PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (428061)

Clipboard (0)
None

Related Articles

1.  Protein Clearance Mechanisms of Alpha-Synuclein and Amyloid-Beta in Lewy Body Disorders 
Protein clearance is critical for the maintenance of the integrity of neuronal cells, and there is accumulating evidence that in most—if not all—neurodegenerative disorders, impaired protein clearance fundamentally contributes to functional and structural alterations eventually leading to clinical symptoms. Dysfunction of protein clearance leads to intra- and extraneuronal accumulation of misfolded proteins and aggregates. The pathological hallmark of Lewy body disorders (LBDs) is the abnormal accumulation of misfolded proteins such as alpha-synuclein (Asyn) and amyloid-beta (Abeta) in a specific subset of neurons, which in turn has been related to deficits in protein clearance. In this paper we will highlight common intraneuronal (including autophagy and unfolded protein stress response) and extraneuronal (including interaction of neurons with astrocytes and microglia, phagocytic clearance, autoimmunity, cerebrospinal fluid transport, and transport across the blood-brain barrier) protein clearance mechanisms, which may be altered across the spectrum of LBDs. A better understanding of the pathways underlying protein clearance—in particular of Asyn and Abeta—in LBDs may result in the identification of novel biomarkers for disease onset and progression and of new therapeutic targets.
doi:10.1155/2012/391438
PMCID: PMC3485523  PMID: 23133788
2.  Cerebrospinal Fluid Levels of sAPPα and sAPPβ in Lewy Body and Alzheimer's Disease: Clinical and Neurochemical Correlates 
We measured cerebrospinal fluid (CSF) levels of the soluble isoforms of amyloid precursor protein (APP; sAPPα sAPPβ) and other CSF biomarkers in 107 patients with Alzheimer's disease (AD), dementia with Lewy body dementia (DLB), Parkinson's disease dementia (PDD), and normal controls (NC) using commercial kits. DLB and PDD were combined in a Lewy body dementia group (LBD). No differences were observed in sAPPα and sAPPβ levels between the groups. Significant correlations were observed between sAPPα and sAPPβ and between sAPPβ and Mini-Mental State Examination scores in the total group analysis as well as when LBD and AD groups were analyzed separately. sAPPα and sAPPβ levels correlated with Aβ38, Aβ40, Aβ42, and Tau in the LBD group. In AD, sAPPα correlated with p-Tau and sAPPβ with Aβ40. The differential association between sAPPα and sAPPβ with Aβ and Tau species between LBD and AD groups suggests a possible relationship with the underlying pathologies in LBD and AD.
doi:10.4061/2011/495025
PMCID: PMC3182340  PMID: 21966597
3.  Low CSF Levels of Both α-Synuclein and the α-Synuclein Cleaving Enzyme Neurosin in Patients with Synucleinopathy 
PLoS ONE  2013;8(1):e53250.
Neurosin is a protease that in vitro degrades α-synuclein, the main constituent of Lewy bodies found in brains of patients with synucleinopathy including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Several studies have reported reduced cerebrospinal fluid (CSF) levels of α-synuclein in synucleinopathy patients and recent data also proposes a significant role of α-synuclein in the pathophysiology of Alzheimer's disease (AD). To investigate potential links between neurosin and its substrate α-synuclein in vivo we used a commercially available sandwich ELISA and an in-house developed direct ELISA to quantify CSF levels of α-synuclein and neurosin in patients diagnosed with DLB, PD and PD dementia (PDD) versus AD patients and non-demented controls. We found that patients with synucleinopathy displayed lower CSF levels of neurosin and α-synuclein compared to controls and AD patients. In contrast, AD patients demonstrated significantly increased CSF α-synuclein but similar neurosin levels compared to non-demented controls. Further, CSF neurosin and α-synuclein concentrations were positively associated in controls, PD and PDD patients and both proteins were highly correlated to CSF levels of phosphorylated tau in all investigated groups. We observed no effect of gender or presence of the apolipoprotein Eε4 allele on neither neurosin or α-synuclein CSF levels. In concordance with the current literature our study demonstrates decreased CSF levels of α-synuclein in synucleinopathy patients versus AD patients and controls. Importantly, decreased α-synuclein levels in patients with synucleinopathy appear linked to low levels of the α-synuclein cleaving enzyme neurosin. In contrast, elevated levels of α-synuclein in AD patients were not related to any altered CSF neurosin levels. Thus, altered CSF levels of α-synuclein and neurosin in patients with synucleinopathy versus AD may not only mirror disease-specific neuropathological mechanisms but may also serve as fit candidates for future biomarker studies aiming at identifying specific markers of synucleinopathy.
doi:10.1371/journal.pone.0053250
PMCID: PMC3540093  PMID: 23308173
4.  Bridging Molecular Genetics and Biomarkers in Lewy Body and Related Disorders 
Recent advances have been made in defining the genetic and molecular basis of dementia with Lewy bodies (DLBs) and related neurodegenerative disorders such as Parkinson's disease (PD) and Parkinson's disease dementia (PDD) which comprise the spectrum of “Lewy body disorders” (LBDs). The genetic alterations and underlying disease mechanisms in the LBD overlap substantially, suggesting common disease mechanisms. As with the other neurodegenerative dementias, early diagnosis in LBD or even identification prior to symptom onset is key to developing effective therapeutic strategies, but this is dependent upon the development of robust, specific, and sensitive biomarkers as diagnostic tools and therapeutic endpoints. Recently identified mutations in the synucleins and other relevant genes in PD and DLB as well as related biomolecular pathways suggest candidate markers from biological fluids and imaging modalities that reflect the underlying disease mechanisms. In this context, several promising biomarkers for the LBD have already been identified and examined, while other intriguing possible candidates have recently emerged. Challenges remain in defining their correlation with pathological processes and their ability to detect DLB and related disorders, and perhaps a combined array of biomarkers may be needed to distinguish various LBDs.
doi:10.4061/2011/842475
PMCID: PMC3132544  PMID: 21760990
5.  APOE ε4 Increases Risk for Dementia in Pure Synucleinopathies 
JAMA neurology  2013;70(2):223-228.
