Search tips
Search criteria

Results 1-25 (1102337)

Clipboard (0)

Related Articles

1.  A Metabolically-Stabilized Phosphonate Analog of Lysophosphatidic Acid Attenuates Collagen-Induced Arthritis 
PLoS ONE  2013;8(7):e70941.
Rheumatoid arthritis (RA) is a destructive arthropathy with systemic manifestations, characterized by chronic synovial inflammation. Under the influence of the pro-inflammatory milieu synovial fibroblasts (SFs), the main effector cells in disease pathogenesis become activated and hyperplastic while releasing a number of signals that include pro-inflammatory factors and tissue remodeling enzymes. Activated RA SFs in mouse or human arthritic joints express significant quantities of autotaxin (ATX), a lysophospholipase D responsible for the majority of lysophosphatidic acid (LPA) production in the serum and inflamed sites. Conditional genetic ablation of ATX from SFs resulted in attenuation of disease symptoms in animal models, an effect attributed to diminished LPA signaling in the synovium, shown to activate SF effector functions. Here we show that administration of 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA), a metabolically stabilized analog of LPA and a dual function inhibitor of ATX and pan-antagonist of LPA receptors, attenuates collagen induced arthritis (CIA) development, thus validating the ATX/LPA axis as a novel therapeutic target in RA.
PMCID: PMC3726599  PMID: 23923032
2.  Non-Invasive Imaging of Tumors by Monitoring Autotaxin Activity Using an Enzyme-Activated Near-Infrared Fluorogenic Substrate 
PLoS ONE  2013;8(11):e79065.
Autotaxin (ATX), an autocrine motility factor that is highly upregulated in metastatic cancer, is a lysophospholipase D enzyme that produces the lipid second messenger lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). Dysregulation of the lysolipid signaling pathway is central to the pathophysiology of numerous cancers, idiopathic pulmonary fibrosis, rheumatoid arthritis, and other inflammatory diseases. Consequently, the ATX/LPA pathway has emerged as an important source of biomarkers and therapeutic targets. Herein we describe development and validation of a fluorogenic analog of LPC (AR-2) that enables visualization of ATX activity in vivo. AR-2 exhibits minimal fluorescence until it is activated by ATX, which substantially increases fluorescence in the near-infrared (NIR) region, the optimal spectral window for in vivo imaging. In mice with orthotopic ATX-expressing breast cancer tumors, ATX activated AR-2 fluorescence. Administration of AR-2 to tumor-bearing mice showed high fluorescence in the tumor and low fluorescence in most healthy tissues with tumor fluorescence correlated with ATX levels. Pretreatment of mice with an ATX inhibitor selectively decreased fluorescence in the tumor. Together these data suggest that fluorescence directly correlates with ATX activity and its tissue expression. The data show that AR-2 is a non-invasive and selective tool that enables visualization and quantitation of ATX-expressing tumors and monitoring ATX activity in vivo.
PMCID: PMC3835791  PMID: 24278115
3.  Requirement of Osteopontin in the migration and protection against Taxol-induced apoptosis via the ATX-LPA axis in SGC7901 cells 
BMC Cell Biology  2011;12:11.
Autotaxin (ATX) possesses lysophospholipase D (lyso PLD) activity, which converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation and tumor progression. Osteopontin (OPN) is an important chemokine involved in the survival, proliferation, migration, invasion and metastasis of gastric cancer cells. The focus of the present study was to investigate the relationship between the ATX-LPA axis and OPN.
In comparison with non-treated cells, we found that the ATX-LPA axis up-regulated OPN expression by 1.92-fold in protein levels and 1.3-fold in mRNA levels. The ATX-LPA axis activates LPA2, Akt, ERK and ELK-1 and also protects SGC7901 cells from apoptosis induced by Taxol treatment.
This study provides the first evidence that expression of OPN induced by ATX-LPA axis is mediated by the activation of Akt and MAPK/ERK pathways through the LPA2 receptor. In addition, OPN is required for the protective effects of ATX-LPA against Taxol-induced apoptosis and ATX-LPA-induced migration of SGC7901 cells.
PMCID: PMC3068946  PMID: 21406114
4.  Mammalian cell expression, purification, crystallization and microcrystal data collection of autotaxin/ENPP2, a secreted mammalian glycoprotein 
Autotaxin, a four-domain ∼100 kDa mammalian glycoprotein, was expressed in stably transfected mammalian cells, purified from the medium and crystallized. Diffraction data from micrometre-thick crystal plates were collected on various European synchrotron beamlines and are presented and analysed.
