PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (976439)

Clipboard (0)
None

Related Articles

1.  Effect of fish oils containing different amounts of EPA, DHA, and antioxidants on plasma and brain fatty acids and brain nitric oxide synthase activity in rats 
Upsala Journal of Medical Sciences  2009;114(4):206-213.
Background
The interest in n-3 polyunsaturated fatty acids (PUFAs) has expanded significantly in the last few years, due to their many positive effects described. Consequently, the interest in fish oil supplementation has also increased, and many different types of fish oil supplements can be found on the market. Also, it is well known that these types of fatty acids are very easily oxidized, and that stability among supplements varies greatly.
Aims of the study
In this pilot study we investigated the effects of two different types of natural fish oils containing different amounts of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and antioxidants on plasma and brain fatty acids, blood lipids, vitamin E, and in vivo lipid peroxidation, as well as brain nitric oxide synthase (NOS) activity, an enzyme which has been shown to be important for memory and learning ability.
Methods
Sprague-Dawley rats were divided into four groups and fed regular rat chow pellets enriched with 5% (w/w) of butter (control group), a natural fish oil (17.4% EPA and 11.7% DHA, referred to as EPA-rich), and a natural fish oil rich in DHA (7.7% EPA and 28.0% DHA, referred to as DHA-rich). Both of the fish oils were stabilized by a commercial antioxidant protection system (Pufanox®) at production. The fourth group received the same DHA-rich oil, but without Pufanox® stabilization (referred to as unstable). As an index of stability of the oils, their peroxide values were repeatedly measured during 9 weeks. The dietary treatments continued until sacrifice, after 10 days.
Results
Stability of the oils varied greatly. It took the two stabilized oils 9 weeks to reach the same peroxide value as the unstable oil reached after only a few days. Both the stabilized EPA- and DHA-rich diets lowered the triacylglycerols and total cholesterol compared to control (-45%, P < 0.05 and -54%, P < 0.001; -31%, P < 0.05 and -25%, P < 0.01) and so did the unstable oil, but less efficiently. Only the unstable oil increased in vivo lipid peroxidation significantly compared to control (+40%, P < 0.001). Most of the fatty acids in the plasma phospholipids were significantly affected by both the EPA- and DHA-rich diets compared to control, reflecting their specific fatty acid pattern. The unstable oil diet resulted in smaller changes, especially in n-3 PUFAs. In the brain phospholipids the changes were less pronounced, and only the diet enriched with the stabilized DHA-rich oil resulted in a significantly greater incorporation of DHA (+13%, P < 0.01), as well as total n-3 PUFAs (+13%, P < 0.01) compared to control. Only the stabilized DHA-rich oil increased the brain NOS activity (+33%, P < 0.01).
Conclusions
Both the EPA- and DHA-rich diets affected the blood lipids in a similarly positive manner, and they both had a large impact on plasma phospholipid fatty acids. It was only the unstable oil that increased in vivo lipid peroxidation. However, the intake of DHA was more important than that of EPA for brain phospholipid DHA enrichment and brain NOS activity, and the stability of the fish oil was also important for these effects.
doi:10.3109/03009730903268958
PMCID: PMC2852776  PMID: 19961266
Antioxidants; brain; DHA; EPA; fish oil; lipid peroxidation; nitric oxide synthase
2.  Effects on Coronary Heart Disease of Increasing Polyunsaturated Fat in Place of Saturated Fat: A Systematic Review and Meta-Analysis of Randomized Controlled Trials 
PLoS Medicine  2010;7(3):e1000252.
Dariush Mozaffarian and colleagues conduct a systematic review and meta-analysis to investigate the effect of consuming polyunsaturated fats in place of saturated fats for lowering the risk of coronary heart disease.
Background
Reduced saturated fat (SFA) consumption is recommended to reduce coronary heart disease (CHD), but there is an absence of strong supporting evidence from randomized controlled trials (RCTs) of clinical CHD events and few guidelines focus on any specific replacement nutrient. Additionally, some public health groups recommend lowering or limiting polyunsaturated fat (PUFA) consumption, a major potential replacement for SFA.
Methods and Findings
We systematically investigated and quantified the effects of increased PUFA consumption, as a replacement for SFA, on CHD endpoints in RCTs. RCTs were identified by systematic searches of multiple online databases through June 2009, grey literature sources, hand-searching related articles and citations, and direct contacts with experts to identify potentially unpublished trials. Studies were included if they randomized participants to increased PUFA for at least 1 year without major concomitant interventions, had an appropriate control group, and reported incidence of CHD (myocardial infarction and/or cardiac death). Inclusions/exclusions were adjudicated and data were extracted independently and in duplicate by two investigators and included population characteristics, control and intervention diets, follow-up duration, types of events, risk ratios, and SEs. Pooled effects were calculated using inverse-variance-weighted random effects meta-analysis. From 346 identified abstracts, eight trials met inclusion criteria, totaling 13,614 participants with 1,042 CHD events. Average weighted PUFA consumption was 14.9% energy (range 8.0%–20.7%) in intervention groups versus 5.0% energy (range 4.0%–6.4%) in controls. The overall pooled risk reduction was 19% (RR = 0.81, 95% confidence interval [CI] 0.70–0.95, p = 0.008), corresponding to 10% reduced CHD risk (RR = 0.90, 95% CI = 0.83–0.97) for each 5% energy of increased PUFA, without evidence for statistical heterogeneity (Q-statistic p = 0.13; I2 = 37%). Meta-regression identified study duration as an independent determinant of risk reduction (p = 0.017), with studies of longer duration showing greater benefits.
Conclusions
These findings provide evidence that consuming PUFA in place of SFA reduces CHD events in RCTs. This suggests that rather than trying to lower PUFA consumption, a shift toward greater population PUFA consumption in place of SFA would significantly reduce rates of CHD.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Coronary heart disease (CHD) is the leading cause of death among adults in developed countries. It is caused by disease of the coronary arteries, the blood vessels that supply the heart with oxygen and nutrients. With age, inflammatory deposits (atherosclerotic plaques) coat the walls of these arteries and restrict the heart's blood supply, causing angina (chest pains that are usually relieved by rest), shortness of breath, and, if these plaques rupture or break, heart attacks (myocardial infarctions), which can reduce the heart's function or even be fatal. The key risk factors for CHD are smoking, physical inactivity, and poor diet. Blood cholesterol levels are altered by consuming dietary fats. There are three main types of dietary fats—“saturated” fatty acids (SFA) and unsaturated fatty acids; the latter can be “mono” unsaturated (MUFA) or “poly” unsaturated (PUFA). Eating SFA-rich foods (for example, meat, butter, and cheese) increases the amount of LDL-C in the blood but also increases HDL-C (the “good” cholesterol) and decreases triglycerides. Eating foods that are rich in unsaturated fatty acids (for example, vegetable oils and fatty fish) decreases the amount of LDL-C and triglycerides in the blood and also raises HDL-C.
Why Was This Study Done?