Objective
To test for an association between the apolipoprotein E (APOE) ε4 allele and dementias with synucleinopathy.
Design
Genetic case-control association study.
Setting
Academic research.
Patients
Autopsied subjects were classified into 5 categories: dementia with high-level Alzheimer disease (AD) neuropathologic changes (NCs) but without Lewy body disease (LBD) NCs (AD group; n=244), dementia with LBDNCs and high-level ADNCs (LBD-AD group; n=224), dementia with LBDNCs and no or low levels of ADNCs (pure DLB [pDLB] group; n=91), Parkinson disease dementia (PDD) with no or low levels of ADNCs (n=81), and control group (n=269).
Main Outcome Measure
The APOE allele frequencies.
Results
The APOE ε4 allele frequency was significantly higher in the AD (38.1%), LBD-AD (40.6%), pDLB (31.9%), and PDD (19.1%) groups compared with the control group (7.2%; overall χ42=185.25; P=5.56×10−39), and it was higher in the pDLB group than the PDD group (P=.01). In an age-adjusted and sex-adjusted dominant model, ε4 was strongly associated with AD (odds ratio, 9.9; 95% CI, 6.4–15.3), LBD-AD (odds ratio, 12.6; 95% CI, 8.1–19.8), pDLB (odds ratio, 6.1; 95% CI, 3.5–10.5), and PDD (odds ratio, 3.1; 95% CI, 1.7–5.6).
Conclusions
The APOE ε4 allele is a strong risk factor across the LBD spectrum and occurs at an increased frequency in pDLB relative to PDD. This suggests that ε4 increases the likelihood of presenting with dementia in the context of a pure synucleinopathy. The elevated ε4 frequency in the pDLB and PDD groups, in which the overall brain neuritic plaque burden was low, indicates that apoE might contribute to neurodegeneration through mechanisms unrelated to amyloid processing.
doi:10.1001/jamaneurol.2013.600
PMCID: PMC3580799  PMID: 23407718
6.  Dementia in Parkinson's Disease Correlates with α-Synuclein Pathology but Not with Cortical Astrogliosis 
Parkinson's Disease  2012;2012:420957.
Dementia is a common feature in Parkinson's disease (PD) and is considered to be the result of limbic and cortical Lewy bodies and/or Alzheimer changes. Astrogliosis may also affect the development of dementia, since it correlates well with declining cognition in Alzheimer patients. Thus, we determined whether cortical astrogliosis occurs in PD, whether it is related to dementia, and whether this is reflected by the presence of glial fibrillary acidic protein (GFAP) and vimentin in cerebrospinal fluid (CSF). We have examined these proteins by immunohistochemistry in the frontal cortex and by Western blot in CSF of cases with PD, PD with dementia (PDD), dementia with Lewy bodies (DLB) and nondemented controls. We were neither able to detect an increase in cortical astrogliosis in PD, PDD, or DLB nor could we observe a correlation between the extent of astrogliosis and the degree of dementia. The levels of GFAP and vimentin in CSF did not correlate to the extent of astrogliosis or dementia. We did confirm the previously identified positive correlation between the presence of cortical Lewy bodies and dementia in PD. In conclusion, we have shown that cortical astrogliosis is not associated with the cognitive decline in Lewy body-related dementia.
doi:10.1155/2012/420957
PMCID: PMC3347756  PMID: 22577599
7.  Small Heat Shock Proteins Protect Against α-Synuclein-Induced Toxicity and Aggregation 
Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson’s disease (PD), Alzheimer’s disease (AD) or Huntington’s disease (HD). Alpha-synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB) and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and αB-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are ~2–3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by ~80% in a culture model while αB-crystallin reduces toxicity by ~20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.
doi:10.1016/j.bbrc.2006.10.085
PMCID: PMC1934426  PMID: 17081499
α-synuclein; Parkinson’s disease; Lewy body; protein misfolding; heat shock proteins; neurodegenerative disease
8.  Presence of Striatal Amyloid Plaques in Parkinson’s Disease Dementia Predicts Concomitant Alzheimer’s Disease: Usefulness for Amyloid Imaging 
Dementia is a frequent complication of Parkinson’s disease (PD). About half of PD dementia (PDD) is hypothesized to be due to progression of the underlying Lewy body pathology into limbic regions and the cerebral cortex while the other half is thought to be due to coexistent Alzheimer’s disease. Clinically, however, these are indistinguishable. The spread of amyloid plaques to the striatum has been reported to be a sensitive and specific indicator of dementia due to Alzheimer’s disease (AD). The purpose of the present study was to determine if the presence of striatal plaques might also be a useful indicator of the presence of diagnostic levels of AD pathology within PD subjects. We analyzed neuropathologically-confirmed cases of PD without dementia (PDND, N = 31), PDD without AD (PDD, N = 31) and PD with dementia meeting clinicopathological criteria for AD (PDAD, N =40). The minimum diagnostic criterion for AD was defined as including a clinical history of dementia, moderate or frequent CERAD cortical neuritic plaque density and Braak neurofibrillary stage III–VI. Striatal amyloid plaque densities were determined using Campbell-Switzer and Thioflavine S stains. Striatal plaque densities were significantly higher in PDAD compared to PDD (p<0.001). The presence of striatal plaques was approximately 80% sensitive and 80% specific for predicting AD. In comparison, the presence of cerebral cortex plaques alone was highly sensitive (100%) but had poor specificity (48% to 55%). The results suggest that striatal amyloid imaging may be clinically useful for making the distinction between PDD and PDAD.
