PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (902124)

Clipboard (0)
None

Related Articles

1.  A Metabolically-Stabilized Phosphonate Analog of Lysophosphatidic Acid Attenuates Collagen-Induced Arthritis 
PLoS ONE  2013;8(7):e70941.
Rheumatoid arthritis (RA) is a destructive arthropathy with systemic manifestations, characterized by chronic synovial inflammation. Under the influence of the pro-inflammatory milieu synovial fibroblasts (SFs), the main effector cells in disease pathogenesis become activated and hyperplastic while releasing a number of signals that include pro-inflammatory factors and tissue remodeling enzymes. Activated RA SFs in mouse or human arthritic joints express significant quantities of autotaxin (ATX), a lysophospholipase D responsible for the majority of lysophosphatidic acid (LPA) production in the serum and inflamed sites. Conditional genetic ablation of ATX from SFs resulted in attenuation of disease symptoms in animal models, an effect attributed to diminished LPA signaling in the synovium, shown to activate SF effector functions. Here we show that administration of 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA), a metabolically stabilized analog of LPA and a dual function inhibitor of ATX and pan-antagonist of LPA receptors, attenuates collagen induced arthritis (CIA) development, thus validating the ATX/LPA axis as a novel therapeutic target in RA.
doi:10.1371/journal.pone.0070941
PMCID: PMC3726599  PMID: 23923032
2.  Autotaxin expression and its connection with the TNF-alpha-NF-κB axis in human hepatocellular carcinoma 
Molecular Cancer  2010;9:71.
Background
Autotaxin (ATX) is an extracellular lysophospholipase D that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). Both ATX and LPA have been shown to be involved in many cancers. However, the functional role of ATX and the regulation of ATX expression in human hepatocellular carcinoma (HCC) remain elusive.
Results
In this study, ATX expression was evaluated in tissues from 38 human HCC and 10 normal control subjects. ATX was detected mainly in tumor cells within tissue sections and its over-expression in HCC was specifically correlated with inflammation and liver cirrhosis. In addition, ATX expression was examined in normal human hepatocytes and liver cancer cell lines. Hepatoma Hep3B and Huh7 cells displayed stronger ATX expression than hepatoblastoma HepG2 cells and normal hepatocytes did. Proinflammtory cytokine tumor necrosis factor alpha (TNF-α) promoted ATX expression and secretion selectively in Hep3B and Huh7 cells, which led to a corresponding increase in lysophospholipase-D activity. Moreover, we explored the mechanism governing the expression of ATX in hepatoma cells and established a critical role of nuclear factor-kappa B (NF-κB) in basal and TNF-α induced ATX expression. Further study showed that secreted enzymatically active ATX stimulated Hep3B cell invasion.
Conclusions
This report highlights for the first time the clinical and biological evidence for the involvement of ATX in human HCC. Our observation that links the TNF-α/NF-κB axis and the ATX-LPA signaling pathway suggests that ATX is likely playing an important role in inflammation related liver tumorigenesis.
doi:10.1186/1476-4598-9-71
PMCID: PMC2867819  PMID: 20356387
3.  Requirement of Osteopontin in the migration and protection against Taxol-induced apoptosis via the ATX-LPA axis in SGC7901 cells 
BMC Cell Biology  2011;12:11.
Background
Autotaxin (ATX) possesses lysophospholipase D (lyso PLD) activity, which converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation and tumor progression. Osteopontin (OPN) is an important chemokine involved in the survival, proliferation, migration, invasion and metastasis of gastric cancer cells. The focus of the present study was to investigate the relationship between the ATX-LPA axis and OPN.
Results
In comparison with non-treated cells, we found that the ATX-LPA axis up-regulated OPN expression by 1.92-fold in protein levels and 1.3-fold in mRNA levels. The ATX-LPA axis activates LPA2, Akt, ERK and ELK-1 and also protects SGC7901 cells from apoptosis induced by Taxol treatment.
Conclusions
This study provides the first evidence that expression of OPN induced by ATX-LPA axis is mediated by the activation of Akt and MAPK/ERK pathways through the LPA2 receptor. In addition, OPN is required for the protective effects of ATX-LPA against Taxol-induced apoptosis and ATX-LPA-induced migration of SGC7901 cells.
doi:10.1186/1471-2121-12-11
PMCID: PMC3068946  PMID: 21406114
4.  Non-Invasive Imaging of Tumors by Monitoring Autotaxin Activity Using an Enzyme-Activated Near-Infrared Fluorogenic Substrate 
PLoS ONE  2013;8(11):e79065.
Autotaxin (ATX), an autocrine motility factor that is highly upregulated in metastatic cancer, is a lysophospholipase D enzyme that produces the lipid second messenger lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). Dysregulation of the lysolipid signaling pathway is central to the pathophysiology of numerous cancers, idiopathic pulmonary fibrosis, rheumatoid arthritis, and other inflammatory diseases. Consequently, the ATX/LPA pathway has emerged as an important source of biomarkers and therapeutic targets. Herein we describe development and validation of a fluorogenic analog of LPC (AR-2) that enables visualization of ATX activity in vivo. AR-2 exhibits minimal fluorescence until it is activated by ATX, which substantially increases fluorescence in the near-infrared (NIR) region, the optimal spectral window for in vivo imaging. In mice with orthotopic ATX-expressing breast cancer tumors, ATX activated AR-2 fluorescence. Administration of AR-2 to tumor-bearing mice showed high fluorescence in the tumor and low fluorescence in most healthy tissues with tumor fluorescence correlated with ATX levels. Pretreatment of mice with an ATX inhibitor selectively decreased fluorescence in the tumor. Together these data suggest that fluorescence directly correlates with ATX activity and its tissue expression. The data show that AR-2 is a non-invasive and selective tool that enables visualization and quantitation of ATX-expressing tumors and monitoring ATX activity in vivo.
doi:10.1371/journal.pone.0079065
PMCID: PMC3835791  PMID: 24278115
5.  Possible role of lysophosphatidic acid in rat model of hypoxic pulmonary vascular remodeling 
Pulmonary Circulation  2014;4(3):471-481.