Autotaxin (ATX or ENPP2) is a secreted glycosylated mammalian enzyme that exhibits lysophospholipase D activity, hydrolyzing lysophosphatidylcholine to the signalling lipid lysophosphatidic acid. ATX is an ∼100 kDa multi-domain protein encompassing two N-terminal somatomedin B-like domains, a central catalytic phosphodiesterase domain and a C-terminal nuclease-like domain. Protocols for the efficient expression of ATX from stably transfected mammalian HEK293 cells in amounts sufficient for crystallographic studies are reported. Purification resulted in protein that crystallized readily, but various attempts to grow crystals suitable in size for routine crystallographic structure determination were not successful. However, the available micrometre-thick plates diffracted X-rays beyond 2.0 Å resolution and allowed the collection of complete diffraction data to about 2.6 Å resolution. The problems encountered and the current advantages and limitations of diffraction data collection from thin crystal plates are discussed.
PMCID: PMC2935246  PMID: 20823545
microcrystals; mammalian cell expression; autotaxin; ENPP2
5.  Autotaxin expression and its connection with the TNF-alpha-NF-κB axis in human hepatocellular carcinoma 
Molecular Cancer  2010;9:71.
Autotaxin (ATX) is an extracellular lysophospholipase D that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). Both ATX and LPA have been shown to be involved in many cancers. However, the functional role of ATX and the regulation of ATX expression in human hepatocellular carcinoma (HCC) remain elusive.
In this study, ATX expression was evaluated in tissues from 38 human HCC and 10 normal control subjects. ATX was detected mainly in tumor cells within tissue sections and its over-expression in HCC was specifically correlated with inflammation and liver cirrhosis. In addition, ATX expression was examined in normal human hepatocytes and liver cancer cell lines. Hepatoma Hep3B and Huh7 cells displayed stronger ATX expression than hepatoblastoma HepG2 cells and normal hepatocytes did. Proinflammtory cytokine tumor necrosis factor alpha (TNF-α) promoted ATX expression and secretion selectively in Hep3B and Huh7 cells, which led to a corresponding increase in lysophospholipase-D activity. Moreover, we explored the mechanism governing the expression of ATX in hepatoma cells and established a critical role of nuclear factor-kappa B (NF-κB) in basal and TNF-α induced ATX expression. Further study showed that secreted enzymatically active ATX stimulated Hep3B cell invasion.
This report highlights for the first time the clinical and biological evidence for the involvement of ATX in human HCC. Our observation that links the TNF-α/NF-κB axis and the ATX-LPA signaling pathway suggests that ATX is likely playing an important role in inflammation related liver tumorigenesis.
PMCID: PMC2867819  PMID: 20356387
6.  Positive feedback between vascular endothelial growth factor-A and autotaxin in ovarian cancer cells 
Molecular cancer research : MCR  2008;6(3):352-363.
Tumor cell migration, invasion, and angiogenesis are important determinants of tumor aggressiveness and these traits have been associated with the motility stimulating protein autotaxin (ATX). This protein is a member of the ecto-nucleotide pyrophosphatase and phosphodiesterase family of enzymes but unlike other members of this group, ATX possesses lysophospholipase D activity. This enzymatic activity hydrolyzes lysophosphatidylcholine (LPC) to generate the potent tumor growth factor and motogen, lysophosphatidic acid (LPA). In the current study, we demonstrate a link between ATX expression, LPA, and vascular endothelial growth factor (VEGF) signaling in ovarian cancer cell lines. Exogenous addition of VEGF-A to cultured cells induces ATX expression and secretion, resulting in increased extracellular LPA production. This elevated LPA, acting through LPA4, modulates VEGF responsiveness by inducing VEGFR2 expression. Down-regulation of ATX secretion in SKOV3 cells using antisense morpholino oligomers significantly attenuates cell motility responses to VEGF, ATX, LPA, and LPC. These effects are accompanied by decreased LPA4 and VEGFR2 expression as well as by increased release of soluble VEGFR1. Since LPA was previously shown to increase VEGF expression in ovarian cancer, our data suggest a positive feedback loop involving VEGF, ATX, and its product LPA that could affect tumor progression in ovarian cancer cells.
PMCID: PMC2442564  PMID: 18337445
7.  Crystallization and preliminary X-ray crystallographic analysis of human autotaxin 
The α isoform of human autotaxin has been crystallized. Diffraction data were collected to 3.0 Å resolution using synchrotron radiation.
Autotaxin (ATX), which is also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (NPP2 or ENPP2) or phosphodiesterase Iα (PD-Iα), is an extracellular lysophospholipase D which generates lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). ATX stimulates tumour-cell migration, angiogenesis and metastasis and is an attractive target for cancer therapy. For crystallographic studies, the α isoform of human ATX was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected to 3.0 Å resolution from a monoclinic crystal form belonging to space group C2, with unit-cell parameters a = 311.4, b = 147.9, c = 176.9 Å, β = 122.6°.