doi:10.3233/JPD-2012-11073
PMCID: PMC3423968  PMID: 22924088
striatum; Lewy body; diagnosis; autopsy; neuropathology; biomarker
9.  α-Synuclein as CSF and Blood Biomarker of Dementia with Lewy Bodies 
Dementia with Lewy bodies (DLB) is a common subtype of dementia in the elderly. DLB is neuropathologically characterized by the presence of Lewy bodies and Lewy neurites, both of which are composed of α-synuclein. Although α-synuclein was initially considered to be an exclusively intracellular protein, it has been found to be secreted into biological fluids. α-Synuclein in biological fluids such as cerebrospinal fluid (CSF) and blood has been discussed as a potential biomarker of DLB and α-synuclein-related disorders, because α-synuclein is characteristically accumulated in the brain of patients with these disorders. The α-synuclein level in CSF has been examined by several investigators, and the majority of studies have shown a reduction in CSF α-synuclein level in DLB and α-synuclein-related disorders. Discrepant findings of studies of plasma α-synuclein level in patients with DLB have been reported. Because the level of α-synuclein stored in red blood cells is considerably high, blood contamination and haemolysis during sample collection and processing should be considered as a confounding factor for quantification of α-synuclein. Here, the recent progress in the studies of α-synuclein as a biomarker of DLB and their potential clinical applications are reviewed.
doi:10.1155/2012/437025
PMCID: PMC3463927  PMID: 23056991
10.  GBA mutations increase risk for Lewy body disease with and without Alzheimer disease pathology 
Neurology  2012;79(19):1944-1950.
Objectives:
Mutations in the GBA gene occur in 7% of patients with Parkinson disease (PD) and are a well-established susceptibility factor for PD, which is characterized by Lewy body disease (LBD) neuropathologic changes (LBDNCs). We sought to determine whether GBA influences risk of dementia with LBDNCs, Alzheimer disease (AD) neuropathologic changes (ADNCs), or both.
Methods:
We screened the entire GBA coding region for mutations in controls and in subjects with dementia and LBDNCs and no or low levels of ADNCs (pure dementia with Lewy bodies [pDLB]), LBDNCs and high-level ADNCs (LBD-AD), and high-level ADNCs but without LBDNCs (AD).
Results:
Among white subjects, pathogenic GBA mutations were identified in 6 of 79 pDLB cases (7.6%), 8 of 222 LBD-AD cases (3.6%), 2 of 243 AD cases (0.8%), and 3 of 381 controls (0.8%). Subjects with pDLB and LBD-AD were more likely to carry mutations than controls (pDLB: odds ratio [OR] = 7.6; 95% confidence interval [CI] = 1.8–31.9; p = 0.006; LBD-AD: OR = 4.6; CI = 1.2–17.6; p = 0.025), but there was no significant difference in frequencies between the AD and control groups (OR = 1.1; CI = 0.2–6.6; p = 0.92). There was a highly significant trend test across groups (χ2(1) = 19.3; p = 1.1 × 10−5), with the likelihood of carrying a GBA mutation increasing in the following direction: control/AD < LBD-AD < pDLB.
Conclusions:
GBA is a susceptibility gene across the LBD spectrum, but not in AD, and appears to convey a higher risk for PD and pDLB than for LBD-AD. PD and pDLB might be more similar to one another in genetic determinants and pathophysiology than either disease is to LBD-AD.
doi:10.1212/WNL.0b013e3182735e9a
PMCID: PMC3484986  PMID: 23035075
11.  Performance on the dementia rating scale in Parkinson's disease with dementia and dementia with Lewy bodies: comparison with progressive supranuclear palsy and Alzheimer's disease 
Background: The relation between dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD) is unknown.
Objectives: To compare the cognitive profiles of patients with DLB and PDD, and compare those with the performance of patients with a subcortical dementia (progressive supranuclear palsy) and a cortical dementia (Alzheimer's disease).
Design: Survey of cognitive features.
Setting: General community in Rogaland county, Norway, and a university dementia and movement disorder research centre in the USA.
Patients: 60 patients with DLB, 35 with PDD, 49 with progressive supranuclear palsy, and 29 with Alzheimer's disease, diagnosed by either standardised clinical procedures and criteria (all PDD and Alzheimer cases and 76% of cases of progressive supranuclear palsy), or necropsy (all DLB cases and 24% of cases of progressive supranuclear palsy). Level of dementia severity was matched using the total score on the dementia rating scale adjusted for age and education.
Main outcome measures: Dementia rating scale subscores corrected for age.