Because of the connection between eating SFA and high blood LDL-C levels, reduced SFA consumption is recommended as a way to avoid CHD. However, the evidence from individual randomized controlled trials that have studied CHD events (such as heart attacks and CHD-related deaths) have been mixed and could not support this recommendation. Furthermore, dietary recommendations to reduce SFA have generally not specified any replacement, i.e., whether SFA should be replaced with carbohydrate, protein, or unsaturated fats. Because of their beneficial effects on blood LDL-C and HDL-C levels, PUFA could be one important replacement for SFA, but, surprisingly, some experts argue that eating PUFA could actually increase CHD risk. Consequently, some guidelines recommend that PUFA consumption should be limited or even reduced. In this systematic review (a study that uses predefined criteria to identify all the research on a specific topic) and meta-analysis (a statistical method for combining the results of several studies) of randomized controlled trials, the researchers assess the impact of increased PUFA consumption as replacement for SFA on CHD events.
What Did the Researchers Do and Find?
The researchers' search of the published literature, “grey” literature (doctoral dissertations, technical reports, and other documents not printed in books and journals), and contacts with relevant experts identified eight trials in which participants were randomized to increase their PUFA intake for at least a year and in which CHD events were reported. 1,042 CHD events were recorded among the 13,614 participants enrolled in these trials. In their meta-analysis, the researchers found that on average the consumption of PUFA accounted for 14.9% of total energy intake in the intervention groups compared with only 5% of total energy intake in the control groups. Participants in the intervention groups had a 19% reduced risk of CHD events compared to participants in the control groups. Put another way, each 5% increase in the proportion of energy obtained from PUFA reduced the risk of CHD events by 10%. Finally, the researchers found that the benefits associated with PUFA consumption increased with longer duration of the trials.
What Do These Findings Mean?
These findings suggest that the replacement of some dietary SFA with PUFA reduces CHD events. Because the trials included in this study looked only at replacing SFA with PUFA, it is not possible from this evidence alone to distinguish between the benefits of reducing SFA and the benefits of increasing PUFA. Furthermore, the small number of trials identified in this study all had design faults, so the risk reductions reported here may be inaccurate. However, other lines of evidence (for example, observational studies that have examined associations between the fat intake of populations and their risk of CHD) also suggest that consumption of PUFA in place of SFA reduces CHD risk. Thus, in the light of these findings, future recommendations to reduce SFA in the diet should stress the importance of replacing SFA with PUFA rather than with other forms of energy, and the current advice to limit PUFA intake should be revised.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000252.
The American Heart Association provides information about all aspects of coronary heart disease for patients, caregivers, and professionals, including advice on dietary fats (in several languages)
The UK National Health Service Choices Web site provides information about coronary heart disease
Eatwell, a resource provided by the UK Food Standards Agency, gives advice on all aspects of healthy eating, including fat consumption
MedlinePlus provides links to further resources on coronary heart disease and on cholesterol (in English and Spanish)
doi:10.1371/journal.pmed.1000252
PMCID: PMC2843598  PMID: 20351774
3.  Immunologic effects of national cholesterol education panel step-2 diets with and without fish-derived N-3 fatty acid enrichment. 
Journal of Clinical Investigation  1993;92(1):105-113.
Reductions in dietary fat, saturated fat, and cholesterol have been recommended to reduce the risk of heart disease in our society. The effects of these modifications on human cytokine production and immune responses have not been well studied. 22 subjects > 40 yr of age were fed a diet approximating that of the current American (14.1% of calories as saturated fatty acids, [SFA], 14.5% monounsaturated fatty acids [MUFA], 6.1% [n-6] polyunsaturated fatty acids [PUFA], 0.8% [n-3] PUFA, and 147 mg cholesterol/1,000 calories) for 6 wk, after which time they consumed (11 in each group) one of the two low-fat, low-cholesterol, high-PUFA diets based on National Cholesterol Education Panel (NCEP) Step 2 recommendations (4.0-4.5% SFA, 10.8-11.6% MUFA, 10.3-10.5% PUFA, 45-61 mg cholesterol/1,000 calories) for 24 wk. One of the NCEP Step 2 diets was enriched in fish-derived (n-3) PUFA (low-fat, high-fish: 0.54% or 1.23 g/d eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA] [121-188 g fish/d]) and the other low in fish-derived (n-3) PUFA (low-fat, low-fish [0.13% or 0.27 g/d EPA and DHA] [33 g fish/d]). Measurements of in vivo and in vitro indexes of immune responses were taken after each dietary period. Long-term feeding of low-fat, low-fish diet enriched in plant-derived PUFA increased blood mononuclear cell mitogenic response to the T cell mitogen Con A, IL-1 beta, and TNF production and had no effect on delayed-type hypersensitivity skin response, IL-6, GM-CSF, or PGE2 production. In contrast, the low-fat, high-fish diet significantly decreased the percentage of helper T cells whereas the percentage of suppressor T cells increased. Mitogenic responses to Con A and delayed-type hypersensitivity skin response as well as the production of cytokines IL-1 beta, TNF, and IL-6 by mononuclear cells were significantly reduced after the consumption of the low-fat, high-fish diet (24, 40, 45, 35, and 34%, respectively; P < 0.05 by two-tailed Student's t test except for IL-1 beta and TNF, which is by one-tailed t test). Our data are consistent with the concept that the NCEP Step 2 diet that is high in fish significantly decreases various parameters of the immune response in contrast to this diet when it is low in fish. Such alterations may be beneficial for the prevention and treatment of atherosclerotic and inflammatory diseases but may be detrimental with regard to host defense against invading pathogens.
PMCID: PMC293543  PMID: 8325975
4.  Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet 
BMC Genomics  2009;10:110.
Background
Dietary polyunsaturated fatty acids (PUFA), in particular the long chain marine fatty acids docosahexaenoic (DHA) and eicosapentaenoic (EPA), are linked to many health benefits in humans and in animal models. Little is known of the molecular response to DHA and EPA of the small intestine, and the potential contribution of this organ to the beneficial effects of these fatty acids. Here, we assessed gene expression changes induced by DHA and EPA in the wildtype C57BL/6J murine small intestine using whole genome microarrays and functionally characterized the most prominent biological process.
Results
The main biological process affected based on gene expression analysis was lipid metabolism. Fatty acid uptake, peroxisomal and mitochondrial beta-oxidation, and omega-oxidation of fatty acids were all increased. Quantitative real time PCR, and -in a second animal experiment- intestinal fatty acid oxidation measurements confirmed significant gene expression differences and showed in a dose-dependent manner significant changes at biological functional level. Furthermore, no major changes in the expression of lipid metabolism genes were observed in the colon.
