Search tips
Search criteria

Results 1-25 (1222034)

Clipboard (0)

Related Articles

1.  Timing of cranioplasty after decompressive craniectomy for trauma 
The optimal timing of cranioplasty after decompressive craniectomy for trauma is unknown. The aim of this study was to determine if early cranioplasty after decompressive craniectomy for trauma reduces complications.
Consecutive cases of patients who underwent autologous cranioplasty after decompressive craniectomy for trauma at a single Level I Trauma Center were studied in a retrospective 10 year data review. Associations of categorical variables were compared using Chi-square test or Fisher's exact test.
A total of 157 patients were divided into early (<12 weeks; 78 patients) and late (≥12 weeks; 79 patients) cranioplasty cohorts. Baseline characteristics were similar between the two cohorts. Cranioplasty operative time was significantly shorter in the early (102 minutes) than the late (125 minutes) cranioplasty cohort (P = 0.0482). Overall complication rate in both cohorts was 35%. Infection rates were lower in the early (7.7%) than the late (14%) cranioplasty cohort as was bone graft resorption (15% early, 19% late), hydrocephalus rate (7.7% early, 1.3% late), and postoperative hematoma incidence (3.9% early, 1.3% late). However, these differences were not statistically significant. Patients <18 years of age were at higher risk of bone graft resorption than patients ≥18 years of age (OR 3.32, 95% CI 1.25-8.81; P = 0.0162).
After decompressive craniectomy for trauma, early (<12 weeks) cranioplasty does not alter the incidence of complication rates. In patients <18 years of age, early (<12 weeks) cranioplasty increases the risk of bone resorption. Delaying cranioplasty (≥12 weeks) results in longer operative times and may increase costs.
PMCID: PMC3994696  PMID: 24778913
Cranioplasty; decompressive craniectomy; trauma
2.  Optimal timing of cranioplasty after post-injury decompressive craniectomy: a case control study 
Journal of Injury and Violence Research  2012;4(3 Suppl 1): Paper No. 13.
Cranioplasty after postinjury decompressive craniectomy (DC) is routinely performed with a three-month delay to avoid the risk of infection and other complications. Recent experience suggests that performing Cranioplasty surgery at shorter period than three months following DC not only may not cause more infections, but also has the privilege of easier dissection, less bleeding, and reduced costs. The present study was aimed at evaluating the optimal timing of cranioplasty by comparing different parameters using two different time frames.
A total of ninety-five patients underwent cranioplasty surgery during March 2010 to March 2011 in Rajaee Hospital affiliated to Shiraz University of Medical Sciences (Shiraz, Iran). All of them underwent DC surgery because of post traumatic intracranial hypertension. All of patients were divided into two groups with respect o the time period between cranioplasty and DC. For one group this period was 2 months and the other was higher. All relevant demographic and clinical data as well as operative variables such as length of operation, amount of bleeding (post-op Hb drop) and late prognosis were compared between these two groups.
Mean age was 32.2 ± 13.3(SD) years, and 92.6% of patients were male. No significant difference was observed in independent parameters between the two groups with respect to the length of operation (p=0.004) and amount of bleeding (p=0.013) decreased significantly in patients operated earlier than two months from their DC. No significant difference was observed in postoperative complications and final 6 months prognosis.
Findings of the present study showed that performing cranioplasty earlier than two months following craniectomy was associated with shorter surgical duration and lower amounts of bleeding. Performing of cranioplasty in shorter time is accompanied by an easier dissection with no more complications.
Cranioplasty, Decompressive, Craniectomy, TBI
PMCID: PMC3571539
3.  Cranioplasty with polymethylmethacrylate prostheses fabricated by hand using original bone flaps: Technical note and surgical outcomes 
Decompressive craniectomies (DC) mandate future cranioplasties, accounting for the large array of biomaterials for this purpose. Polymethylmethacrylate (PMMA) is a very reliable thermoplastic that can be prefabricated or even molded intraoperatively to create an adequate prosthesis. Preformed PMMA implants made by hand have been superseded by newer 3-D printed implants, but this is accompanied by higher costs and timing issues, apart from having limited availability in developing and third-world countries.
A total of 26 patients were operated over a span of 11 years. A total of 26 custom hand-made PMMA prostheses were fabricated using original bone flaps with the aid of a prosthodontist, in a process that took approximately 70 minutes for each implant. The result was an exact duplication of the patient's bone flap.
Of the 26 patients who underwent cranioplasty, the majority of patients were males, with a mean age of 39.2 years and traumatic brain injury as main indication for DC. After a mean interval of 2.4 months, all 26 patients underwent a cranioplasty and prosthesis placement. Only two patients (7.6%) suffered from direct cranioplasty-related complications after a median follow-up of 10.4 months. Median Glasgow Outcome Scale scores improved significantly from 3 to 4 after cranioplasty (P = 0.008).