Pulmonary hypertension is characterized by cellular and structural changes in the vascular wall of pulmonary arteries. We hypothesized that lysophosphatidic acid (LPA), a bioactive lipid, is implicated in this vascular remodeling in a rat model of hypoxic pulmonary hypertension. Exposure of Wistar rats to 10% O2 for 3 weeks induced an increase in the mean serum levels of LPA, to 40.9 (log-detransformed standard deviations: 23.4–71.7) μM versus 21.6 (11.0–42.3) μM in a matched control animal group (P = 0.037). We also observed perivascular LPA immunohistochemical staining in lungs of hypoxic rats colocalized with the secreted lysophospholipase D autotaxin (ATX). Moreover, ATX colocalized with mast cell tryptase, suggesting implication of these cells in perivascular LPA production. Hypoxic rat lungs expressed more ATX transcripts (2.4-fold) and more transcripts of proteins implicated in cell migration: β2 integrin (1.74-fold), intracellular adhesion molecule 1 (ICAM-1; 1.84-fold), and αM integrin (2.70-fold). Serum from the hypoxic group of animals had significantly higher chemoattractant properties toward rat primary lung fibroblasts, and this increase in cell migration could be prevented by the LPA receptor 1 and 3 antagonists. LPA also increased adhesive properties of human pulmonary artery endothelial cells as well as those of human peripheral blood mononuclear cells, via the activation of LPA receptor 1 or 3 followed by the stimulation of gene expression of ICAM-1, β-1, E-selectin, and vascular cell adhesion molecule integrins. In conclusion, chronic hypoxia increases circulating and tissue levels of LPA, which might induce fibroblast migration and recruitment of mononuclear cells in pulmonary vasculature, both of which contribute to pulmonary vascular remodeling.
doi:10.1086/677362
PMCID: PMC4278607  PMID: 25621161
anti-lysophosphatidic acid antibody; fibroblast; circulating progenitor cells; cell migration and adhesion
6.  Cholera toxin inhibits human hepatocarcinoma cell proliferation in vitro via suppressing ATX/LPA axis 
Acta Pharmacologica Sinica  2011;32(8):1055-1062.
Aim:
To investigate the antitumor effect of cholera toxin (CT) in hepatocellular carcinoma (HCC) in vitro and the mechanisms underlying the effect.
Methods:
Human hepatocellular carcinoma cell lines Hep3B and Huh7, which expressed moderate and high level of autotaxin (ATX), respectively, were used. Cytokine level in the cells was evaluated using ELISA assay, and cell proliferation was investigated using MTT assay. ATX expression was determined using Western blot. ATX/lyso-PLD activity in the conditioned medium was measured using FS-3, a fluorescent lysophosphatidylcholine (LPC) analogue, as substrate.
Results:
Exposure to CT (7.5 and 10 ng/mL) significantly inhibited the cell growth, decreased secretion of proinflammatory cytokine TNF-α and promoted secretion of anti-inflammatory cytokines IL-4 and IL-10. CT at 10 ng/mL markedly suppressed ATX expression in Hep3B and Huh7 cells. Furthermore, ATX and lysophosphatidic acid (LPA) were found to be crucial for growth of the cancer cells. CT could inhibit TNF-α-induced expression and secretion of ATX that led to decreased activity of lysophospholipase D, thus decreasing the conversion of LPC to LPA.
Conclusion:
CT inhibits hepatocellular carcinoma cell growth in vitro via regulating the ATX-LPA pathway.
doi:10.1038/aps.2011.31
PMCID: PMC4002524  PMID: 21765444
cholera toxin; hepatocarcinoma; autotaxin; lysophosphatidic acid; cell proliferation
7.  Autotaxin is induced by TSA through HDAC3 and HDAC7 inhibition and antagonizes the TSA-induced cell apoptosis 
Molecular Cancer  2011;10:18.
Background
Autotaxin (ATX) is a secreted glycoprotein with the lysophospholipase D (lysoPLD) activity to convert lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive lysophospholipid involved in diverse biological actions. ATX is highly expressed in some cancer cells and contributes to their tumorigenesis, invasion, and metastases, while in other cancer cells ATX is silenced or expressed at low level. The mechanism of ATX expression regulation in cancer cells remains largely unknown.