Results: No significant differences between the dementia rating scale subscores in the PDD and DLB groups were found in the severely demented patients; in patients with mild to moderate dementia the conceptualisation subscore was higher in PDD than in DLB (p = 0.03). Compared with Alzheimer's disease, PDD and DLB had higher memory subscores (p < 0.001) but lower initiation and perseveration (p = 0.008 and p=0.021) and construction subscores (p = 0.009 and p = 0.001). DLB patients had a lower conceptualisation subscore (p = 0.004). Compared with progressive supranuclear palsy, PDD and DLB patients had lower memory subscores (p < 0.001).
Conclusions: The cognitive profiles of patients with DLB and PDD were similar, but they differed from those of patients with Alzheimer's disease and progressive supranuclear palsy. The cognitive pattern in DLB and PDD probably reflects the superimposition of subcortical deficits upon deficits typically associated with Alzheimer's disease.
doi:10.1136/jnnp.74.9.1215
PMCID: PMC1738667  PMID: 12933921
12.  Lewy Body Pathology in Normal Elderly Subjects 
Lewy body and Lewy neurite formation are the hallmark neuropathological findings in Parkinson’s disease (PD), Parkinson’s disease with dementia (PDD), dementia with Lewy bodies (DLB), and other alpha-synucleinopathies. They also have been described in the brains of normal older individuals and referred to as incidental Lewy body disease. The purpose of this study was to determine the prevalence of Lewy bodies and Lewy neurites (Lewy body pathology; LBP) in 139 autopsies from our normal volunteer control group of the University of Kentucky Alzheimer’s Disease Center. All subjects were followed longitudinally and were cognitively normal without any type of movement disorder, neuropsychiatric features, or other CNS findings. Thirty-three out of 139 normal subjects contained LBP in various brain regions. The most common regions involved were the medulla (26%), amygdala (24%), pons (20%), and midbrain (20%). No mean statistical differences were found between those with and without LBP on any demographic or cognitive variable, Braak stage, or neurofibrillary tangle and neuritic plaque quantitation. The high prevalence of LBP in our elderly, well educated group is not clear although it does not appear to be related to aging or the presence of AD pathology. Overall, our findings support the concept that incidental Lewy body disease most likely represents preclinical or presymptomatic PD, PDD or DLB.
doi:10.1097/NEN.0b013e3181ac10a7
PMCID: PMC2704264  PMID: 19535990
Aging; Alpha-synucleinopathies; Lewy bodies; Lewy neurites
13.  Impairment of script comprehension in Lewy body spectrum disorders 
Brain and language  2013;125(3):330-343.
A disabling impairment of higher-order language function can be seen in patients with Lewy body spectrum disorders such as Parkinson's disease (PD), Parkinson's disease dementia (PDD), and dementia with Lewy bodies (DLB). We focus on script comprehension in patients with Lewy body spectrum disorders. While scripts unfold sequentially, constituent events are thought to contain an internal organization. Executive dysfunction in patients with Lewy body spectrum disorders may interfere with comprehension of this internal structure. We examined 42 patients (30 non-demented PD and 12 mildly demented PDD/DLB patients) and 12 healthy seniors. We presented 22 scripts (e.g., “going fishing”), each consisting of six events. Pilot data from young controls provided the basis for organizing associated events into clusters and arranging them hierarchically into scripts. We measured accuracy and latency to judge the order of adjacent events in the same cluster versus adjacent events in different clusters. PDD/DLB patients were less accurate in their ordering judgments than PD patients and controls. Healthy seniors and PD patients were significantly faster to judge correctly the order of highly associated within-cluster event pairs relative to less closely associated different-cluster event pairs, while PDD/DLB patients did not consistently distinguish between these event-pair types. This relative insensitivity to the clustered-hierarchical organization of events was related to executive impairment and to frontal atrophy as measured by volumetric MRI. These findings extend prior work on script processing to patients with Lewy body spectrum disorders and highlight the potential impact of frontal/executive dysfunction on the daily lives of affected patients.
doi:10.1016/j.bandl.2013.02.006
PMCID: PMC3940934  PMID: 23566691
Parkinson's disease; Parkinson's disease dementia; Dementia with Lewy bodies; Frontal cortex; Executive function; Scripts; Organization; Discourse; Volumetric MRI
14.  Selective Molecular Alterations in the Autophagy Pathway in Patients with Lewy Body Disease and in Models of α-Synucleinopathy 
PLoS ONE  2010;5(2):e9313.
Background
Lewy body disease is a heterogeneous group of neurodegenerative disorders characterized by α-synuclein accumulation that includes dementia with Lewy bodies (DLB) and Parkinson's Disease (PD). Recent evidence suggests that impairment of lysosomal pathways (i.e. autophagy) involved in α-synuclein clearance might play an important role. For this reason, we sought to examine the expression levels of members of the autophagy pathway in brains of patients with DLB and Alzheimer's Disease (AD) and in α-synuclein transgenic mice.
Methodology/Principal Findings
By immunoblot analysis, compared to controls and AD, in DLB cases levels of mTor were elevated and Atg7 were reduced. Levels of other components of the autophagy pathway such as Atg5, Atg10, Atg12 and Beclin-1 were not different in DLB compared to controls. In DLB brains, mTor was more abundant in neurons displaying α-synuclein accumulation. These neurons also showed abnormal expression of lysosomal markers such as LC3, and ultrastructural analysis revealed the presence of abundant and abnormal autophagosomes. Similar alterations were observed in the brains of α-synuclein transgenic mice. Intra-cerebral infusion of rapamycin, an inhibitor of mTor, or injection of a lentiviral vector expressing Atg7 resulted in reduced accumulation of α-synuclein in transgenic mice and amelioration of associated neurodegenerative alterations.