PMCID: PMC3080147  PMID: 21505238
autotaxin; lysophosphatidic acid; lysophospholipase D; ectonucleotide pyrophosphatase/phosphodiesterase 2
8.  Autotaxin is induced by TSA through HDAC3 and HDAC7 inhibition and antagonizes the TSA-induced cell apoptosis 
Molecular Cancer  2011;10:18.
Autotaxin (ATX) is a secreted glycoprotein with the lysophospholipase D (lysoPLD) activity to convert lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive lysophospholipid involved in diverse biological actions. ATX is highly expressed in some cancer cells and contributes to their tumorigenesis, invasion, and metastases, while in other cancer cells ATX is silenced or expressed at low level. The mechanism of ATX expression regulation in cancer cells remains largely unknown.
In the present study, we demonstrated that trichostatin A (TSA), a well-known HDAC inhibitor (HDACi), significantly induced ATX expression in SW480 and several other cancer cells with low or undetectable endogenous ATX expression. ATX induction could be observed when HDAC3 and HDAC7 were down-regulated by their siRNAs. It was found that HDAC7 expression levels were low in the cancer cells with high endogenous ATX expression. Exogenous over-expression of HDAC7 inhibited ATX expression in these cells in a HDAC3-dependent manner. These data indicate that HDAC3 and HDAC7 collaboratively suppress ATX expression in cancer cells, and suggest that TSA induce ATX expression by inhibiting HDAC3 and HDAC7. The biological significance of this regulation mechanism was revealed by demonstrating that TSA-induced ATX protected cancer cells against TSA-induced apoptosis by producing LPA through its lysoPLD activity, which could be reversed by BrP-LPA and S32826, the inhibitors of the ATX-LPA axis.
We have demonstrated that ATX expression is repressed by HDAC3 and HDAC7 in cancer cells. During TSA treatment, ATX is induced due to the HDAC3 and HDAC7 inhibition and functionally antagonizes the TSA-induced apoptosis. These results reveal an internal HDACi-resistant mechanism in cancer cells, and suggest that the inhibition of ATX-LPA axis would be helpful to improve the efficacy of HDACi-based therapeutics against cancer.
PMCID: PMC3055229  PMID: 21314984
9.  Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production 
The Journal of Cell Biology  2002;158(2):227-233.
Autotaxin (ATX) is a tumor cell motility–stimulating factor, originally isolated from melanoma cell supernatants. ATX had been proposed to mediate its effects through 5′-nucleotide pyrophosphatase and phosphodiesterase activities. However, the ATX substrate mediating the increase in cellular motility remains to be identified. Here, we demonstrated that lysophospholipase D (lysoPLD) purified from fetal bovine serum, which catalyzes the production of the bioactive phospholipid mediator, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC), is identical to ATX. The Km value of ATX for LPC was 25-fold lower than that for the synthetic nucleoside substrate, p-nitrophenyl-tri-monophosphate. LPA mediates multiple biological functions including cytoskeletal reorganization, chemotaxis, and cell growth through activation of specific G protein–coupled receptors. Recombinant ATX, particularly in the presence of LPC, dramatically increased chemotaxis and proliferation of multiple different cell lines. Moreover, we demonstrate that several cancer cell lines release significant amounts of LPC, a substrate for ATX, into the culture medium. The demonstration that ATX and lysoPLD are identical suggests that autocrine or paracrine production of LPA contributes to tumor cell motility, survival, and proliferation. It also provides potential novel targets for therapy of pathophysiological states including cancer.
PMCID: PMC2173129  PMID: 12119361
lysoPLD; EDG receptor; lysophosphatidylcholine; chemotaxis; cell proliferation
10.  Autotaxin and lysophosphatidic acid stimulate intestinal cell motility by redistribution of the actin modifying protein villin to the developing lamellipodia 
Experimental cell research  2007;314(3):530-542.