Results
In the present study, we demonstrated that trichostatin A (TSA), a well-known HDAC inhibitor (HDACi), significantly induced ATX expression in SW480 and several other cancer cells with low or undetectable endogenous ATX expression. ATX induction could be observed when HDAC3 and HDAC7 were down-regulated by their siRNAs. It was found that HDAC7 expression levels were low in the cancer cells with high endogenous ATX expression. Exogenous over-expression of HDAC7 inhibited ATX expression in these cells in a HDAC3-dependent manner. These data indicate that HDAC3 and HDAC7 collaboratively suppress ATX expression in cancer cells, and suggest that TSA induce ATX expression by inhibiting HDAC3 and HDAC7. The biological significance of this regulation mechanism was revealed by demonstrating that TSA-induced ATX protected cancer cells against TSA-induced apoptosis by producing LPA through its lysoPLD activity, which could be reversed by BrP-LPA and S32826, the inhibitors of the ATX-LPA axis.
Conclusions
We have demonstrated that ATX expression is repressed by HDAC3 and HDAC7 in cancer cells. During TSA treatment, ATX is induced due to the HDAC3 and HDAC7 inhibition and functionally antagonizes the TSA-induced apoptosis. These results reveal an internal HDACi-resistant mechanism in cancer cells, and suggest that the inhibition of ATX-LPA axis would be helpful to improve the efficacy of HDACi-based therapeutics against cancer.
doi:10.1186/1476-4598-10-18
PMCID: PMC3055229  PMID: 21314984
8.  Autotaxin Production of Lysophosphatidic Acid Mediates Allergic Asthmatic Inflammation 
Rationale: Bioactive lipid mediators, derived from membrane lipid precursors, are released into the airway and airspace where they bind high-affinity cognate receptors and may mediate asthma pathogenesis. Lysophosphatidic acid (LPA), a bioactive lipid mediator generated by the enzymatic activity of extracellular autotaxin (ATX), binds LPA receptors, resulting in an array of biological actions on cell proliferation, migration, survival, differentiation, and motility, and therefore could mediate asthma pathogenesis.
Objectives: To define a role for the ATX-LPA pathway in human asthma pathogenesis and a murine model of allergic lung inflammation.
Methods: We investigated the profiles of LPA molecular species and the level of ATX exoenzyme in bronchoalveolar lavage fluids of human patients with asthma subjected to subsegmental bronchoprovocation with allergen. We interrogated the role of the ATX-LPA pathway in allergic lung inflammation using a murine allergic asthma model in ATX-LPA pathway–specific genetically modified mice.
Measurements and Main Results: Subsegmental bronchoprovocation with allergen in patients with mild asthma resulted in a remarkable increase in bronchoalveolar lavage fluid levels of LPA enriched in polyunsaturated 22:5 and 22:6 fatty acids in association with increased concentrations of ATX protein. Using a triple-allergen mouse asthma model, we showed that ATX-overexpressing transgenic mice had a more severe asthmatic phenotype, whereas blocking ATX activity and knockdown of the LPA2 receptor in mice produced a marked attenuation of Th2 cytokines and allergic lung inflammation.
Conclusions: The ATX-LPA pathway plays a critical role in the pathogenesis of asthma. These preclinical data indicate that targeting the ATX-LPA pathway could be an effective antiasthma treatment strategy.
doi:10.1164/rccm.201306-1014OC
PMCID: PMC3826286  PMID: 24050723
asthma; lysophosphatidic acid; autotaxin; allergic airway inflammation
9.  Autotaxin-Lysophosphatidic Acid Signaling Axis Mediates Tumorigenesis and Development of Acquired Resistance to Sunitinib in Renal Cell Carcinoma 
Purpose
Sunitinib is currently considered as the standard treatment for advanced renal cell carcinoma (RCC). We aimed to better understand the mechanisms of sunitinib action in kidney cancer treatment and in the development of acquired resistance.
Experimental Design
Gene expression profiles of RCC tumor endothelium in sunitinib-treated and -untreated patients were analyzed and verified by quantitative PCR and immunohistochemistry. The functional role of the target gene identified was investigated in RCC cell lines and primary cultures in vitro and in preclinical animal models in vivo.
Results
Altered expression of autotaxin (ATX), an extracellular lysophospholipase D, was detected in sunitinib-treated tumor vasculature of human RCC and in the tumor endothelial cells of RCC xenograft models when adapting to sunitinib. ATX and its catalytic product, lysophosphatidic acid (LPA), regulated the signaling pathways and cell motility of RCC in vitro. However, no marked in vitro effect of ATX-LPA signaling on endothelial cells was observed. Functional blockage of LPA receptor 1 (LPA1) using an LPA1 antagonist, Ki16425, or gene silencing of LPA1 in RCC cells attenuated LPA-mediated intracellular signaling and invasion responses in vitro. Ki16425 treatment also dampened RCC tumorigenesis in vivo. In addition, coadministration of Ki16425 with sunitinib prolonged the sensitivity of RCC to sunitinib in xenograft models, suggesting that ATX-LPA signaling in part mediates the acquired resistance against sunitinib in RCC.
Conclusions
Our results reveal that endothelial ATX acts through LPA signaling to promote renal tumorigenesis and is functionally involved in the acquired resistance of RCC to sunitinib.
doi:10.1158/1078-0432.CCR-13-1284
PMCID: PMC4191899  PMID: 24122794
autotaxin; lysophosphatidic acid; sunitinib; angiogenesis
10.  Positive feedback between vascular endothelial growth factor-A and autotaxin in ovarian cancer cells 
Molecular cancer research : MCR  2008;6(3):352-363.