Conclusions/Significance
This study supports the notion that defects in the autophagy pathway and more specifically in mTor and Atg7 are associated with neurodegeneration in DLB cases and α-synuclein transgenic models and supports the possibility that modulators of the autophagy pathway might have potential therapeutic effects.
doi:10.1371/journal.pone.0009313
PMCID: PMC2824828  PMID: 20174468
15.  SENTENCE PROCESSING IN LEWY BODY SPECTRUM DISORDER: THE ROLE OF WORKING MEMORY 
Brain and Cognition  2012;78(2):85-93.
Prior work has related sentence processing to executive deficits in non-demented patients with Parkinson’s disease (PD). We extended this investigation to patients with dementia with Lewy bodies (DLB) and PD dementia (PDD) by examining grammatical and working memory components of sentence processing in the full range of patients with Lewy body spectrum disorder (LBSD). Thirty-three patients with LBSD were given a two-alternative, forced-choice sentence-picture matching task. Sentence type, working memory, and grammatical structure were systematically manipulated in the sentences. We found that patients with PDD and DLB were significantly impaired relative to non-demented PD patients and healthy controls. The deficit in PDD/DLB was most pronounced for sentences lengthened by the strategic placement of an additional prepositional phrase and for sentences with an additional proposition due to a center-embedded clause. However, there was no effect for subject-relative versus object-relative grammatical structure. An MRI voxel-based morphometry analysis in a subset of patients showed significant gray matter thinning in the frontal lobe bilaterally, and this extended to temporal, parietal and occipital regions. A regression analysis related sentence processing difficulty in LBSD to frontal neocortex, including inferiorprefrontal, premotor, and dorsolateral prefrontal regions, as well as right superior temporal cortex. These findings are consistent with the hypothesis that patients with PDD and DLB have difficulty processing sentences with increased working memory demands and that this deficit is related in part to their frontal disease.
doi:10.1016/j.bandc.2011.12.004
PMCID: PMC3265703  PMID: 22218297
Lewy body; Parkinson’s; sentence processing; working memory; MRI; prefrontal
16.  Dementia with Lewy Bodies versus Alzheimer's Disease and Parkinson's Disease Dementia: A Comparison of Cognitive Profiles 
Background and Purpose
It is particularly difficult to differentiate dementia with Lewy bodies (DLB) from the related dementias of Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Few studies have been designed to comparatively analyze detailed neuropsychological assessments of DLB patients and patients with AD and PDD.
Methods
Three groups of patients participated in this study: 10 with DLB, 76 with AD, and 17 with PDD, who had been diagnosed as probable DLB, AD, and PDD, respectively, according to the clinical criteria of the consortium on DLB, National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer's Disease and Related Disorder Association, and the clinical diagnostic criteria for PDD. All patients were evaluated by careful neurological examination with detailed neuropsychological testing.
Results
Significant differences among the three groups were found for attention, memory, and executive function, which included tasks of backward digit span, three-word recall, verbal delayed recall, and the Stroop test. Post hoc analysis revealed that the deficiencies of attention on the digit span task were greater in the DLB group than in the AD and PDD groups. The scores for episodic verbal memory tasks were significantly lower in the DLB and AD groups than in the PDD group. The performance in frontal executive function, as indicated by the Stroop test, was significantly worse in the DLB and PDD groups than in the AD group.
Conclusions
The results of the present study show that the pattern of cognitive dysfunction, in terms of attention, episodic memory, and executive functions, differ between patients with DLB and patients with AD and PDD.
doi:10.3988/jcn.2011.7.1.19
PMCID: PMC3079155  PMID: 21519522
dementia with lewy bodies; Alzheimer's disease; Parkinson's disease dementia; cognition; neuropsychology
17.  Amyloid imaging of Lewy body-associated disorders 
Background
Clinicopathologic studies of Parkinson disease dementia (PDD) and dementia with Lewy bodies (DLB) commonly reveal abnormal β-amyloid deposition in addition to diffuse Lewy bodies (α-synuclein aggregates), but the relationship among these neuropathologic features and the development of dementia in these disorders remains uncertain.
Objective
To determine whether amyloid-βdeposition detected by PET imaging with Pittsburgh Compound B (PIB) distinguishes clinical subtypes of Lewy body-associated disorders.
Methods
Nine healthy controls (HC), eight PD with no cognitive impairment (PD-noCI), nine PD with mild cognitive impairment (PD-MCI), six dementia with Lewy bodies (DLB) and fifteen PD with dementia (PDD) patients underwent [11C]-PIB PET imaging, clinical examination, and cognitive testing. The binding potential (BP) of PIB for predefined regions and the mean cortical BP (MCBP) were calculated for each participant. Annual longitudinal follow-up and postmortem examinations were performed on a subset of participants.
Results
Regional PIB BPs and the proportion of individuals with abnormally elevated MCBP were not significantly different across participant groups. Elevated PIB binding was associated with worse global cognitive impairment in participants with Lewy body disorders but was not associated with any other clinical or neuropsychological features, including earlier onset or faster rate of progression of cognitive impairment.