Autotaxin (ATX) is a potent tumor cell motogen that can produce lysophosphatidic acid (LPA) from lysophosphatidylcholine. LPA is a lipid mediator that has also been shown to modulate tumor cell invasion. Autotaxin mRNA is expressed at high levels in the intestine. Likewise, LPA2 receptor levels have been shown to be elevated in colon cancers. The molecular mechanism of ATX/LPA-induced increase in intestinal cell migration however, remains poorly understood. Villin is an intestinal and renal epithelial cell specific actin regulatory protein that modifies epithelial cell migration. In this study we demonstrate that both Caco-2 (endogenous villin) and MDCK (exogenous villin) cells, which express primarily LPA2 receptors, show enhanced cell migration in response to ATX/LPA. ATX and LPA treatment results in the rapid formation of lamellipodia and redistribution of villin to these cell surface structures, suggesting a role for villin in regulating this initial event of cell locomotion. The LPA-induced increase in cell migration required activation of c-src kinase and downstream tyrosine phosphorylation of villin by c-src kinase. LPA stimulated cell motility was determined to be insensitive to pertussis toxin, but was regulated by activation of PLC-γ1. Together, our results show that in epithelial cells ATX and LPA act as strong stimulators of cell migration by recruiting PLC-γ1 and villin, both of which participate in the initiation of protrusion.
PMCID: PMC2680351  PMID: 18054784
autotaxin; LPA; villin; cell migration; actin; PLC-γ1
11.  Autotaxin-Lysophosphatidic Acid Axis Is a Novel Molecular Target for Lowering Intraocular Pressure 
PLoS ONE  2012;7(8):e42627.
Primary open-angle glaucoma is the second leading cause of blindness in the United States and is commonly associated with elevated intraocular pressure (IOP) resulting from diminished aqueous humor (AH) drainage through the trabecular pathway. Developing effective therapies for increased IOP in glaucoma patients requires identification and characterization of molecular mechanisms that regulate IOP and AH outflow. This study describes the identification and role of autotaxin (ATX), a secretory protein and a major source for extracellular lysophosphatidic acid (LPA), in regulation of IOP in a rabbit model. Quantitative proteomics analysis identified ATX as an abundant protein in both human AH derived from non-glaucoma subjects and in AH from different animal species. The lysophospholipase D (LysoPLD) activity of ATX was found to be significantly elevated (by ∼1.8 fold; n = 20) in AH derived from human primary open angle glaucoma patients as compared to AH derived from age-matched cataract control patients. Immunoblotting analysis of conditioned media derived from primary cultures of human trabecular meshwork (HTM) cells has confirmed secretion of ATX and the ability of cyclic mechanical stretch of TM cells to increase the levels of secreted ATX. Topical application of a small molecular chemical inhibitor of ATX (S32826), which inhibited AH LysoPLD activity in vitro (by >90%), led to a dose-dependent and significant decrease of IOP in Dutch-Belted rabbits. Single intracameral injection of S32826 (∼2 µM) led to significant reduction of IOP in rabbits, with the ocular hypotensive response lasting for more than 48 hrs. Suppression of ATX expression in HTM cells using small-interfering RNA (siRNA) caused a decrease in actin stress fibers and myosin light chain phosphorylation. Collectively, these observations indicate that the ATX-LPA axis represents a potential therapeutic target for lowering IOP in glaucoma patients.
PMCID: PMC3423407  PMID: 22916143
12.  Ligand-Based Autotaxin Pharmacophore Models Reflect Structure-Based Docking Results 
The autotaxin (ATX) enzyme exhibits lysophospholipase D activity responsible for the conversion of lysophosphatidyl choline to lysophosphatidic acid (LPA). ATX and LPA have been linked to the initiation of atherosclerosis, cancer invasiveness, and neuropathic pain. ATX inhibition therefore offers currently unexploited therapeutic potential, and substantial interest in the development of ATX inhibitors is evident in the recent literature. Here we report the performance-based comparison of ligand-based pharmacophores developed on the basis of different combinations of ATX inhibitors in the training sets against an extensive database of compounds tested for ATX inhibitory activity, as well as with docking results of the actives against a recently reported ATX crystal structure. In general, pharmacophore models show better ability to select active ATX inhibitors binding in a common location when the ligand-based superposition shows a good match to the superposition of actives based on docking results. Two pharmacophore models developed on the basis of competitive inhibitors in combination with the single inhibitor crystallized to date in the active site of ATX were able to identify actives at rates over 40%, a substantial improvement over the <10% representation of active site-directed actives in the test set database.
PMCID: PMC3224989  PMID: 21967734
Autotaxin; pharmacophore; docking
13.  Autotaxin, a Secreted Lysophospholipase D, Is Essential for Blood Vessel Formation during Development 
Molecular and Cellular Biology  2006;26(13):5015-5022.