Conclusion
We show that marine n-3 fatty acids regulate small intestinal gene expression and increase fatty acid oxidation. Since this organ contributes significantly to whole organism energy use, this effect on the small intestine may well contribute to the beneficial physiological effects of marine PUFAs under conditions that will normally lead to development of obesity, insulin resistance and diabetes.
doi:10.1186/1471-2164-10-110
PMCID: PMC2662879  PMID: 19284886
5.  Docosahexaenoic acid attenuates the early inflammatory response following spinal cord injury in mice: in-vivo and in-vitro studies 
Background
Two families of polyunsaturated fatty acid (PUFA), omega-3 (ω-3) and omega-6 (ω-6), are required for physiological functions. The long chain ω-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have significant biological effects. In particular, DHA is a major component of cell membranes in the brain. It is also involved in neurotransmission. Spinal cord injury (SCI) is a highly devastating pathology that can lead to catastrophic dysfunction, with a significant reduction in the quality of life. Previous studies have shown that EPA and DHA can exert neuroprotective effects in SCI in mice and rats. The aim of this study was to analyze the mechanism of action of ω-3 PUFAs, such as DHA, in a mouse model of SCI, with a focus on the early pathophysiological processes.
Methods
In this study, SCI was induced in mice by the application of an aneurysm clip onto the dura mater via a four-level T5 to T8 laminectomy. Thirty minutes after compression, animals received a tail vein injection of DHA at a dose of 250 nmol/kg. All animals were killed at 24 h after SCI, to evaluate various parameters implicated in the spread of the injury.
Results
Our results in this in-vivo study clearly demonstrate that DHA treatment reduces key factors associated with spinal cord trauma. Treatment with DHA significantly reduced: (1) the degree of spinal cord inflammation and tissue injury, (2) pro-inflammatory cytokine expression (TNF-α), (3) nitrotyrosine formation, (4) glial fibrillary acidic protein (GFAP) expression, and (5) apoptosis (Fas-L, Bax, and Bcl-2 expression). Moreover, DHA significantly improved the recovery of limb function.
Furthermore, in this study we evaluated the effect of oxidative stress on dorsal root ganglion (DRG) cells using a well-characterized in-vitro model. Treatment with DHA ameliorated the effects of oxidative stress on neurite length and branching.
Conclusions
Our results, in vivo and in vitro, clearly demonstrate that DHA treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.
doi:10.1186/1742-2094-11-6
PMCID: PMC3895696  PMID: 24405628
DHA; Inflammation; Omega-3; Oxidative stress; Spinal cord injury
6.  Induction of omega 6 inflammatory pathway by sodium metabisulfite in rat liver and its attenuation by ghrelin 
Background
Sodium metabisulfite is commonly used as preservative in foods but can oxidize to sulfite radicals initiating molecular oxidation. Ghrelin is a peptide hormone primarily produced in the stomach and has anti-inflammatory effects in many organs. This study aimed to assess endogenous omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) in rat peripheral organs following sodium metabisulfite treatment and determine the possible effect of ghrelin on changes in n-6 inflammatory pathway.
Methods
Male Wistar rats included in the study were allowed free access to standard rat chow. Sodium metabisulfite was given by gastric gavage and ghrelin was administered intraperitoneally for 5 weeks. Levels of arachidonic acid (AA, C20:4n-6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) in liver, heart and kidney tissues were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Cyclooxygenase (COX) and prostaglandin E2 (PGE2) were measured in tissue samples to evaluate changes in n-6 inflammatory pathway.
Results
Omega-6 PUFA levels, AA/DHA and AA/EPA ratio were significantly increased in liver tissue following sodium metabisulfite treatment compared to controls. No significant change was observed in heart and kidney PUFA levels. Tissue activity of COX and PGE2 levels were also significantly increased in liver tissue of sodium metabisulfite treated rats compared to controls. Ghrelin treatment decreased n-6 PUFA levels and reduced COX and PGE2 levels in liver tissue of sodium metabisulfite treated rats.
Conclusion
Current results suggest that ghrelin exerts anti-inflammatory action through modulation of n-6 PUFA levels in hepatic tissue.
doi:10.1186/s12944-015-0008-3
PMCID: PMC4335696
Sodium metabisulfite; Ghrelin; Polyunsaturated fatty acids
7.  Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats 
Background
Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption has lead to an increasing variety of available n-3 PUFA sources. However, sources differ in the type, amount, and structural form of the n-3 PUFAs. Therefore, the objective of this study was to determine the effect of different sources of ω-3 PUFAs on digestibility, tissue deposition, eicosanoid metabolism, and oxidative stability.
Methods
Female Sprague-Dawley rats (age 28 d) were randomly assigned (n = 10/group) to be fed a high fat 12% (wt) diet consisting of either corn oil (CO) or n-3 PUFA rich flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) oil for 8 weeks. Rats were individually housed in metabolic cages to determine fatty acid digestibility. Diet and tissue fatty acid composition was analyzed by gas chromatography and lipid classes using thin layer chromatography. Eicosanoid metabolism was determined by measuring urinary metabolites of 2-series prostaglandins (PGs) and thromoboxanes (TXBs) using enzyme immunoassays. Oxidative stability was assessed by measuring thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) using colorimetric assays. Gene expression of antioxidant defense enzymes was determined by real time quantitative polymerase chain reaction (RT-qPCR).
Results
Rats fed KO had significantly lower DHA digestibility and brain DHA incorporation than SO and TO-fed rats. Of the n-3 PUFA sources, rats fed SO and TO had the highest n-3 PUFAs digestibility and in turn, tissue accretion. Higher tissue n-3 LC-PUFAs had no significant effect on 2-series PG and TXB metabolites. Despite higher tissue n-3 LC-PUFA deposition, there was no increase in oxidation susceptibility indicated by no significant increase in TBARS or decrease in TAC and gene expression of antioxidant defense enzymes, in SO or TO-fed rats.
Conclusions
On the basis that the optimal n-3 PUFA sources should provide high digestibility and efficient tissue incorporation with the least tissue lipid peroxidation, TO and SO appeared to be the most beneficial of the n-3 PUFAs sources evaluated in this study.
doi:10.1186/1476-511X-10-179
PMCID: PMC3216256  PMID: 21999902
marine oils; flaxseed oil; krill oil; digestibility; tissue accretion; oxidative stress
8.  Do Omega-3 Polyunsaturated Fatty Acids Prevent Cardiovascular Disease? A Review of the Randomized Clinical Trials 
Lipid insights  2013;6:13-20.
Fish oil is rich in the omega-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Numerous epidemiological studies and several large randomized clinical trials have shown that modest doses of omega-3 PUFAs significantly reduce the risk of unstable angina, myocardial infarction, and sudden cardiac death as well as death in coronary artery disease and heart failure patients. Based on the scientific evidence, the American Heart Association (AHA) has recommended all individuals eat fish at least twice a week to prevent cardiovascular disease. For individuals with coronary artery disease, the recommended dose of omega-3 PUFAs is 1 g of EPA and DHA daily. To lower triglyceride levels, much higher doses are needed. However, more recent randomized clinical trials have questioned the cardiovascular benefits of fish oil. These studies have contributed to the uncertainty health care providers face when recommending omega-3 PUFA supplementation according to clinical guidelines. The purpose of this review is to examine the randomized clinical trials and scientific evidence between omega-3 PUFAs and cardiovascular outcomes to better understand the current role of omega-3 PUFAs in improving cardiovascular health.
doi:10.4137/LPI.S10846
PMCID: PMC4147772  PMID: 25278765
fish oil; omega-3 fatty acids; coronary heart disease; heart failure
9.  Omega-3 Fatty Acids and incident Type 2 Diabetes: A Systematic Review and Meta-Analysis 
The British journal of nutrition  2012;107(0 2):S214-S227.