Conclusions
These results suggest that the presence of fibrillar amyloid-βdoes not distinguish between clinical subtypes of Lewy body-associated disorders, although larger numbers are needed to more definitively rule out this association. Amyloid-βmay modify the severity of global cognitive impairment in individuals with Lewy body-associated dementia.
doi:10.1002/mds.23393
PMCID: PMC2978796  PMID: 20922808
Parkinson’s disease; Parkinson’s disease with dementia; Dementia with Lewy bodies; PET
18.  Impairments of Speech Fluency in Lewy Body Spectrum Disorder 
Brain and Language  2011;120(3):290-302.
Few studies have examined connected speech in demented and non-demented patients with Parkinson’s disease (PD). We assessed the speech production of 35 patients with Lewy body spectrum disorder (LBSD), including non-demented PD patients, patients with PD dementia (PDD), and patients with dementia with Lewy bodies (DLB), in a semi-structured narrative speech sample in order to characterize impairments of speech fluency and to determine the factors contributing to reduced speech fluency in these patients. Both demented and non-demented PD patients exhibited reduced speech fluency, characterized by reduced overall speech rate and long pauses between sentences. Reduced speech rate in LBSD correlated with measures of between-utterance pauses, executive functioning, and grammatical comprehension. Regression analyses related non-fluent speech, grammatical difficulty, and executive difficulty to atrophy in frontal brain regions. These findings indicate that multiple factors contribute to slowed speech in LBSD, and this is mediated in part by disease in frontal brain regions.
doi:10.1016/j.bandl.2011.09.004
PMCID: PMC3299896  PMID: 22099969
Parkinson’s disease; speech; language; fluency; dementia with Lewy bodies
19.  Incidental Lewy Body Disease: Do some cases represent a preclinical stage of Dementia with Lewy Bodies? 
Neurobiology of Aging  2009;32(5):857-863.
Lewy pathology occurs in 8–17% of neurologically-normal people >age 60, termed incidental Lewy body disease, (iLBD). It is often assumed to represent preclinical Parkinson disease (PD). However, some iLBD cases have diffuse pathology inconsistent with preclinical PD. We analyzed iLBD cases (α-synuclein immunohistochemistry) using the Braak PD staging scheme and determined if some had a neuropathological pattern suggestive of preclinical Dementia with Lewy bodies (DLB). Of the 235 brains examined, 34 had iLBD (14.5%) and all but one could be assigned a Braak PD stage. The distribution of α-synuclein pathology in the 33 cases fell into three patterns: (1) Diffuse cortical and subcortical α-synuclein pathology; (2) No cortical a-synuclein pathology, but a caudal-to-rostral ascending pattern, primarily involving brainstem; (3) Intermediate between these two categories. Also, 6/33 cases failed to follow the pattern of contiguous spread proposed by Braak. These findings suggest dichotomy in the distribution of iLBD: some cases fit the Braak ascending scheme, conceptually consistent with preclinical PD, whereas others displayed prominent cortical involvement that might represent preclinical DLB.
doi:10.1016/j.neurobiolaging.2009.05.019
PMCID: PMC3366193  PMID: 19560232
incidental Lewy body disease; parkinson disease; dementia with Lewy bodies
20.  Changes in Properties of Serine 129 Phosphorylated α-Synuclein with Progression of Lewy Type Histopathology in Human Brains 
Experimental neurology  2012;240:190-204.
Modifications of α-synuclein resulting in changes in its conformation are considered to be key pathological events for Lewy body diseases (LBD), which include Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). We have previously described a histopathological Unified Staging System for LBD that classifies the spread of α-synuclein phosphorylated at serine 129 (pS129-α-synuclein) from olfactory bulb to brainstem or limbic regions, and finally neocortex. Lewy bodies and Lewy neurites are highly enriched in pS129-α-synuclein. Increased formation of pS129-α-synuclein changes its solubility properties enhancing its tendency to aggregate and disrupt normal function. As in vitro and animal studies have shown that inhibiting formation of pS129-α-synuclein can prevent toxic consequences, this has become one of the therapeutic targets for LBD. However, detailed biochemical descriptions of the changes in pS129-α-synuclein properties in diseased human brains are needed to further our understanding of how these might contribute to molecular pathogenesis. In this study, we used 130 separate brain samples from cingulate cortex (limbic cortex) and 131 from temporal cortex (neocortex) that had been staged according to our Unified Staging System to examine progressive changes in properties of pS129-α-synuclein with the formation of progressively more severe histological Lewy-type pathology. The brain samples from these staged cases had been separated into cytosol-enriched, membrane-enriched (detergent soluble) and insoluble (ureas/SDS soluble) fractions. We also characterized the nature and appearance of higher molecular weight forms of pS129-α-synuclein. The major species was the 16 kD monomeric form; this accumulated with increasing stage with a large increase in Stage IV samples. By comparing two brain regions, we showed higher accumulation of insoluble pS129-α-synuclein in cingulate cortex, where histological deposits occur first, than in temporal cortex in samples with advanced (Stage IV) LB pathology.
doi:10.1016/j.expneurol.2012.11.020
PMCID: PMC3720241  PMID: 23201181
Western blots; Parkinson’s disease; antibodies; fractionation; post-translational modification; postmortem brain tissue; dementia with Lewy bodies; incidental Lewy body disease; pathogenesis; aggregation
21.  Imaging amyloid deposition in Lewy body diseases 
Neurology  2008;71(12):903-910.