Prefabrication of custom PMMA prostheses by hand when original bone flaps are available is an excellent alternative to newer 3-D printing techniques, because it is relatively cheaper, less time consuming, and offers excellent results in terms of anatomical reconstruction and improvement of neurological function in long-term follow-ups.
PMCID: PMC3815033  PMID: 24232827
Cranioplasty; decompressive craniectomy; prosthesis; polymethylmethacrylate
4.  Predictors of Infections following Cranioplasty: A Retrospective Review of a Large Single Center Study 
The Scientific World Journal  2014;2014:356042.
Introduction. The variables that predispose to postcranioplasty infections are poorly described in the literature. We formulated a multivariate model that predicts the risk of infection in patients undergoing cranioplasty. Method. Retrospective review of all patients who underwent cranioplasty following craniectomy from January, 2000, to December, 2011. Tested predictors were age, sex, diabetic status, hypertensive status, reason for craniectomy, urgency status of craniectomy, location of cranioplasty, reoperation for hematoma, hydrocephalus postcranioplasty, and material type. A multivariate logistic regression analysis was performed. Results. Three hundred forty-eight patients met the study criteria. Infection rate was 26.43% (92/348). Of these cases with infection, 56.52% (52/92) were superficial (supragaleal), 43.48% (40/92) were deep (subgaleal), and 31.52% (29/92) were present in both the supragaleal and subgaleal spaces. The predominant pathogen was coagulase-negative staphylococcus (30.43%) followed by methicillin-resistant Staphylococcus aureus (22.83%) and methicillin-sensitive Staphylococcus aureus (15.22%). Approximately 15.22% of all cultures were polymicrobial. Multivariate analysis revealed convex craniectomy, hemorrhagic stroke, and hydrocephalus to be associated with an increased risk of infection (OR = 14.41; P < 0.05, OR = 4.33; P < 0.05, OR = 1.90; P = 0.054, resp.). Conclusion. Many of the risk factors for infection after cranioplasty are modifiable. Recognition and prevention of the risk factors would help decrease the infection's rate.
PMCID: PMC4221876  PMID: 25401136
5.  Epidural Fluid Collection after Cranioplasty : Fate and Predictive Factors 
Infection and bone resorption are major complications of cranioplasty and have been well recognized. However, there are few clinical series describing the epidural fluid collection (EFC) as complication of cranioplasty. This study was planned to identify the predictive factors and fate of EFC after cranioplasty.
We reviewed retrospectively the demographic, clinical, and radiographic data in 59 patients who underwent a first cranioplsty following decompressive craniectomy during a period of 6 years, from January 2004 to December 2009. We compared demographic, clinical, and radiographic factors between EFC group and no EFC group. The predictive factors associated with the development of EFC were assessed by logistic regression analysis.
Overall, 22 of 59 patients (37.3%) suffered from EFC following cranioplasty. EFC had disappeared (n=6, 31.8%) or regressed (n=6, 31.8%) over time on follow up brain computed tomographic (CT) scans. However, 5 patients (22.7%) required reoperation due to symptomatic and persistent EFC. Predictive factors for EFC were male [odds ratio (OR), 5.48; 95% CI, 1.26-23.79], air bubbles in the epidural space (OR, 12.52; 95% CI, 2.26-69.28), and dural calcification on postoperative brain CT scan (OR, 4.21; 95% CI, 1.12-15.84).
The most of EFCs could be treated by conservative therapy. Air bubble in the epidural space and dural calcification are proposed to be the predictive factors in the formation of EFC after cranioplasty.
PMCID: PMC3218183  PMID: 22102954
Cranioplasty; Epidural fluid collection
6.  Simultaneous Cranioplasty and Subdural-Peritoneal Shunting for Contralateral Symptomatic Subdural Hygroma following Decompressive Craniectomy 
The Scientific World Journal  2015;2015:518494.
