and systems approaches can promote cell biology.
Salmonella Typhimurium is a common food-borne pathogen and worldwide a major public health problem causing severe diarrhea. The pathogen uses the host's gut mucosa as a portal of entry and gut tissue invasion is a key event leading to the disease. This explains the intense interest from medicine and basic biology in the mechanism of Salmonella host cell invasion.
Tissue culture infection models have delineated a sequence of events leading host cell invasion (Figure 1; Schlumberger and Hardt, 2006): (i) pathogen binding to the host cell surface; (ii) activation of a syringe-like apparatus (‘Type III secretion system 1', T1) of the bacterium and injection of a bacterial toxin cocktail into the host cell. These toxins include SopE, a key virulence factor triggering invasion (Hardt et al, 1998), which was analyzed in our study; (iii) toxin-triggered membrane ruffling. To a significant extent, this is facilitated by SopE-triggered activation of Cdc42 and Rac1 and subsequent actin polymerization at the site of infection; (iv) engulfment of the pathogen within a vesicular compartment (SCV) and (v) maturation of the SCV, a process driven by a second Type III secretion system (T2), which is expressed by the pathogen upon bacterial entry (Figure 1). This sequence of events mediates Salmonella invasion into the gut epithelium and illustrates that this pathogen can be used for probing mechanisms of host cell actin control, membrane biogenesis, vesicle formation and vesicular trafficking.
SopE is a key virulence factor of invasion and triggers the activation of Cdc42 and Rac1 and subsequent actin polymerization at the site of infection. We have employed a SopE-expressing S. Typhimurium strain and RNAi screening technology to identify host cell factors affecting invasion. First, we developed an automated fluorescence microscopy assay to quantify S. Typhimurium entry in a high-throughput format (Figure 1C). This assay was based on a GFP reporter expressed by the pathogen after invasion and maturation of the SCV. Using this assay, we screened a ‘druggable genome' siRNA library (6978 genes, 3 oligos each, 1 oligo per well) and identified 72 invasion hits. These included established regulators of the actin cytoskeleton (Cdc42, Arp2/3, Nap1; Schlumberger and Hardt, 2006), some of which have not been implicated so far in Salmonella entry (Pfn1, Cap1), as well as proteins not previously thought to influence infection (Atp1a1, Rbx1, COPI complex). Potentially, these hits could affect any step of the invasion process (Figure 1A).
In the second stage of the study, we have assigned each ‘invasion hit' to particular steps of the invasion process. For this purpose, we developed step-specific assays for Salmonella binding, injection, ruffling and membrane engulfment and re-screened the genes found as hits in the first screen (four siRNAs per gene). As expected, a significant number of ‘hits' affected binding to the host cell, others affected binding and ruffling (e.g., Pfn1, Itgβ5, Cap1), a few were specific for the ruffling step (e.g., Cdc42) and some affected SCV maturation, namely Rab7a, the trafficking protein Vps39 and the vacuolar proton pump Atp6ap2. Thus, our experimental strategy allowed mechanistic interpretation and linked novel hits to particular phenotypes, thus providing a basis for further studies (Figure 1).
COPI depletion impaired effector injection and ruffling. This was surprising, as the COPI complex was known to regulate retrogade Golgi-to-ER transport, but was not expected to affect pathogen interactions at the plasma membrane. Therefore, we have investigated the underlying mechanism. We have observed that COPI depletion entailed dramatic changes in the plasma membrane composition (Figure 6). Cholesterol and sphingolipids, which form domains (‘lipid rafts') in the plasma membrane, were depleted from the cell surface and redirected into a large vesicular compartment. The same was true for the Rho GTPases Rac1 and Cdc42. This strong decrease in the amount of cholesterol-enriched microdomains and Rho GTPases in the plasma membrane explained the observed defects in S. Typhimurium host cell invasion and assigned a novel role for COPI in controlling mammalian plasma membrane composition. It should be noted that other viral and bacterial pathogens do show a similar dependency on host cellular COPI and plasma membrane lipids. This includes notorious pathogens such as Staphylococcus aureus (Ramet et al, 2002; Potrich et al, 2009), Listeria monocytogenes (Seveau et al, 2004; Agaisse et al, 2005; Cheng et al, 2005; Gekara et al, 2005), Mycobacterium tuberculosis (Munoz et al, 2009), Chlamydia trachomatis (Elwell et al, 2008), influenza virus (Hao et al, 2008; Konig et al, 2010), hepatitis C virus (Tai et al, 2009; Popescu and Dubuisson, 2010) and the vesicular stomatitis virus (presented study) and suggests that COPI-mediated control of host cell plasma membrane composition might be of broad importance for pathogenesis. Future work will have to address whether this might offer starting points for developing anti-infective therapeutics with a very broad spectrum of activity.