Background:
Extrapyramidal motor symptoms precede dementia in Parkinson disease (PDD) by many years, whereas dementia occurs early in dementia with Lewy bodies (DLB). Despite this clinical distinction, the neuropsychological and neuropathologic features of these conditions overlap. In addition to widespread distribution of Lewy bodies, both diseases have variable burdens of neuritic plaques and neurofibrillary tangles characteristic of Alzheimer disease (AD).
Objectives:
To determine whether amyloid deposition, as assessed by PET imaging with the β-amyloid–binding compound Pittsburgh Compound B (PiB), can distinguish DLB from PDD, and to assess whether regional patterns of amyloid deposition correlate with specific motor or cognitive features.
Methods:
Eight DLB, 7 PDD, 11 Parkinson disease (PD), 15 AD, and 37 normal control (NC) subjects underwent PiB-PET imaging and neuropsychological assessment. Amyloid burden was quantified using the PiB distribution volume ratio.
Results:
Cortical amyloid burden was higher in the DLB group than in the PDD group, comparable to the AD group. Amyloid deposition in the PDD group was low, comparable to the PD and NC groups. Relative to global cortical retention, occipital PiB retention was lower in the AD group than in the other groups. For the DLB, PDD, and PD groups, amyloid deposition in the parietal (lateral and precuneus)/posterior cingulate region was related to visuospatial impairment. Striatal PiB retention in the DLB and PDD groups was associated with less impaired motor function.
Conclusions:
Global cortical amyloid burden is high in dementia with Lewy bodies (DLB) but low in Parkinson disease dementia. These data suggest that β-amyloid may contribute selectively to the cognitive impairment of DLB and may contribute to the timing of dementia relative to the motor signs of parkinsonism.
GLOSSARY
= Automated Anatomic Labeling;
= Alzheimer disease;
= Alzheimer’s Disease Research Center;
= American version of the National Adult Reading Test;
= analysis of covariance;
= Blessed Dementia Scale;
= cerebral amyloid angiopathy;
= Clinical Dementia Rating;
= Clinical Dementia Rating Sum of Boxes;
= dementia with Lewy bodies;
= distribution volume ratio;
= Cued Selective Reminding Test;
= Free Selective Reminding Test;
= Hoehn and Yahr;
= Massachusetts General Hospital;
= Mini-Mental State Examination;
= normal control;
= neurofibrillary tangle;
= Neuropsychiatric Inventory Questionnaire;
= not significant;
= Parkinson disease;
= Parkinson disease dementia;
= Pittsburgh Compound B;
= region of interest;
= Statistical Parametric Mapping;
= UK Parkinson’s Disease Society Brain Bank Research Center;
= United Parkinson’s Disease Rating Scale;
= Wechsler Adult Intelligence Scale–Revised.
doi:10.1212/01.wnl.0000326146.60732.d6
PMCID: PMC2637553  PMID: 18794492
22.  Motor subtype and cognitive decline in Parkinson's disease, Parkinson's disease with dementia, and dementia with Lewy bodies 
Background
A previous cross sectional study found over‐representation of a postural instability gait difficulty (PIGD) motor subtype in Parkinson's disease patients with dementia (PDD) and dementia with Lewy bodies (DLB), compared with Parkinson's disease (PD).
Aims
(1) To examine rates of cognitive and motor decline over two years in PD (n = 40), PDD (n = 42) and DLB (n = 41) subjects, compared with age matched controls (n = 41), (2) to record whether motor phenotypes of PD, PDD, and DLB subjects changed during the study, (3) to find out if cognitive and motor decline in PD was associated with baseline motor subtype, and (4) to report the incidence of dementia in PD patients in relation to baseline motor subtype.
Results
Most of PDD and DLB participants were PIGD subtype at baseline assessment. In the non‐demented PD group, tremor dominant (TD) and PIGD subtypes were more evenly represented. Cognitive decline over two years was greater in PDD and DLB groups (mean decline in MMSE −4.5 and −3.9, respectively), compared with PD (−0.2) and controls (−0.3). There was an association between PIGD subtype and increased rate of cognitive decline within the PD group. Of 40 PD patients, 25% of the 16 PIGD subtype developed dementia over two years, compared with none of the 18 TD or six indeterminate phenotype cases (χ2 = 6.7, Fisher's exact test p<0.05).
Conclusion
A PIGD motor subtype is associated with a faster rate of cognitive decline in PD and may be considered a risk factor for incident dementia in PD.
doi:10.1136/jnnp.2005.081711
PMCID: PMC2117449  PMID: 16614017
Lewy body disease; dementia; parkinsonism; motor subtype; progression
23.  Post mortem cerebrospinal fluid α-synuclein levels are raised in multiple system atrophy and distinguish this from the other α-synucleinopathies, Parkinson's disease and Dementia with Lewy bodies 
Neurobiology of Disease  2012;45(1):188-195.