Background. Contralateral subdural hygroma caused by decompressive craniectomy tends to combine with external cerebral herniation, causing neurological deficits. Material and Methods. Nine patients who underwent one-stage, simultaneous cranioplasty and contralateral subdural-peritoneal shunting were included in this study. Clinical outcome was assessed by Glasgow Outcome Scale as well as Glasgow Coma Scale, muscle power scoring system, and complications. Results. Postoperative computed tomography scans demonstrated completely resolved subdural hygroma and reversed midline shifts, indicating excellent outcome. Among these 9 patients, 4 patients (44%) had improved GOS following the proposed surgery. Four out of 4 patients with lethargy became alert and orientated following surgical intervention. Muscle strength improved significantly 5 months after surgery in 7 out of 7 patients with weakness. Two out of 9 patients presented with drowsiness due to hydrocephalus at an average time of 65 days after surgery. Double gradient shunting is useful to eliminate the respective hydrocephalus and contralateral subdural hygroma. Conclusion. The described surgical technique is effective in treating symptomatic contralateral subdural hygroma following decompressive craniectomy and is associated with an excellent structural and functional outcome. However, subdural-peritoneal shunting plus cranioplasty thoroughly resolves the subdural hygroma collection, which might deteriorate the cerebrospinal fluid circulation, leading to hydrocephalus.
PMCID: PMC4386681  PMID: 25879062
7.  Feasibility of the custom-made titanium cranioplasty CRANIOTOP® 
With decompressive craniectomy for ischemic stroke, traumatic brain injury, and skull-infiltrating tumors, the need for cranioplasty has increased. Different materials for custom-made cranioplasties have been evaluated, but a gold standard could not yet be established. We report our experience with the new custom-made titanium CRANIOTOP®cranioplasty (CL Instruments, Germany).
A total of 50 consecutive patients received a CRANIOTOP cranioplasty within a 2 year interval. We reviewed the charts for time between initial surgery and cranioplasty, indication, complications, operative time, and cosmetic outcome. Postoperative imaging (computed tomography [CT] scan n = 48, magnetic resonance imaging (MRI) n = 5) was screened for fitting accuracy and for hemorrhages.
The most common indication for craniectomy were diffuse edema due to traumatic brain injury (n = 17, 34%) and ischemic stroke (n = 12, 24%). All patients were satisfied with the cosmetic result. In the postoperative CT scan accurate fitting was confirmed in all patients, the postoperative MRI was free of artifacts. Surgical revision was necessary in five patients because of empyema (n = 2), wound exposure (n = 2), and one cerebrospinal fluid fistula. Thus, the surgical morbidity was 10%.
With due consideration of the limitations of this retrospective study, we feel the present data allow concluding that the custom-made titanium cranioplasty CRANIOTOP®is safe and feasible.
PMCID: PMC3740614  PMID: 23956931
CL Instruments; craniectomy; CRANIOTOP; titanium cranioplasty
8.  Infection of Cranioplasty Seen Twenty Years Later 
Cranioplasty is performed using autograft and allograft materials on patients to whom craniectomy was applied previously due to the facts that, this region is open to trauma and the scalp makes irritation and pressure onto the brain paranchyma causing brain atrophy and convulsions. Dramatical improvement of neurological deficits, control of convulsions and partial prevention of cerebral atrophy are achieved after these operations. One of the most important complications of cranioplasty is late infection. Here, we report a 43-year-old male patient admitted with the history of purulant discharge from the right temporal incission site for one year to whom cranioplasty had been performed with allograft material 20 days after craniectomy which had been performed in 1989. Allograft cranioplasty material was removed and cranioplasty was performed using new allograft material with the diagnosis of late cranioplasty infection.
PMCID: PMC3539089  PMID: 23323175
Cranioplasty; Cranioplasty infection; Late cranioplasty infection
9.  Can glasgow score at discharge represent final outcome in severe head injury? 
Patients with head injury continue to improve over time and a minimum follow-up of six months is considered necessary to evaluate outcome. However, this may be difficult to assess due to lack of follow-up. It is also well known that operated patients who return for cranioplasty usually have the best outcome.
Aims and Objectives:
To assess the outcome following severe head injury using cranioplasty as a surrogate marker for good outcome.
Materials and Methods:
This was a retrospective study carried out from January 2009 to December 2010. All patients with severe head injury who underwent decompressive craniectomy (DC) in the study period were included. Patients who came back for cranioplasty in the same period were also included. Case records, imaging and follow up visit data from all patients were reviewed. Glasgow Coma Score (GCS) on admission and Glasgow Outcome Score (GOS) at discharge were assessed.
Observations and Results:
Of the 273 patients, 84.25% (n=230) were males and 15.75% (n= 43) were females. The mean age was 34.3 years (range 2-81 years, SD 16.817). The mean GCS on admission was 5.615 (range 3-8, SD 1.438). The in-hospital mortality was 54% (n=149). Good outcome (GOS of 4 or 5) at discharge was attained in 22% (n=60) patients. Sixty five patients returned for cranioplasty (with a GOS of 4 or 5) during the study period. There was no statistical difference in the number of patients discharged with good outcome and those coming back for cranioplasty in the study period (P>0.5). Patients who came back for cranioplasty were younger in age (mean age 28.815 years SD 13.396) with better admission GCS prior to DC (mean GCS 6.32 SD1.39).