The pathogen Salmonella Typhimurium is a common cause of diarrhea and invades the gut tissue by injecting a cocktail of virulence factors into epithelial cells, triggering actin rearrangements, membrane ruffling and pathogen entry. One of these factors is SopE, a G-nucleotide exchange factor for the host cellular Rho GTPases Rac1 and Cdc42. How SopE mediates cellular invasion is incompletely understood. Using genome-scale RNAi screening we identified 72 known and novel host cell proteins affecting SopE-mediated entry. Follow-up assays assigned these ‘hits' to particular steps of the invasion process; i.e., binding, effector injection, membrane ruffling, membrane closure and maturation of the Salmonella-containing vacuole. Depletion of the COPI complex revealed a unique effect on virulence factor injection and membrane ruffling. Both effects are attributable to mislocalization of cholesterol, sphingolipids, Rac1 and Cdc42 away from the plasma membrane into a large intracellular compartment. Equivalent results were obtained with the vesicular stomatitis virus. Therefore, COPI-facilitated maintenance of lipids may represent a novel, unifying mechanism essential for a wide range of pathogens, offering opportunities for designing new drugs.
doi:10.1038/msb.2011.7
PMCID: PMC3094068  PMID: 21407211
coatomer; HeLa; Salmonella; siRNA; systems biology
20.  Inference of the Protokaryotypes of Amniotes and Tetrapods and the Evolutionary Processes of Microchromosomes from Comparative Gene Mapping 
PLoS ONE  2012;7(12):e53027.
Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis), the Siamese crocodile (Crocodylus siamensis), and the Western clawed frog (Xenopus tropicalis) and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human). This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines). The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated chromosomal fusions probably occurred independently in the amphibian, squamate, crocodilian, and mammalian lineages.
doi:10.1371/journal.pone.0053027
PMCID: PMC3534110  PMID: 23300852
21.  Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria 
Background
The six organic solvent extracts of Artemisia nilagirica were screened for the potential antimicrobial activity against phytopathogens and clinically important standard reference bacterial strains.
Methods
The agar disk diffusion method was used to study the antibacterial activity of A. nilagirica extracts against 15 bacterial strains. The Minimum Inhibitory Concentration (MIC) of the plant extracts were tested using two fold agar dilution method at concentrations ranging from 32 to 512 μg/ml. The phytochemical screening of extracts was carried out for major phytochemical derivatives in A. nilagirica.
Results
All the extracts showed inhibitory activity for gram-positive and gram-negative bacteria except for Klebsiella pneumoniae, Enterococcus faecalis and Staphylococcus aureus. The hexane extract was found to be effective against all phytopathogens with low MIC of 32 μg/ml and the methanol extract exhibited a higher inhibition activity against Escherichia coli, Yersinia enterocolitica, Salmonella typhi, Enterobacter aerogenes, Proteus vulgaris, Pseudomonas aeruginosa (32 μg/ml), Bacillus subtilis (64 μg/ml) and Shigella flaxneri (128 μg/ml). The phytochemical screening of extracts answered for the major derivative of alkaloids, amino acids, flavonoids, phenol, quinines, tannins and terpenoids.
Conclusion
All the extracts showed antibacterial activity against the tested strains. Of all, methanol and hexane extracts showed high inhibition against clinical and phytopathogens, respectively. The results also indicate the presence of major phytochemical derivatives in the A. nilagirica extracts. Hence, the isolation and purification of therapeutic potential compounds from A. nilagirica could be used as an effective source against bacterial diseases in human and plants.
doi:10.1186/1472-6882-10-6
PMCID: PMC2830175  PMID: 20109237
22.  Phytochemical and Antimicrobial Effects of Chrozophora Senegalensis 
The in vitro antimicrobial activities of the whole plant extract (ethanolic-CEE) of Chrozophora senegalensis and its fractions (ethyl acetate-EAA, n-butanol-NBE, aqueous-AQE) were assayed using the agar plate diffusion and nutrient broth dilution methods. Test microorganisms were Bacillus subtilis (NCTC 8326 B76), Escherichia coli (ATCC 11775), Pseudomonas aeruginosa (ATCC 10145), Staphylococcus aureus (ATCC 021001). Aspergillus flavus, Aspergillus niger, Candida albicans and Salmonella typhi - laboratory isolates. CEE, EAA and NBE inhibited all the test bacterial organisms and a fungus-Aspergillus flavus. AQE inhibited only Salmonella typhi and Bacillus subtilis. None of the extracts had activity on other 3 fungal organisms tested. CEE and EAA showed minimum inhibition concentration (MIC) of 0.390 and 3.125 mg/ml against S. typhi and E. coli, while NBE and AQE had MIC of 3.125 and 1.563 mg/ml against S. typhi respectively. NBE had an MIC of 12.500 mg/ml against E. coli. The minimum bactericidal concentration (MBC) of CEE and EAA was found to be <0.098 against S. typhi. The MBC of AQE was 12.5 mg/ml against E. coli and S. aureus, and 6.25 mg/ml towards P. aeruginosa. CEE and EAA exhibited similar antibacterial activities, followed by AQE. The extracts revealed the presence of carbohydrates, tannins, saponins, sterols determined by utilizing standard methods of analysis.