Tumor cell migration, invasion, and angiogenesis are important determinants of tumor aggressiveness and these traits have been associated with the motility stimulating protein autotaxin (ATX). This protein is a member of the ecto-nucleotide pyrophosphatase and phosphodiesterase family of enzymes but unlike other members of this group, ATX possesses lysophospholipase D activity. This enzymatic activity hydrolyzes lysophosphatidylcholine (LPC) to generate the potent tumor growth factor and motogen, lysophosphatidic acid (LPA). In the current study, we demonstrate a link between ATX expression, LPA, and vascular endothelial growth factor (VEGF) signaling in ovarian cancer cell lines. Exogenous addition of VEGF-A to cultured cells induces ATX expression and secretion, resulting in increased extracellular LPA production. This elevated LPA, acting through LPA4, modulates VEGF responsiveness by inducing VEGFR2 expression. Down-regulation of ATX secretion in SKOV3 cells using antisense morpholino oligomers significantly attenuates cell motility responses to VEGF, ATX, LPA, and LPC. These effects are accompanied by decreased LPA4 and VEGFR2 expression as well as by increased release of soluble VEGFR1. Since LPA was previously shown to increase VEGF expression in ovarian cancer, our data suggest a positive feedback loop involving VEGF, ATX, and its product LPA that could affect tumor progression in ovarian cancer cells.
doi:10.1158/1541-7786.MCR-07-0143
PMCID: PMC2442564  PMID: 18337445
11.  Cancer Cell Expression of Autotaxin Controls Bone Metastasis Formation in Mouse through Lysophosphatidic Acid-Dependent Activation of Osteoclasts 
PLoS ONE  2010;5(3):e9741.
Background
Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models.
Methodology/Principal Findings
Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis.
Conclusion/Significance
Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast differentiation. Therefore, targeting the autotaxin/LPA track emerges as a potential new therapeutic approach to improve the outcome of patients with bone metastases.
doi:10.1371/journal.pone.0009741
PMCID: PMC2840030  PMID: 20305819
12.  Autotaxin-Lysophosphatidic Acid Axis Is a Novel Molecular Target for Lowering Intraocular Pressure 
PLoS ONE  2012;7(8):e42627.
Primary open-angle glaucoma is the second leading cause of blindness in the United States and is commonly associated with elevated intraocular pressure (IOP) resulting from diminished aqueous humor (AH) drainage through the trabecular pathway. Developing effective therapies for increased IOP in glaucoma patients requires identification and characterization of molecular mechanisms that regulate IOP and AH outflow. This study describes the identification and role of autotaxin (ATX), a secretory protein and a major source for extracellular lysophosphatidic acid (LPA), in regulation of IOP in a rabbit model. Quantitative proteomics analysis identified ATX as an abundant protein in both human AH derived from non-glaucoma subjects and in AH from different animal species. The lysophospholipase D (LysoPLD) activity of ATX was found to be significantly elevated (by ∼1.8 fold; n = 20) in AH derived from human primary open angle glaucoma patients as compared to AH derived from age-matched cataract control patients. Immunoblotting analysis of conditioned media derived from primary cultures of human trabecular meshwork (HTM) cells has confirmed secretion of ATX and the ability of cyclic mechanical stretch of TM cells to increase the levels of secreted ATX. Topical application of a small molecular chemical inhibitor of ATX (S32826), which inhibited AH LysoPLD activity in vitro (by >90%), led to a dose-dependent and significant decrease of IOP in Dutch-Belted rabbits. Single intracameral injection of S32826 (∼2 µM) led to significant reduction of IOP in rabbits, with the ocular hypotensive response lasting for more than 48 hrs. Suppression of ATX expression in HTM cells using small-interfering RNA (siRNA) caused a decrease in actin stress fibers and myosin light chain phosphorylation. Collectively, these observations indicate that the ATX-LPA axis represents a potential therapeutic target for lowering IOP in glaucoma patients.
doi:10.1371/journal.pone.0042627
PMCID: PMC3423407  PMID: 22916143
13.  Structural basis for substrate discrimination and integrin binding by autotaxin 
Autotaxin (ATX) or ecto-nucleotide pyrophosphatase/phosphodiesterase-2 (ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemo-attractant for many cell types. ATX-LPA signaling has roles in various pathologies including tumour progression and inflammation. However, the molecular basis of substrate recognition and catalysis, and the mechanism of interaction with target cells, has been elusive. Here we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We identify a hydrophobic lipid-binding pocket and map key residues required for catalysis and selection between nucleotide and phospholipid substrates. We show that ATX interacts with cell-surface integrins via its N-terminal somatomedin-B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling, and enable new approaches to target ATX with small-molecule therapeutics.
doi:10.1038/nsmb.1980
PMCID: PMC3064516  PMID: 21240271
14.  Autotaxin signaling via lysophosphatidic acid receptors contributes to vascular endothelial growth factor-induced endothelial cell migration 
Molecular cancer research : MCR  2010;8(3):309-321.