In operated severe head injury patients significant number of patients (24% in our study) have excellent outcome. However, insignificant number of patients had further improvement to GOS 4 or 5 (good outcome) from the time of initial discharge. This suggests that due to lack of intensive rehabilitative facilities, GOS at discharge may be representative of final outcome in the vast majority of cases of severe head injury in developing countries like India
PMCID: PMC3440886  PMID: 22988398
Cranioplasty; outcome; rehabilitation; severe head injury
10.  Sonication assisted microbiological diagnosis of implant-related infection caused by Prevotella disiens and Staphylococcus epidermidis in a patient with cranioplasty 
BMC Research Notes  2015;8:307.
Infections present a major complication of cranioplasty procedures and in many cases removal of the implant material becomes a necessity. Sonication of the artificial implant material has been used during the last years, in order to facilitate better diagnosis of these infections, nevertheless its use in cranial implant infections is still limited.
Case presentation
A case of a 63-year-old Caucasian male patient who underwent a decompressive craniectomy, due to intracranial hemorrhage, and a consequent cranioplasty using an autogenic bone flap fixed by titanium clamps, is reported. After three unsuccessful cranioplasty efforts to repair a persistent skin defect, removing the bone flap and the titanium clamps was a necessity. Tissue and bone cultures were unable to reveal any microorganism whilst sonication of the removed titanium clamps and consequent culture of the resulting sonication liquid yielded Prevotella disiens and Staphylococcus epidermidis. The patient was treated with daptomycin and metronidazole until discharge and the skin defect was successfully repaired.
The present case report indicates that the use of the sonication procedure assisted the microbiological diagnosis. This is the first known neurosurgical case of the implementation of the sonication procedure.
PMCID: PMC4504397  PMID: 26183701
Sonication; Implants; Biofilm; Implant related infections; Anaerobes
11.  Analyses Using Micro-CT Scans and Tissue Staining on New Bone Formation and Bone Fusion According to the Timing of Cranioplasty via Frozen Autologous Bone Flaps in Rabbits : A Preliminary Report 
The timing of cranioplasty and method of bone flap storage are known risk factors of non-union and resorption of bone flaps. In this animal experimental study, we evaluated the efficacy of cranioplasty using frozen autologous bone flap, and examined whether the timing of cranioplasty after craniectomy affects bone fusion and new bone formation.
Total 8 rabbits (male, older than 16 weeks) were divided into two groups of early cranioplasty group (EG, 4 rabbits) and delayed cranioplasty group (DG, 4 rabbits). The rabbits of each group were performed cranioplasty via frozen autologous bone flaps 4 weeks (EG) and 8 weeks (DG) after craniectomy. In order to obtain control data, the cranioplasty immediate after craniectomy were made on the contralateral cranial bone of the rabbits (control group, CG).The bone fusion and new bone formation were evaluated by micro-CT scan and histological examination 8 weeks after cranioplasty on both groups.
In the micro-CT scans, the mean values of the volume and the surface of new bone were 50.13±7.18 mm3 and 706.23±77.26 mm2 in EG, 53.78±10.86 mm3 and 726.60±170.99 mm2 in DG, and 31.51±12.84 mm3 and 436.65±132.24 mm2 in CG. In the statistical results, significant differences were shown between EG and CG and between DG and CG (volume : p=0.028 and surface : p=0.008). The histological results confirmed new bone formation in all rabbits.
We observed new bone formation on all the frozen autologous bone flaps that was stored within 8 weeks. The timing of cranioplasty may showed no difference of degree of new bone formation. Not only the healing period after cranioplasty but the time interval from craniectomy to cranioplasty could affect the new bone formation.
PMCID: PMC4414767  PMID: 25932290
Cranioplasty; Timing; Frozen stored; Autologous bone; Rabbits
12.  Use of “custom made” porous hydroxyapatite implants for cranioplasty: postoperative analysis of complications in 1549 patients 
Cranioplasty is a surgical intervention aimed at reestablishing the integrity of skull defects, and should be considered the conclusion of a surgical act that began with bone flap removal. Autologous bone is still considered the treatment of choice for cranioplasty. An alternative choice is bioceramic porous hydroxyapatite (HA) as it is one of the materials that meets and comes closest to the biomimetic characteristics of bone.
The authors analyzed the clinical charts, compiled by the neurosurgeon, of all patients treated with custom-made porous HA devices (Custom Bone Service Fin-Ceramica, Faenza) from which epidemiological and pathological data as well as material-related complications were extrapolated.