This study has justified the traditional use of the plant for treating diarrhea, boils and syphilis.
PMCID: PMC2816503  PMID: 20161917
Antimicrobial activity; Chrozophora senegalensis; Extracts; Phytochemical Screening; Euphorbiaceae
23.  Antifungal, antibacterial and antimycobacterial activity of Entada abysinnica Steudel ex A. Rich (Fabaceae) methanol extract 
Pharmacognosy Research  2010;2(3):163-168.
The purpose of the study was to investigate the antifungal, antibacterial and antimycobacterial properties of methanol extract of Entada abysinnica steudel ex. A. Rich (Fabaceae) leaves used by herbalists from the Lake Victoria region, Kenya. The extract was tested against four strains of mycobacteria (Mycobacterium tuberculosis, Mycobacterium kansasii, Mycobacterium fortuitum, and Mycobacterium smegmatis) using BACTEC Mycobacteria Growth Indicator Tube (MGIT) 960 system and the proportional method. Standard procedures were used to determine the zones of inhibition, minimum inhibitory concentrations (MICs) and minimum bactericidal/fungicidal concentrations (MBCs/MFCs) for Candida albicans, Salmonella typhi, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae. The extract showed activity against some mycobacteria strains, especially M. tuberculosis. It also showed strong antimicrobial activity (zones of inhibition were between 9.00 and 14.10 mm) against C. albicans, Sa. typhi, and St. aureus. The extract gave a better zone of inhibition against C. albicans than fluconazole whose zone of inhibition was 13.00 mm. The MICs and MBCs for C. albicans and Sa. typhi were good. The crude extracts were also analyzed for the presence of phytochemicals. Phytochemical screening indicated that the extract most abundantly contained tannins, saponins, and flavonoids. The data suggest that the methanolic leaves extract of E. abysinnica could be a rich source of antimicrobial agents, especially antifungals. The results further show that there is some merit in the use of the plant in alternative medical practices. However, bioassays of isolated compounds are underway and will be reported during subsequent communications.
doi:10.4103/0974-8490.65511
PMCID: PMC3141308  PMID: 21808560
Antifungal; antibacterial; antimycobacterial; Entada abysinnica; methanol extract
24.  Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistant pathogenic bacteria 
Background
Herbs and spices are very important and useful as therapeutic agent against many pathological infections. Increasing multidrug resistance of pathogens forces to find alternative compounds for treatment of infectious diseases.
Methods
In the present study the antimicrobial potency of garlic and ginger has been investigated against eight local clinical bacterial isolates. Three types of extracts of each garlic and ginger including aqueous extract, methanol extract and ethanol extract had been assayed separately against drug resistant Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae, Shigella sonnei, Staphylococcusepidermidis and Salmonella typhi. The antibacterial activity was determined by disc diffusion method.
Results
All tested bacterial strains were most susceptible to the garlic aqueous extract and showed poor susceptibility to the ginger aqueous extract. The (minimum inhibitory concentration) MIC of different bacterial species varied from 0.05 mg/ml to 1.0 mg/ml.
Conclusion
In the light of several socioeconomic factors of Pakistan mainly poverty and poor hygienic condition, present study encourages the use of spices as alternative or supplementary medicine to reduce the burden of high cost, side effects and progressively increasing drug resistance of pathogens.
doi:10.1186/1476-0711-11-8
PMCID: PMC3418209  PMID: 22540232
Garlic; Ginger; Antibacterial activity; Extracts
25.  Characterization of Serum Phospholipase A2 Activity in Three Diverse Species of West African Crocodiles 
Secretory phospholipase A2, an enzyme that exhibits substantial immunological activity, was measured in the serum of three species of diverse West African crocodiles. Incubation of different volumes of crocodile serum with bacteria labeled with a fluorescent fatty acid in the sn-2 position of membrane lipids resulted in a volume-dependent liberation of fluorescent probe. Serum from the Nile crocodile (Crocodylus niloticus) exhibited slightly higher activity than that of the slender-snouted crocodile (Mecistops cataphractus) and the African dwarf crocodile (Osteolaemus tetraspis). Product formation was inhibited by BPB, a specific PLA2 inhibitor, confirming that the activity was a direct result of the presence of serum PLA2. Kinetic analysis showed that C. niloticus serum produced product more rapidly than M. cataphractus or O. tetraspis. Serum from all three species exhibited temperature-dependent PLA2 activities but with slightly different thermal profiles. All three crocodilian species showed high levels of activity against eight different species of bacteria.
doi:10.1155/2011/925012
PMCID: PMC3205705  PMID: 22110960

Results 1-25 (1241005)