The relationship between omega-3 polyunsaturated fatty acids (n-3 PUFA) from seafood (eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA) or plant (alpha-linolenic acid, ALA) sources and risk of type 2 diabetes mellitus (DM) remains unclear. We systematically searched multiple literature databases through June 2011 to identify prospective studies examining relations of dietary n-3 PUFA, dietary fish and/or seafood, and circulating n-3 PUFA biomarkers with incidence of DM. Data were independently extracted in duplicate by 2 investigators, including multivariate-adjusted relative risk (RR) estimates and corresponding 95% CIs. Generalized least-squares trend estimation was used to assess dose-response relationships, with pooled summary estimates calculated by both fixed-effect and random-effect models. From 288 identified abstracts, 16 studies met inclusion criteria, including 18 separate cohorts comprising 540,184 individuals and 25,670 cases of incident DM. Consumption of fish and/or seafood was not significantly associated with DM (n=13 studies; RR per 100g/d=1.12, 95% CI=0.94, 1.34); nor were consumption of EPA+DHA (n=16 cohorts; RR per 250mg/d=1.04, 95% CI=0.97, 1.10) or circulating levels of EPA+DHA biomarkers (n=5 cohorts; RR per 3% of total fatty acids=0.94, 95% CI=0.75, 1.17). Both dietary ALA (n=7 studies; RR per 0.5g/d=0.93, 95% CI=0.83, 1.04) and circulating ALA biomarker levels (n=6 studies; RR per 0.1% of total fatty acid=0.90, 95% CI=0.80, 1.00, P=0.06) were associated with non-significant trend towards lower risk of DM. Substantial heterogeneity (I2~80%) was observed among studies of fish/seafood or EPA+DHA and DM; moderate heterogeneity (<55%) was seen for dietary and biomarker ALA and DM. In unadjusted meta-regressions, study location (Asia vs. North America/Europe), mean BMI, and duration of follow-up each modified the association between fish/seafood and EPA+DHA consumption and DM risk (P-Interaction ≤ 0.02 each). We had limited statistical power to determine the independent effect of these sources of heterogeneity due to their high collinearity. The overall pooled findings do not support either major harms or benefits of fish/seafood or EPA+DHA on development of DM, and suggest that ALA may be associated with modestly lower risk. Reasons for potential heterogeneity of effects, which could include true biologic heterogeneity, publication bias, or chance, deserve further investigation.
doi:10.1017/S0007114512001602
PMCID: PMC3744862  PMID: 22591895
10.  Omega-3 Polyunsaturated Fatty Acid Status in Major Depression with Comorbid Anxiety Disorders 
Objective
Although lower levels of omega-3 polyunsaturated fatty acids (PUFAs) are found in major depression, less is known about PUFA status and anxiety disorders.
Method
Medication-free participants with DSM-IV-defined major depressive disorder (MDD), with (n=18) and without (n=41) comorbid anxiety disorders, and healthy volunteers (n=62) were recruited from October 2006 to May 2010 at the New York State Psychiatric Institute. Depression and anxiety severity were assessed using depression and anxiety subscales from the 17-item Hamilton Depression Rating Scale. Plasma PUFAs eicosapentaenoic acid (20:5n-3, EPA), docosahexaenoic acid (22:6n-3, DHA), and the ratio of arachidonic acid (22:4n-6, AA) to EPA (AA:EPA) were quantified. This secondary analysis employed ANOVA with a priori planned contrasts to test for diagnostic group differences in log-transformed PUFA levels (logDHA, logEPA, and logAA:EPA).
Results
Plasma levels of logDHA (F=4.92, df=2,118, p=0.009), logEPA (F=6.44, df=2,118, p=0.002), and logAA:EPA (F=3.81, df=2,118, p=0.025) differed across groups. MDD participants had lower logDHA (t=2.324, df=118, p=0.022) and logEPA (t=3.175, df=118, p=0.002) and higher logAA:EPA (t=–2.099, df=118, p=0.038) compared with healthy volunteers. Lower logDHA (t=2.692, df=118, p=0.008), logEPA (t=2.524, df=118, p=0.013), and higher logAA:EPA (t=–2.322, df=118, p=0.022) distinguished anxious from non-anxious MDD. Depression severity was not associated with PUFA plasma levels; however, anxiety severity across the entire sample correlated negatively with logDHA (rp=–0.22, p=0.015) and logEPA (rp=–0.25, p=0.005) and positively with logAA:EPA (rp=0.18, p=0.043).
Conclusions
The presence and severity of comorbid anxiety were associated with the lowest EPA and DHA levels. Further studies are needed to elucidate whether omega-3 PUFA supplementation may preferentially alleviate MDD with more severe anxiety.
doi:10.4088/JCP.12m07970
PMCID: PMC3905735  PMID: 23945451
Anxiety Disorders; Omega-3; Polyunsaturated fatty acids; Major Depressive Disorder
11.  Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid? 
Background
A growing number of observational and epidemiological studies have suggested that mental illness, in particular mood disorders, is associated with reduced dietary intake and/or cellular abundance of omega-3 polyunsaturated fatty acids (PUFA). This has prompted researchers to test the efficacy of omega-3 PUFA in a range of different psychiatric disorders. We have critically reviewed the double blind placebo controlled clinical trials published prior to April 2007 to determine whether omega-3 PUFA are likely to be efficacious in these disorders.
Results
Most trials involved a small number of participants but were largely well designed. Omega-3 PUFA were well tolerated by both children and adults with mild gastrointestinal effects being the only consistently reported adverse event. For schizophrenia and borderline personality disorder we found little evidence of a robust clinically relevant effect. In the case of attention deficit hyperactivity disorder and related disorders, most trials showed at most small benefits over placebo. A limited meta-analysis of these trials suggested that benefits of omega-3 PUFA supplementation may be greater in a classroom setting than at home. Some evidence indicates that omega-3 PUFA may reduce symptoms of anxiety although the data is preliminary and inconclusive. The most convincing evidence for beneficial effects of omega-3 PUFA is to be found in mood disorders. A meta-analysis of trials involving patients with major depressive disorder and bipolar disorder provided evidence that omega-3 PUFA supplementation reduces symptoms of depression. Furthermore, meta-regression analysis suggests that supplementation with eicosapentaenoic acid may be more beneficial in mood disorders than with docosahexaenoic acid, although several confounding factors prevented a definitive conclusion being made regarding which species of omega-3 PUFA is most beneficial. The mechanisms underlying the apparent efficacy of omega-3 PUFA in mood disorders compared to schizophrenia are discussed as is a rational for the possibly greater efficacy of EPA compared to DHA.