From November 1997 to December 2010, 1549 patients underwent cranioplasty with the implantation of 1608 custom-made porous HA devices. HA was used in 53.8% of patients for decompressive craniectomy after trauma or intracranial hemorrhage, while the remaining cases were for treated for comminuted fracture, cutaneous or osseous resection, cranial malformation, autologous bone reabsorption or infection or rejection of previously implanted material. The incidence of adverse events in patients treated for cranioplasty, as first line treatment was 4.78% (56 events/1171 patients), and 5.02%, (19 events/378 patients) at second line.
This study demonstrates that HA is a safe and effective material, is well tolerated in both adult and pediatric patients, and meets the requirements necessary to repair craniolacunia.
PMCID: PMC3589836  PMID: 23493459
Cranioplasty; customized cranioplasty; porous hydroxyapatite prosthesis
13.  Cranioplasty with autologous cryopreserved bone after decompressive craniectomy. Complications and risk factors for developing surgical site infection 
Acta Neurochirurgica  2014;156(4):805-811.
Renewed interest has developed in decompressive craniectomy, and improved survival is shown when this treatment is used after malignant middle cerebral artery infarction. The aim of this study was to investigate the frequency and possible risk factors for developing surgical site infection (SSI) after delayed cranioplasty using autologous, cryopreserved bone.
This retrospective study included 74 consecutive patients treated with decompressive craniectomy during the time period May 1998 to October 2010 for various non-traumatic conditions causing increased intracranial pressure due to brain swelling. Complications were registered and patient data was analyzed in a search for predictive factors.
Fifty out of the 74 patients (67.6 %) survived and underwent delayed cranioplasty. Of these, 47 were eligible for analysis. Six patients (12.8 %) developed SSI following the replacement of autologous cryopreserved bone, whereas bone resorption occurred in two patients (4.3 %). No factors predicted a statistically significant rate of SSI, however, prolonged procedural time and cardiovascular comorbidity tended to increase the risk of SSI.
SSI and bone flap resorption are the most frequent complications associated with the reimplantation of autologous cryopreserved bone after decompressive craniectomy. Prolonged procedural time and cardiovascular comorbidity tend to increase the risk of SSI.
PMCID: PMC3956933  PMID: 24493001
Cranioplasty; Craniectomy; Autologous; Cryopreserved; Surgical site infection; Complications
14.  Cranioplasty prosthesis manufacturing based on reverse engineering technology 
Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing.
CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared.
In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes.
Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material.
PMCID: PMC3560686  PMID: 22207125
cranioplasty; reverse engineering; rapid prototyping; CT
15.  Technical Modifications of Suboccipital Craniectomy for Prevention of Postoperative Headache 
Skull Base  2004;14(2):77-84.
A retrospective review of 53 consecutive patients who underwent a retrosigmoid vestibular nerve section (VNS) or microvascular decompression (MVD) through a modified suboccipital craniectomy with a minimum follow-up of 2 years was performed. Technical modifications to the suboccipital craniectomy included a skin incision designed to avoid the lesser and greater occipital nerves; a small, 2-cm diameter craniectomy with no intradural drilling of bone; and a simplified closure to prevent muscle adhesion to dura without the need for cranioplasty. The presence, duration, and severity of postoperative headache were the primary outcome measures. Craniectomy-related complications, operative time, and length of hospital stay were also reviewed. The incidence of postoperative headache after suboccipital craniectomy was 7.5% at 3 months (4/53), 3.8% at 1 year (2/53), and 3.8% at 2 years (2/53). Complications related to craniectomy included cerebrospinal fluid leakage (5.7%), aseptic meningitis (1.9%), and superficial wound infection (1.9%). The mean operative time was 145 and 98 minutes for VNS and MVD, respectively. The mean hospital stay was 2.2 and 3.6 days for VNS and MVD, respectively. Technical modifications of suboccipital craniectomy during retrosigmoid VNS and MVD lowered the incidence of postoperative headache and craniectomy-related complications and had no adverse effect on operative time or length of hospital stay.
PMCID: PMC1151675  PMID: 16145588
Suboccipital craniectomy; vestibular nerve; microvascular decompression; headache
16.  "Syndrome of the Sinking Skin-Flap" Secondary to the Ventriculoperitoneal Shunt after Craniectomy 
The syndrome of the sinking skin flap was introduced to explain the phenomenon of neurological deterioration after decompressive craniectomy. A 37-year-old man was admitted with acute subdural hematoma and traumatic intraparenchymal hematoma. After decompressive craniectomy, the patient suffered from hydrocephalus for which a ventriculoperitoneal (V-P) shunt was inserted. Following this procedure, the depression of the skin flap became remarkable and his mentation was deteriorated. The patient recovered uneventfully after temporary elevating of valve pressure and cranioplasty. We present a patient who was successfully managed with elevation of valve pressure and cranioplasty for the syndrome of the sinking scalp flap with review of a pertinent literature.