Autotaxin (ATX), or nucleotide pyrophosphatase-phosphodiesterase 2, is a secreted lysophospholipase D that promotes cell migration, metastasis, and angiogenesis. ATX generates lysophosphatidic acid (LPA), a lipid mitogen and motility factor that acts on several G protein-coupled receptors. Here we report that ATX-deficient mice die at embryonic day 9.5 (E9.5) with profound vascular defects in yolk sac and embryo resembling the Gα13 knockout phenotype. Furthermore, at E8.5, ATX-deficient embryos showed allantois malformation, neural tube defects, and asymmetric headfolds. The onset of these abnormalities coincided with increased expression of ATX and LPA receptors in normal embryos. ATX heterozygous mice appear healthy but show half-normal ATX activity and plasma LPA levels. Our results reveal a critical role for ATX in vascular development, indicate that ATX is the major LPA-producing enzyme in vivo, and suggest that the vascular defects in ATX-deficient embryos may be explained by loss of LPA signaling through Gα13.
PMCID: PMC1489177  PMID: 16782887
14.  Autotaxin, a lysophosphatidic acid-producing ectoenzyme, promotes lymphocyte entry into secondary lymphoid organs 
Nature immunology  2008;9(4):415-423.
The extracellular lysophospholipase D, autotaxin (ATX), and its product lysophosphatidic acid (LPA) have diverse roles in development and cancer, but little is known about functions in the immune system. We found that ATX was highly expressed in high endothelial venules (HEVs) of lymphoid organs and was secreted. Chemokine-activated lymphocytes expressed enhanced receptors for ATX, providing a mechanism to target the secreted ATX onto lymphocytes undergoing recruitment. LPA induced chemokinesis in T-cells. Intravenous injection of enzymatically inactive ATX attenuated homing of T-cells to lymphoid tissues, likely by competing with endogenous ATX and exerting a dominant-negative effect. Our results support a novel and general step in the homing cascade, in which the ectoenzyme ATX facilitates lymphocyte entry into lymphoid organs.
PMCID: PMC2783613  PMID: 18327261
15.  Autotaxin Structure Activity Relationships Revealed through Lysophosphatidylcholine Analogs 
Bioorganic & medicinal chemistry  2009;17(9):3433-3442.
Autotaxin (ATX) catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to form the bioactive lipid lysophosphatidic acid (LPA). LPA stimulates cell proliferation, cell survival, and cell migration and is involved in obesity, rheumatoid arthritis, neuropathic pain, atherosclerosis and various cancers, suggesting that ATX inhibitors have broad therapeutic potential. Product feedback inhibition of ATX by LPA has stimulated structure activity studies focused on LPA analogs. However, LPA displays mixed mode inhibition, indicating it can bind to both the enzyme and the enzyme-substrate complex. This suggests that LPA may not interact solely with the catalytic site. In this report we have prepared LPC analogs to help map out substrate structure activity relationships. The structural variances include length and unsaturation of the fatty tail, choline and polar linker presence, acyl versus ether linkage of the hydrocarbon chain, and methylene and nitrogen replacement of the choline oxygen. All LPC analogs were assayed in competition with the synthetic substrate, FS-3, to show the preference ATX has for each alteration. Choline presence and methylene replacement of the choline oxygen were detrimental to ATX recognition. These findings provide insights into the structure of the enzyme in the vicinity of the catalytic site as well as suggesting that ATX produces rate enhancement, at least in part, by substrate destabilization.
PMCID: PMC2705928  PMID: 19345587
16.  Carba analogs of cyclic phosphatidic acid are selective inhibitors of autotaxin and cancer cell invasion and metastasis 
The Journal of biological chemistry  2006;281(32):22786-22793.
Autotaxin (ATX, nucleotide pyrophosphate/phosphodiesterase-2, NPP2) is an autocrine motility factor initially characterized from A2058 melanoma cell conditioned medium. ATX is known to contribute to cancer cell survival, growth, and invasion. Recently ATX was shown to be responsible for the lysophospholipase D activity that generates lysophosphatidic acid (LPA). Production of LPA is sufficient to explain the effects of ATX on tumor cells. Cyclic phosphatidic acid (cPA) is a naturally occurring analog of LPA in which the sn-2 hydroxy group forms a 5-membered ring with the sn-3 phosphate. Cellular responses to cPA generally oppose those of LPA despite activation of apparently overlapping receptor populations, suggesting that cPA also activates cellular targets distinct from LPA receptors. cPA has previously been shown to inhibit tumor cell invasion in vitro and cancer cell metastasis in vivo. However, the mechanism governing this effect remains unresolved. Here we show that 3-carba analogs of cPA lack significant agonist activity at LPA receptors yet are potent inhibitors of ATX activity, LPA production, and A2058 melanoma cell invasion in vitro and B16F10 melanoma cell metastasis in vivo.
PMCID: PMC3505596  PMID: 16782709
17.  Lysophosphatidic acid-3 receptor-mediated feed-forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic pain 
Molecular Pain  2009;5:64.