Conclusion
While it is not currently possible to recommend omega-3 PUFA as either a mono- or adjunctive-therapy in any mental illness, the available evidence is strong enough to justify continued study, especially with regard to attentional, anxiety and mood disorders.
doi:10.1186/1476-511X-6-21
PMCID: PMC2071911  PMID: 17877810
12.  Relative abundance of short chain and polyunsaturated fatty acids in propionic acid-induced autistic features in rat pups as potential markers in autism 
Background
Fatty acids are essential dietary nutrients, and one of their important roles is providing polyunsaturated fatty acids (PUFAs) for the growth and function of nervous tissue. Short chain fatty acids (SCFAs) are a group of compounds derived from the host microbiome that were recently linked to effects on the gut, the brain, and behavior. They are therefore linked to neurodevelopmental disorders such as autism. Reduced levels of PUFAs are associated with impairments in cognitive and behavioral performance, which are particularly important during brain development. Recent studies suggest that omega -3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are involved in neurogenesis, neurotransmission, and protection from oxidative stress. Omega-3 PUFAs mediate some of these effects by antagonizing Omega-6 PUFA (arachidonic acid, AA)-induced proinflammatory prostaglandin E2; (PGE2) formation.
Methods
In this work, the absolute and relative concentrations of propionic (PPA), butyric and acetic acids, as well as PUFAs and their precursors (α-Linolenic and linoleic), were measured in the brain tissue of PPA-neurointoxicated rat pups (receiving 250 mg PPA/Kg body weight for 3 consecutive days) as a rodent model with persistent autistic features compared with healthy controls.
Results
The data revealed remarkably lower levels of omega6/omega3, α-Linolenic/Linoleic, α-Linolenic/EPA, α-Linolenic/DHA, EPA/DHA, and AA/Linoleic acid ratios in PPA-intoxicated rats. The role of these impaired ratios is discussed in relation to the activity of desaturases and elongases, which are the two enzymatic groups involved in the synthesis of PUFAs from their precursors. The relationship between the abnormal relative concentrations of the studied fatty acids and oxidative stress, neurotransmission, and neuroinflammation is also discussed in detail.
Conclusions
This study demonstrates that fatty acid ratios are useful for understanding the mechanism of PPA neurotoxicity in a rodent model of autism. Therefore, it is possible to use these ratios for predictions in patients with this disorder.
doi:10.1186/1476-511X-13-140
PMCID: PMC4176835  PMID: 25175350
Propionic acid; Rodent model; Autism; Short chain fatty acids; Polyunsaturated fatty acids; Relative values
13.  Generation and Dietary Modulation of Anti-Inflammatory Electrophilic Omega-3 Fatty Acid Derivatives 
PLoS ONE  2014;9(4):e94836.
Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial.
Methods
Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30–55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments.
Results
5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels.
Conclusions
The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the precept that the benefit of ω-3 PUFA-rich diets can be attributed to the generation of electrophilic oxygenated metabolites that transduce anti-inflammatory actions rather than the suppression of pro-inflammatory AA metabolites.
Trial Registration
ClinicalTrials.gov NCT00663871
doi:10.1371/journal.pone.0094836
PMCID: PMC3988126  PMID: 24736647
14.  Incorporated Fish Oil Fatty Acids Prevent Action Potential Shortening Induced by Circulating Fish Oil Fatty Acids 
Increased consumption of fatty fish, rich in omega-3-polyunsaturated fatty acids (ω3-PUFAs) reduces the severity and number of arrhythmias. Long-term ω3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating ω3-PUFAs in the bloodstream and incorporated ω3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating ω3-PUFAs in the bloodstream enhance or diminish the effects of incorporated ω3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (ω3) or sunflower oil (ω9, as control) for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch-clamp technique in the absence and presence of acutely administered ω3-PUFAs. Plasma of ω3 fed rabbits contained more free eicosapentaenoic acid (EPA) and isolated myocytes of ω3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA) in their sarcolemma compared to control. In the absence of acutely administered fatty acids, ω3 myocytes had a shorter action potential with a more negative plateau than ω9 myocytes. In the ω9 myocytes, but not in the ω3 myocytes, acute administration of a mixture of EPA + DHA shortened the action potential significantly. From these data we conclude that incorporated ω3-PUFAs into the sarcolemma and acutely administered ω3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac ω3-PUFA status will probably not benefit from short term ω3 supplementation as an antiarrhythmic therapy.
doi:10.3389/fphys.2010.00149
PMCID: PMC3059945  PMID: 21423389
fish oil; incorporated fish oil; diet; dietary fish oil; cardiac action potential
15.  Low Blood Long Chain Omega-3 Fatty Acids in UK Children Are Associated with Poor Cognitive Performance and Behavior: A Cross-Sectional Analysis from the DOLAB Study 
PLoS ONE  2013;8(6):e66697.
Background
Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA), especially DHA (docosahexaenonic acid) are essential for brain development and physical health. Low blood Omega-3 LC-PUFA have been reported in children with ADHD and related behavior/learning difficulties, as have benefits from dietary supplementation. Little is known, however, about blood fatty acid status in the general child population. We therefore investigated this in relation to age-standardized measures of behavior and cognition in a representative sample of children from mainstream schools.
Participants
493 schoolchildren aged 7–9 years from mainstream Oxfordshire schools, selected for below average reading performance in national assessments at age seven.
Method
Whole blood fatty acids were obtained via fingerstick samples. Reading and working memory were assessed using the British Ability Scales (II). Behaviour (ADHD-type symptoms) was rated using the revised Conners’ rating scales (long parent and teacher versions). Associations were examined and adjusted for relevant demographic variables.
Results
DHA and eicosapentaenoic acid (EPA), accounted for only 1.9% and 0.55% respectively of total blood fatty acids, with DHA showing more individual variation. Controlling for sex and socio-economic status, lower DHA concentrations were associated with poorer reading ability (std. OLS coeff. = 0.09, p = <.042) and working memory performance (0.14, p = <.001). Lower DHA was also associated with higher levels of parent rated oppositional behavior and emotional lability (−0.175, p = <.0001 and −0.178, p = <.0001).
Conclusions
In these healthy UK children with below average reading ability, concentrations of DHA and other Omega-3 LC-PUFA were low relative to adult cardiovascular health recommendations, and directly related to measures of cognition and behavior. These findings require confirmation, but suggest that the benefits from dietary supplementation with Omega-3 LC-PUFA found for ADHD, Dyspraxia, Dyslexia, and related conditions might extend to the general school population.
doi:10.1371/journal.pone.0066697
PMCID: PMC3691187  PMID: 23826114
16.  Changes in plasma and erythrocyte omega-6 and omega-3 fatty acids in response to intravenous supply of omega-3 fatty acids in patients with hepatic colorectal metastases 
Background
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are functionally the most important omega-3 polyunsaturated fatty acids (PUFAs). Oral supply of these fatty acids increases their levels in plasma and cell membranes, often at the expense of the omega-6 PUFAs arachidonic acid (ARA) and linoleic acid. This results in an altered pattern of lipid mediator production to one which is less pro-inflammatory. We investigated whether short term intravenous supply of omega-3 PUFAs could change the levels of EPA, DHA, ARA and linoleic acid in plasma and erythrocytes in patients with hepatic colorectal metastases.