Important roles for vascular endothelial growth factor (VEGF) and autotaxin (ATX) have been established for embryonic vasculogenesis and cancer progression. We examined whether these two angiogenic factors cooperate in regulation of endothelial cell migratory responses. VEGF stimulated expression of ATX and LPA1, a receptor for the ATX enzymatic product lysophosphatidic acid (LPA), in human umbilical vein endothelial cells. Knockdown of ATX expression significantly decreased mRNA levels for the receptors LPA1 and LPA2, S1P1, -2 and -3, and VEGFR2 and abolished cell migration to lysophosphatidylcholine, LPA, recombinant ATX, and VEGF. Migration to sphingosylphosphorylcholine and sphinogosine-1-phosphate was also reduced in ATX knockdown cells, whereas migration to serum remained unchanged. Furthermore, ATX-knockdown decreased Akt2 mRNA levels, whereas LPA treatment strongly stimulated Akt2 expression. We propose that VEGF stimulates LPA production by inducing ATX expression. VEGF also increases LPA1 signaling, which in turn increases Akt2 expression. Akt2 is strongly associated with cancer progression, cellular migration, and promotion of epithelial–mesenchymal transition. These data demonstrate a role for ATX in maintaining expression of receptors required for VEGF and lysophospholipids to accelerate angiogenesis. Since VEGF and ATX are up-regulated in many cancers, the regulatory mechanism proposed in these studies could apply to cancer related angiogenesis and cancer progression. These data further suggest that ATX could be a prognostic factor or a target for therapeutic intervention in a number of cancers.
doi:10.1158/1541-7786.MCR-09-0288
PMCID: PMC2841699  PMID: 20197381
autotaxin; lysophosphatidic acid; Akt2; LPA receptors; vascular endothelial growth factor receptor-2; angiogenesis
15.  Autotaxin and LPA Receptors Represent Potential Molecular Targets for the Radiosensitization of Murine Glioma through Effects on Tumor Vasculature 
PLoS ONE  2011;6(7):e22182.
Despite wide margins and high dose irradiation, unresectable malignant glioma (MG) is less responsive to radiation and is uniformly fatal. We previously found that cytosolic phospholipase A2 (cPLA2) is a molecular target for radiosensitizing cancer through the vascular endothelium. Autotaxin (ATX) and lysophosphatidic acid (LPA) receptors are downstream from cPLA2 and highly expressed in MG. Using the ATX and LPA receptor inhibitor, α-bromomethylene phosphonate LPA (BrP-LPA), we studied ATX and LPA receptors as potential molecular targets for the radiosensitization of tumor vasculature in MG. Treatment of Human Umbilical Endothelial cells (HUVEC) and mouse brain microvascular cells bEND.3 with 5 µmol/L BrP-LPA and 3 Gy irradiation showed decreased clonogenic survival, tubule formation, and migration. Exogenous addition of LPA showed radioprotection that was abrogated in the presence of BrP-LPA. In co-culture experiments using bEND.3 and mouse GL-261 glioma cells, treatment with BrP-LPA reduced Akt phosphorylation in both irradiated cell lines and decreased survival and migration of irradiated GL-261 cells. Using siRNA to knock down LPA receptors LPA1, LPA2 or LPA3 in HUVEC, we demonstrated that knockdown of LPA2 but neither LPA1 nor LPA3 led to increased viability and proliferation. However, knockdown of LPA1 and LPA3 but not LPA2 resulted in complete abrogation of tubule formation implying that LPA1 and LPA3 on endothelial cells are likely targets of BrP-LPA radiosensitizing effect. Using heterotopic tumor models of GL-261, mice treated with BrP-LPA and irradiation showed a tumor growth delay of 6.8 days compared to mice treated with irradiation alone indicating that inhibition of ATX and LPA receptors may significantly improve malignant glioma response to radiation therapy. These findings identify ATX and LPA receptors as molecular targets for the development of radiosensitizers for MG.
doi:10.1371/journal.pone.0022182
PMCID: PMC3140496  PMID: 21799791
16.  Autotaxin and lysophosphatidic acid1 receptor-mediated demyelination of dorsal root fibers by sciatic nerve injury and intrathecal lysophosphatidylcholine 
Molecular Pain  2010;6:78.
Background
Although neuropathic pain is frequently observed in demyelinating diseases such as Guillain-Barré syndrome and multiple sclerosis, the molecular basis for the relationship between demyelination and neuropathic pain behaviors is poorly understood. Previously, we found that lysophosphatidic acid receptor (LPA1) signaling initiates sciatic nerve injury-induced neuropathic pain and demyelination.
Results
In the present study, we have demonstrated that sciatic nerve injury induces marked demyelination accompanied by myelin-associated glycoprotein (MAG) down-regulation and damage of Schwann cell partitioning of C-fiber-containing Remak bundles in the sciatic nerve and dorsal root, but not in the spinal nerve. Demyelination, MAG down-regulation and Remak bundle damage in the dorsal root were abolished in LPA1 receptor-deficient (Lpar1-/-) mice, but these alterations were not observed in sciatic nerve. However, LPA-induced demyelination in ex vivo experiments was observed in the sciatic nerve, spinal nerve and dorsal root, all which express LPA1 transcript and protein. Nerve injury-induced dorsal root demyelination was markedly attenuated in mice heterozygous for autotaxin (atx+/-), which converts lysophosphatidylcholine (LPC) to LPA. Although the addition of LPC to ex vivo cultures of dorsal root fibers in the presence of recombinant ATX caused potent demyelination, it had no significant effect in the absence of ATX. On the other hand, intrathecal injection of LPC caused potent dorsal root demyelination, which was markedly attenuated or abolished in atx+/- or Lpar1-/- mice.
Conclusions
These results suggest that LPA, which is converted from LPC by ATX, activates LPA1 receptors and induces dorsal root demyelination following nerve injury, which causes neuropathic pain.
doi:10.1186/1744-8069-6-78
PMCID: PMC2989310  PMID: 21062487
17.  Autotaxin and lysophosphatidic acid stimulate intestinal cell motility by redistribution of the actin modifying protein villin to the developing lamellipodia 
Experimental cell research  2007;314(3):530-542.