We previously reported that intrathecal injection of lysophosphatidylcholine (LPC) induced neuropathic pain through activation of the lysophosphatidic acid (LPA)-1 receptor, possibly via conversion to LPA by autotaxin (ATX).
We examined in vivo LPA-induced LPA production using a biological titration assay with B103 cells expressing LPA1 receptors. Intrathecal administration of LPC caused time-related production of LPA in the spinal dorsal horn and dorsal roots, but not in the dorsal root ganglion, spinal nerve or sciatic nerve. LPC-induced LPA production was markedly diminished in ATX heterozygotes, and was abolished in mice that were deficient in LPA3, but not LPA1 or LPA2 receptors. Similar time-related and LPA3 receptor-mediated production of LPA was observed following intrathecal administration of LPA. In an in vitro study using spinal cord slices, LPA-induced LPA production was also mediated by ATX and the LPA3 receptor. Intrathecal administration of LPA, in contrast, induced neuropathic pain, which was abolished in mice deficient in LPA1 or LPA3 receptors.
These findings suggest that feed-forward LPA production is involved in LPA-induced neuropathic pain.
PMCID: PMC2780384  PMID: 19912636
18.  Structure-Based Design of Novel Boronic Acid-Based Inhibitors of Autotaxin 
Journal of Medicinal Chemistry  2011;54(13):4619-4626.
Autotaxin (ATX) is a secreted phosphodiesterase that hydrolyzes the abundant phospholipid lysophosphatidylcholine (LPC) to produce lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in inflammation, fibrosis, and tumor progression, rendering ATX an attractive drug target. We recently described a boronic acid-based inhibitor of ATX, named HA155 (1). Here, we report the design of new inhibitors based on the crystal structure of ATX in complex with inhibitor 1. Furthermore, we describe the syntheses and activities of these new inhibitors, whose potencies can be explained by structural data. To understand the difference in activity between two different isomers with nanomolar potencies, we performed molecular docking experiments. Intriguingly, molecular docking suggested a remarkable binding pose for one of the isomers, which differs from the original binding pose of inhibitor 1 for ATX, opening further options for inhibitor design.
PMCID: PMC3131786  PMID: 21615078
19.  Benzyl and Naphthalene-Methyl Phosphonic Acid Inhibitors of Autotaxin with Anti-invasive and Anti-metastatic Actions 
ChemMedChem  2011;6(5):922-935.
Autotaxin (ATX, NPP2) is a member of the nucleotide pyrophosphate phosphodiesterase enzyme family. ATX catalyzes the hydrolytic cleavage of lysophosphatidylcholine (LPC) via a lysophospholipase D activity that leads to the generation of the growth factor-like lipid mediator lysophosphatidic acid (LPA). ATX is highly upregulated in metastatic and chemotherapy-resistant carcinomas and represents a potential target to mediate cancer invasion and metastasis. Here we report the synthesis and pharmacological characterization of inhibitors of ATX based on the 4-tetradecanoylaminobenzyl phosphonic acid scaffold that was previously found to lack sufficient stability in cellular systems. The new 4-substituted benzyl phosphonic acid and 6-substituted naphthalen-2-yl-methyl phosphonic acid analogs blocked ATX with Ki values in the low-micromolar-nanomolar range against FS-3, LPC, and nucleotide substrates through a mixed-mode mechanism of inhibition. None of the compounds tested inhibited the activity of related enzymes (NPP6 and NPP7). In addition, the compounds were evaluated as agonists or antagonists of seven LPA receptor subtypes. Analogs 22 and 30b, the two most potent ATX inhibitors, dose-dependently inhibited the invasion of MM1 hepatoma cells across murine mesothelial and human vascular endothelial monolayers in vitro. The average terminal half-life for compound 22 was 10h ± 5.4h and it caused a long-lasting reduction plasma LPA levels. Compounds 22 and 30b significantly reduced lung metastasis of B16-F10 syngeneic mouse melanoma in a post-inoculation treatment paradigm. The described 4-substituted benzyl phosphonic acids and 6-substituted naphthalen-2-yl-methyl phosphonic acids represent new lead compounds that effectively inhibit the ATX-LPA-LPA receptor axis both in vitro and in vivo.
PMCID: PMC3517046  PMID: 21465666
ATX inhibitors; LPA receptors; 4-substituted benzyl phosphonic acids; 6-substituted naphthalen-2-yl-methyl phosphonic acids; structure-activity relationships
20.  Synthesis and structure–activity relationships of tyrosine-based inhibitors of autotaxin (ATX) 
Autotaxin (ATX) is a secreted soluble enzyme that generates lysophosphatidic acid (LPA) through its lysophospholipase D activity. Because of LPA’s role in neoplastic diseases, ATX is an attractive therapeutic target due to its involvement in LPA biosynthesis. Here we describe the SAR of ATX inhibitor, VPC8a202, and apply this SAR knowledge towards developing a high potency inhibitor. We found that electron density in the pyridine region greatly influences activity of our inhibitors at ATX.