Methods
Twenty patients were randomised to receive a 72 hour infusion of total parenteral nutrition with (treatment group) or without (control group) omega-3 PUFAs. EPA, DHA, ARA and linoleic acid were measured in plasma phosphatidylcholine (PC) and erythrocytes at several times points up to the end of infusion and 5 to 12 days (mean 9 days) after stopping the infusion.
Results
The treatment group showed increases in plasma PC EPA and DHA and erythrocyte EPA and decreases in plasma PC and erythrocyte linoleic acid, with effects most evident late in the infusion period. Plasma PC and erythrocyte EPA and linoleic acid all returned to baseline levels after the 5–12 day washout. Plasma PC DHA remained elevated above baseline after washout.
Conclusions
Intravenous supply of omega-3 PUFAs results in a rapid increase of EPA and DHA in plasma PC and of EPA in erythrocytes. These findings suggest that infusion of omega-3 PUFAs could be used to induce a rapid effect especially in targeting inflammation.
Trial registration
http://www.clinicaltrials.gov identifier NCT00942292
doi:10.1186/1476-511X-12-64
PMCID: PMC3659039  PMID: 23648075
Parenteral nutrition; Fish oil; Omega-3 fatty acids; Eicosapentaenoic acid; Docosahexaenoic acid; Arachidonic acid; Liver metastases
17.  On the potential application of polar and temperate marine microalgae for EPA and DHA production 
AMB Express  2013;3:26.
Long chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are considered essential omega-3 fatty acids in human nutrition. In marine microalgae EPA and/or DHA are allegedly involved in the regulation of membrane fluidity and thylakoid membrane functioning. The cellular content of EPA and DHA may therefore be enhanced at low temperature and irradiance conditions. As a result, polar and cold temperate marine microalgal species might potentially be suitable candidates for commercial EPA and DHA production, given their adaptation to low temperature and irradiance habitats.
In the present study we investigated inter- and intraspecific EPA and DHA variability in five polar and (cold) temperate microalgae. Intraspecific EPA and DHA content did not vary significantly in an Antarctic (Chaetoceros brevis) and a temperate (Thalassiosira weissflogii) centric diatom after acclimation to a range of irradiance levels at two temperatures. Interspecific variability was investigated for two Antarctic (Chaetoceros brevis and Pyramimonas sp. (Prasinophyceae)) and three cold-temperate species (Thalassiosira weissflogii, Emiliania huxleyi (Prymnesiophyceae) and Fibrocapsa japonica (Raphidophyceae)) during exponential growth. Interspecific variability was shown to be much more important than intraspecific variability. Highest relative and absolute levels of DHA were measured in the prymnesiophyte E. huxleyi and the prasinophyte Pyramimonas sp., while levels of EPA were high in the raphidophyte F. japonica and the diatoms C. brevis and T. weissflogii. Yet, no significant differences in LC-PUFA content were found between polar and cold-temperate species. Also, EPA and DHA production rates varied strongly between species. Highest EPA production rate (174 μg L-1 day-1) was found in the Antarctic diatom Chaetoceros brevis, while DHA production was highest in the cold-temperate prymnesiophyte Emiliania huxleyi (164 μg L-1 day-1). We show that, following careful species selection, effective mass cultivation of marine microalgae for EPA and DHA production may be possible under low temperature and irradiance conditions.
doi:10.1186/2191-0855-3-26
PMCID: PMC3671209  PMID: 23673135
Eicosapentaenoic acid; Docosahexaenoic acid; Thalassiosira weissflogii; Chaetoceros brevis; Fibrocapsa japonica; Emiliania huxleyi; Pyramimonas sp.
18.  A Metabolomic Analysis of Omega-3 Fatty Acid-Mediated Attenuation of Western Diet-Induced Nonalcoholic Steatohepatitis in LDLR-/- Mice 
PLoS ONE  2013;8(12):e83756.
Background
Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease and a risk factor for cirrhosis, hepatocellular carcinoma and liver failure. Previously, we reported that dietary docosahexaenoic acid (DHA, 22:6,n-3) was more effective than eicosapentaenoic acid (EPA, 20:5,n-3) at reversing western diet (WD) induced NASH in LDLR-/- mice.
Methods
Using livers from our previous study, we carried out a global non-targeted metabolomic approach to quantify diet-induced changes in hepatic metabolism.
Results
Livers from WD + olive oil (WD + O)-fed mice displayed histological and gene expression features consistent with NASH. The metabolomic analysis of 320 metabolites established that the WD and n-3 polyunsaturated fatty acid (PUFA) supplementation had broad effects on all major metabolic pathways. Livers from WD + O-fed mice were enriched in saturated (SFA) and monounsaturated fatty acids (MUFA), palmitoyl-sphingomyelin, cholesterol, n-6 PUFA, n-6 PUFA-containing phosphoglycerolipids, n-6 PUFA-derived oxidized lipids (12-HETE) and depleted of C20-22 n-3 PUFA-containing phosphoglycerolipids, C20-22 n-3 PUFA-derived oxidized lipids (18-HEPE, 17,18-DiHETE) and S-lactoylglutathione, a methylglyoxal detoxification product. WD + DHA was more effective than WD + EPA at attenuating WD + O-induced changes in NASH gene expression markers, n-6 PUFA and oxidized lipids, citrate and S-lactosyl glutathione. Diet-induced changes in hepatic MUFA and sphingolipid content were associated with changes in expression of enzymes involved in MUFA and sphingolipid synthesis. Changes in hepatic oxidized fatty acids and S-lactoylglutathione, however, correlated with hepatic n-3 and n-6 C20-22 PUFA content. Hepatic C20-22 n-3 PUFA content was inversely associated with hepatic α-tocopherol and ascorbate content and positively associated with urinary F2- and F3-isoprostanes, revealing diet effects on whole body oxidative stress.
Conclusion
DHA regulation of hepatic SFA, MUFA, PUFA, sphingomyelin, PUFA-derived oxidized lipids and S-lactoylglutathione may explain the protective effects of DHA against WD-induced NASH in LDLR-/- mice.
doi:10.1371/journal.pone.0083756
PMCID: PMC3866250  PMID: 24358308
19.  Metabolomics uncovers dietary omega-3 fatty acid-derived metabolites implicated in anti-nociceptive responses after experimental spinal cord injury 
Neuroscience  2013;0:10.1016/j.neuroscience.2013.09.012.