PMCID: PMC2588152  PMID: 19096548
Craniectomy; Cranioplasty; Syndrome of sinking scalp flap; Ventriculoperitoneal shunt
17.  The “Skull Flap” a new conceived device for decompressive craniectomy experimental study on dogs to evaluate the safety and efficacy in reducing intracranial pressure and subsequent impact on brain perfusion 
Decompressive craniectomy (DC) is a procedure performed increasingly often in current neurosurgical practice. Significant perioperative morbidity may be associated to this procedure because of the large skull defect; also, later closure of the skull defect (cranioplasty) may be associated to post-operative morbidity as much as any other reconstructive operation. The authors present a newly conceived/developed device: The “Skull Flap” (SF). This system, placed at the time of the craniectomy, offers the possibility to provide cranial reconstruction sparing patients a second operation. In other words, DC and cranioplasty essentially take place at the same time and in addition, patients retain their own bone flap. The current study conducted on animal models, represents the logical continuation of a prior recent study, realized on cadaver specimens, to assess the efficacy and safety of this recently developed device.
Materials and Methods:
This is an experimental pilot study on dogs to assess both safety and efficacy of the SF device. Two groups of experimental raised intracranial pressure animal models underwent DC; in the first group of dogs, the bone flap was left in raised position above the skull defect using the SF device; on the second group the flap was discarded. All dogs underwent transcranial Doppler (TCD) to assess brain perfusion. Head computed tomography (CT) scan to determine flap position was also obtained in the group in which the SF device was placed.
SF has proved to be a strong fixation device that allows satisfactory brain decompression by keeping the bone flap elevated from the swollen brain; later on, the SF allows cranial reconstruction in a simple way without requiring a second staged operation. In addition, it is relevant to note that brain perfusion was measured and found to be better in the group receiving the SF (while the flap being in a raised as well as in its natural position) comparing to the other group.
The SF device has proved to be very easy to place, well-adaptable to a different type of flaps and ultimately very effective in maintaining satisfactory brain decompression and later on, making easy bone flap repositioning after brain swelling has subsided.
PMCID: PMC3858761  PMID: 24347949
Brain perfusion; cranioplasty; decompressive craniectomy; new device and technique; skull flap; trans-cranial Doppler
18.  Clinical spectrum and radiographic features of the syndrome of the trephined 
Craniectomy is a common neurosurgical procedure. Syndrome of the trephined (ST) occurring after craniectomy results in neurologic symptoms that are reversible with cranioplasty. While well-documented, previous literature consisted of case reports, symptom spectrum and risk factors have not been well characterized.
Materials and Methods:
A retrospective review of 29 consecutive cases who underwent decompressive craniectomy within a 30-month period was performed. Patients were considered affected by ST if a previously stable neurological deficit improved within 3 weeks after cranioplasty. Prevalence of ST was measured and association with demographic information, clinical symptoms patterns, indication for and size of craniectomy, as well as radiological signs were tested.
Seven patients (24%) developed ST. Chronic rehabilitation arrest was more common than acute neurologic decline. Factors such as craniectomy size and patient age did not reach statistical significance in development of ST. Radiographic factors were predictive, with a sunken skin flap contour being most sensitive, while ventricular effacement was most specific.
ST may have a higher incidence than previously thought, with a chronic rehabilitation arrest being a more common presentation than an acute decline. Medical providers involved in the post surgical care and rehabilitation of these patients should maintain a high index of suspicion for ST.
PMCID: PMC4481810  PMID: 26167039
Craniectomy; trephined; trauma; rehabilitation
19.  Case report of MR perfusion imaging in Sinking Skin Flap Syndrome: growing evidence for hemodynamic impairment 
BMC Neurology  2010;10:80.
The syndrome of the sinking skin flap (SSSF) with delayed sensorimotor deficits after craniectomy is not well known and often neglected. Among various postulated causes, there is evidence that disturbed brain perfusion may be related to the observed symptoms, and that cranioplasty reliably alleviates these symptoms. We report a case of sinking skin flap syndrome (SSFS) with recovery from neurological sensorimotor deficits after cranioplasty correlated with pre- and postsurgical MR brain perfusion studies.
Case Presentation
A 42-year-old woman presented with slowly progressive sensorimotor paresis of her left arm after decompressive extensive craniectomy due to subarachnoid hemorrhage four months ago. Her right cranium showed a "sinking skin flap". After cranioplastic repair of her skull defect, the patient fully recovered from her symptoms. Before cranioplasty, reduced brain perfusion in the right central cortical region was observed in MR-perfusion images. After cranioplasty, a marked increase in brain perfusion was observed which correlated with objective clinical recovery.