Autotaxin (ATX) is a potent tumor cell motogen that can produce lysophosphatidic acid (LPA) from lysophosphatidylcholine. LPA is a lipid mediator that has also been shown to modulate tumor cell invasion. Autotaxin mRNA is expressed at high levels in the intestine. Likewise, LPA2 receptor levels have been shown to be elevated in colon cancers. The molecular mechanism of ATX/LPA-induced increase in intestinal cell migration however, remains poorly understood. Villin is an intestinal and renal epithelial cell specific actin regulatory protein that modifies epithelial cell migration. In this study we demonstrate that both Caco-2 (endogenous villin) and MDCK (exogenous villin) cells, which express primarily LPA2 receptors, show enhanced cell migration in response to ATX/LPA. ATX and LPA treatment results in the rapid formation of lamellipodia and redistribution of villin to these cell surface structures, suggesting a role for villin in regulating this initial event of cell locomotion. The LPA-induced increase in cell migration required activation of c-src kinase and downstream tyrosine phosphorylation of villin by c-src kinase. LPA stimulated cell motility was determined to be insensitive to pertussis toxin, but was regulated by activation of PLC-γ1. Together, our results show that in epithelial cells ATX and LPA act as strong stimulators of cell migration by recruiting PLC-γ1 and villin, both of which participate in the initiation of protrusion.
doi:10.1016/j.yexcr.2007.10.028
PMCID: PMC2680351  PMID: 18054784
autotaxin; LPA; villin; cell migration; actin; PLC-γ1
18.  Autotaxin, a Secreted Lysophospholipase D, Is Essential for Blood Vessel Formation during Development 
Molecular and Cellular Biology  2006;26(13):5015-5022.
Autotaxin (ATX), or nucleotide pyrophosphatase-phosphodiesterase 2, is a secreted lysophospholipase D that promotes cell migration, metastasis, and angiogenesis. ATX generates lysophosphatidic acid (LPA), a lipid mitogen and motility factor that acts on several G protein-coupled receptors. Here we report that ATX-deficient mice die at embryonic day 9.5 (E9.5) with profound vascular defects in yolk sac and embryo resembling the Gα13 knockout phenotype. Furthermore, at E8.5, ATX-deficient embryos showed allantois malformation, neural tube defects, and asymmetric headfolds. The onset of these abnormalities coincided with increased expression of ATX and LPA receptors in normal embryos. ATX heterozygous mice appear healthy but show half-normal ATX activity and plasma LPA levels. Our results reveal a critical role for ATX in vascular development, indicate that ATX is the major LPA-producing enzyme in vivo, and suggest that the vascular defects in ATX-deficient embryos may be explained by loss of LPA signaling through Gα13.
doi:10.1128/MCB.02419-05
PMCID: PMC1489177  PMID: 16782887
19.  Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity 
The Journal of Biological Chemistry  2003;278(20):18162-18169.
Our group has recently demonstrated (Gesta et al. J. Lipid. Res, 2002, 43:904–910) the presence, in adipocyte conditioned-medium, of a soluble lysophospholipase D-activity (LPLDact) involved in synthesis of the bioactive phospholipid, lysophosphatidic acid (LPA). In the present report, LPLDact was purified from 3T3F442A-adipocyte conditioned-medium and identified as the type II ecto-nucleotide pyrophosphatase phosphodiesterase: autotaxin (ATX). A unique ATX cDNA was cloned from 3T3F442A-adipocytes, and its recombinant expression in COS-7 cells led to extracellular release of LPLDact. ATX mRNA expression was highly up-regulated during adipocyte differentiation of 3T3F442A-preadipocytes. This up-regulation was paralleled by the ability of newly differentiated adipocytes to release LPLDact and LPA. Differentiation-dependent up-regulation of ATX expression was also observed in primary culture of mouse preadipocytes. Treatment of 3T3F442A-preadipocytes with concentrated conditioned medium from ATX expressing-COS-7 cells led to an increase in cell number as compared with concentrated conditioned medium from ATX non-expressing-COS-7 cells. The specific effect of ATX on preadipocyte proliferation was completely suppressed by co-treatment with a LPA-hydrolyzing phospholipase, phospholipase B. Finally, ATX expression was found in mature adipocytes isolated from mouse adipose tissue, and was substantially increased in genetically obese-diabetic db/db mice when compared to their lean siblings.
In conclusion, the present work shows that ATX is responsible for the LPLDact released by adipocytes, and exerts a paracrine control on preadipocyte growth via an LPA-dependent mechanism. Up-regulations of ATX expression with adipocyte differentiation and genetic obesity suggest a possible involvement of this released protein in the development of adipose tissue and obesity-associated pathologies.
doi:10.1074/jbc.M301158200
PMCID: PMC1885458  PMID: 12642576
Adipocytes; metabolism; Amino Acid Sequence; Animals; Autocrine Motility Factor; chemistry; metabolism; COS Cells; Cell Differentiation; Cell Division; Cloning, Molecular; Culture Media, Conditioned; pharmacology; DNA, Complementary; metabolism; Databases; Electrophoresis, Polyacrylamide Gel; Glycoproteins; chemistry; metabolism; Lysophospholipids; metabolism; Male; Mass Spectrometry; Mice; Mice, Inbred C57BL; Molecular Sequence Data; Multienzyme Complexes; Phosphodiesterase I; Phosphoric Diester Hydrolases; metabolism; Pyrophosphatases; RNA; metabolism; RNA, Messenger; metabolism; Recombinant Proteins; metabolism; Reverse Transcriptase Polymerase Chain Reaction; Time Factors; Transfection; Up-Regulation
20.  Therapeutic Potential of Autotaxin/Lysophospholipase D Inhibitors 
Current drug targets  2008;9(8):698-708.