Chronic neuropathic pain is a frequent comorbidity following spinal cord injury (SCI) and often fails to respond to conventional pain management strategies. Preventive administration of docosahexaenoic acid (DHA) or consumption of a diet rich in omega-3 polyunsaturated fatty acids (O3PUFAs) confers potent prophylaxis against SCI and improves functional recovery. The present study examines whether this novel dietary strategy provides significant antinociceptive benefits in rats experiencing SCI-induced pain. Rats were fed control chow or chow enriched with O3PUFAs for 8 weeks before being subjected to sham or cord contusion surgeries, continuing the same diets after surgery for another 8 more weeks. The paw sensitivity to noxious heat was quantified for at least 8 weeks post-SCI using the Hargreaves test. We found that SCI rats consuming the preventive O3PUFA-enriched diet exhibited a significant reduction in thermal hyperalgesia compared to those consuming the normal diet. Functional neurometabolomic profiling revealed a distinctive deregulation in the metabolism of endocannabinoids (eCB) and related N-acyl ethanolamines (NAEs) at 8 weeks post-SCI. We found that O3PUFAs consumption led to a robust accumulation of novel NAE precursors, including the glycerophospho-containing docosahexaenoyl ethanolamine (DHEA), docosapentaenoyl ethanolamine (DPEA), and eicosapentaenoyl ethanolamine (EPEA). The tissue levels of these metabolites were significantly correlated with the antihyperalgesic phenotype. In addition, rats consuming the O3PUFA-rich diet showed reduced sprouting of nociceptive fibers containing CGRP and dorsal horn neuron p38 MAPK expression, well-established biomarkers of pain. The spinal cord levels of inositols were positively correlated with thermal hyperalgesia, supporting their role as biomarkers of chronic neuropathic pain. Notably, the O3PUFA-rich dietary intervention reduced the levels of these metabolites. Collectively, these results demonstrate the prophylactic value of dietary O3PUFA against SCI-mediated chronic pain.
doi:10.1016/j.neuroscience.2013.09.012
PMCID: PMC3844071  PMID: 24042033
DHA; EPA; dietary fatty acids; endocannabinoid metabolome; spinal cord injury; chronic pain
20.  Dietary Omega-3 Polyunsaturated Fatty Acids Suppress NHE-1 Upregulation in a Rabbit Model of Volume- and Pressure-Overload 
Background: Increased consumption of omega-3 polyunsaturated fatty acids (ω3-PUFAs) from fish oil (FO) may have cardioprotective effects during ischemia/reperfusion, hypertrophy, and heart failure (HF). The cardiac Na+/H+-exchanger (NHE-1) is a key mediator for these detrimental cardiac conditions. Consequently, chronic NHE-1 inhibition appears to be a promising pharmacological tool for prevention and treatment. Acute application of the FO ω3-PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) inhibit the NHE-1 in isolated cardiomyocytes. We studied the effects of a diet enriched with ω3-PUFAs on the NHE-1 activity in healthy rabbits and in a rabbit model of HF induced by volume- and pressure-overload. Methods: Rabbits were allocated to four groups. The first two groups consisted of healthy rabbits, which were fed either a diet containing 1.25% (w/w) FO (ω3-PUFAs), or 1.25% high-oleic sunflower oil (ω9-MUFAs) as control. The second two groups were also allocated to either a diet containing ω3-PUFAs or ω9-MUFAs, but underwent volume- and pressure-overload to induce HF. Ventricular myocytes were isolated by enzymatic dissociation and used for intracellular pH (pHi) and patch-clamp measurements. NHE-1 activity was measured in HEPES-buffered conditions as recovery rate from acidosis due to ammonium prepulses. Results: In healthy rabbits, NHE-1 activity in ω9-MUFAs and ω3-PUFAs myocytes was not significantly different. Volume- and pressure-overload in rabbits increased the NHE-1 activity in ω9-MUFAs myocytes, but not in ω3-PUFAs myocytes, resulting in a significantly lower NHE-1 activity in myocytes of ω3-PUFA fed HF rabbits. The susceptibility to induced delayed afterdepolarizations (DADs), a cellular mechanism of arrhythmias, was lower in myocytes of HF animals fed ω3-PUFAs compared to myocytes of HF animals fed ω9-MUFAs. In our rabbit HF model, the degree of hypertrophy was similar in the ω3-PUFAs group compared to the ω9-MUFAs group. Conclusion: Dietary ω3-PUFAs from FO suppress upregulation of the NHE-1 activity and lower the incidence of DADs in our rabbit model of volume- and pressure-overload.
doi:10.3389/fphys.2012.00076
PMCID: PMC3317268  PMID: 22485092
Na+/H+-exchanger; pHi; fish oil; diet; heart failure; hypertrophy; arrhythmias
21.  Effect of stearidonic acid-enriched soybean oil on fatty acid profile and metabolic parameters in lean and obese Zucker rats 
Background
Consumption of marine-based oils high in omega-3 polyunsaturated fatty acids (n3PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to protect against obesity-related pathologies. It is less clear whether traditional vegetable oils with high omega-6 polyunsaturated fatty acid (n6PUFA) content exhibit similar therapeutic benefits. As such, this study examined the metabolic effects of a plant-based n3PUFA, stearidonic acid (SDA), in polygenic obese rodents.
Methods
Lean (LZR) and obese Zucker (OZR) rats were provided either a standard westernized control diet (CON) with a high n6PUFA to n3PUFA ratio (i.e., 16.2/1.0) or experimental diet modified with flaxseed (FLAX), menhaden (FISH), or SDA oil that resulted in n6PUFA to n3PUFA ratios of 1.7/1.0, 1.3/1.0, and 1.0/0.8, respectively.
Results
After 12 weeks, total adiposity, dyslipidemia, glucose intolerance, and hepatic steatosis were all greater, whereas n3PUFA content in liver, adipose, and muscle was lower in OZR vs. LZR rats. Obese rodents fed modified FISH or SDA diets had lower serum lipids and hepatic fat content vs. CON. The omega-3 index (i.e., ΣEPA + DHA in erythrocyte membrane) was 4.0, 2.4, and 2.0-fold greater in rodents provided FISH, SDA, and FLAX vs. CON diet, irrespective of genotype. Total hepatic n3PUFA and DHA was highest in rats fed FISH, whereas both hepatic and extra-hepatic EPA was higher with FISH and SDA groups.
Conclusions
These data indicate that SDA oil represents a viable plant-derived source of n3PUFA, which has therapeutic implications for several obesity-related pathologies.
doi:10.1186/1476-511X-12-147
PMCID: PMC4015945  PMID: 24139088
Stearidonic acid; Soybean oil; Obesity; Zucker; Fish oil; Flaxseed oil; Lipids; Hepatic steatosis
22.  Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega-3 polyunsaturated fatty acids 
Toxicology and applied pharmacology  2012;264(3):351-360.