PMCID: PMC2975792  PMID: 20951039
Lysophosphatidic acid; Autotaxin; Structure; activity relationships; Hansch linear free energy relationship
21.  Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity 
The Journal of Biological Chemistry  2003;278(20):18162-18169.
Our group has recently demonstrated (Gesta et al. J. Lipid. Res, 2002, 43:904–910) the presence, in adipocyte conditioned-medium, of a soluble lysophospholipase D-activity (LPLDact) involved in synthesis of the bioactive phospholipid, lysophosphatidic acid (LPA). In the present report, LPLDact was purified from 3T3F442A-adipocyte conditioned-medium and identified as the type II ecto-nucleotide pyrophosphatase phosphodiesterase: autotaxin (ATX). A unique ATX cDNA was cloned from 3T3F442A-adipocytes, and its recombinant expression in COS-7 cells led to extracellular release of LPLDact. ATX mRNA expression was highly up-regulated during adipocyte differentiation of 3T3F442A-preadipocytes. This up-regulation was paralleled by the ability of newly differentiated adipocytes to release LPLDact and LPA. Differentiation-dependent up-regulation of ATX expression was also observed in primary culture of mouse preadipocytes. Treatment of 3T3F442A-preadipocytes with concentrated conditioned medium from ATX expressing-COS-7 cells led to an increase in cell number as compared with concentrated conditioned medium from ATX non-expressing-COS-7 cells. The specific effect of ATX on preadipocyte proliferation was completely suppressed by co-treatment with a LPA-hydrolyzing phospholipase, phospholipase B. Finally, ATX expression was found in mature adipocytes isolated from mouse adipose tissue, and was substantially increased in genetically obese-diabetic db/db mice when compared to their lean siblings.
In conclusion, the present work shows that ATX is responsible for the LPLDact released by adipocytes, and exerts a paracrine control on preadipocyte growth via an LPA-dependent mechanism. Up-regulations of ATX expression with adipocyte differentiation and genetic obesity suggest a possible involvement of this released protein in the development of adipose tissue and obesity-associated pathologies.
PMCID: PMC1885458  PMID: 12642576
Adipocytes; metabolism; Amino Acid Sequence; Animals; Autocrine Motility Factor; chemistry; metabolism; COS Cells; Cell Differentiation; Cell Division; Cloning, Molecular; Culture Media, Conditioned; pharmacology; DNA, Complementary; metabolism; Databases; Electrophoresis, Polyacrylamide Gel; Glycoproteins; chemistry; metabolism; Lysophospholipids; metabolism; Male; Mass Spectrometry; Mice; Mice, Inbred C57BL; Molecular Sequence Data; Multienzyme Complexes; Phosphodiesterase I; Phosphoric Diester Hydrolases; metabolism; Pyrophosphatases; RNA; metabolism; RNA, Messenger; metabolism; Recombinant Proteins; metabolism; Reverse Transcriptase Polymerase Chain Reaction; Time Factors; Transfection; Up-Regulation
22.  Controlling cancer through the autotaxin–lysophosphatidic acid receptor axis 
LPA (lysophosphatidic acid, 1-acyl-2-hydroxy-sn-glycero-3-phosphate), is a growth factor-like lipid mediator that regulates many cellular functions, many of which are unique to malignantly transformed cells. The simple chemical structure of LPA and its profound effects in cancer cells has attracted the attention of the cancer therapeutics field and drives the development of therapeutics based on the LPA scaffold. In biological fluids, LPA is generated by ATX (autotaxin), a lysophospholipase D that cleaves the choline/serine headgroup from lysophosphatidylcholine and lysophosphatidylserine to generate LPA. In the present article, we review some of the key findings that make the ATX–LPA signalling axis an emerging target for cancer therapy.
PMCID: PMC3590848  PMID: 22260662
autotaxin; cancer; drug discovery; lysophosphatidic acid (LPA); 4-pentadecylbenzylphosphonic acid (4-PBA); therapy
23.  Production of lysophosphatidic acid in blister fluid: involvement of a lysophospholipase D activity 
Lysophosphatidic acid (LPA) is present in abundance in serum resulting from platelet activation and is also found in other biological fluids. LPA controls numerous cellular responses and plays a role in specific functions such as wound healing, especially in the skin. Nevertheless, its presence in the skin has never been investigated during wound healing, or in other situations. Since re-epithelialization occurs after blister rupture, the presence of LPA in blister fluids was investigated.