There is increasing evidence that impaired blood flow is responsible for delayed motor deficits in patients with sinking skin flap syndrome in the area of compressed brain regions. Symptoms should be evaluated by brain perfusion imaging complementing surgical decision-making.
PMCID: PMC2944122  PMID: 20831824
20.  Multimodal imaging of recovery of functional networks associated with reversal of paradoxical herniation after cranioplasty 
Clinical imaging  2011;35(4):253-258.
Cranioplasty following decompressive craniectomy is reported to result in improved blood flow, cerebral metabolism, and concomitant neurological recovery. We used multimodal functional imaging technology in a patient with marked neurological recovery after cranioplasty, specifically, imaging of functional MRI resting state networks, auditory responses, and cerebral metabolism before and after cranioplasty. Significant functional changes observed in the images correlated with the subject’s neurological recovery. Our results suggest a link between recovery of cerebral metabolism and intrinsic brain mechanisms of cerebral vascular integration and resting state networks identified with functional MRI following cranioplasty.
PMCID: PMC3129541  PMID: 21724116
Cranioplasty; resting state functional MRI; functional MRI; positron emission tomography
21.  Comparative Study of Outcomes between Shunting after Cranioplasty and in Cranioplasty after Shunting in Large Concave Flaccid Cranial Defect with Hydrocephalus 
The cranioplasty and ventriculoperitoneal (VP) shunt operation have been used to treat a large cranial defect with posttraumatic hydrocephalus (PTH). The aim of this study was to evlauate the difference of outcomes between in the shunting after the cranioplasty (group 1) and the cranioplasty after the shunting (group 2) in a large flaccid cranial defect with PTH.
In this study, a retrospective review was done on 23 patients undergoing the cranioplasty and VP shunt operation after the decompressive craniectomy for a refractory intracranial hypertension from 2002 to 2005. All of 23 cases had a large flaccid concave cranial defect and PTH. Ten cases belong to group 1 and 13 cases to group 2. The outcomes after operations were compared in two groups 6 months later.
The improvement of Glasgow outcome scale (GOS) was seen in 8 cases (80.0%) of total 10 cases in group 1, and 6 cases (46.2%) of 13 cases in group 2. Three (75.0%) of 4 cases with hemiparesis in group 1 and 3 of 6 cases (50.0%) in group 2 were improved. All cases (2 cases) with decrease of visual acuity were improved in each group. Dysphasia was improved in 3 of 5 cases (60%) in group 1 and 4 of 6 cases (66.6%) in group 2.
These results suggest that outcomes in group 1 may be better than in group 2 for a large flaccid concave cranial defect with PTH.
PMCID: PMC2588309  PMID: 19096679
Large flaccid concave cranial defect; Cranioplasty; Shunt
22.  Dynamics of cerebral blood flow and metabolism in patients with cranioplasty as evaluated by 133Xe CT and 31P magnetic resonance spectroscopy. 
OBJECTIVE--Prolonged improvement in neurological and mental disorders has been seen after only cranioplasty in patients initially treated with external decompression for high intracranial pressure. The objective was to evaluate, using 133Xe CT and 31P magnetic resonance spectroscopy (MRS), how restoring the bone itself can influence cerebral blood flow and cerebral energy metabolism after high intracranial pressure is attenuated. METHODS--Seven patients (45-65 years old) who had undergone external decompression to prevent uncontrollable intracranial hypertension after acute subarachnoid haemorrhage were evaluated. Cerebral blood flow and metabolic changes were evaluated before and after cranioplasty. RESULTS--The ratio of phosphocreatine to inorganic phosphate (PCr/Pi), which is a sensitive index of cerebral energy depletion, was calculated and beta-ATP was measured. The cerebral blood flow value in the thalamus was normalised, from 44 (SD 9) to 56 (SD 8) ml/100 g/min (P < 0.01) and the value in the hemisphere increased from 26 (SD 3) to 29 (SD 4) ml/100 g/min on the side with the bone defect. The PCr/Pi ratio improved greatly from 2.53 (SD 0.45) to 3.01 (SD 0.24) (P < 0.01). On the normal side, the values of cerebral blood flow and PCr/Pi increased significantly (P < 0.01) after cranioplasty, possibly due to transneural suppression. The pH of brain tissue was unchanged bilaterally after cranioplasty. CONCLUSION--Cranioplasty should be carried out as soon as oedema has disappeared, because a bone defect itself may decrease cerebral blood flow and disturb energy metabolism.