In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega-3 polyunsaturated fatty acids (n-3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n-3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice ± NO synthase (NOS) inhibitor. We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA ± inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mmHg, WT 103±1, KO 116±1, n=5/genotype, p<0.05), and exhibited a reduced heart rate (beats per minute, WT 575±5; KO 530±7; p<0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n-3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP.
doi:10.1016/j.taap.2012.09.007
PMCID: PMC3494483  PMID: 22995157
Cytochrome P4501A1; omega-3 polyunsaturated fatty acids; vasorelaxation; hypertension
23.  Marine omega-3 polyunsaturated fatty acids induce sex-specific changes in reinforcer-controlled behaviour and neurotransmitter metabolism in a spontaneously hypertensive rat model of ADHD 
Background
Previous reports suggest that omega-3 (n-3) polyunsaturated fatty acids (PUFA) supplements may reduce ADHD-like behaviour. Our aim was to investigate potential effects of n-3 PUFA supplementation in an animal model of ADHD.
Methods
We used spontaneously hypertensive rats (SHR). SHR dams were given n-3 PUFA (EPA and DHA)-enriched feed (n-6/n-3 of 1:2.7) during pregnancy, with their offspring continuing on this diet until sacrificed. The SHR controls and Wistar Kyoto (WKY) control rats were given control-feed (n-6/n-3 of 7:1). During postnatal days (PND) 25–50, offspring were tested for reinforcement-dependent attention, impulsivity and hyperactivity as well as spontaneous locomotion. The animals were then sacrificed at PND 55–60 and their neostriata were analysed for monoamine and amino acid neurotransmitters with high performance liquid chromatography.
Results
n-3 PUFA supplementation significantly enhanced reinforcement-controlled attention and reduced lever-directed hyperactivity and impulsiveness in SHR males whereas the opposite or no effects were observed in females. Analysis of neostriata from the same animals showed significantly enhanced dopamine and serotonin turnover ratios in the male SHRs, whereas female SHRs showed no change, except for an intermediate increase in serotonin catabolism. In contrast, both male and female SHRs showed n-3 PUFA-induced reduction in non-reinforced spontaneous locomotion, and sex-independent changes in glycine levels and glutamate turnover.
Conclusions
Feeding n-3 PUFAs to the ADHD model rats induced sex-specific changes in reinforcement-motivated behaviour and a sex-independent change in non-reinforcement-associated behaviour, which correlated with changes in presynaptic striatal monoamine and amino acid signalling, respectively. Thus, dietary n-3 PUFAs may partly ameliorate ADHD-like behaviour by reinforcement-induced mechanisms in males and partly via reinforcement-insensitive mechanisms in both sexes.
doi:10.1186/1744-9081-8-56
PMCID: PMC3573936  PMID: 23228189
Omega-3; ADHD; Behaviour; Dopamine; Serotonin; Glutamate; Neostriatum
24.  Ratio of Pro-Resolving and Pro-Inflammatory Lipid Mediator Precursors as Potential Markers for Aggressive Periodontitis 
PLoS ONE  2013;8(8):e70838.
Aggressive periodontitis (AgP) is a rapidly progressing type of periodontal disease in otherwise healthy individuals which causes destruction of the supporting tissues of the teeth. The disease is initiated by pathogenic bacteria in the dental biofilm, and the severity of inflammation and attachment loss varies with the host response. Recently, there has been an increased interest in determining the role of lipid mediators in inflammatory events and the concept of pro-inflammatory and pro-resolution lipid mediators has been brought into focus also in periodontal disease. The present study aimed to determine the profile of omega-3 or n3- as well as omega-6 or n6- polyunsaturated fatty acids (PUFAs) and PUFA-metabolites of linoleic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in gingival crevicular fluid (GCF), saliva and serum in AgP patients and healthy controls. In total, 60 selected n3- and n6-PUFAs and various PUFA metabolites were measured using high performance liquid chromatography-tandem electrospray ionisation mass spectrometry (HPLC-ESI-MS-MS). Of these, 51 could be quantified in this study. The concentrations of the majority were low in saliva samples compared with serum and GCF, but were mainly higher in AgP patients compared with healthy controls in all three kinds of sample. Ratios of n3- to n6-PUFAs (DHA + EPA)/AA were significantly lower in the GCF of AgP patients than in the healthy controls. Furthermore, various ratios of the direct precursors of the pro-resolution lipid mediators (precursors of resolvins and protectins) were calculated against the precursors of mainly pro-inflammatory lipid mediators. These ratios were mainly lower in GCF and saliva of AgP patients, compared with healthy controls, but only reached significance in GCF (P<0.05). To conclude, the ratios of precursors of pro-resolution/pro-inflammatory lipid mediators seem to be more relevant for describing the disease status of AgP than the concentration of specific lipid mediators.
doi:10.1371/journal.pone.0070838
PMCID: PMC3741366  PMID: 23951021
25.  Protective effect of the omega-3 polyunsaturated fatty acids: Eicosapentaenoic acid/Docosahexaenoic acid 1:1 ratio on cardiovascular disease risk markers in rats 
Background
High consumption of fish carries a lower risk of cardiovascular disease as a consequence of dietary omega-3 long chain polyunsaturated fatty acid (n-3 PUFA; especially EPA and DHA) content. A controversy exists about the component/s responsible of these beneficial effects and, in consequence, which is the best proportion between both fatty acids. We sought to determine, in healthy Wistar rats, the proportions of EPA and DHA that would induce beneficial effects on biomarkers of oxidative stress, and cardiovascular disease risk.
Methods
Female Wistar rats were fed for 13 weeks with 5 different dietary supplements of oils; 3 derived from fish (EPA/DHA ratios of 1:1, 2:1, 1:2) plus soybean and linseed as controls. The activities of major antioxidant enzymes (SOD, CAT, GPX, and GR) were determined in erythrocytes and liver, and the ORAC test was used to determine the antioxidant capacity in plasma. Also measured were: C reactive protein (CRP), endothelial dysfunction (sVCAM and sICAM), prothrombotic activity (PAI-1), lipid profile (triglycerides, cholesterol, HDLc, LDLc, Apo-A1, and Apo-B100), glycated haemoglobin and lipid peroxidation (LDL-ox and MDA values).
Results
After three months of nutritional intervention, we observed statistically significant differences in the ApoB100/ApoA1 ratio, glycated haemoglobin, VCAM-1, SOD and GPx in erythrocytes, ORAC values and LDL-ox. Supplementation with fish oil derived omega-3 PUFA increased VCAM-1, LDL-ox and plasma antioxidant capacity (ORAC). Conversely, the ApoB100/ApoA1 ratio and percentage glycated haemoglobin decreased.
Conclusions
Our results showed that a diet of a 1:1 ratio of EPA/DHA improved many of the oxidative stress parameters (SOD and GPx in erythrocytes), plasma antioxidant capacity (ORAC) and cardiovascular risk factors (glycated haemoglobin) relative to the other diets.
doi:10.1186/1476-511X-12-140
PMCID: PMC3850782  PMID: 24083393
Omega-3 polyunsaturated fatty acids (PUFA); Eicosapentaenoic acid (EPA); Docosahexaenoic acid (DHA); Fish oils; Oxidative stress; Antioxidant status; Cardiovascular disease risk; Insulin resistance

Results 1-25 (976439)