Lysophosphatidic acids are structurally simple lipid phosphate esters with a now widely appreciated role as extracellular signaling molecules. LPA binds to selective cell surface receptors to promote cell growth, survival, motility and differentiation. Studies using LPA receptor knockout mice and experimental therapeutics targeting these receptors identify roles for LPA signaling in processes that include cardiovascular disease and function, angiogenesis, reproduction, cancer progression and neuropathic pain. These studies identify considerable functional redundancy between these receptors and raise the possibility that additional lysophosphatidic acid receptors remain to be identified. Lysophosphatidic acid is present in the blood and other biological fluids at physiologically relevant concentrations and can likely be rapidly generated and degraded in different locations, for example at sites of inflammation, vascular injury and thrombosis or in the tumor micro environment. Recent work identifies a secreted enzyme, autotaxin, as the key component of an extracellular pathway for generation of lysophosphatidic acid by lysophospholipase D catalyzed hydrolysis of lysophospholipid substrates. In contrast to the apparently redundant functions of LPA receptors, studies using autotaxin knock out and transgenic mice indicate that this enzyme is uniquely required for LPA signaling during early development and serves as the primary determinant of circulating LPA levels in adult animals. Accordingly, pharmacological inhibition of autotaxin may be a viable and potentially effective way to interfere with LPA signaling in the cardiovascular system and possibly other settings such as tumor metastasis for therapeutic benefit. In this review we provide an update on recent advances in defining roles for LPA signaling in major disease processes and discuss recent progress in understanding the regulation and function of autotaxin focusing on strategies for the identification and initial evaluation of small molecule autotaxin inhibitors.
PMCID: PMC3724932  PMID: 18691016
Lysophosphatidic acid; phospholipase; receptor; autotaxin; cancer; cardiovascular disease; molecular therapeutics
21.  A Novel Highly Potent Autotaxin/ENPP2 Inhibitor Produces Prolonged Decreases in Plasma Lysophosphatidic Acid Formation In Vivo and Regulates Urethral Tension 
PLoS ONE  2014;9(4):e93230.
Autotaxin, also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), is a secreted enzyme that has lysophospholipase D activity, which converts lysophosphatidylcholine to bioactive lysophosphatidic acid. Lysophosphatidic acid activates at least six G-protein coupled recpetors, which promote cell proliferation, survival, migration and muscle contraction. These physiological effects become dysfunctional in the pathology of cancer, fibrosis, and pain. To date, several autotaxin/ENPP2 inhibitors have been reported; however, none were able to completely and continuously inhibit autotaxin/ENPP2 in vivo. In this study, we report the discovery of a highly potent autotaxin/ENPP2 inhibitor, ONO-8430506, which decreased plasma lysophosphatidic acid formation.
The IC50 values of ONO-8540506 for lysophospholipase D activity were 6.4–19 nM for recombinant autotaxin/ENPP2 proteins and 4.7–11.6 nM for plasma from various animal species. Plasma lysophosphatidic acid formation during 1-h incubation was almost completely inhibited by the addition of >300 nM of the compound to human plasma. In addition, when administered orally to rats at a dose of 30 mg/kg, the compound demonstrated good pharmacokinetics in rats and persistently inhibited plasma lysophosphatidic acid formation even at 24 h after administration.
Smooth muscle contraction is a known to be promoted by lysophosphatidic acid. In this study, we showed that dosing rats with ONO-8430506 decreased intraurethral pressure accompanied by urethral relaxation. These findings demonstrate the potential of this autotaxin/ENPP2 inhibitor for the treatment of various diseases caused by lysophosphatidic acid, including urethral obstructive disease such as benign prostatic hyperplasia.
doi:10.1371/journal.pone.0093230
PMCID: PMC3991570  PMID: 24747415
22.  Crystallization and preliminary X-ray crystallographic analysis of human autotaxin 
The α isoform of human autotaxin has been crystallized. Diffraction data were collected to 3.0 Å resolution using synchrotron radiation.
Autotaxin (ATX), which is also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (NPP2 or ENPP2) or phosphodiesterase Iα (PD-Iα), is an extracellular lysophospholipase D which generates lysophosphatidic acid (LPA) from lysophosphatidylcholine (LPC). ATX stimulates tumour-cell migration, angiogenesis and metastasis and is an attractive target for cancer therapy. For crystallographic studies, the α isoform of human ATX was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected to 3.0 Å resolution from a monoclinic crystal form belonging to space group C2, with unit-cell parameters a = 311.4, b = 147.9, c = 176.9 Å, β = 122.6°.
doi:10.1107/S174430911005311X
PMCID: PMC3080147  PMID: 21505238
autotaxin; lysophosphatidic acid; lysophospholipase D; ectonucleotide pyrophosphatase/phosphodiesterase 2
23.  Serum Autotaxin Is a Parameter for the Severity of Liver Cirrhosis and Overall Survival in Patients with Liver Cirrhosis – A Prospective Cohort Study 
PLoS ONE  2014;9(7):e103532.