PMCID: PMC1073990  PMID: 8708684
23.  Decompressive craniectomy and early cranioplasty in a 15-year-old boy with N. meningitidis meningitis 
Intracranial hypertension is a well-known life-threatening complication of bacterial meningitis. Investigations on decompressive craniectomy after failure of conservative management are scarce, but this surgical treatment should be considered and performed expeditiously, as it lowers the intracranial pressure and improves brain tissue oxygenation. Early cranioplasty can further aid the rehabilitation.
Case Description:
A 15-year-old boy was admitted to our emergency department because of sudden onset of neurologic decline and consecutive loss of consciousness. Clinical examination and imaging showed elevated intracranial pressure, leading to the suspected diagnosis of meningitis. Intracranial pressure monitoring was installed, but the initiated conservative management failed. Finally, the patient underwent bilateral decompressive craniectomy. The microbiological test showed growth of Neisseria meningitidis. After full neurologic recovery, cranioplasty with two CAD/CAM titanium implants was conducted successfully.
This unique report shows that decompressive craniotomy with duroplasty may be a crucial therapeutic approach in bacterial meningitis with refractory increased intracranial pressure and brainstem compression. Early cranioplasty with a patient-specific implant allowed the early and full reintegration of the patient.
PMCID: PMC4399170  PMID: 25883850
Cranioplasty; computer-aided design/computer-aided manufacturing; encephalitis; intracranial pressure; meningococcal disease; meningitis; Neisseria meningitidis; W/Y-135
24.  Using the head as a mould for cranioplasty with methylmethacrylate 
Methacrylate is a valuable tool to the neurosurgeon, even though it is currently being replaced by custom bone. During cranioplasty in the absence of custom bone, which is preformed based on the patients imaging, one has to make a cast to cover the cranial defect with or without the use of a mould. A good artificial skull outline is necessary for prevention of implant extrusion and acceptable cosmetic outcome. Using the patients head as a mould is a simple, cheap, and useful technique. An incision is made, and either a craniectomy or an attempt at skull elevation or separation of the scalp from dura is done based on the indication for the cranioplasty. The methacrylate monomer is mixed with its solvent. It is placed in between a sliced glove and then thinned out. Several layers of drapes are placed on the patients head, the acrylate which is in between the gloves is then placed on the drapes. As soon as it starts setting and the required shape obtained, it is removed and place on the sterile tray. It is then anchored and the wound closed. This technique produces good cosmetic outcome. However, the head must be properly protected from the risk of burns from the exothermic reaction. The technique is described in a 40-year-old driver who had a compound depressed skull fracture. He had a methylmethacrylate cranioplasty in the 9th week post trauma after allowing for wound healing. We recommend that this technique may be used in centers where custom bone is either too expensive or not available during cranioplasty in order to obtain a good outcome.
PMCID: PMC3858776  PMID: 24347964
Acrylate; cranial defects; cranioplast; cranioplasty; decompressive craniectomy; mould; head; polymethylmethacrylate
25.  Vascularized Mastoid Bone Flap Cranioplasty after Translabyrinthine Vestibular Schwannoma Surgery 
Skull Base  2009;19(3):193-201.
Objective: We describe a novel technique of cranioplasty using a vascularized mastoid bone flap in patients after translabyrinthine excision of vestibular schwannomas (VS). Postoperative outcomes in terms of pinna and postauricular deformity are evaluated. Study Design: Retrospective study. Setting: Tertiary referral center. Results: Seventeen patients underwent cranioplasty with bone flap after translabyrinthine VS excision. At minimum follow-up of 12 months, none had a cerebrospinal fluid (CSF) leak. The measured pinna projections between the operated and non-operated sides had a mean difference of 0.80 mm (±1.70), which is not statistically significant (p > 0.05). The mean depth of the postauricular depressions was 1.38 mm (±0.93). Over the same period, 10 patients underwent translabyrinthine VS surgery without cranioplasty. In this group, there was a significant difference of 4.71 mm (±1.53) in mean pinna underprojections on the operated sides compared with the non-operated sides. Compared with patients who have undergone cranioplasty, the retroauricular depressions were significantly deeper (p < 0.05) with a mean depth of 2.92 mm (±1.21). Conclusions: Vascularized mastoid cortical bone flap cranioplasty is a simple and effective technique to ameliorate the pinna and retroauricular deformities after translabyrinthine VS excision without increased surgical cost or the use of alloplastic materials.
PMCID: PMC2702192  PMID: 19881899
Vascularized bone flap; cranioplasty; vestibular schwannoma; mastoid reconstruction

Results 1-25 (1222034)