Differentiating clinically between Parkinson's disease (PD) and the atypical parkinsonian syndromes of Progressive supranuclear palsy (PSP), corticobasal syndrome (CBS) and multiple system atrophy (MSA) is challenging but crucial for patient management and recruitment into clinical trials. Because PD (and the related disorder Dementia with Lewy bodies (DLB)) and MSA are characterised by the deposition of aggregated forms of α-synuclein protein (α-syn) in the brain, whereas CBS and PSP are tauopathies, we have developed immunoassays to detect levels of total and oligomeric forms of α-syn, and phosphorylated and phosphorylated oligomeric forms of α-syn, within body fluids, in an attempt to find a biomarker that will differentiate between these disorders. Levels of these 4 different forms of α-syn were measured in post mortem samples of ventricular cerebrospinal fluid (CSF) obtained from 76 patients with PD, DLB, PSP or MSA, and in 20 healthy controls. Mean CSF levels of total and oligomeric α-syn, and phosphorylated α-syn, did not vary significantly between the diagnostic groups, whereas mean CSF levels of phosphorylated oligomeric α-syn did differ significantly (p < 0.001) amongst the different diagnostic groups. Although all 4 measures of α-syn were higher in patients with MSA compared to all other diagnostic groups, these were only significantly raised (p < 0.001) in MSA compared to all other diagnostic groups, for phosphorylated oligomeric forms of α-syn. This suggests that this particular assay may have utility in differentiating MSA from control subject and patients with other α-synucleinopathies. However, it does not appear to be of help in distinguishing patients with PD and DLB from those with PSP or from control subjects. Western blots show that the principal form of α-syn within CSF is phosphorylated, and the finding that the phosphorylated oligomeric α-syn immunoassay appears to be the most informative of the 4 assays would be consistent with this observation.
doi:10.1016/j.nbd.2011.08.003
PMCID: PMC3657198  PMID: 21856424
Parkinson's disease; Dementia with Lewy Bodies; Multiple system atrophy; Alpha synuclein; Cerebrospinal fluid
24.  Combined Analysis of CSF Tau, Aβ42, Aβ1–42% and Aβ1–40ox% in Alzheimer's Disease, Dementia with Lewy Bodies and Parkinson's Disease Dementia 
We studied the diagnostic value of CSF Aβ42/tau versus low Aβ1–42% and high Aβ1–40ox% levels for differential diagnosis of Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), respectively. CSF of 45 patients with AD, 15 with DLB, 21 with Parkinson's disease dementia (PDD), and 40 nondemented disease controls (NDC) was analyzed by Aβ-SDS-PAGE/immunoblot and ELISAs (Aβ42 and tau). Aβ42/tau lacked specificity in discriminating AD from DLB and PDD. Best discriminating biomarkers were Aβ1–42% and Aβ1–40ox% for AD and DLB, respectively. AD and DLB could be differentiated by both Aβ1–42% and Aβ1–40ox% with an accuracy of 80% at minimum. Thus, we consider Aβ1–42% and Aβ1–40ox% to be useful biomarkers for AD and DLB, respectively. We propose further studies on the integration of Aβ1–42% and Aβ1–40ox% into conventional assay formats. Moreover, future studies should investigate the combination of Aβ1–40ox% and CSF alpha-synuclein for the diagnosis of DLB.
doi:10.4061/2010/761571
PMCID: PMC2938459  PMID: 20862375
25.  Olfactory bulb α-synucleinopathy has high specificity and sensitivity for Lewy body disorders 
Acta neuropathologica  2008;117(2):169-174.
Involvement of the olfactory bulb by Lewy-type α-synucleinopathy (LTS) is known to occur at an early stage of Parkinson's disease (PD) and Lewy body disorders and is therefore of potential usefulness diagnostically. An accurate estimate of the specificity and sensitivity of this change has not previously been available. We performed immunohistochemical α-synuclein staining of the olfactory bulb in 328 deceased individuals. All cases had received an initial neuropathological examination that included α-synuclein immunohistochemical staining on sections from brainstem, limbic and neocortical regions, but excluded olfactory bulb. These cases had been classified based on their clinical characteristics and brain regional distribution and density of LTS, as PD, dementia with Lewy bodies (DLB), Alzheimer's disease with LTS (ADLS), Alzheimer's disease without LTS (ADNLS), incidental Lewy body disease (ILBD) and elderly control subjects. The numbers of cases found to be positive and negative, respectively, for olfactory bulb LTS were: PD 55/3; DLB 34/1; ADLS 37/5; ADNLS 19/84; ILBD 14/7; elderly control subjects 5/64. The sensitivities and specificities were, respectively: 95 and 91% for PD versus elderly control; 97 and 91% for DLB versus elderly control; 88 and 91% for ADLS versus elderly control; 88 and 81% for ADLS versus ADNLS; 67 and 91% for ILBD versus elderly control. Olfactory bulb synucleinopathy density scores correlated significantly with synucleinopathy scores in all other brain regions (Spearman R values between 0.46 and 0.78) as well as with scores on the Mini-Mental State Examination and Part 3 of the unified Parkinson's Disease Rating Scale (Spearman R −0.27, 0.35, respectively). It is concluded that olfactory bulb LTS accurately predicts the presence of LTS in other brain regions. It is suggested that olfactory bulb biopsy be considered to confirm the diagnosis in PD subjects being assessed for surgical therapy.
doi:10.1007/s00401-008-0450-7
PMCID: PMC2631085  PMID: 18982334
Parkinson's disease, surgery; Deep brain stimulation; Gene therapy; Transplantation; Dementia with Lewy bodies, diagnosis, therapy, clinical trial; α-Synuclein, Lewy bodies, incidental Lewy body disease; Biopsy; Olfactory bulb

Results 1-25 (428061)