Background
Autotaxin (ATX) and its product lysophosphatidic acid (LPA) are considered to be involved in the development of liver fibrosis and elevated levels of serum ATX have been found in patients with hepatitis C virus associated liver fibrosis. However, the clinical role of systemic ATX in the stages of liver cirrhosis was unknown. Here we investigated the relation of ATX serum levels and severity of cirrhosis as well as prognosis of cirrhotic patients.
Methods
Patients with liver cirrhosis were prospectively enrolled and followed until death, liver transplantation or last contact. Blood samples drawn at the day of inclusion in the study were assessed for ATX content by an enzyme-linked immunosorbent assay. ATX levels were correlated with the stage as well as complications of cirrhosis. The prognostic value of ATX was investigated by uni- and multivariate Cox regression analyses. LPA concentration was determined by liquid chromatography-tandem mass spectrometry.
Results
270 patients were enrolled. Subjects with liver cirrhosis showed elevated serum levels of ATX as compared to healthy subjects (0.814±0.42 mg/l vs. 0.258±0.40 mg/l, P<0.001). Serum ATX levels correlated with the Child-Pugh stage and the MELD (model of end stage liver disease) score and LPA levels (r = 0.493, P = 0.027). Patients with hepatic encephalopathy (P = 0.006), esophageal varices (P = 0.002) and portal hypertensive gastropathy (P = 0.008) had higher ATX levels than patients without these complications. Low ATX levels were a parameter independently associated with longer overall survival (hazard ratio 0.575, 95% confidence interval 0.365–0.905, P = 0.017).
Conclusion
Serum ATX is an indicator for the severity of liver disease and the prognosis of cirrhotic patients.
doi:10.1371/journal.pone.0103532
PMCID: PMC4111595  PMID: 25062038
24.  Lysophosphatidic acid-3 receptor-mediated feed-forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic pain 
Molecular Pain  2009;5:64.
Background
We previously reported that intrathecal injection of lysophosphatidylcholine (LPC) induced neuropathic pain through activation of the lysophosphatidic acid (LPA)-1 receptor, possibly via conversion to LPA by autotaxin (ATX).
Results
We examined in vivo LPA-induced LPA production using a biological titration assay with B103 cells expressing LPA1 receptors. Intrathecal administration of LPC caused time-related production of LPA in the spinal dorsal horn and dorsal roots, but not in the dorsal root ganglion, spinal nerve or sciatic nerve. LPC-induced LPA production was markedly diminished in ATX heterozygotes, and was abolished in mice that were deficient in LPA3, but not LPA1 or LPA2 receptors. Similar time-related and LPA3 receptor-mediated production of LPA was observed following intrathecal administration of LPA. In an in vitro study using spinal cord slices, LPA-induced LPA production was also mediated by ATX and the LPA3 receptor. Intrathecal administration of LPA, in contrast, induced neuropathic pain, which was abolished in mice deficient in LPA1 or LPA3 receptors.
Conclusion
These findings suggest that feed-forward LPA production is involved in LPA-induced neuropathic pain.
doi:10.1186/1744-8069-5-64
PMCID: PMC2780384  PMID: 19912636
25.  Benzyl and Naphthalene-Methyl Phosphonic Acid Inhibitors of Autotaxin with Anti-invasive and Anti-metastatic Actions 
ChemMedChem  2011;6(5):922-935.
Autotaxin (ATX, NPP2) is a member of the nucleotide pyrophosphate phosphodiesterase enzyme family. ATX catalyzes the hydrolytic cleavage of lysophosphatidylcholine (LPC) via a lysophospholipase D activity that leads to the generation of the growth factor-like lipid mediator lysophosphatidic acid (LPA). ATX is highly upregulated in metastatic and chemotherapy-resistant carcinomas and represents a potential target to mediate cancer invasion and metastasis. Here we report the synthesis and pharmacological characterization of inhibitors of ATX based on the 4-tetradecanoylaminobenzyl phosphonic acid scaffold that was previously found to lack sufficient stability in cellular systems. The new 4-substituted benzyl phosphonic acid and 6-substituted naphthalen-2-yl-methyl phosphonic acid analogs blocked ATX with Ki values in the low-micromolar-nanomolar range against FS-3, LPC, and nucleotide substrates through a mixed-mode mechanism of inhibition. None of the compounds tested inhibited the activity of related enzymes (NPP6 and NPP7). In addition, the compounds were evaluated as agonists or antagonists of seven LPA receptor subtypes. Analogs 22 and 30b, the two most potent ATX inhibitors, dose-dependently inhibited the invasion of MM1 hepatoma cells across murine mesothelial and human vascular endothelial monolayers in vitro. The average terminal half-life for compound 22 was 10h ± 5.4h and it caused a long-lasting reduction plasma LPA levels. Compounds 22 and 30b significantly reduced lung metastasis of B16-F10 syngeneic mouse melanoma in a post-inoculation treatment paradigm. The described 4-substituted benzyl phosphonic acids and 6-substituted naphthalen-2-yl-methyl phosphonic acids represent new lead compounds that effectively inhibit the ATX-LPA-LPA receptor axis both in vitro and in vivo.
doi:10.1002/cmdc.201000425
PMCID: PMC3517046  PMID: 21465666
ATX inhibitors; LPA receptors; 4-substituted benzyl phosphonic acids; 6-substituted naphthalen-2-yl-methyl phosphonic acids; structure-activity relationships

Results 1-25 (902124)