Using a radioenzymatic assay, LPA was detected in 33 blister fluids originating from 24 bullous dermatoses, and at higher concentrations than in plasma. LPA concentration was independent of the type of dermatoses. In parallel, blister fluids contained a lysophospholipase D (LPLD) activity but no detectable phospholipase A2 activity. The expression of the LPLD autotaxin (ATX) and of LPA1-receptor were greatly increased in blister skin when compared to normal skin. Finally, LPA was found to have a positive effect on the migration of cultured keratinocytes.
These results show that LPA is present in blister fluid synthesized by the LPLD ATX. Due to its ability to enhance keratinocyte migration, LPA in blister fluid could, via the LPA1-receptor, play an important role in re-epithelialization occuring after blister rupture.
PMCID: PMC1885457  PMID: 16117781
Adult; Aged; Aged, 80 and over; Autocrine Motility Factor; genetics; metabolism; Blister; enzymology; genetics; metabolism; Cell Movement; Cells, Cultured; Female; Glycoproteins; genetics; metabolism; Humans; Keratinocytes; drug effects; Lysophospholipids; analysis; biosynthesis; pharmacology; Male; Middle Aged; Multienzyme Complexes; genetics; metabolism; Phosphodiesterase I; Phosphoric Diester Hydrolases; metabolism; Pyrophosphatases; Receptors, Lysophosphatidic Acid; genetics; metabolism; Skin; chemistry; enzymology; metabolism; Wound Healing
24.  Autotaxin signaling via lysophosphatidic acid receptors contributes to vascular endothelial growth factor-induced endothelial cell migration 
Molecular cancer research : MCR  2010;8(3):309-321.
Important roles for vascular endothelial growth factor (VEGF) and autotaxin (ATX) have been established for embryonic vasculogenesis and cancer progression. We examined whether these two angiogenic factors cooperate in regulation of endothelial cell migratory responses. VEGF stimulated expression of ATX and LPA1, a receptor for the ATX enzymatic product lysophosphatidic acid (LPA), in human umbilical vein endothelial cells. Knockdown of ATX expression significantly decreased mRNA levels for the receptors LPA1 and LPA2, S1P1, -2 and -3, and VEGFR2 and abolished cell migration to lysophosphatidylcholine, LPA, recombinant ATX, and VEGF. Migration to sphingosylphosphorylcholine and sphinogosine-1-phosphate was also reduced in ATX knockdown cells, whereas migration to serum remained unchanged. Furthermore, ATX-knockdown decreased Akt2 mRNA levels, whereas LPA treatment strongly stimulated Akt2 expression. We propose that VEGF stimulates LPA production by inducing ATX expression. VEGF also increases LPA1 signaling, which in turn increases Akt2 expression. Akt2 is strongly associated with cancer progression, cellular migration, and promotion of epithelial–mesenchymal transition. These data demonstrate a role for ATX in maintaining expression of receptors required for VEGF and lysophospholipids to accelerate angiogenesis. Since VEGF and ATX are up-regulated in many cancers, the regulatory mechanism proposed in these studies could apply to cancer related angiogenesis and cancer progression. These data further suggest that ATX could be a prognostic factor or a target for therapeutic intervention in a number of cancers.
PMCID: PMC2841699  PMID: 20197381
autotaxin; lysophosphatidic acid; Akt2; LPA receptors; vascular endothelial growth factor receptor-2; angiogenesis
25.  Lysophosphatidic acid production and action: critical new players in breast cancer initiation and progression 
British Journal of Cancer  2010;102(6):941-946.
Lysophosphatidic acid (LPA) is a potent lipid mediator that acts on a series of specific G protein-coupled receptors, leading to diverse biological actions. Lysophosphatidic acid induces cell proliferation, survival and migration, which are critically required for tumour formation and metastasis. This bioactive lipid is produced by the ectoenzyme lysophospholipase D or autotaxin (ATX), earlier known as an autocrine motility factor. The ATX–LPA signalling axis has emerged as an important player in many types of cancer. Indeed, aberrant expression of ATX and LPA receptors occurs during the development and progression of breast cancer. Importantly, expression of either ATX or LPA receptors in the mammary gland of transgenic mice is sufficient to induce the development of a high frequency of invasive and metastatic mammary cancers. The focus of research now turns to understanding the mechanisms by which ATX and LPA promote mammary tumourigenesis and metastasis. Targeting the ATX–LPA signalling axis for drug development may further improve outcomes in patients with breast cancer.
PMCID: PMC2844037  PMID: 20234370
autotaxin; breast cancer; G protein-coupled receptor; inflammation; lysophosphatidic acid

Results 1-25 (1102337)